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MULTIVARIATE APPROXIMATION IN TOTAL VARIATION, II:
DISCRETE NORMAL APPROXIMATION

BY A. D. BARBOUR1, M. J. LUCZAK2 AND A. XIA3

Universität Zürich, Queen Mary University of London and
University of Melbourne

The paper applies the theory developed in Part I to the discrete normal
approximation in total variation of random vectors in Z

d . We illustrate the
use of the method for sums of independent integer valued random vectors,
and for random vectors exhibiting an exchangeable pair. We conclude with
an application to random colourings of regular graphs.

1. Introduction. In Theorem 4.8 of Barbour, Luczak and Xia (2018) (Part I),
we establish bounds on the total variation distance between the distribution of
a random element W ∈ Z

d and the equilibrium distribution of a suitably chosen
Markov population process Xn. In this paper, we show that the bounds are of
order O(n−1/2 logn) as n → ∞ if W ∼ DN d(nc,n�), for any c ∈ R

d and pos-
itive definite symmetric d × d matrix �, where the discrete normal distribution
DN d(nc,n�) is obtained from Nd(nc,n�) by assigning the probability of the
d-box

[i1 − 1/2, i1 + 1/2) × · · · × [id − 1/2, id + 1/2)

to the integer vector (i1, . . . , id), for each (i1, . . . , id) ∈ Z
d . From this, we deduce

bounds for the discrete normal approximation of any random d-vector W .
To state Theorem 4.8 of Part I in the form that we shall need, we let c ∈ R

d be
arbitrary, and A,σ 2 ∈ R

d×d be such that A is a Hurwitz matrix (all its eigenvalues
have negative real parts), and that σ 2 is positive definite and symmetric. We let �

denote the positive definite solution of the continuous Lyapunov equation

(1.1) A� + �AT + σ 2 = 0;
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for example, if A = −I , then � = 1
2σ 2. We define an associated norm |x|� :=√

xT �−1x. We then define an operator Ã acting on functions h : Zd →R by

(1.2) Ãnh(w) := n

2
Tr
(
σ 2�2h(w)

)+ �hT (w)A(w − nc), w ∈ Z
d,

where

�jh(w) := h
(
w+e(j))−h(w); �jkh(w) := �j(�kh)(w), 1 ≤ j, k ≤ d.

For f : Zd →R, we also define

(1.3) ‖f ‖�
nη,∞ := max|X−nc|�≤nη

∣∣f (X)
∣∣,

with nc implicit. We then write ‖�h‖�
nη,∞ and ‖�2h‖�

nη,∞ for ‖f ‖�
nη,∞, when

f (X) = max1≤j≤d |�jh(X)| and f (X) = max1≤j,k≤d |�jkh(X)|, respectively.
For a matrix M , we let ‖M‖ denote its spectral norm; if it is positive definite and
symmetric, we let λmax(M) and λmin(M) denote its largest and smallest eigenval-
ues, ρ(M) their ratio and Sp′(M) := {λmin(M),λmax(M), d−1 Tr(M)}.

THEOREM 1.1 (Theorem 4.8 of Part 1). Given any c,A and σ 2 as above, there
exists an associated sequence of Markov population processes (Xn,n ≥ 1), whose
restriction Xδ

n to the nδ-ball in | · |� with centre nc, for δ ≤ λmin(σ
2)/(8‖A‖), has

equilibrium distribution 	δ
n concentrated near nc, which is almost the same for

all δ. The closeness of L(W) in total variation to 	δ
n, for any random vector W in

Z
d , can be checked as follows. For δ̃0 = min{3, λmin(σ

2)/(8‖A‖√λmax(�)), and
for any v > 0 and 0 < δ′ < 1

2 δ̃0, there exist constants C1.1(v, δ′) and n1.1(v, δ′),
which are continuous functions of v, δ′, ‖A‖/
, Sp′(σ 2/
) and Sp′(�), where

 := d−1 Tr(σ 2), but not of n, with the following property: if, for some v > 0,
0 < δ′ < 1

2 δ̃0: n ≥ n1.1(v, δ′) and ε1, ε20, ε21, ε22 > 0,

(i) E|W − nc|2� ≤ dvn;
(ii) dTV

(
L(W),L

(
W + e(j))) ≤ ε1, for each 1 ≤ j ≤ d;

(iii)
∣∣E{Ãnh(W)I

[|W − nc|� ≤ nδ′/3
]}∣∣

≤ 

(
ε20‖h‖�

nδ̃0/4,∞ + ε21n
1/2‖�h‖�

nδ̃0/4,∞ + ε22n
∥∥�2h

∥∥�

nδ̃0/4,∞
)
,

for all h : Zd → R, where Ãn is as defined in (1.2), then, for any δ such that
2δ′ ≤ δ ≤ δ̃0,

dTV
(
L(W),	δ

n

) ≤ C1.1
(
v, δ′)(d3n−1/2 + d4ε1 + ε20 + d1/4ε21 + d1/2ε22

)
logn.

The accuracy of the approximation, for fixed c, A and σ 2, is thus of order
O(logn{n−1/2 + ε1 + ε20 + ε21 + ε22}), and is determined by how small the ε-
quantities are. In Section 4, we give examples to show that they can all be of order
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O(n−1/2), giving an overall bound of order O(n−1/2 logn). The constant C1.1 and
the quantities 1/δ̃0 and d−1 Tr(σ 2) depend on A and σ 2 in such a way that they do
not grow with increasing dimension d , provided that the spectral norm of A and
the eigenvalues of σ 2 and � remain bounded away from zero and infinity; more
detail is given in Part I. Note, however, that n appears in the definition of Ãn only
as a product with σ 2, and so can be chosen to prevent Tr(σ 2) and Tr(�) becoming
large. Note also that the equilibrium distribution 	δ

n remains the same if both A

and σ 2 are multiplied by a common factor a > 0—this merely reflects a new choice
of time scale—but the operator Ãn is multiplied by a. The factor d−1 Tr(σ 2)) on
the right-hand side of the inequality in Condition (iii) of Theorem 1.1 ensures that
the constant C1.1(v, δ′) is the same for all choices of a.

The remainder of this paper completes two tasks. The first is to show that, if
W ∼ DN d(nc,n�), then Conditions (i)–(iii) of Theorem 1.1 are satisfied with all
the ε-quantities of order O(n−1/2). As a result, 	δ

n in the above theorem can be
replaced by DN d(nc,n�), giving the desired method of proving discrete nor-
mal approximation. The second is to show that the theorem can be applied in
reasonable generality, yielding good rates of approximation. Note that there are
many pairs (A,σ 2) that correspond to the same �, and the flexibility of having
many pairs (A,σ 2) to use when approximating a single discrete normal distribu-
tion DN d(nc,n�) represents a real advantage.

The structure of the paper is as follows. A brief taste of the results to be obtained
is given in Section 1.1. In Section 2, the main discrete normal approximation, The-
orem 2.4, is established, giving two conditions to be checked in order to conclude
discrete normal approximation in total variation. If a “linear regression pair” can
be found, these conditions can be substantially simplified; we give a correspond-
ing result in Theorem 3.4 of Section 3. This theorem is applied, in Section 4, to
sums of independent random vectors, and then in the more general context of ex-
changeable pairs, as developed in Stein (1986). We conclude with an application
to the joint distribution of the numbers of monochrome edges in a graph colour-
ing problem. A number of proofs that involve lengthy calculations are deferred to
Section 5. The form of Theorem 2.4 also lends itself to use under assumptions of
local dependence.

1.1. Illustration. Theorem 2.4 is somewhat forbidding. Before going into de-
tail, we give a simple corollary of the theorem in the context of exchangeable pairs
having the approximate linear regression property, and sketch an example.

Suppose that (W,W ′) is a pair of random integer valued d-vectors, defined on
the same probability space, such that the pairs (W,W ′) and (W ′,W) have the
same distribution. Assume that E{|W |3} < ∞, and write μ := EW . Let ξ denote
the difference W ′ − W , so that Eξ = 0, and set σ 2 := E{ξξT }, assumed positive
definite, and χ := E{|ξ |3}. Assume that, for some n > 0 and for some Hurwitz
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matrix A ∈ R
d×d with spectral norm ‖A‖, we have

(1.4)
E{ξ | W } = n−1A(W − μ) + {‖A‖/n

}1/2
R1(W);

σ 2(W) := E
{
ξξT | W}

.

Clearly, E{R1(W)} = 0. Write L := (‖A‖/n)1/2χ{Tr(σ 2)}−3/2, let � be the solu-
tion to (1.1), and assume that

{
E
∣∣�−1/2R1(W)

∣∣3}1/3 ≤ λmin(σ
2)

8λmax(�)

√
d

2‖A‖ .

Let J be the set of d-vectors such that qJ := P[ξ = J ] > 0. Suppose that J is
finite, and that each of the coordinate vectors e(j), 1 ≤ j ≤ d , can be obtained as a
(finite) sum of elements of J . For QJ (W) := P[ξ = J | W ], we set

uJ := (
qJ )−1

E
∣∣QJ (W) − qJ

∣∣,
and u∗ := maxJ∈J uJ .

THEOREM 1.2. Under the above circumstances, there exist constants n0 and
C, depending on d , σ 2, J and A, such that, if n ≥ n0, we have

dTV
(
L(W),DN d(μ,n�)

) ≤ C logn
{
L
(
1 + n1/2u∗)+E

∣∣R1(W)
∣∣}.

The key elements in the bound are L, which is the analogue of the Lyapunov
ratio appearing in the Berry–Esseen error bound, u∗, which can often be shown to
be small by a variance calculation, and the inaccuracy of the linear regression (1.4),
expressed by E|R1(W)|. In examples such as the one that follows, the resulting
bound is of order O(n−1/2 logn). The theorem can be deduced from Theorem 3.4,
Lemma 4.3 and Corollary 4.4.

As an example, suppose that Gn is an r-regular graph on n vertices. Let the
vertices be coloured independently, each with one of m colours, the probability of
choosing colour i being pi > 0, 1 ≤ i ≤ m. Let Ni denote the number of vertices
having colour i, and let Mi denote the number of edges joining pairs of vertices
that both have colour i. We are interested in approximating the joint distribution of

W := (M1, . . . ,Mm,N1, . . . ,Nm−1) =: (W1, . . . ,Wm,Wm+1, . . . ,W2m−1),

when n becomes large, while r , m and p1, . . . , pm remain fixed; the detailed struc-
ture of Gn does not appear in the approximation. Multivariate normal approxima-
tion in a smooth metric was proved by Rinott and Rotar (1996), and in the convex
sets metric by Chen, Goldstein and Shao [(2011), pages 333–334], both with error
of order O(n−1/2 logn). Theorem 1.2 shows that the same order of error actually
holds in total variation, provided that m ≥ 3; the details are given in Section 4.2.1.
For m = 2, the distribution of W is concentrated on a sub-lattice of Z

3, so that
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discrete normal approximation is not good [but it can be deduced for the pair
(M1,N1)]. The exchangeable pair is constructed by realizing W from a random
colouring of the vertices, and then randomly re-colouring one of the vertices to
give W ′. The resulting regression is exact, implying that R1(w) = 0 for all w. The
set J is fixed and finite, so that L = O(n−1/2), and, for each J , E(QJ (W) − qJ )2

can simply be shown to be of order O(n−1)—the calculation is as for the variance
of a sum of n very weakly dependent indicators. If m ≥ 3, each coordinate vector
e(j), 1 ≤ j ≤ 2m − 1, can be obtained as a sum of elements of J , but this cannot
be done if m = 2. The analogous problem, in which the proportions of vertices of
each colour are held (almost) fixed, but randomly assigned to the vertices, can be
treated in much the same way. The exchangeable pair is obtained by swapping the
colours of two vertices, and the treatment of E(QJ (W) − qJ )2 becomes a little
messier.

2. Discrete normal approximation. In this section, we show that Theo-
rem 1.1 can be used to establish approximation by distributions from the discrete
normal family. To do so, we need first to establish properties of distributions in the
family that are related to the conditions of Theorem 1.1. We always assume that
n ≥ d4.

We first note the following simple lemma, proved in Section 5.1, in which mo-
ments of the discrete normal random variable W ∼ DN d(nc,n�) are bounded by
expressions similar to those of Nd(nc,n�).

LEMMA 2.1. For l ∈ Z+, we have

(a) E|W − nc|l� ≤ C(l)(nd)l/2,

whenever n ≥ 1/λmin(�), for universal constants C(l) given in Section 5.1. In
addition, for each 1 ≤ j ≤ d and n ≥ 1,

(b) E(Wj − ncj )
2 ≤ 1

2
+ 2n�jj ,

and, for l ∈ Z+ and for universal constants C′(l) given in Section 5.1,

(c) E
{[

�−1(W − nc)
]2l
j

} ≤ nlC′(l)
(
1 + (

�−1)l
jj

)
,

whenever n ≥ d/{4(λmin(�))2}.
The next lemma, proved in Section 5.2, establishes an approximate integration

by parts formula for multivariate discrete normal distributions. We write I
η
n (X) :=

I [|X − nc|� ≤ nη/3] for any η > 0, and we say that C ∈ K� if C is an increasing
function of λmax(�),1/λmin(�), and C(δ) ∈ K�(δ) if C(δ) ∈ K� for each fixed δ.
We also define

(2.1) ψ�(n) := 6

n
√

λmin(�)
,

noting that its inverse is ψ−1
� (δ) = ψ�(δ).
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LEMMA 2.2. Suppose that W ∼ DN d(nc,n�). Then there exist constants
n2.2 ∈ K� and C

(1)
2.2(δ),C

(2)
2.2(δ),C

(3)
2.2(δ) ∈K�(δ), such that, for any n ≥ max{n2.2,

ψ�(δ)} and for any function f : Zd →R, we have:

(a)
∣∣E{�f (W)T bI δ

n(W)
}− n−1

E
{
(f (W)(W − nc)T �−1bI δ

n(W)
}∣∣

≤ d1/2C
(1)
2.2(δ)n−1|b|1‖f ‖�

nδ/2,∞;
(b)

∣∣E{�f (W)T B(W − nc)I δ
n(W)

}
−E

{
f (W)

[
n−1(W − nc)T �−1B(W − nc) − TrB

]
I δ
n(W)

}∣∣
≤ d1/2C

(2)
2.2(δ)n−1/2‖B‖1‖f ‖�

nδ/2,∞ +
d∑

j=1

|Bjj |‖�f ‖�
nδ/2,∞;

(c) Z
∣∣E{�f (W)T B(W − nc)I δ

n(W)
}

−E
{
f (W)

[
n−1(W − nc)T �−1B(W − nc) − TrB

]
I δ
n(W)

}∣∣
≤ dC

(3)
2.2(δ)n−1/2

d∑
j=1

∣∣(e(j))T B
∣∣‖f ‖�

nδ/2,∞ +
d∑

j=1

|Bjj |‖�f ‖�
nδ/2,∞,

for any d-vector b and any d × d matrix B . The constants n2.2, C
(1)
2.2(δ), C

(2)
2.2(δ)

and C
(3)
2.2(δ) are defined in (5.8), (5.9), (5.15) and following (5.16), respectively.

With the help of the lemmas above, we can now show that, if W has the discrete
normal distribution DN d(nc,n�), then it satisfies the conditions of Theorem 1.1,
with ε1 ≤ c1n

−1/2, max{ε20, ε21} ≤ c2d
5/2n−1/2 and ε22 = 0, and hence that the

conditions of Theorem 1.1 imply a bound on the error of approximating the distri-
bution of a random d-vector by DN d(nc,n�).

THEOREM 2.3. For � positive definite, suppose that σ 2, positive definite, and
A are such that A� + �AT + σ 2 = 0; write 
 := d−1 Tr(σ 2). Then, if W ∼
DN d(nc,n�), for any n ≥ max{n2.2,ψ�(δ)}, we have:

(i) E|W − nc|2� ≤ dC(2)n;
(ii) dTV

(
L(W),L

(
W + e(j))) ≤ C

(1)
2.3n−1/2 for each 1 ≤ j ≤ d;

(iii)
∣∣E{Ãnh(W)I

[|W − nc|� ≤ nδ/3
]}∣∣

≤ d5/2n−1/2
C
(2)
2.3(δ)

(‖h‖�
nδ/2,∞ + n1/2‖�h‖�

nδ/2,∞
)
,

where Ãn is as defined in (1.2), C(2) is as in Lemma 2.1, and C
(1)
2.3 and C

(2)
2.3(δ)

are continuous functions of ‖A‖/
, Sp′(σ 2/
) and Sp′(�); C
(1)
2.3 is given in (2.2),
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C
(2)
2.3(δ) implicitly in (2.8). Hence a random d-vector satisfying the conditions of

Theorem 1.1 with n ≥ n2.3 and 0 < δ < 1
2 δ̃0(A,σ 2) has

dTV
(
L(W),DN d(nc,n�)

)
≤ C2.3(v, δ)

(
d4(n−1/2 + ε1

)+ ε20 + d1/4ε21 + d1/2ε22
)

logn,

with

C2.3(v, δ) := C1.1(v, δ) + C1.1
(
C(2), δ

)(
1 + C

(1)
2.3 + C

(2)
2.3(δ)

);
n2.3 := max

{
n1.1(v, δ), n2.2,ψ�(δ)

}
.

PROOF. Part (i) is immediate from (5.1), with v = C(2). For Part (ii), we pick
δ = 1, and then take b = e(j) and any function f with ‖f ‖∞ ≤ 1 in Lemma 2.2(a).
This gives

E
∣∣�jf (W)I 1

n (W)
∣∣ ≤ d1/2C

(1)
2.2(1)n−1 + n−1/2

√
C′(1)

(
1 + (

�−1
)
jj

)
,

in view of Lemma 2.1(c). For the remaining part of |E{�jf (W)}|, using
‖�jf ‖∞ ≤ 2, we have

E
∣∣�jf (W)I

[|W − nc|� > n/3
]∣∣ ≤ 18dC(2)/n,

by Chebyshev’s inequality and from Part (i), and the estimate follows because
n ≥ d2, with

(2.2) C
(1)
2.3 := C

(1)
2.2(1) +

√
C′(1)

(
1 + (

�−1
)
jj

)+ 18C(2).

For Part (iii), we use Lemma 2.2(b). This gives

(2.3)

∣∣E{�h(W)T A(W − nc)I δ
n(W)

}
−E

{
h(W)

[
n−1(W − nc)T �−1A(W − nc) − TrA

]
I δ
n(W)

}∣∣
≤ d1/2C

(2)
2.2(δ)n−1/2‖A‖1‖h‖�

nδ/2,∞ +
d∑

j=1

|Ajj |‖�h‖�
nδ/2,∞.

Then, since

Tr
(
σ 2�2h(W)

) =
d∑

i=1

d∑
j=1

σ 2
ij�jfi(W),
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where fi(W) := �ih(W), it follows from Lemma 2.2(a), with f = fi and with b

the ith column of σ 2, that

(2.4)

∣∣∣∣∣nE{Tr
(
σ 2�2h(W)

)
I δ
n(W)

}

−E

{
d∑

i=1

d∑
j=1

σ 2
ij�ih(W)

{
�−1(W − nc)

}
j I

δ
n(W)

}∣∣∣∣∣
≤ d1/2C

(1)
2.2(δ)

∥∥σ 2∥∥
1‖�h‖�

nδ/2,∞;

note also that

(2.5)
E

{
d∑

i=1

d∑
j=1

σ 2
ij�ih(W)

{
�−1(W − nc)

}
j I

δ
n(W)

}

= E
{
�h(W)T σ 2�−1(W − nc)I δ

n(W)
}
.

But now, from Lemma 2.2(c),

(2.6)

∣∣E{�h(W)T σ 2�−1(W − nc)I δ
n(W)

}
−E

{
h(W)

[
n−1(W − nc)T �−1σ 2�−1(W − nc) − Tr

(
σ 2�−1)]I δ

n(W)
}∣∣

≤ dC
(3)
2.2(δ)n−1/2

d∑
j=1

∣∣(e(j))T �−1σ 2∣∣‖h‖�
nδ/2,∞

+
d∑

j=1

∣∣[σ 2�−1]
jj

∣∣‖�h‖�
nδ/2,∞

≤ dC
(3)
2.2(δ)n−1/2{λmin(�)

}−1∥∥σ 2∥∥
1‖h‖�

nδ/2,∞
+ ∥∥σ 2�−1∥∥

1‖�h‖�
nδ/2,∞.

Hence, and since

‖A‖1 ≤ d3/2‖A‖; ∥∥σ 2∥∥
1 ≤ d3/2λmax

(
σ 2)

and

∥∥σ 2�−1∥∥
1 ≤ d3/2∥∥σ 2�−1∥∥ ≤ d3/2λmax

(
σ 2)/λmin(�),
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it follows from (2.3), (2.4) and (2.6) that

(2.7)

E
{
Ãnh(W)I δ

n(W)
}

= E

{(
Tr
{
A(W − nc)�h(W)T

}+ 1

2
nTr

{
σ 2�2h(W)

})
I δ
n(W)

}
= E

{
h(W)

[
1

2
n−1(W − nc)T

(
2�−1A + �−1σ 2�−1)(W − nc)

− TrA − 1

2
Tr
(
σ 2

�

)]
I δ
n(W)

}
+ θ,

where

(2.8)

|θ | ≤ d1/2C
(2)
2.2(δ)n−1/2‖A‖1‖h‖�

nδ/2,∞

+ ‖A‖1‖�h‖�
nδ/2,∞ + 1

2
d1/2C

(1)
2.2(δ)

∥∥σ 2∥∥
1‖�h‖�

nδ/2,∞

+ 1

2
dC

(3)
2.2(δ)n−1/2{λmin(�)

}−1∥∥σ 2∥∥
1‖h‖�

nδ/2,∞

+ ∥∥σ 2�−1∥∥
1‖�h‖�

nδ/2,∞

≤ d5/2n−1/2
C
(2)
2.3(δ)

(‖h‖�
nδ/2,∞ + n1/2‖�h‖�

nδ/2,∞
)
,

and C
(2)
2.3(δ) is a function of ‖A‖/
 and the elements of Sp′(�), Sp′(σ 2/
).

Finally, for any y and B , we have yT By = yT BT y = 1
2yT (B + BT )y, so that

yT (2�−1A + �−1σ 2�−1)y = yT (�−1A + AT �−1 + �−1σ 2�−1)y
= yT �−1(A� + �AT + σ 2)�−1y = 0,

from (1.1), and

Tr
(
σ 2

�

) = −Tr
(
�−1/2A�1/2 + �1/2AT �−1/2) = −2 TrA.

This, with (2.7), establishes that

(2.9)

∣∣E{Ãnh(W)I δ
n(W)

}∣∣
≤ d5/2n−1/2C

(2)
2.3(δ)

{‖h‖�
nδ/2,∞ + n1/2‖�h‖�

nδ/2,∞
}
,

as required. The final conclusion follows from the triangle inequality. �

Discrete normal approximation using Theorem 2.3 involves checking the con-
ditions of Theorem 1.1. These can be replaced with analogous conditions in which
the norm | · |� is replaced by the Euclidean norm. Here, the parameter n is also
chosen to standardize d−1 Tr(�); we omit the routine proof.



1414 A. D. BARBOUR, M. J. LUCZAK AND A. XIA

THEOREM 2.4. Let W be a random vector in Z
d with mean μ := EW and

positive definite covariance matrix V := E{(W − μ)(W − μ)T }; define n :=
�d−1 TrV 
, c := n−1μ and � := n−1V . Let A be a d × d Hurwitz matrix such
that σ 2 := −(A� + �AT ) is positive definite, and write 
 := d−1 Trσ 2. Set

η0 := 1

6
min

{√
λmin(�),

λmin(σ
2)

24‖A‖√ρ(�)

}
= 1

6
δ̃0
√

λmin(�).

Then, for any 0 < η ≤ η0, there exist continuous functions C2.4(η), n2.4(η) of
‖A‖/
, Sp′(σ 2/
), Sp′(�) and η, not depending on d or n, with the following
property: if, for some ε1, ε20, ε21 and ε22, and for some n ≥ n2.4(η),

(a) dTV
(
L(W),L

(
W + e(j))) ≤ ε1 for each 1 ≤ j ≤ d;

(b)
∣∣E{Ãnh(W)

}
I
[|W − nc| ≤ nη

]∣∣
≤ 


(
ε20‖h‖3nη0/2,∞ + ε21n

1/2‖�h‖3nη0/2,∞ + ε22n
∥∥�2h

∥∥
3nη0/2,∞

)
,

for all h : Zd →R, then it follows that

dTV
(
L(W),DN d(nc,n�)

)
≤ C2.4(η)

(
d3n−1/2 + d4ε1 + ε20 + d1/4ε21 + d1/2ε22

)
logn.

The estimate required in Condition (b), apart from the truncation to |W − nc| ≤
nη/6, is typical of those that are needed for multivariate normal approximation
using Stein’s method. The extra work needed, to translate multivariate normal ap-
proximation into discrete normal approximation in total variation, lies in establish-
ing Condition (a) with a suitably small ε1. Since, from Theorem 2.3, Condition (a)
is satisfied with ε1 = O(n−1/2) if W ∼ DN d(nc,n�) and � is nonsingular, the
triangle inequality for a general W yields

dTV
(
L(W),L

(
W + e(j))) ≤ 2dTV

(
L(W),DN d(nc,n�)

)+ O
(
n−1/2),

so that dTV(L(W),L(W + e(j))) has to be small if total variation approximation
of L(W) by the discrete normal is to be accurate.

We make some effort to make explicit the typical dependence of the error
bounds on the dimension d . This is largely for comparison with the error bounds
derived by Bentkus (2003) and Fang (2014) for approximation, with respect to the
convex sets metric, of standardized sums of independent random vectors by the
standard d-dimensional normal distribution. Here, since multiplicative standard-
ization makes no sense in the domain of random vectors with integer coordinates,
there are more quantities than just dimension that may affect the sizes of the ap-
proximation errors. Nonetheless, we attempt some comparison with the above ap-
proximations. To do so, we think of many quantities, such as the eigenvalues of σ 2,



MULTIVARIATE APPROXIMATION 1415

A and �, as being bounded away from zero and infinity as d varies, and the traces
of these matrices thus being thought of as having order d . This is because, in the
standardized setting, using the Stein approach as in Götze (1991) or Fang (2014),
one has σ 2 = 2I , A = −I and � = I . Our bounds then also involve the values
of other parameters, in particular ‖A‖ and the elements of Sp′(σ 2) and Sp′(�),
in a way that can be deduced from our arguments, but that we do not attempt to
make explicit, other than that their dependence on these parameters is continuous.
However, we always work in terms of approximations for fixed values of n and the
parameters of a problem, so that implicit orders of magnitude play no direct part
in the results that we obtain.

3. Linear regression pairs. In this section, we establish a discrete normal
approximation theorem for the distribution of a random vector W , when a copy
W ′ can be defined on the same probability space, in such a way that E{W ′ | W }
is approximately a linear function of W . There are many examples where this is
the case, including those given in Rinott and Rotar (1996) and Reinert and Röllin
(2009).

Suppose then that (W,W ′) is a pair of random integer valued d-vectors, de-
fined on the same probability space and having the same distribution. Assume
that E{|W |3} < ∞, and write μ := EW . Let ξ denote the difference W ′ − W ,
so that Eξ = 0, and set σ 2 := E{ξξT }, assumed positive definite. Suppose that
ξ exhibits an almost linear regression on W , and that the conditional variance
σ 2(W) := E{ξξT | W } is more or less constant as a function of W . Specifically,
assume that, for some n > 0 and for some d × d Hurwitz matrix A with spectral
norm ‖A‖, we have

(3.1)
E{ξ | W } = n−1A(W − μ) + n−1/2‖A‖1/2R1(W);

σ 2(W) := E
{
ξξT | W} = σ 2 + R2(W),

where E|R1(W)| and E‖R2(W)‖1 are to be thought of as small. These two quan-
tities appear explicitly in the bound on the error in our discrete normal approxima-
tion, and clearly, E{R1(W)} = 0 and E{R2(W)} = 0. Let � be the positive definite
solution to A� + �AT + σ 2 = 0.

REMARK 3.1. Note that, in (3.1), multiplying n and A by the same positive
constant c does not change the regression, but � is divided by c. This leaves both
n�, the asymptotic approximation to VarW , and ‖A‖/n unchanged, the latter
implying that R1(W) remains the same also. The effective data for the problem
are the distributions of ξ and W , and in particular σ 2 and VarW , and also Â :=
A/n, which is typically “small.” In order to circumvent the indeterminacy, one can
compute �̂ := n�, typically “large,” by solving Â�̂ + �̂ÂT + σ 2 = 0. Then ñ :=
n/‖A‖, Ã := ñÂ = A/‖A‖ and �̃ := �̂/ñ are the same for all c, yield the same
regression matrix Ã/ñ = Â, and can be used as a standard version, if required.
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We now define further parameters:

α1 := 1

2
λmin(�); ν := Tr

(
σ 2

�

)
/(dα1);

χ := E
{|ξ |3}; L := (‖A‖/n

)1/2
χ
{
Tr
(
σ 2)}−3/2;(3.2)

χ� := E
∣∣�−1/2ξ

∣∣3; L� := (‖A‖/n
)1/2

χ�

{
Tr
(
σ 2

�

)}−3/2 ≤ Lρ(�)3/2,

and set Z := z(W), where z(w) := (ndν)−1/2�−1/2(w − μ). L, L� and Z all
involve A, n and � only through the standardized quantities n/‖A‖ and n�. We
then assume that the following inequalities hold:

{‖A‖/α1
}1/2

E
{(

1 + |Z|)∣∣�−1/2R1(W)
∣∣} ≤ 1

2

(
Tr
(
σ 2

�

))1/2(1 +E|Z|2);(3.3)

{‖A‖/α1
}1/2

E
{|Z|(1 + |Z|)∣∣�−1/2R1(W)

∣∣} ≤ 1

4

(
Tr
(
σ 2

�

))1/2(1 +E|Z|3).(3.4)

They can reasonably be expected to be satisfied if |R1(W)| is indeed small. In
particular, (3.3)–(3.4) are satisfied if

{
E
∣∣�−1/2R1(W)

∣∣3}1/3 ≤ 1

8

(
α1 Tr

(
σ 2

�

)
/‖A‖)1/2

.(3.5)

Under the above conditions, the second and third moments of |Z| can be suitably
bounded; the proof is given in Section 5.3.

LEMMA 3.2. If (3.3) and (3.4) hold, and if n/α1 ≥ 1, then

E|Z|2 ≤ 2; E|Z|3 ≤ m3 := 2
(

1 + 10χ�

(Tr(σ 2
�))3/2

)
,

where Z = z(W), with z(w) as defined above. In particular, for any δ > 0,

n

‖A‖P
[|W − μ|� > nδ‖A‖−1/2]

≤ 2d3/2δ−3((‖A‖/n
)1/2 + 10L�

){ 2λ̄(σ 2
�)

λmin(σ
2
�)

}3/2
.

REMARK 3.3. Note that

(3.6)
{
|W − μ|� >

nδ√‖A‖
}

=
{
|Z| > δ

√
n

‖A‖

√√√√λmin(σ
2
�)

2λ̄(σ 2
�)

}

involves only standardized quantities.
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We are now in a position to prove a discrete normal approximation theorem. To
state it, we introduce some further notation:

(3.7)

ε1 := max
1≤j≤d

dTV
(
L(W),L

(
W + e(j)));

ε1(ξ) := max
1≤j≤d

dTV
(
L(W | ξ),L

(
W + e(j) | ξ )).

THEOREM 3.4. Assume that (W,W ′) is a pair of random integer valued d-
vectors, such that L(W) = L(W ′) and that E|W |3 < ∞; write μ := EW . Suppose
that ξ := W ′ − W satisfies the regression condition (3.1), for matrices A and σ 2

such that A is Hurwitz and σ 2 is positive definite; let � be the positive definite
solution of A� + �AT + σ 2 = 0. Define E|ξ |3 := χ , 
 := d−1 Tr(σ 2) and L :=
(‖A‖/n)1/2χ{Tr(σ 2)}−3/2, and assume that (3.3) and (3.4) hold. Let Ã and �̃ be
as in Remark 3.1. Then there exist constants n0 and C, depending on ‖Ã‖ and σ 2,
such that, if n/‖A‖ ≥ n0, we have

dTV
(
L(W),DN d(μ,n�)

)
≤ C logn

{
d3(‖A‖/n

)1/2 + d4ε1 + d1/4
E
∣∣R1(W)

∣∣
+ d1/2

E
∥∥R2(W)

∥∥
1 + d3L + d2

E
{|ξ |3ε1(ξ)

}}
.

PROOF. Because L(W) = L(W ′), we have

0 = (
n/‖A‖)E{h(W ′)I [∣∣W ′ − μ

∣∣
� ≤ M

]− h(W)I
[|W − μ|� ≤ M

]}
= (

n/‖A‖)E{(h(W ′)− h(W)
)
I
[|W − μ|� ≤ M

]}
(3.8)

+ (
n/‖A‖)E{h(W ′)(I [∣∣W ′ − μ

∣∣
� ≤ M

]− I
[|W − μ|� ≤ M

])}
,

for any function h : Zd → R and M > 0. We shall take M = nη/6
√‖A‖, for η to

be prescribed later, in view of (3.6). For bounded functions h, the second term can
be simply estimated, using Lemma 3.2, by

(3.9)

θ0 := 2
(
n/‖A‖)‖h‖∞P

[|W − μ|� > M
]

≤ 864d3/2η−3((‖A‖/n
)1/2 + 10L�

){ 2λ̄(σ 2
�)

λmin(σ
2
�)

}3/2
‖h‖∞.

For the first term, we write

(3.10) h
(
W ′)− h(W) = ξT �h(W) + 1

2
ξT �2h(W)ξ + e2(W, ξ,h),
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thus defining e2(X,J,h). From (3.1), its first element yields

(3.11)

n

‖A‖
∣∣E{ξT �h(W)I

[|W − μ|� ≤ M
]}

−E
{
n−1(W − μ)T AT �h(W)I

[|W − μ|� ≤ M
]}∣∣

≤ (
n/‖A‖)1/2

E
{∣∣R1(W)T �h(W)

∣∣I [|W − μ|� ≤ M
]}

≤ (
n/‖A‖)1/2

E
∣∣R1(W)

∣∣‖�h‖�
nη

6
√‖A‖ ,∞ =: θ1.

Then

(3.12)

n

2‖A‖
∣∣E{ξT �2h(W)ξI

[|W − μ|� ≤ M
]}

−E
{
Tr
(
σ 2�2h(W)

)
I
[|W − μ|� ≤ M

]}∣∣
≤ 1

2
E
{∥∥R2(W)

∥∥
1

}(
n/‖A‖)∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞ =: θ2.

It remains to bound (n/‖A‖)E{e2(W, ξ,h)I [|W −μ|� ≤ M]}. We first consider
|ξ | > √

n/‖A‖, and use the bound

(3.13)
E
{|ξ |r1I

[|ξ | > √
n/‖A‖]} ≤ dr/2

E
{|ξ |r I [|ξ | > √

n/‖A‖]}
≤ dr/2χ

(
n/‖A‖)−(3−r)/2

for r = 0,1,2. Since∣∣e2(W, ξ,h)
∣∣I [|W − μ|� ≤ M

]
≤ 2‖h‖∞ + |ξ |1‖�h‖�

nη

6
√‖A‖ ,∞ + 1

2
|ξ |21

∥∥�2h
∥∥�

nη

6
√‖A‖ ,∞,

it follows, using (3.13), that

(3.14)

θ3 := n

‖A‖E
{∣∣e2(W, ξ,h)

∣∣I [|W − μ|� ≤ M
]
I
[|ξ | > √

n/‖A‖]}
≤ χ

√
‖A‖
n

{
2‖h‖∞ +

(
dn

‖A‖
)1/2

‖�h‖�
nη

6
√‖A‖ ,∞ + dn

2‖A‖
∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞

}

≤ 2L
{
Tr
(
σ 2)}3/2

{
‖h‖∞ +

(
dn

‖A‖
)1/2

‖�h‖�
nη

6
√‖A‖ ,∞

+ dn

‖A‖
∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞

}
.

For |ξ | ≤ √
n/‖A‖, we split e2(W, ξ,h) into a sum of third differences and a

remainder:

(3.15) e2(W, ξ,h) = E2(W, ξ,h) − 1

2

d∑
j=1

ξj�jjh(W).
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For the contribution from the second term in (3.15), we have at most

(3.16)

θ4 := n

2‖A‖
∣∣∣∣∣E

{
d∑

j=1

ξj�jjh(W)I
[|W − μ|� ≤ M

]
I
[|ξ | ≤ √

n/‖A‖]}∣∣∣∣∣
≤ n

2‖A‖
∣∣∣∣∣E

{
d∑

j=1

ξj�jjh(W)I
[|W − μ|� ≤ M

]}∣∣∣∣∣
+ 1

2
E
{|ξ |1I [|ξ | > √

n/‖A‖]} n

‖A‖
∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞

=: θ ′
4 + θ ′′

4 ,

say. Now, recalling ν := Tr(σ 2
�)/(dα1) and Z := (ndν)−1/2�−1/2(W − μ), (3.1)

and (3.3) give

(3.17)

θ ′
4 = 1

2‖A‖
d∑

j=1

∣∣E{([A(W − μ)
]
j + n1/2‖A‖1/2[R1(W)

]
j

)
× �jjh(W)I

[|W − μ|� ≤ M
]}∣∣

≤ 1

2
n−1/2{(dν)1/2

E
∣∣A�1/2Z

∣∣
1 + ‖A‖1/2

E
∣∣R1(W)

∣∣
1

}
× n

‖A‖
∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞

≤ 1

2

(‖A‖/n
)1/2

d
√

ν
(‖A‖−1/2∥∥�1/2∥∥)

×
{√

2‖A‖ + 3

2
α1

}(
n/‖A‖)∥∥�2h

∥∥�
nη

6
√‖A‖ ,∞.

Then, from (3.13),

(3.18) θ ′′
4 ≤ 1

2

{
d1/2(‖A‖/n

)
χ
}(

n/‖A‖)∥∥�2h
∥∥�

nη

6
√‖A‖ ,∞.

For the first term in (3.15), we use Lemma 4.4(i) and Remark 4.5 of Part I to
conclude that, if |ξ | ≤ √

n/‖A‖ and nη/24
√‖A‖ ≥ √

n/‖A‖λmin(�), then

θ5(ξ) := (
n/‖A‖)∣∣E{E2(W, ξ,h)I

[|W − μ|� ≤ M
] | ξ}∣∣

≤ {
d3/2|ξ |3ε1(ξ) + 2d|ξ |2P[|W − μ|� ≥ M/4 | ξ ]}

× (
n/‖A‖)∥∥�2h

∥∥�
nη

4
√‖A‖ ,∞.
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Taking expectations, and then using Lemma 3.2, this gives

(3.19)

θ5 := E
{∣∣θ5(ξ)

∣∣I [|ξ | ≤ √
n/‖A‖]}

≤
{
d3/2

E
{|ξ |3ε1(ξ)

}+ 2dn

‖A‖P
[|W − μ|� ≥ M/4

]} n

‖A‖
∥∥�2h

∥∥�
nη

4
√‖A‖ ,∞

≤
{
d3/2

E
{|ξ |3ε1(ξ)

}+ η−3d5/2C
{
ρ
(
σ 2

�

)}3/2
(√‖A‖

n
+ L�

)}
× n

‖A‖
∥∥�2h

∥∥�
nη

4
√‖A‖ ,∞,

for C a universal constant.
Let

(3.20) Ãñh(w) := 1

2
ñTr

(
σ 2�2h(w)

)+ (w − μ)T ÃT �h(w).

Then, combining the estimates (3.9) and (3.11)–(3.19) with (3.8) and (3.10), we
have shown that∣∣E{Ãñh(W)I

[|W − μ|�̃ ≤ ñη/6
]}∣∣(3.21)

=
∣∣∣∣12 ñE

{
Tr
(
σ 2�2h(W)

)
I
[|W − μ|� ≤ nη/6

√‖A‖]}
+E

{
(W − μ)T ÃT �h(W)I

[|W − μ|� ≤ nη/6
√‖A‖]}∣∣∣∣

≤
3∑

l=0

θl + θ ′
4 + θ ′′

4 + θ5(3.22)

≤ ε20‖h‖∞ + ε21ñ
1/2‖�h‖�

nη

4
√‖A‖ ,∞ + ε22ñ

∥∥�2h
∥∥�

nη

4
√‖A‖ ,∞

≤ 

{
ε′

20‖h‖∞ + ε′
21ñ

1/2‖�h‖�̃
nη/4,∞ + ε′

22ñ
∥∥�2h

∥∥�̃
nη/4,∞

}
,

with

ε′
20 = C0(η)d3/2(ñ−1/2 + L

); ε′
21 = 


−1(
E
∣∣R1(W)

∣∣+ 2Ld2

3/2);

ε′
22 = C2(η)

(
E
∥∥R2(W)

∥∥
1 + Ld5/2 + d5/2ñ−1/2 + d3/2

E
{|ξ |3ε1(ξ)

})
,

where the constants Cl(η) depend on η, ‖Ã‖ and the elements of Sp′(σ 2) and
Sp′(�̃). Since, if ñη/12 > 2{λmin(�̃)}−1/2, the quantity in (3.21) does not change
if h(X) is replaced by zero for |X − μ|�̃ > ñη/4, the norm ‖h‖∞ can be replaced
by ‖h‖�̃

ñη/4,∞ for such ñ and η. Thus Condition (iii) of Theorem 1.1 is satisfied,

for Ãn as defined in (3.20), if we take η = δ̃0, for δ̃0 as defined in Theorem 1.1, and
for ñ such that ñ ≥ max{n1.1,24/(δ̃0{λmin(�̃)}1/2)}. The remaining conditions of
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Theorem 1.1, with �̃ for � and with ñ for n, are easily checked: Condition (i) is
implied by Lemma 3.2, with v = 2ν, and Condition (ii) is just (3.7). This proves
the theorem. �

REMARK 3.5. Direct computation of the quantities E|R1(W)| and
E‖R2(W)‖1 can be awkward. It may be easier to find bounds on

R̃1 := n1/2{
E(ξ | F) − n−1A(W − μ)

}
and R̃2 := E

(
ξξT | F)− σ 2,

for a σ -field F such that W is F -measurable. From the properties of conditional
expectation and Jensen’s inequality, it follows that, for any nonnegative random
variable Y(W), we have

E
{
Y(W)

∣∣R1(W)
∣∣} ≤ E

{
Y(W)|R̃1|};

E
{
Y(W)

∥∥R2(W)
∥∥

1

} ≤ E
{
Y(W)‖R̃2‖1

}
.

Hence we can use R̃1 and R̃2 in place of R1(W) and R2(W) when computing the
bounds in the theorem and in verifying conditions (3.3)–(3.4).

4. Examples. In Part I, following the proof of Theorem 5.3, it was re-
marked that, using Theorem 2.3, error bounds of order O(n−1/2 logn) for the
(quasi-)equilibrium distributions of rather general Markov jump processes can be
proved. Here, we concentrate on examples exhibiting the linear regression struc-
ture of the previous section.

4.1. Sums of independent integer valued random vectors. Let Yi , 1 ≤ i ≤ m,
be independent Zd -valued random vectors, with means μi and covariance matrices
Si , and let γi := E|Yi − μi |3. Write P[Yi = X] =: pi,X , X ∈ Z

d , and define ui :=
min1≤j≤d{1 − dTV(L(Yi),L(Yi + e(j)))}. Let

W :=
m∑

i=1

Yi; μ := EW =
m∑

i=1

μi; sm :=
m∑

i=1

ui;

S := E
{
(W − μ)(W − μ)T

} =
m∑

i=1

Si; � :=
m∑

i=1

γi.

We apply Theorem 3.4 to approximate the distribution of W .
To start with, we need to define a W ′ on the same probability space, in such a

way that L(W ′) = L(W), and such that ξ = W ′ − W is not too large. The canoni-
cal way to do this [Stein (1986), page 16] is to let (Y ′

1, . . . , Y
′
m) be an independent

copy of (Y1, . . . , Ym), and to let K be uniformly distributed on {1,2, . . . ,m}, in-
dependently of the Yi and the Y ′

i ; then W ′ is taken to be W − YK + Y ′
K . It is clear

that L(W ′) = L(W), and also, writing ξ := W ′ − W = Y ′
K − YK , that

E(ξ | W) = E
{
E(ξ | Y1, . . . , Ym) | W}

= E

{
m−1

m∑
i=1

(μi − Yi)
∣∣∣ W}

= −m−1(W − μ),
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so that the regression condition in (3.1) is satisfied with A/n = −I/m, and with
R1(W) = 0. Then σ 2 = E{ξξT } = 2S/m, giving, for the standardized quantities
of Remark 3.1, �0 = S and α0 = 1/m, and hence ñ = m, Ã = −I and �̃ = S/m.
Note also that

χ = E|ξ |3 = m−1
m∑

i=1

E
∣∣Yi − Y ′

i

∣∣3 ≤ 4m−1�.

As a next step in applying Theorem 3.4, we show that the quantity ε1 of (3.7)
can be suitably bounded.

LEMMA 4.1. For W as defined above,

ε1 := max
1≤j≤d

dTV
(
L(W),L

(
W + e(j))) = O

(
s−1/2
m

)
.

PROOF. Fix any 1 ≤ j ≤ d , and, for X ∈ Z
d , define

p−
i,X := 1

2
(pi,X ∧ pi,X−e(j) ); p+

i,X := 1

2
(pi,X ∧ pi,X+e(j)).

Then define the pair (Yi, Ỹi) jointly, for 1 ≤ i ≤ m, by

(Yi, Ỹi) =

⎧⎪⎪⎨⎪⎪⎩
(
X,X − e(j)) with probability p−

i,X;(
X,X + e(j)) with probability p+

i,X;
(X,X) with probability pi,X − p−

i,X − p+
i,X,

X ∈ Z
d .

Set Zi := Yi − Ỹi . Then Zi takes the values e(j) and −e(j) each with probability∑
X∈Zd p+

i,X , and takes the value 0 with probability 1 − ∑
X∈Zd pi,X ∧ pi,X+e(j) .

Hence, for T0 := 0 and Tk := ∑k
i=1 Zi , the process {Tk,0 ≤ k ≤ m} is a lazy sym-

metric random walk. Define

Y ′
i :=

{
Ỹi , i ≤ τ ;
Yi, i > τ,

where τ := min{k : 1 ≤ k ≤ m,Tk = e(j)} if this is defined, and with τ = m oth-
erwise. Set W ′ = ∑m

i=1 Y ′
i . Then, by the Mineka coupling argument [Lindvall

(2002), Section II.14], it follows that

dTV
(
L(W),L

(
W + e(j))) ≤ P

[
W �= W ′ + e(j)] ≤ P[τ > m] = O

(
s−1/2
m

)
. �

As a result of this lemma, it is clear that the quantity ε1 of (3.7) is of order
O(s

−1/2
m ). Defining W(i) := W −Yi and s̃m := sm −max1≤i≤m ui , we now observe

that, for any X ∈ Z
d , the conditional quantity ε1(X) is bounded by

(4.1) ε̃1 := max
1≤i≤m

max
1≤j≤d

dTV
(
L
(
W(i)),L(W(i) + e(j))) = O

(
(s̃m)−1/2),
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with the final order statement following directly from Lemma 4.1. This is because,
for any X ∈ Z

d ,

dTV
(
L
(
W + e(j) | ξ = X

)
,L(W | ξ = X)

)
≤ m−1

m∑
i=1

dTV
(
L
(
W + e(j) | ξ = X,K = i

)
,L(W | ξ = X,K = i)

)
,

and because, by independence,

dTV
(
L
(
W + e(j) | ξi = X

)
,L(W | ξi = X)

)
≤ E

{
dTV

(
L
(
W(i) + ξi + e(j) | ξi, ξ

′
i = ξi + X

)
,

L
(
W(i) + ξi | ξi, ξ

′
i = ξi + X

))}
= E

{
dTV

(
L
(
W(i) + ξi + e(j) | ξi

)
,L

(
W(i) + ξi | ξi

))}
= E

{
dTV

(
L
(
W(i) + e(j) | ξi

)
,L

(
W(i) | ξi

))}
= E

{
dTV

(
L
(
W(i) + e(j)),L(W(i)))} ≤ ε̃1.

Thus a number of the elements appearing in the bound given in Theorem 3.4
can be successfully handled. We now show that a multivariate discrete normal
approximation can indeed be established. We write


 := d−1 Tr
(
σ 2) = 2 Tr(S/m) and L := m−1/2 χ

{Tr(σ 2)}3/2 ≥ m−1/2;

the latter quantity, introduced in (3.2), is of order O(m−1/2) if the ratio
E|ξ |3/{E|ξ |2}3/2 remains bounded.

THEOREM 4.2. Under the above circumstances,

dTV
(
L(W),DN d(μ,S)

) ≤ Cd7/2 logm
(
L + (d/m)1/2)√ m

s̃m
,

for a suitable constant C, depending only on Sp′(S/m).

PROOF. With the definitions of W ′ and W given above, the regression condi-
tion in (3.1) is satisfied with R1(w) = 0 for all w ∈ Z

d , so that Conditions (3.3)
and (3.4) are trivially satisfied. Then ε1 = O(s

−1/2
m ), by Lemma 4.1, and

(4.2) E
{|ξ |3ε1(ξ)

} = O
(
(s̃m)−1/2χ

)
,

from the observations above. Note that

(4.3) χ = L
√

md3/2

3/2

.
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For E‖R2(W)‖1, for any X,w ∈ Z
d , we write p(X) := P[ξ = X], obtaining

σ 2
il(w) = ∑

X∈Zd

XiXlP[ξ = X | W = w] = ∑
X∈Zd

p(X)XiXl

P[W = w | ξ = X]
P[W = w] .

Hence

(4.4)

E
∣∣σ 2

il(W) − σ 2
il

∣∣
= ∑

w∈Zd

∣∣∣∣ ∑
X∈Zd

p(X)XiXl

(
P[W = w | ξ = X] − P[W = w])∣∣∣∣

= ∑
w∈Zd

∣∣∣∣ ∑
X∈Zd

p(X)XiXl

× ∑
y∈Zd

p(y)
(
P[W = w | ξ = X] − P[W = w | ξ = y])∣∣∣∣

≤ ∑
X∈Zd

p(X)|Xi ||Xl|
∑

y∈Zd

p(y)2dTV
(
L(W | ξ = X),L(W | ξ = y)

)
.

Now, by independence,

dTV
(
L(W | ξ = X),L(W | ξ = y)

)
≤ 1

m

m∑
i=1

dTV
(
L
(
W(i) + Yi | Y ′

i − Yi = x
)
,L

(
W(i) + Yi | Y ′

i − Yi = y
))

≤ 1

m

m∑
i=1

E
{
dTV

(
L
(
W(i) + Yi | Y ′

i , Yi = Y ′
i − x

)
,

L
(
W(i) + Yi | Y ′

i , Yi = Y ′
i − y

))}
= 1

m

m∑
i=1

E
{
dTV

(
L
(
W(i)),L(W(i) − y + x

))}
≤ ε̃1|y − x|1.

Substituting this bound into (4.4) and adding over 1 ≤ i, l ≤ d thus gives

E
∥∥R2(W)

∥∥
1 ≤ 2

d∑
i=1

d∑
l=1

∑
X∈Zd

p(X)|Xi ||Xl|
∑

y∈Zd

p(y)ε̃1|x − y|1

≤ 2ε̃1
∑

X∈Zd

p(X)|X|21
{|X|1 +E|ξ |1}(4.5)

≤ 4ε̃1E|ξ |31 ≤ 4ε̃1d
3/2χ.
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It only remains to collect the elements needed for Theorem 3.4. From (4.2) and
(4.5), and from the definition of L, we have

d1/2
E
∥∥R2(W)

∥∥
1 + d2

E
{|ξ |3ε1(ξ)

} = O
(
d2χs̃−1/2

m

) = O
(
Ld7/2(m/s̃m)1/2


3/2)
.

Combining this with the remaining elements of the bound given in Theorem 3.4,
and noting that s̃m ≤ m, the theorem follows. �

Except for the logarithmic factors, the bound obtained in the theorem is of the
same order in m as would be expected for weaker metrics, such as the convex sets
metric [Bentkus (2003), Fang and Röllin (2015)], if s̃m � m. The latter asymptotic
equivalence holds, for example, for identically distributed summands whose com-
mon distribution has nontrivial overlap with its unit translates in each direction. It
is possible, however, for s̃m to be significantly smaller than m. For instance, if all
the summands making up W are on 2Z×Z

d−1, then sm = 0, and the discrete nor-
mal is not a good approximation to W in total variation, since it puts about half its
probability mass on points whose first coordinate is an odd integer, whereas L(W)

puts zero mass on this set.
The best approximation order with respect to the convex sets metric, for sums of

independent and identically distributed random variables with finite third moment,
is O(d7/4L). Thus our rate is weaker in m by a factor of logm, and in dimension by
a factor of d9/4. If the distributions are not identical, the best known d-dependence
for approximation in the convex sets metric is rather worse, unless the random
variables are also assumed to be bounded. Since the total variation metric is sub-
stantially stronger than the convex sets metric, our bounds are of encouragingly
small order in d , too.

4.2. Exchangeable pairs. If the pair (W,W ′) is also exchangeable, so that
L((W,W ′)) = L((W ′,W)), a neat argument of Röllin and Ross (2015) delivers
bounds on the quantities ε1 and ε1(ξ) of (3.7), which appear in the bound given
in Theorem 3.4. These can be of considerable practical use in deriving explicit
bounds from the general expressions given in Theorem 3.4.

For ξ := W ′ − W , let J be the set of d-vectors such that qJ := P[ξ = J ] > 0,
and suppose that each of the coordinate vectors e(j) ∈ R

d can be obtained as a
(finite) sum of elements of J . For QJ (W) := P[ξ = J | W ], set

(4.6) uJ := (
qJ )−1

E
∣∣QJ (W) − qJ

∣∣,
to be thought of as small. Note that, by exchangeability,

(4.7) qJ = E
{
I
[
W ′ − W = J

]} = E
{
I
[
W − W ′ = J

]} = q−J .

We then write

ũj :=
r(j)∑
l=1

(
uJ

(j)
l + u−J

(j)
l

)
where

r(j)∑
l=1

J
(j)
l = e(j),
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and then set ũ∗ := max1≤j≤d ũj and u∗ := supJ∈J uJ . With the help of these
quantities, we can bound the differences dTV(L(W),L(W + e(j))) between the
distribution of W and its translates.

LEMMA 4.3. For each 1 ≤ j ≤ d , we have

dTV
(
L
(
W + e(j)),L(W)

) ≤ ũj ,

and

dTV
(
L
(
W + e(j) | ξ = J

)
,L(W | ξ = J )

) ≤ ũj + 2uJ .

Hence, in particular, for each J ∈ J ,

dTV
(
L
(
W + e(j) | ξ = J

)
,L(W | ξ = J )

) ≤ ũ∗ + 2u∗,

and dTV(L(W + e(j)),L(W)) ≤ ũ∗. Furthermore, for R2(W) as defined in (3.1),
we have

E
∥∥R2(W)

∥∥
1 ≤ d Tr

(
σ 2)u∗.

PROOF. For any J ∈ J and any f with ‖f ‖∞ = 1, we use exchangeability to
give

E
{
f
(
W ′)I [W ′ − W = J

]− f (W)I
[
W − W ′ = J

]} = 0.

As in the proof of Theorem 3.6 of Röllin and Ross (2015), we divide by qJ , using
(4.7), and evaluate the expectation by conditioning on W , giving

0 = (
qJ )−1

E
{
f (W + J )QJ (W) − f (W)Q−J (W)

}
= E

{
f (W + J ) − f (W)

}+ (
qJ )−1

E
{
f (W + J )

(
QJ (W) − qJ )}

− (
q−J )−1

E
{
f (W)

(
Q−J (W) − q−J )},

from which it follows that

dTV
(
L(W + J ),L(W)

) ≤ uJ + u−J .

The first statement now follows by the triangle inequality.
For the second, we have

E
{
f
(
W + e(j))− f (W) | ξ = J

}
= (

qJ )−1
E
{(

f
(
W + e(j))− f (W)

)
I [ξ = J ]}

= (
qJ )−1

E
{(

f
(
W + e(j))− f (W)

)
QJ (W)

}
= E

{
f
(
W + e(j))− f (W)

}
+ (

qJ )−1
E
{(

f
(
W + e(j))− f (W)

)(
QJ (W) − qJ )}.
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Hence we have

(4.8)
dTV

(
L(W | ξ = J ),L

(
W + e(j) | ξ = J

))
≤ dTV

(
L(W),L

(
W + e(j)))+ 2uJ ,

and the second part follows; note that exchangeability was not used in proving
(4.8).

Finally, from the definition of R2(W) in (3.1), we have{
R2(w)

}
il = σ 2

il(w) − σ 2
il = ∑

J,J ′∈J
JiJ

′
l

(
QJ (w) − qJ ),

for any 1 ≤ i, l ≤ d , so that

E
∣∣σ 2

il(W) − σ 2
il

∣∣ ≤ ∑
J,J ′∈J

qJ |Ji |
∣∣J ′

l

∣∣uJ ≤ E
{|ξi ||ξl|}u∗.

This in turn implies that

E
∥∥R2(W)

∥∥
1 =

d∑
i=1

d∑
l=1

E
∣∣σ 2

il(W) − σ 2
il

∣∣ ≤ E
{|ξ |21

}
u∗ ≤ d Tr

(
σ 2)u∗,

as claimed. �

The following corollary is immediate.

COROLLARY 4.4. Under the above assumptions,

d1/2
E
∥∥R2(W)

∥∥
1 ≤ C
ñ−1/2d5/2{ñ1/2u∗}

and

d2
E
{|ξ |3ε1(ξ)

} ≤ C′
3/2
d7/2L

{
ñ1/2(ũ∗ + 2u∗)},

for constants C and C′ that depend only on Sp′(σ 2/
).

REMARK 4.5. Note that, by the argument in Remark 3.5, we can bound the
quantities uJ above by (qJ )−1

E|P[ξ = J | F] − qJ |, for any σ -field F such that
W is F -measurable. Such quantities may be easier to bound in practice.

REMARK 4.6. For an exchangeable pair (W,W ′), we see that

(4.9)

E
{
ξξT } = E

{(
W ′ − μ

)(
W ′ − W

)T − (W − μ)
(
W ′ − W

)T }
= −E

{−(W − μ)
(
W − W ′)T + (W − μ)

(
W ′ − W

)T }
= −2E

{
(W − μ)

(
W ′ − W

)T } = −2E
{
(W − μ)E

(
ξT | W )}

= −2E
{
E(ξ | W)(W − μ)T

}
,
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the last equality following because E{ξξT } is symmetric. If the remainders R1(W)

and R2(W) in (3.1) were exactly zero, this would give

1

2
σ 2 = −n−1ACov(W) = −n−1 Cov(W)AT ,

and hence also A−1σ 2 = σ 2(AT )−1. If this is the case, we can easily solve for �,
since then � := −1

2A−1σ 2 = −1
2σ 2(AT )−1 satisfies A� + �AT + σ 2 = 0 and is

symmetric.

4.2.1. Monochrome edges in regular graphs. As an example of the application
of Theorem 3.4 in the exchangeable setting, suppose that Gn is an r-regular graph
on n vertices (so that one of n and r is even); thus there are nr/2 edges in the
graph. Let the vertices be coloured independently, each with one of m colours,
the probability of choosing colour i being pi > 0, 1 ≤ i ≤ m. Let Ni denote the
number of vertices having colour i, and let Mi denote the number of edges joining
pairs of vertices that both have colour i. We approximate the joint distribution of

W := (M1, . . . ,Mm,N1, . . . ,Nm−1) =: (W1, . . . ,Wm,Wm+1, . . . ,W2m−1),

when n becomes large, while r , m and p1, . . . , pm remain fixed; the detailed
structure of Gn does not appear in the approximation. Of course, the value of
Nm = n − ∑m−1

i=1 Ni is implied by knowledge of W . This problem, in the context
of multivariate normal approximation, was considered by Rinott and Rotar (1996)
and in Chen, Goldstein and Shao (2011), pages 333–334.

THEOREM 4.7. For m ≥ 3, r and p1, . . . , pm fixed, we can find ν ∈ R
2m−1

and a (2m − 1) × (2m − 1) covariance matrix � such that, as n → ∞,

dTV
(
L(W),DN 2m−1(nν,n�)

) = O
(
n−1/2 logn

)
.

PROOF. We use the notation of Theorem 3.4 throughout. We begin by observ-
ing that

EMi = nrp2
i /2; ENi = npi,

determining ν := n−1
EW . After rather more calculation, the covariances are given,

for 1 ≤ i �= l ≤ m, by

(4.10)

Var(Mi) = 1

2
nrp2

i (1 − pi)
{
1 + (2r − 1)pi

};
Cov(Ni,Nl) = −npipl;

Cov(Mi,Ml) = −1

2
nr(2r − 1)p2

i p
2
l ; Cov(Mi,Nl) = −nrp2

i pl;
Cov(Mi,Ni) = nrp2

i (1 − pi); Var(Ni) = npi(1 − pi),

in turn determining �.
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We now construct an exchangeable pair (W,W ′) by first realizing a colouring
(C(j),1 ≤ j ≤ n), and using it to define

(4.11) Mi := ∑
{j,j ′}∈G

I
[
C(j) = C

(
j ′) = i

]
and Ni :=

n∑
j=1

I
[
C(j) = i

]
,

for each 1 ≤ i ≤ m, thus defining W . We then choose a vertex K uniformly at
random, independently of (C(j),1 ≤ j ≤ m), and then replace C(K) by C ′, where
C′ is independently sampled from 1,2, . . . ,m with P[C ′ = i] = pi , 1 ≤ i ≤ m. If
this new colouring is denoted by (C′(j),1 ≤ j ≤ m), then we define M ′

i and N ′
i as

in (4.11), but with the C′(j) in place of C(j), and hence deduce W ′. Of course,
L(W,W ′) = L(W ′,W), and W ′ differs from W only through the (possibly) new
colour at the vertex K , and through its impact in changing which edges incident to
K are monochrome:

M ′
i − Mi = ∑

j : {j,K}∈G

(
I
[
C(j) = C′(K) = i

]− I
[
C(j) = C(K) = i

])
N ′

i − Ni = {
I
[
C′(K) = i

]− I
[
C(K) = i

]}
.

Hence, for 1 ≤ l ≤ m, we have

E
{
ξl | C(1), . . . ,C(n)

}
= n−1

n∑
k=1

∑
j : {j,k}∈G

{
plI

[
C(k) = l

]− I
[
C(j) = C(k) = l

]}
= n−1{plrNl − 2Ml} = E{ξl | W },

and, for m + 1 ≤ l ≤ 2m − 1,

E
{
ξl | C(1), . . . ,C(n)

} = n−1{npl−m − Nl−m} = E{ξl | W }.
This gives an exact linear regression as in (3.1), with R1(w) = 0 for all w, and
with A having nonzero elements given by

All := −2, Al,l+m := rpl, 1 ≤ l ≤ m − 1;
Amm := −2, Am,m+t := −rpm, 1 ≤ t ≤ m − 1;

All := −1, m + 1 ≤ l ≤ 2m − 1.

Since A is upper triangular, its eigenvalues are −2, with multiplicity m, and −1,
with multiplicity m − 1, so that it is indeed spectrally negative.

The set J , consisting of the possible values that can be taken by ξ , is finite,
and does not depend on n. If C(K) = i �= l = C′(K), then the m + i and m + l

components of ξ each have modulus one (though, if i or l are equal to m, one of
these components is not present in W ), and the i and l components are in modulus
at most r ; all other components of ξ are zero. Hence |ξ |2 ≤ 2(r2 +1) a.s., and E|ξ |3



1430 A. D. BARBOUR, M. J. LUCZAK AND A. XIA

remains bounded as n increases; L is thus of strict order n−1/2. The components
of σ 2 := E{ξξT } can be explicitly calculated: for 1 ≤ l �= l′ ≤ m, they are given by

Eξ2
l = 2p2

l (1 − pl)
{
r(r − 1)pl + r

}; E{ξlξl′ } = −2r(r − 1)p2
l p

2
l′ ;

E{ξlξm+l} = 2rp2
l (1 − pl); E{ξlξm+l′ } = −2rp2

l pl′ ;
E
{
ξ2
m+l

} = 2pl; E{ξm+lξm+l′ } = −2plpl′,

where terms with subscript 2m are to be ignored.
In order to apply Theorem 3.4, we now just need to find bounds for ε1,

E{|ξ |3ε1(ξ)} and E‖R2(W)‖1. From Lemma 4.3 and Corollary 4.4, these are all
bounded by fixed multiples of u∗ and ũ∗. For each J in the fixed finite set J , the
probability qJ in the denominator of uJ is fixed and positive, and hence bounded
away from zero. To bound the numerator, we condition on a larger σ -field F ,
with respect to which W is measurable, as in Remark 4.5. Let Tm,r denote the set
of all m-tuples of nonnegative integers t1, . . . , tm such that

∑m
i=1 ti = r , and, for

t := (t1, . . . , tm) ∈ Tm,r , let Ej(i0; t) denote the event that C(j) = i0, and that ti of
the r neighbours of j have colour i, 1 ≤ i ≤ m. For each fixed j , these are disjoint
events whose union over 1 ≤ i0 ≤ m and t ∈ Tm,r is the sure event. We let F be
the σ -field generated by the events{

Ej(i0; t);1 ≤ j ≤ n,1 ≤ i0 ≤ m, t ∈ Tm,r

}
.

Then, if K = j , the value J ∈ J taken by ξ is determined by which of the events
(Ej (i0; t);1 ≤ i0 ≤ m, t ∈ Tm,r) occurs. For each J , there is a collection S(J ) of
possible choices, consisting of just one possible i0 = i0(J ), the index for which
Jm+i0 = −1 (if there is none, then i0 = m), but of all t that satisfy ti0 = −Ji0 and
ti1 = Ji1 , where i1 is the index for which Jm+i1 = 1 (or m, if there is none such).
Thus

P[ξ = J | F] = n−1
n∑

j=1

∑
t∈Tm,r : (i0(J ),t)∈S(J )

I
[
Ej

(
i0(J ); t)].

Now, if j ′ �= j is such that the set of neighbours N (j) (including j ) in G is disjoint
from the set N (j ′), the events I [Ej(i0(J ); t)] and I [Ej ′(i0(J ); t ′)] are indepen-
dent. Since, for each j , there are no more than r + r2 choices of j ′ �= j for which
this is not the case, it follows that

Var
{
P[ξ = J | F]} = O

(
n−1).

Hence Var{QJ (W)} = O(n−1) also, and so E|QJ (W) − qJ | = O(n−1/2) for all
J ∈ J , implying that u∗ = O(n−1/2).

The argument for ũ∗ is not yet finished, since, for each 1 ≤ l ≤ 2m − 1, it
is necessary to find a chain J (1), J (2), . . . , J (R) such that each J (i) ∈ J and∑R

i=1 J (i) = e(l). For m + 1 ≤ l ≤ 2m − 1, this is easy: ξ = e(l) if, when W is
constructed, a vertex has colour m and no neighbours of colours m or l, and its
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colour is replaced by l when resampling to obtain W ′. Note that, to do this, we
need at least three colours: m ≥ 3. To get e(l) for 1 ≤ l ≤ m − 1, a chain of length
2 is needed: a vertex of colour m with no neighbours of colour m and with ex-
actly one of colour l is recoloured with colour l, giving J = e(l) + e(l+m). Then
J = −e(l+m) can be attained by reversing the order of the choices in the example
for m + 1 ≤ l ≤ 2m − 1. To get e(m), a vertex of colour l �= m with no neighbours
of colour l and exactly one of colour m is recoloured m, yielding e(m) − e(m+l),
and then adding e(m+l) as before completes the chain. Thus, for m ≥ 3, we have
ũ∗ = O(n−1/2) also, and applying Theorem 3.4, the result follows. �

There remains the case of m = 2. Here, discrete normal approximation in total
variation is not good, since it can be seen that M1 − M2 = r(N1 − n/2), so that W

is degenerate; what is more, reducing to (W1,W2) gives an integer vector living
on a proper sub-lattice of Z2. However, the pair (M1,N1) can be approximated
using the method above, and the remaining components of M and N follow from
N2 = n − N1 and M2 = M1 − r(N1 − n/2).

5. Technicalities.

5.1. Proof of Lemma 2.1. Let ϕn denote the density of the multivariate normal
distribution Nd(nc,n�), and, for X ∈ Z

d , let [X] denote the box

[X] :=
{
x ∈ R

d : Xi − 1

2
< xi ≤ Xi + 1

2
,1 ≤ i ≤ d

}
.

Let Nd , d ≥ 1, denote a standard d-dimensional normal random vector. For (a),
the bound on E|W − nc|l� is obtained by first writing

|X − nc|l� ≤ (|X − t |� + |t − nc|�)l ≤ 2l−1(|X − t |l� + |t − nc|l�
)
.

Taking this inside the integral, we have

E|W − nc|l� = ∑
X∈Zd

|X − nc|l�
∫
[X]

ϕn(t) dt

≤ ∑
X∈Zd

∫
[X]

ϕn(t)2
l−1

((
1

2

√
d/λmin(�)

)l

+ |t − nc|l�
)

dt

≤ E

{
2l−1

((
1

2

√
d/λmin(�)

)l

+ nl/2|Nd |l
)}

≤ 2l
E|Nd |lnl/2,

for

n ≥ d

4(E|Nd |)2λmin(�)
= d

8λmin(�)

{
�(d/2)/�

(
(d + 1)/2

)}2
.
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Part (a) follows, taking C(l) := 2l
√

k(l), where

k(l) := EN2l
1 = (2l)!

2l l! ,

since 2l
E|Nd |l ≤ 2l

√
EN2l

d ≤ 2ldl/2
√
EN2l

1 , and by noting that, in d ≥ 1,
d
8 {�(d/2)/�((d + 1)/2)}2 ≤ 1.

For (c), the bound on E{[�−1(W − nc)]2l
j }, we first note that

E
{(

aT Nd

)2l} = (
aT a

)l
E
{
N2l

1
} = k(l)

(
aT a

)l
,

for any a ∈ R
d . So, since[

�−1(X − nc)
]2l
j ≤ 22l−1

{(
d

4{λmin(�)}2

)l

+ [
�−1(t − nc)

]2l
j

}
for t ∈ [X], it follows that

E
{[

�−1(W − nc)
]2l
j

} = ∑
X∈Zd

[
�−1(X − nc)

]2l
j

∫
[X]

ϕn(t) dt

≤ 22l−1
{(

d

4{λmin(�)}2

)l

+ nl
E
{{(

e(j))T �−1/2Nd

}2l}}

≤ 22l−1
{(

d

4{λmin(�)}2

)l

+ nlk(l)
(
�−1)l

jj

}
and the stated bound follows, with C′(l) = 22l−1k(l). Part (b) is similar, but sim-
pler.

5.2. Proof of Lemma 2.2. We note first that, from Lemma 2.1(a),

(5.1) E|W − nc|i� ≤ C(i)(nd)i/2,

if n ≥ 1/λmin(�). For (a), bounding the difference between E{�f (W)T bI δ
n(W)}

and n−1
E{(f (W)(W − nc)T �−1bI δ

n(W)}, we begin by observing that

(5.2)

E
{
�jf (W)I δ

n(W)
}

= ∑
X∈Zd

f (X)
{
P
[
W = X − e(j)]− P[W = X]}I δ

n(X)

+ ∑
X∈Zd

f (X)P
[
W = X − e(j)]{I δ

n

(
X − e(j))− I δ

n(X)
}
.

Because, from the definition of I
η
n (X), |I δ

n(X − e(j)) − I δ
n(X)| = 1 requires

|X − e(j) − nc|� > nδ/3 and |X − nc|� ≤ nδ/3, or vice versa, the last term in
(5.2) is in modulus at most

P
[|W − nc|� > nδ/3 − 1/

√
λmin(�)

]
max

|X−nc|�≤nδ/3+1/
√

λmin(�)

∣∣f (X)
∣∣.
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Thus it follows from (5.1) and a fourth moment Markov inequality that, if n ≥
max{1/λmin(�),6/(δ

√
λmin(�))} = max{1/λmin(�),ψ�(δ)}, then

(5.3)

∣∣∣∣ ∑
X∈Zd

f (X)P
[
W = X − e(j)]{I δ

n

(
X − e(j))− I δ

n(X)
}∣∣∣∣

≤ ‖f ‖�
nδ/2,∞P

[|W − nc|� > nδ/6
]

≤ (6/δ)4d2C(4)n−2‖f ‖�
nδ/2,∞ ≤ d2C1(δ)n

−2‖f ‖�
nδ/2,∞,

where C1(δ) = (6/δ)4C(4) ∈ K�(δ).
For the remainder of (5.2), we write

P
[
W = X − e(j)]− P[W = X] =

∫
[X]

ϕn(t)Dj (t) dt,

where

Dj(t) := exp
{
− 1

2n

{−2
[
�−1(t − nc)

]
j + (

�−1)
jj

}}− 1.

Since |ex − 1 − x| ≤ 1
2x2e|x|, it follows that, for |X − nc|� ≤ nδ/3,∣∣∣∣Dj(t) − 1

n

[
�−1(t − nc)

]
j

∣∣∣∣
≤ 1

2n

∣∣(�−1)
jj

∣∣+ 1

n2

{([
�−1(t − nc)

]
j

)2 + 1

4

(
�−1)2

jj

}
eξj (δ),

where

(5.4)

ξj (δ) := 1

n
max|X−nc|�≤nδ/3

{∣∣[�−1(X − nc)
]
j

∣∣+ ∣∣(�−1)
jj

∣∣+ 1

2
d1/2∥∥�−1∥∥}

≤ 1

3

∥∥�−1/2∥∥δ + 3

2λmin(�)
=: ξ∗(δ),

if n ≥ d1/2/λmin(�), true in turn if n ≥ n1 := (λmin(�))−8/7, because n ≥ d4.
Note also that n1 ≥ 1/λmin(�). Hence, fixing δ, for such X and for t ∈ [X],

(5.5)
∣∣∣∣Dj(t) − 1

n

[
�−1(X − nc)

]
j

∣∣∣∣ ≤ C2(δ)n
−1(d1/2 + n−1[�−1(X − nc)

]2
j

)
,

for C2(δ) := 2eξ∗(δ)/λmin(�) ∈ K�(δ), again if n ≥ n1. This in turn implies that,
for |X − nc|� ≤ nδ/3,

(5.6)

∣∣{P[W = X − e(j)]− P[W = X]}− n−1
P[W = X][�−1(X − nc)

]
j

∣∣
≤ C2(δ)n

−1(d1/2 + n−1[�−1(X − nc)
]2
j

)
P[W = X],
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and hence that

(5.7)

∣∣∣∣ ∑
X∈Zd

f (X)
{
P
[
W = X − e(j)]− P[W = X]}I δ

n(X)

− n−1
E
{
f (W)

[
�−1(W − nc)

]
j I

δ
n(W)

}∣∣∣∣
≤ C2(δ)n

−1
E
{
d1/2 + n−1[�−1(W − nc)

]2
j

}‖f ‖�
nδ/2,∞.

Now, writing b = ∑d
j=1 bj e

(j) and using linearity and Lemma 2.1(c), requiring

n ≥ d/{4(λmin(�))2}, the inequality (a) follows, if n ≥ max{n2.2,ψ�(δ)}, where

(5.8) n2.2 := max
{
d4, n1,

{
4
(
λmin(�)

)2}−4/3}
,

with

(5.9) C
(1)
2.2(δ) := C1(δ) + C2(δ)

{
1 + C′(1)

(
1 + 1/λmin(�)

)}
.

For (b), bounding the difference between E{�f (W)T B(W − nc)I δ
n(W)} and

E{f (W)[n−1(W −nc)T �−1B(W −nc)−TrB]I δ
n(W)}, we argue in similar style.

For i �= j , writing E(ji) := e(j)(e(i))T , we have

(5.10)

E
{
�f (W)T E(ji)(W − nc)I δ

n(W)
}

= E
{
�jf (W)(Wi − nci)I

δ
n(W)

}
= ∑

X∈Zd

f (X)(Xi − nci)
{
P
[
W = X − e(j)]− P[W = X]}I δ

n(X)

+ ∑
X∈Zd

f (X)(Xi − nci)P
[
W = X − e(j)]{I δ

n

(
X − e(j))− I δ

n(X)
}
.

For n ≥ max{n2.2,ψ�(δ)}, we bound the second element in (5.10) much as for
(5.3), using a Markov inequality, Cauchy–Schwarz and Lemma 2.1(a,b), giving

(5.11)

∣∣∣∣ ∑
X∈Zd

f (X)(Xi − nci)P
[
W = X − e(j)]{I δ

n

(
X − e(j))− I δ

n(X)
}∣∣∣∣

≤ E
{|Wi − nci |I [|W − nc|� > nδ/6

]}‖f ‖�
nδ/2,∞

≤ (6/nδ)3
E
{|Wi − nci ||W − nc|3�

}‖f ‖�
nδ/2,∞

≤ (6/nδ)3
√
E|Wi − nci |2

√
E|W − nc|6�‖f ‖�

nδ/2,∞
≤ (6/δ)3n−1d3/2

√
2(1 + �ii)C(6)‖f ‖�

nδ/2,∞
≤ d3/2C3(δ)n

−1‖f ‖�
nδ/2,∞,
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where C3(δ) = (6/δ)3√2(1 + λmax(�))C(6) ∈ K�(δ). The first element in (5.10)
is treated using (5.6), Cauchy–Schwarz and Lemma 2.1(b,c), giving

(5.12)

∣∣∣∣∣ ∑
X∈Zd

f (X)(Xi − nci)
{
P
[
W = X − e(j)]− P[W = X]}I δ

n(X)

− n−1
E
{
f (W)(Wi − nci)

[
�−1(W − nc)

]
j I

δ
n(W)

}∣∣∣∣∣
≤ C2(δ)n

−1
E
{|Wi − nci |(d1/2 + n−1[�−1(W − nc)

]2
j

)}‖f ‖�
nδ/2,∞

≤ C2(δ)n
−1/2

√
2(1 + �ii)

(
d1/2 +

√
C′(2)

(
1 + (

�−1
)2
ii

))‖f ‖�
nδ/2,∞

≤ d1/2C4(δ)n
−1/2‖f ‖�

nδ/2,∞,

with

C4(δ) := C2(δ)
√

2(1 + λmax(�)
(
1 +

√
C′(2)

(
1 + λmin(�)−2

)) ∈ K�(δ).

Note that

(Wi − nci)
[
�−1(W − nc)

]
j = (W − nc)T �−1E(ji)(W − nc).

For i = j , there is an extra term:

(5.13)

E
{
�f (W)T E(ii)(W − nc)I δ

n(W)
}

= ∑
X∈Zd

f (X)(Xi − nci)
{
P
[
W = X − e(i)]− P[W = X]}I δ

n(X)

+ ∑
X∈Zd

f (X)(Xi − nci)P
[
W = X − e(i)]{I δ

n

(
X − e(i))− I δ

n(X)
}

− ∑
X∈Zd

f (X)P
[
W = X − e(i)]I δ

n

(
X − e(i)).

Now

∑
X∈Zd

f (X)P
[
W = X − e(i)]I δ

n

(
X − e(i))

= E
{
�if (W)I δ

n(W)
}+E

{
f (W)I δ

n(W)
}
,
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and |E{�if (W)I δ
n(W)}| ≤ ‖�f ‖�

nδ/2,∞, giving

(5.14)

∣∣E{�f (W)T E(ii)(W − nc)I δ
n(W)

}
− n−1

E
{
f (W)(W − nc)T �−1E(ii)(W − nc)I δ

n(W)
}

−E
{
f (W)I δ

n(W)
}∣∣

≤ d3/2C3(δ)n
−1‖f ‖�

nδ/2,∞ + d1/2C4(δ)n
−1/2‖f ‖�

nδ/2,∞
+ ‖�f ‖�

nδ/2,∞.

The second estimate now follows for general B = ∑d
i=1

∑d
j=1 BijE

(ij), by linear-
ity, with

(5.15) C
(2)
2.2(δ) := C4(δ) + C3(δ),

provided that n ≥ d2.
The proof of the final part of Lemma 2.2, bounding the difference between

E{�f (W)T B(W − nc)I δ
n(W)} and

E
{
f (W)

[
n−1(W − nc)T �−1B(W − nc) − TrB

]
I δ
n(W)

}
,

proceeds in very much the same way, but starting with e(j)bT in place of E(ji)

in (5.10) and (5.13), for any b ∈ R
d , and then writing B = ∑d

j=1 e(j)b(j)T with

b(j) := BT e(j). The quantities (Xi − nci) and (Wi − nci) are replaced in the
computations by bT (X − nc) and bT (W − nc) = bT �1/2�−1/2(W − nc), respec-
tively. The error terms corresponding to (5.11) and (5.12) then yield the bounds
d2C′

3(δ)|b|n−1‖f ‖�
nδ/2,∞ and dC′

4(δ)|b|n−1/2‖f ‖�
nδ/2,∞, with

C′
3(δ) := (6/δ)3C(4)

√
λmax(�);(5.16)

C′
4(δ) := C2(δ)

√
C(2)λmax(�)

{
1 +

√
C′(2)

(
1 + λmin(�)−2

)}
,(5.17)

giving C
(3)
2.2(d) = C′

4(δ) + C′
3(δ). The analogue of (5.13) yields an error bounded

by |bj |‖�f ‖�
nδ/2,∞, and Part (c) now follows.

5.3. Proof of Lemma 3.2. To bound the moments of Z := (ndν)−1/2 ×
�−1/2(W − μ), we use the equation Eh(W ′) − Eh(W) = 0 for suitably chosen
real functions h. First, we take h(w) = (w − μ)T �−1(w − μ), giving

E
{
2ξT �−1(W − μ) + ξT �−1ξ

} = 0.

Noting that ξT �−1ξ = Tr(�−1/2ξξT �−1/2), and using (3.1), we have

−E
{
2n−1(W − μ)T �−1A(W − μ) + 2n−1/2‖A‖1/2R1(W)T �−1(W − μ)

}
= ETr

(
σ 2

�(W)
) = Tr

(
σ 2

�

)
,
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where σ 2
�(W) := �−1/2σ 2(W)�−1/2. Writing s2

n := E|Z|2, it follows from (3.3)
and because A� + �AT + σ 2 = 0 that

2α1dνs2
n ≤ (dνα1)

1/2(Tr
(
σ 2

�

))1/2(1 + s2
n

)+ Tr
(
σ 2

�

)
.

From the definition of ν in (3.2), it thus follows directly that s2
n ≤ 2, establishing

the first part.
For the third moment, we start with h(z) = (1 + zT z)3/2. The function h has

derivatives

Dh(z) = 3
(
1 + zT z

)1/2
z

and

D2h(z) = 3zzT

(1 + zT z)1/2 + 3
(
1 + zT z

)1/2
I.

Furthermore,

(5.18)

∣∣∣∣{h(z + ζ ) − h(z)
}− 3

(
1 + zT z

)1/2
ζ T z

− 3(ζ T z)2

2(1 + zT z)1/2 − 3

2

(
1 + zT z

)1/2|ζ |2
∣∣∣∣

=: d3(h, z, ζ ) ≤ k3,h|ζ |3,
for a constant k3,h ≤ 22 that does not depend on d . This can be seen by considering
separately the cases where |ζ | ≥ (|z| ∨ 1), |ζ | ≤ |z| and 1 ≥ |ζ | ≥ |z|.

For |ζ | ≥ (|z| ∨ 1), simply take the terms one by one, giving

d3(h, z, ζ ) ≤ |ζ |3
({

53/2 + 23/2}+ 3 · 21/2 + 3

2
+ 3

2
· 21/2

)
≤ 22|ζ |3.

For 1 ≥ |ζ | ≥ |z|, use the bounds∣∣(1 + x)1/2 − 1
∣∣ ≤ 1

2
x1/2;

∣∣∣∣(1 + x)3/2 − 1 − 3

2
x

∣∣∣∣ ≤ 3

8
x3/2

in 0 ≤ x ≤ 1 to give∣∣(1 + zT z
)1/2 − 1

∣∣ ≤ 1

2
|ζ |;

∣∣∣∣h(z + ζ ) − h(z) − 3

2

(
2ζ T z + ζ T ζ

)∣∣∣∣ ≤ 27|ζ |3/8.

Then the first, second and fourth terms in d3(h, z, ζ ) together give at most

|ζ |3
(

27

8
+ 3

2
+ 3

4

)
≤ 45

8
|ζ |3,

and the third adds at most 3
2 |ζ |3 to this. For |ζ | ≤ |z|, Taylor’s expansion gives∣∣∣∣(1 + x + y)3/2 − (1 + x)3/2 − 3

2
y(1 + x)1/2 − 3y2

8
√

1 + x

∣∣∣∣ ≤ |y|3
16(1 + x)3/2 .
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We take x = zT z and y = 2ζ T z + ζ T ζ , for which |y| ≤ 3|ζ ||z|. The first, second
and fourth terms in d3(h, z, ζ ) together thus give

3(2ζ T z + ζ T ζ )2

8(1 + zT z)1/2 ,

up to an error of at most

|2ζ T z + ζ T ζ |3
16(1 + zT z)3/2 ≤ 27|ζ |3|z|3

16|z|3 ≤ 27

16
|ζ |3.

Then ∣∣∣∣3(2ζ T z + ζ T ζ )2

8(1 + zT z)1/2 − 3(ζ T z)2

2(1 + zT z)1/2

∣∣∣∣ ≤ 12|ζ |3|z| + 3|ζ |4
8|z| ≤ 15

8
|ζ |3,

giving an overall bound of 57
16 |ζ |3.

We now substitute z = Z = z(W) and ζ = (ndν)−1/2�−1/2ξ into (5.18), and
take expectations. Since

Eh
(
Z(W + ξ)

) = Eh
(
Z(W)

)
,

this immediately gives

(5.19)

E
{−3

(
1 + ZT Z

)1/2
(ndν)−1/2ξT �−1/2Z

}
≤ n−1

E

{
3ZT �−1/2ξξT �−1/2Z

2dν(1 + ZT Z)1/2 + 3

2

(
1 + ZT Z

)1/2 |�−1/2ξ |2
dν

}
+ k3,hχ�

(ndν)3/2

≤ n−1 3

2dν
E
{(

2|Z| + 1
)∣∣�−1/2ξ

∣∣2}+ k3,hχ�

(ndν)3/2 .

Now

(5.20)

E
{−3

(
1 + ZT Z

)1/2
(ndν)−1/2ξT �−1/2Z

}
= E

{−3
(
1 + ZT Z

)1/2
(ndν)−1/2

× (
n−1(W − μ)T AT + n−1/2‖A‖1/2R1(W)T

)
�−1/2Z

}
= n−1

E

{
3
(
1 + ZT Z

)1/2

×
(

1

2
ZT σ 2

�Z − (dν)−1/2‖A‖1/2R1(W)T �−1/2Z

)}
,
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and, using (3.4),

(5.21) (dν)−1/2‖A‖1/2
E
{(

1 + ZT Z
)1/2∣∣R1(W)T �−1/2Z)

∣∣} ≤ 1

4
α1

(
1 +E|Z|3).

Then, by the arithmetic and geometric means inequality, for any a > 0,

|Z|∣∣�−1/2ξ
∣∣2 ≤ 1

3

{(
a|Z|)3 + 2

(
a−1/2∣∣�−1/2ξ

∣∣)3}
,

so that, taking a = (dνα1)
1/3,

(5.22) (dν)−1
E
{|Z|∣∣�−1/2ξ

∣∣2} ≤ α1

3

{
E|Z|3 + 2

(
n/‖A‖)1/2

L�

}
.

Combining (5.19)–(5.22), recalling that Tr(σ 2
�) = dνα1, and multiplying by n, it

follows that

3α1E|Z|3 ≤ 3

4
α1

(
1 +E|Z|3)+ α1

{
E|Z|3 + 2

(
n/‖A‖)1/2

L�

}
+ 3

2
α1 + k3,hα1L�

√
α1

‖A‖ ,

giving E|Z3| ≤ 2(1 + 10(n/‖A‖)1/2L�) if n/α1 ≥ 1, because k3,h ≤ 22. The final
inequality is then immediate.
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