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ON GLOBAL FLUCTUATIONS FOR NON-COLLIDING
PROCESSES1

BY MAURICE DUITS

Royal Institute of Technology (KTH)

We study the global fluctuations for a class of determinantal point
processes coming from large systems of non-colliding processes and non-
intersecting paths. Our main assumption is that the point processes are con-
structed by biorthogonal families that satisfy finite term recurrence relations.
The central observation of the paper is that the fluctuations of multi-time or
multi-layer linear statistics can be efficiently expressed in terms of the asso-
ciated recurrence matrices. As a consequence, we prove that different models
that share the same asymptotic behavior of the recurrence matrices, also share
the same asymptotic behavior for the global fluctuations. An important spe-
cial case is when the recurrence matrices have limits along the diagonals,
in which case we prove Central Limit Theorems for the linear statistics. We
then show that these results prove Gaussian Free Field fluctuations for the
random surfaces associated to these systems. To illustrate the results, sev-
eral examples will be discussed, including non-colliding processes for which
the invariant measures are the classical orthogonal polynomial ensembles and
random lozenge tilings of a hexagon.

1. Introduction. Random surfaces appearing in various models of integrable
probability, such as random matrices and random tilings, are known to have a
rich structure. A particular feature, one that has received much attention in recent
years, is the Gaussian Free Field that is expected to appear as a universal field
describing the global fluctuations of such random surfaces. Using the integrable
structure, this has been rigorously verified in a number of models in the literature.
For a partial list of references, see [6–9, 14, 19, 32, 37, 43]. The results so far
indicate the universality of the Gaussian Free Field in this context is rather robust.
In this paper, we will be interested in the global fluctuations for a particular class of
models, namely that of non-colliding processes and ensembles of non-intersecting
paths with determinantal correlations. For those models, we will provide a general
principle that leads to Gaussian Free Field type fluctuations.

Non-colliding process and non-intersecting path ensembles form an important
class of two-dimensional random interacting systems. For instance, Dyson showed
[22] that the Gaussian Unitary Ensemble is the invariant measure for a system of
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non-colliding Ornstein–Uhlenbeck processes. Replacing the Ornstein–Uhlenbeck
process by its radially squared version defines a similar stochastic dynamics for the
Laguerre Unitary Ensemble [35]. In Section 3, we will recall a generalization to
non-colliding processes for which the classical orthogonal polynomial ensembles
(continuous and discrete) are the invariant measures. Another source of models
that lead to non-intersecting paths are random tilings of planar domains. Lozenge
tilings of a hexagon on a triangular lattice, for example, can alternatively be de-
scribed by discrete random walks that start and end at opposite sites of the hexagon
[25, 30]. In that way, a probability measure on all tilings of the hexagon induces a
non-intersecting path ensemble.

By the tandem of the Karlin–McGregor or Gessel–Lindström–Viennot theorem
and the Eynard Mehta Theorem, it follows that many non-colliding process are
determinantal point processes; see, for example, [31]. This makes them especially
tractable for asymptotic analysis. A natural way to study the random surfaces ap-
pearing in this way is to analyze linear statistics for such determinantal point pro-
cesses. The purpose of this paper is to prove Central Limit Theorems for multi-time
or multi-layer linear statistics for a certain class of determinantal point processes.
The novelty of the results lies in the fact that we do not use the correlation ker-
nel as the starting point, but start from recurrences for the biorthogonal families
that integrate the models, similar to the approach for one-dimensional biorthog-
onal ensembles in [13]. The conditions under which the results hold are easily
verified in the classical ensembles. In particular, we will show that this Central
Limit Theorem confirms the universality conjecture for the Gaussian Free Field
in these models. We will illustrate our results by considering several examples,
including dynamic extension of Unitary Ensembles and other ensembles related
to (bi)orthogonal polynomials. In some of these classical examples, it should also
be possible to prove the Central Limit Theorems in an alternative way using the
asymptotics of the correlation kernel. However, in other examples (cf. Section 3.2)
finding the asymptotics of the correlations kernel is known to be a serious chal-
lenge, but our conditions on the recurrences are verified with relative ease.

In the remaining part of the Introduction, we give an example of what type of
results we will prove by discussing a classical model [22]. Consider the left picture
shown in Figure 1 depicting n Brownian bridges t �→ γj (t) that start for t = 0 at
the origin and return there at t = 1. We also condition the bridges never to collide.
The γj (t) turn out to have the same distribution as the ordered eigenvalues of an
n × n Hermitian matrix for which the real and imaginary part of each entry inde-
pendently (up to the symmetry) performs a Brownian bridge. Hence, at any given
time t ∈ (0,1) the locations γj (t) have the exact same distribution of the appro-
priately scaled eigenvalues of a matrix taken randomly from the Gaussian Unitary
Ensemble (=GUE). Note that in the original work [22] Dyson considered matrix-
diffusions on Hermitian matrices driven by independent Ornstein–Uhlenbeck pro-
cesses. The stationary case of his description is equivalent to the above after a
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FIG. 1. The left picture shows a typical configuration of Brownian bridges that are conditioned
never to collide. In the right picture, we take a number of vertical sections of the bridge.

simple change of variables; see, for example, [30] and will be discussed in Exam-
ple 3.2 below. We also refer to [1, 2] for general references on Random Matrix
Theory.

Because of the non-colliding condition, we can view the paths as level lines for
a random surface. More precisely, if we define the height function by

(1.1) hn(t, x) = #
{
j | γj (t) ≤ x

}
,

that is, hn(t, x) counts the number of paths directly below a given point (t, x),
then the trajectories are the lines where the stepped surface defined by the graph
of hn(t, x) makes a jump by one. The question is what happens with hn when the
size of the system grows large, that is, n → ∞.

It turns out that as n → ∞ the normalized height function 1
n
hn has an almost

sure limit, also called the limit shape. Indeed, when n → ∞ the paths will all
accumulate on a region E that is usually referred to as the disordered region. We
will assume that the original system is rescaled such that E does not depend on n

and is a nonempty open domain in R2. In fact, after a proper rescaling, the domain
E is the ellipse

(1.2) E = {
(t, x) | x2 ≤ 4t (1 − t)

}
.

It is well known that the eigenvalue distribution of a GUE matrix converges to the
semi-circle law (see, e.g., [2]). This implies that we have the following limit for
the height function

lim
n→∞

1

n
Ehn(t, x) = 1

2πt(1 − t)

∫ x

−√
4t (1−t)

√
4t (1 − t) − s2 ds.

The next question is about the fluctuations of the random surface, that is, the be-
havior of hn(t, x) − Ehn(t, x). For a fixed point (t, x), we note that hn(t, x) is
a counting statistic counting the number of eigenvalues of a suitably normalized
GUE matrix in a given semi-infinite interval (−∞, x]. The variance for such a
statistic is known to be growing logarithmically ∼ c lnn as n → ∞. Moreover, by
dividing by the variance we find that

hn(t, x) −Ehn(t, x)√
Varhn(t, x)

→ N(0,1),
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as n → ∞. The principle behind this result goes back to Costin–Lebowitz [15]
and was later extended by Soshnikov [49]. However, if we consider the correlation
between several points that are macroscopically far apart,

E

[
R∏

j=1

(
hn(tj , xj ) −Ehn(tj , xj )

)]
,

we obtain a finite limit as n → ∞. When n → ∞, the random surface defined by
the graph of hn(t, x)−Ehn(t, x) converges to a rough surface. The pointwise limit
does not make sense (due to the growing variance) but it has a limit as a generalized
function. This generalized function is, up to coordinate transform, known in the
literature as the Gaussian Free Field.

Since the Gaussian Free Field is a random generalized function, it is natural to
pair it with a test function φ, that is,

(1.3) 〈hn,φ〉 =
∫∫

hn(t, x)φ(t, x)dt dx

(as we will show in Section 2.4 the Dirichlet pairing is more appropriate, also
including a coordinate transform, but this simpler pairing does show the essential
idea). Then by writing hn(t, x) = ∑n

j=1 χ(−∞,γj (t)](x) and by a discretization of
the time integral, we obtain

(1.4)

〈hn,φ〉 =
n∑

j=1

∫∫ γj (t)

−∞
φ(t, x)dx dt

=
N∑

m=1

n∑
j=1

(tm+1 − tm)

∫ γj (tm)

−∞
φ(tm, x)dx,

where we choose N ∈ N time points tm ∈ (0,1) such that

(1.5) 0 = t0 < t1 < · · · < tN < tN+1 = 1,

and typically want the mesh supm=0,...,N (tm+1 − tm) to be small. The fact of the
matter is that the right-hand side is a linear statistic for the point process on
{1, . . . ,N} ×R defined by the locations

(1.6)
{(

m,γj (tm)
)}n,N

j=1,m=1.

In other words, the pairing in (1.3) naturally leads us to studying linear statistics
Xn(f ) defined by

(1.7) Xn(f ) =
N∑

m=1

n∑
j=1

f
(
m,γj (tm)

)
,

for a function f on {1, . . . ,N} × R. The central question of the paper is to ask
for the limiting behavior, as n → ∞, of the fluctuations of Xn(f ) − EXn(f ) for
sufficiently smooth functions f . A particular consequence of the main results is
the following.
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PROPOSITION 1.1. Let f : {1, . . . ,N} × R → R such that x �→ f (m,x) is
continuously differentiable and grows at most polynomially for x → ±∞. Then
the linear statistic (1.7) for the point process (1.6) with {tm}Nm=1 as in (1.5) satisfies

(1.8) Xn(f ) −EXn(f ) → N
(
0, σ 2

f

)
as n → ∞, where

σ(f )2 =
N∑

m1,m2=1

∞∑
k=1

e−|τm1−τm2 |kkf (m1)
k f

(m2)
k ,

with τm = 1
2 ln tm/(1 − tm) and

f
(m)
k = 1

π

∫ π

0
f

(
m,2

√
tm(1 − tm) − cos θ

)
cos kθ dθ,

for k ∈ N.

This Central Limit Theorem is a special case of a more general theorem that we
will state in the next section. The main point of the present paper is to show that
such results follow from a general principle for models that have a determinantal
structure for which the integrating functions (i.e., the Hermite polynomials in the
above example) satisfy a finite term recurrence. The proof of Proposition 1.1 will
be discussed in Example 3.2 (see also [6] for a similar statement in the context of
stochastic evolutions for Wigner matrices). The precise connection to the Gaussian
Free Field will be explained in Section 2.4.

Overview of the rest of the paper. In Section 2, we will formulate the model
that we will consider and state our main results, including various corollaries. The
proofs of those corollaries will also be given in Section 2, but the proofs of the main
results, Theorems 2.2, 2.5, 2.6 and 2.9 will be given in Section 6. Our approach
is a connection to recurrence matrices, which will be explained in Section 4. Then
in Section 5, we will analyze the asymptotic behavior of a general Fredholm de-
terminant from which the proofs of the main results are special cases. Finally, in
Section 3 we will provide ample examples to illustrate our results.

2. Statement of results. In this section, we will discuss the general model
that we will consider and state our main results. Some proofs are postponed to
later sections.

2.1. The model. Determinantal point processes that come from non-colliding
process and non-intersecting paths have a particular form. In this paper, we will
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therefore consider probability measures on points {xj,m}n,N
j,m=1 that can be written

as the product of several determinants

(2.1)

1

Zn

det
(
φj,1(x1,k)

)n
j,k=1

N−1∏
m=1

det
(
Tm(xm,i, xm+1,j )

)n
i,j=1

× det
(
ψj,N(xN,k)

)n
j,k=1

N∏
m=1

n∏
j=1

dμm(xm,j ),

where Zn is a normalizing constant, dμm are Borel measures on R, φj,1 ∈ L2(μN)

and ψj,N ∈ L2(μ1). The function Tm is such that the integral operator Tm :
L2(μm) → L2(μm+1) defined by

Tmf (y) =
∫

f (x)Tm(x, y)dμm(x),

is a bounded operator. We think of {xj,m}n,N
j,m=1 as the positions of n non-colliding

paths (indexed by j ) at N different points in time (indexed by m).
The form of (2.1) may look very special at first, but it appears often when deal-

ing with non-colliding processes and non-intersecting paths; see, example, [31]
and the references therein. The key is the Karlin McGregor Theorem in the contin-
uous setting or the Gessel–Lindström–Viennot theorem in the discrete setting that
say that the transition probabilities of non-colliding processes can be expressed as
determinants of a matrix constructed out of the transition probability for a single
particle. We will discuss several explicit examples in Section 3.

It is standard that without loss of generality we can assume that

(2.2)
∫

ψj,N(x)TN−1TN−2 · · ·T1φk,1(x)dμN(x) = δjk,

for j, k = 1, . . . , n. To show this, we first recall Andreiéf’s identity: For any mea-
sure ν and fj , gj ∈ L2(ν) for j = 1, . . . , n, we have

(2.3)

∫
· · ·

∫
det

(
fj (xk)

)n
j,k=1 det

(
gj (xk)

)n
j,k=1 dν(x1) · · ·dν(xn)

= n!det
(∫

fj (x)gk(x)dν(x)

)n

j,k=1
.

Then, by iterating (2.3), we see that Zn can be expressed as the determinant of the
Gram-matrix associated to φi,1 and ψj,N , that is,

Zn = (n!)N det
(∫

ψi,N(x)TN−1TN−2 · · ·T1φj,1(x)dμN(x)

)n

i,j=1
.

Since Zn cannot vanish, it means that Gram-matrix is nonsingular. The fact of the
matter is that by linearity of the determinant, we can replace the φj,1’s and ψk,N ’s
in the determinants in (2.1) by any other linear combinations of those functions,
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as long as the resulting family is linearly independent. A particular choice, for
example, by using the singular value decomposition of the original Gram-matrix,
is to make sure that the new Gram-matrix becomes the identity. In other words,
without loss of generality we can assume that we φj,1 and ψk,N are such that (2.2)
holds. This also shows that in that case Zn = (n!)N .

An important role in the analysis is played by the functions

(2.4) φj,m = Tm−1 · · ·T1φj,1, ψj,m = T ∗
m · · ·T ∗

N−1ψj,N,

for m = 1, . . . ,N , where T ∗
m stands for the adjoint of Tm which is given by

T ∗
mf (x) =

∫
f (y)Tm(x, y)dμm+1(y).

Note that it follows from (2.2) that

(2.5)
∫

φj,m(x)ψk,m(x)dμm(x) = δjk,

for j, k = 1, . . . , n and m = 1, . . . ,N . The marginals in (2.1) for the points
{(m,xj,m)}nj=1 for a fixed m are given by the measure

(2.6)
1

n! det
(
φj,m(xm,k)

)n
j,k=1 det

(
ψj,m(xm,k)

)n
j,k=1 dμm(x1,m) · · ·dμm(xn,m).

A probability measure of this type is known in the literature as a biorthogonal
ensemble [4].

It is well known that, by the Eynard Mehta Theorem, measures of the form (2.1)
are examples of determinantal point processes. We recall that a determinantal point
process is a point process for which the k-point correlation functions can be written
as k × k determinants constructed out of a single function of two variables, called
the correlation kernel. More precisely, there exists a Kn,N such that for any test
function g we have

(2.7)

E

[
N,n∏

m=1,j=1

(
1 + g(m,xm,j )

)]

=
∞∑

�=0

∫

�

g(η1) · · ·g(η�)det
(
Kn,N(ηi, ηj )

)�
i,j=1 dν(η1) · · ·dν(η�),

where 
 = {1,2, . . . ,N} ×R and ν is a measure on 
, called the reference mea-
sure. For the point process defined by (2.1), this kernel has the form

(2.8)

Kn,N(m1, x1,m2, x2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
k=1

φj,m1(x1)ψj,m2(x2), if m1 ≥ m2,

n∑
k=1

φj,m1(x1)ψj,m2(x2) − Tm1,m2(x1, x2), if m1 < m2,
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with reference measure ν = ∑N
m=1 δm × μm. Here, Tm1,m2(x1, x2) stands for the

integral kernel for the integral operator Tm1Tm1+1 · · ·Tm2−1. For more details and
background on determinantal point processes, we refer to [5, 31, 39, 48].

For a determinantal point process, all information is in one way or the other
encoded in the correlation kernel. For that reason, a common approach to various
results for determinantal point processes goes by an analysis of the kernel and its
properties. However, in this paper we use an alternative approach for analyzing the
global fluctuations. We follow the idea of [13] and assume that the biorthogonal
families admit a recurrence.

ASSUMPTION 2.1. We assume that {φj,1}Nj=1 and {ψj,N }Nj=1 can be extended
to families {φj,1}∞j=1 and {ψj,N }∞j=1 such that the functions defined by

φj,m = Tm−1 · · ·T1φ1,m, ψj,m = T ∗
m · · ·T ∗

N−1ψj,N,

for m = 1, . . . ,N , have the properties

1. Biorthogonality: ∫
ψj,N(x)TN−1 · · ·T1φk,1(x)dμN(x) = δjk,

for j, k = 1,2, . . . .
2. Recursion: for each m ∈ {1, . . . ,N} there is a banded matrix Jm such that

(2.9) x

⎛⎜⎜⎜⎝
φ0,m(x)

φ1,m(x)

φ2,m(x)
...

⎞⎟⎟⎟⎠ = Jm

⎛⎜⎜⎜⎝
φ0,m(x)

φ1,m(x)

φ2,m(x)
...

⎞⎟⎟⎟⎠ .

We will denote the bandwidth by ρ, that is,

(Jm)k,l = 0 if |k − l| ≥ ρ.

We will assume that ρ does not depend on m or n (but Jm may also depend on n).

Note that (2.9) and the banded structure of Jm means that the functions φj,m

satisfy finite term recurrence relation

xφk,m(x) = ∑
|j |≤ρ

(Jm)k,k+jφk+j,m(x).

The number of terms in the recurrence equals the number of nontrivial diagonals,
which is at most 2ρ + 1. Also note that by biorthogonality we have

(Jm)kl =
∫

xφk,m(x)ψl,m(x)dμm(x).

Finally, we mention that although the arguments in this paper can likely by ad-
justed to allow for a varying bandwidth (but keeping the bandwidth uniformly
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bounded in m, n, N ), in the relevant examples we always have a fixed bandwidth
independent of n, m.

An important special class of examples that we will study in this paper is when
the biorthogonal families are related to orthogonal polynomials. If each μm has fi-
nite moments, then we can define pj,m as the polynomial of degree j with positive
leading coefficient such that∫

pj,m(x)pk,m(x)dμm(x) = δjk.

As we will see in Section 3, in many examples we end up with a measure (2.1)
with φj,1 = cj,1pj−1,1, ψj,N = pj−1,N/cj,N and

Tm(x, y) =
∞∑

j=1

cj,m+1

cj,m

pj−1,m(x)pj−1,m+1(y),

for some coefficients cj,m 
= 0. In that case, we find

(2.10) φj,m(x) = cj,mpj−1,m and ψj,m(x) = 1

cj,m

pj−1,m(x).

Such examples satisfy Assumption 2.1. Indeed, it is classical that the orthogonal
polynomials satisfy a three-term recurrence

xpk,m(x) = ak+1,mpk+1,m(x) + bk,mpk,m(x) + ak,mpk−1,m(x),

for coefficients ak,m > 0 and bk,m ∈ R. This recurrence can be written as

(2.11) x

⎛⎜⎜⎜⎝
p0,m(x)

p1,m(x)

p2,m(x)
...

⎞⎟⎟⎟⎠ = Jm

⎛⎜⎜⎜⎝
p0,m(x)

p1,m(x)

p2,m(x)
...

⎞⎟⎟⎟⎠ .

The matrix Jm is then a symmetric tridiagonal matrix containing the recurrence
coefficients, also called the Jacobi matrix/operator associated to μm. It is not hard
to check that in this situation, Assumption 2.1 is satisfied with

(2.12) (Jm)kl = ck,m

cl,m

(Jm)kl.

We stress that such a recurrence relation is not special for orthogonal polyno-
mials only, but appear often in the presence of an orthogonality condition. For
instance, multiple orthogonal polynomial ensembles [38] also appear in the con-
text of non-colliding processes, such as external source models. Multiple orthogo-
nal polynomials satisfy recurrence relations involving more terms than only three;
see, for example, [50].

Finally, note that in the example in the Introduction, it was needed to rescale the
process as n → ∞. This rescaling means that all the parameters will depend on n.
Therefore, we will allow μm, φj,m and ψj,m to depend on n, but for clarity reasons
we will suppress this dependence in the notation.
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2.2. Fluctuations of linear statistics for fixed N . We will study linear statistics
for the determinantal point process. That is, for a function f : {0,1, . . . ,N}×R →
R we define

Xn(f ) =
N∑

m=0

n∑
j=1

f (m,xj,m),

where {(m,xj,m)}n,N
j=1,m=1 are sampled from a probability measure of the form

(2.1) satisfying Assumption 2.1. As we will see, the linear statistics Xn(f ) admit
a useful representation in terms of the recurrence matrices Jm. In fact, one of the
main points of the paper is that for studying linear statistics, this representation
appears to be more convenient than the representation in terms of the correlation
kernel Kn,N . In many interesting examples, the asymptotic study of the relevant
parts of Jm are trivial, whereas the asymptotic analysis (in all the relevant regimes)
of the kernel is usually tedious.

The central observation of this paper is that the fluctuation of the linear statistic
depend strongly on just small part of the operators Jm, More precisely, the coeffi-
cients (Jm)n+k,n+l for fixed k, l are dominant in the fluctuations for large n. The
other coefficients only play a minor role. Two different models for which these
coefficients behave similarly have the same fluctuations. This is the content of the
first main result.

THEOREM 2.2. Consider two probability measures of the form (2.1) satisfying
Assumption 2.1 and denote expectations with E and Ẽ and the banded matrices by
Jm and J̃m. Assume that for any k, l ∈ Z the sequence {(J̃m)n+k,n+l}n is bounded
and

(2.13) lim
n→∞

(
(Jm)n+k,n+l − (J̃m)n+k,n+l

) = 0.

Then for any function f : {0,1, . . . ,N}×R→R such that f (m,x) is a polynomial
in x, we have for k ∈ N,

(2.14) E
[(

Xn(f ) −EXn(f )
)k] − Ẽ

[(
Xn(f ) − ẼXn(f )

)k] → 0,

as n → ∞.

The proof of this theorem will be given in Section 6.
This result is a genuine universality result, in the sense that there is no specifi-

cation of a limit. If two families of models have the same asymptotic behavior of
the recurrence matrices, then the fluctuations are also the same. As a consequence,
after computing the limiting behavior for a particular example, we obtain the same
result for all comparable processes.

The natural question is then what the typical behaviors are that one observes in
the models of interest. As we will illustrate in Section 2.4, one important exam-
ple is when the recurrence coefficients have a limiting value or, more precisely,
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the matrices Jm have limits along the diagonals. The fluctuations in that case are
described by the following theorem.

THEOREM 2.3. Consider a probability measure of the form (2.1) satisfying
Assumption 2.1. Assume that there exists a

(m)
j ∈ R such that

(2.15) lim
n→∞(Jm)n+k,n+l = a

(m)
k−l ,

for k, l ∈ Z and m = 1, . . . ,N . Then for any function f : {1, . . . ,N}×R→R such
that f (m,x) is a polynomial in x, we have

(2.16)

Xn(f ) −EXn(f )

→ N

(
0,2

N∑
m1=1

N∑
m2=m1+1

∞∑
k=1

kf
(m1)
k f

(m2)−k +
N∑

m=1

∞∑
k=1

kf
(m)
k f

(m)
−k

)
,

where

(2.17) f
(m)
k = 1

2π i

∮
|z|=1

f
(
m,a(m)(z)

) dz

zk+1

and a(m)(z) = ∑
j a

(m)
j zj .

REMARK 2.1. Note that each Jm is banded and hence only finitely many a
(m)
j

are nonzero. In particular, each a(m)(z) is a Laurent polynomial.

The proof of this theorem will be given in Section 6.
The latter result in particular applies when we are in the situation of orthogonal

polynomials (2.10). In that case, the following corollary will be particularly useful
to us.

COROLLARY 2.4. Consider a probability measure of the form (2.1) with φj,m

and ψj,m as in (2.10). Assume that for k, � ∈ Z with |k − �| ≤ 1 we have

(2.18) lim
n→∞(Jm)n+k,n+l = a

(m)
|k−l|,

for some a
(m)
0 ∈ R and a

(m)
1 > 0 and

(2.19) lim
n→∞

cn+k,m

cn+�,m

= eτm(�−k),

for some τ1 < τ2 < · · · < τm. Then for any function f : {1, . . . ,N} ×R → R such
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that f (m,x) is a polynomial in x we have

(2.20)

Xn(f ) −EXn(f )

→ N

(
0,

N∑
m1=1

N∑
m2=1

∞∑
k=1

ke−|τm1−τm2 |kf̂ (m1)
k f̂

(m2)
k

)
,

where

(2.21) f̂
(m)
k = 1

π

∫ π

0
f

(
m,a

(m)
0 + 2a

(m)
1 cos θ

)
cos kθ dθ.

PROOF. This directly follows from Theorem 2.3, the relation (2.12) and a
rewriting of the limiting variance. For the latter, note that by a rescaling and a
symmetry argument (2.17) can be written as

f
(m)
k = e−τmkf̂

(m)
k .

Moreover, by f̂
(m)
k = f̂

(m)
−k and the fact that τ� < τk for � < k, we can symmetrize

the limiting variance in Theorem 2.3 to obtain the one in (2.20). �

As we will see in Section 3, Theorem 2.3 and Corollary 2.4 cover several inter-
esting examples. Many of the examples involve classical orthogonal polynomial
ensembles for which the conditions are straightforward to check. In those classical
examples, it should also be possible to give alternative proofs based on asymptotics
for double integral formulas for the correlation kernels. However, we also discuss
examples (cf. Section 3.2) where there structure of the correlation kernel is more
complicated and no useful double integral representation exists. However, it is still
possible to check the above conditions with relative ease. The reason for this is
that finding asymptotics of the recurrence coefficients as needed in the theorem is
an essentially simpler problem than finding asymptotics for the correlation kernel.

In case N = 1, the determinantal point process reduces to the definition of a
biorthogonal ensemble [5]. In this situation, the above results are already proved
by the author and Breuer [13]. In that paper, the approach using recurrence matri-
ces was used for the first time and later used again in a mesoscopic analysis for
orthogonal polynomials ensembles [12]. The results in [13] are a generalization of
various earlier works in the determinantal setting and there is a vast amount of ref-
erences on the subject. We only single out the influential work of Johansson [28]
on Unitary Ensembles (and extensions to general β) and refer to [13] for further
references. However, much less is known in the case of N > 1. To the best of the
author’s knowledge, the statement above is the first general result for multi-time
or multi-layer linear statistics for determinantal point processes.
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REMARK 2.2. The conditions in both Theorem 2.2 and 2.3 can be relaxed.
In fact, we only need the limits (2.13) along a subsequence {nk}k to conclude
(2.14) along that same subsequence. Similarly, for the limits in Theorem 2.3 and
Corollary 2.4. For the case N = 1 and J , the Jacobi operator associated with
the orthogonal polynomials corresponding to the measure μ, this relates the study
of possible limit theorems for the linear statistic to the study of right limits of
the Jacobi operator. For the interested reader, we refer to the discussion in [13].
However, in the present setup this generality seems less relevant.

REMARK 2.3. The conditions in both Theorem 2.2 and 2.3 are not sufficient
to guarantee that a limit shape exists, that is, we do not know (nor need) the limit
of 1

n
EXn(f ).

REMARK 2.4. In Corollary 2.4, it is easy to see that the variance is positive.
In fact, in that case the variance can also be written in a different form that will be
useful to us. We recall the standard integral

(2.22) e−k|τ | = 1

π

∫ ∞
−∞

k

k2 + ω2 e−iωτ dτ.

By inserting this back into (2.20) and a simple reorganization, we see that the
limiting variance can be written as

(2.23)
1

π

∞∑
k=1

∫ ∞
−∞

∣∣∣∣∣
N∑

m=1

e−iτmωkf
(m)
k

∣∣∣∣∣
2

dω

k2 + ω2 .

This will be of use later on when we explain the connection of the above results
with the Gaussian Free Field.

In the general case, the limiting variance is of course also positive, but this is not
evident from the expression due to the lack of symmetry. This feature is already
present in the N = 1 case, as discussed in [13].

In the situation of Corollary 2.4, we can formulate natural conditions that allow
us to extend Theorem 2.3 so that it holds for more general functions f . In that case,
we will prove that the variance is continuous with respect to the C1 norm. Hence
we can try to extend the theorem to C1 functions by polynomial approximation.
For such an approximation, it is convenient to work on a compact set.

THEOREM 2.5. Suppose all the conditions in Corollary 2.4 hold and in addi-
tion there exists a compact set E ⊂R such that either

(1) all supports S(μ
(n)
m ) ⊂ E for n ∈ N and m = 1, . . . ,N ,

or, more generally,
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(2) for every k ∈ N and m = 1, . . . ,N , we have∫
R\E

|x|kKn,N(m,x,m,x)dμm(x) = o(1/n),

as n → ∞.

Then the conclusion of Corollary 2.4 also holds for any f : {1, . . . ,N}×R→R

such that for m ∈ {1, . . . ,N} the map x �→ f (m,x) is a C1 function that grows at
most polynomially at ±∞.

The proof of this theorem will be given in Section 6.
The conditions in the theorem are rather mild. In case of unbounded supports,

one can often show in the classical situations, by standard asymptotic methods
such as classical steepest descent arguments or Riemann–Hilbert techniques, that
the second condition is satisfied with exponentially small terms at the right-hand
side, instead of only o(1/n).

2.3. Varying Nn. Motivated by the example of non-colliding Brownian
bridges in the Introduction, the natural question rises whether we can allow Nn

to depend on n and such that Nn → ∞. Indeed, in that example we wanted to view
the discrete sum (1.4) as a Riemann sum. Hence we will now consider probability
measures of the form (2.1) with N = Nn and keep in mind that in many examples
we have Tm = Ptm+1−tm for some transition probability function Pt and sampling
times tm.

We start with a partitioning

α = t
(n)
0 < t

(n)
1 < t

(n)
2 < · · · < t

(n)
N < t

(n)
N+1 = β,

of an interval I = [α,β] ⊂ R such that

sup
m

(
t
(n)
m+1 − t (n)

m

) → 0,

as n → ∞. And then, for a function on g : I ×R → R, we ask for the equivalent
statement of Theorems 2.2, 2.3 and 2.5 for the linear statistic

(2.24) Yn(g) =
Nn∑

m=1

1

t
(n)
m+1 − t

(n)
m

n∑
j=1

g
(
t (n)
m , xj,m

)
.

The first result is that Theorem 2.2 continues to hold when the limits (2.13) hold
uniformly in m.

THEOREM 2.6. Let {Nn}n be a sequence of integers such that Nn → ∞ as
n → ∞. Consider two probability measures of the form (2.1) with N = Nn and
satisfying Assumption 2.1 and denote the banded matrices by Jm and J̃m for m =
1, . . . ,Nn.
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Assume that for any k, l ∈ Z the set {(J̃m)n+k,n+l}Nn,∞
m=1,n=1 is bounded and

(2.25) lim
n→∞ sup

m=1,...,Nn

∣∣(Jm)n+k,n+l − (J̃m)n+k,n+l

∣∣ = 0.

Then for any function g such that g(t, x) is a polynomial in x we have, for k ∈ N

and Yn(g) as in (2.24),

E
[(

Yn(g) −EYn(g)
)k] − Ẽ

[(
Yn(g) − ẼYn(g)

)k] → 0,

as n → ∞.

Also Theorem 2.3 has an extension to the varying Nn setting.

THEOREM 2.7. Let {Nn}n be a sequence of integers such that Nn → ∞ as
n → ∞ and suppose that for each n we have a probability measure of the form
(2.1) with N = Nn and satisfying Assumption 2.1.

Assume that there exist piecewise continuous functions ak(t) on the interval I

such that, for k, l ∈ Z,

lim
n→∞ sup

m=1,...,Nn

∣∣(Jm)n+k,n+l − ak−l

(
t (n)
m

)∣∣ = 0.

Then for any function g : I × R → R such that g(t, x) is piecewise continuous in
t and a polynomial in x, we have that Yn(g) as defined in (2.24) satisfies

Yn(g) −EYn(g) → N

(
0,

∞∑
k=1

2
∫∫

α<t1<t2<β
kgk(t1)g−k(t2)dt1 dt2

)
as n → ∞, with

gk(t) = 1

2π i

∮
|z|=1

g

(
t,

∑
�

a�(t)z
�

)
dz

zk+1 .

As before, in the special case that we deal with orthogonal polynomials the latter
theorem takes the following form.

COROLLARY 2.8. Let a0(t), a1(t) and τ(t) be piecewise continuous functions
on an interval I and assume that τ(t) is increasing.

Suppose that for each n we have a probability measure of the form (2.1) satis-
fying Assumption 2.1 with φj,m and ψj,m as in (2.10) and assume that for k, � ∈ Z

with |k − �| ≤ 1, we have

(2.26) lim
n→∞ sup

m=1,...,Nn

∣∣(Jm)n+k,n+� − a|k−�|
(
t (n)
m

)∣∣ = 0

and

(2.27) lim
n→∞ sup

m=1,...,Nn

∣∣∣∣cn+�,m

cn+k,m

− eτ(t
(n)
m )(k−�)

∣∣∣∣ = 0.
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Then for any function g : I ×R → R such that g(t, x) is piecewise continuous in
t and a polynomial in x, we have that Yn(g) as defined in (2.24) satisfies

Yn(g) −EYn(g) → N

(
0,

∞∑
k=1

∫∫
I×I

e−|τ(t2)−τ(t1)|kkgk(t1)g−k(t2)dt1 dt2

)

as n → ∞, with

gk(t) = 1

π

∫ π

0
g
(
t, a0(t) + 2a1(t) cos θ

)
cos kθ dθ.

PROOF. The proof follows from Theorem 2.7 in the same way as Corollary 2.4
followed from Theorem 2.3. �

REMARK 2.5. By (2.22), we can write the variance also as

(2.28)
1

π

∞∑
k=1

∫
k2

ω2 + k2

∣∣∣∣∫
I

e−iωτ(t)gk(t)dt

∣∣∣∣2 dω.

This will be useful later on.

Again, Theorem 2.7 is stated for a function g(t, x) that is a polynomial in x.
Under similar conditions as in Theorem 2.5 we can extend this to a larger class of
functions.

THEOREM 2.9. Assume that all the conditions of Corollary 2.8 hold. In addi-
tion, assume that there exists a compact set E ⊂R such that either

(1) all supports S(μ
(n)
m ) ⊂ E for n ∈ N and m = 1, . . . ,N , or, more generally,

(2) for every k ∈ N and we have

sup
m=1,...,Nn

∫
R\E

|x|kKn,N(m,x,m,x)dμm(x) = o(1/n),

as n → ∞.

Moreover, assume that t
(n)
m are such Nn

∑Nn

m=1(t
(n)
m+1 − t

(n)
m )2 is bounded in n. Then

Theorem 2.7 also holds wit for any g such that x �→ g(t, x) is a C1 function grow-
ing at most polynomially at ±∞.

2.4. Connection to Gaussian Free Field. Finally, we discuss the relation of
the above results with the Gaussian Free Field. We will focus on the situation of
Theorem 2.7 and such that one of the conditions in Theorem 2.9 is valid, such that
Theorem 2.7 holds for continuously differentiable g.

We will start by recalling the definition of the Gaussian Free Field without a
detailed justification. More details and background can be found in the survey [45]
and for a general reference on Gaussian Hilbert spaces we refer to [27].
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Let D be a simply connected domain in R2. With this domain, we consider the
space of test functions H∇ defined as follows: we start with space C1

0(D) of all
continuously differentiable functions that vanish at the boundary of D. On that
space, we define the norm

‖φ‖2∇ = π

∫∫
D

∣∣∇φ(w)
∣∣2 dm(w),

where dm stands for the planar Lebesgue measure on D. The space of test function
H∇ is then defined as the closure of C1

0(D) with respect to this norm. Now that
we have the space of test functions, we define a random generalized functions by
providing how it acts on each test function. More precisely, we define the Gaussian
Free Field to be a collection of random variables {〈F,φ〉∇}φ indexed by φ ∈ H∇
such that

〈F,φ〉∇ ∼ N
(
0,‖φ‖2∇

)
,

and such that φ �→ 〈F,φ〉∇ is linear. That these two properties suffice for the def-
inition is explained in Proposition 2.13 in [45] and the discussion around it. For
instance, by linearity and the polarization identity, the correlation E[〈F,φ1〉∇〈F,

φ2〉∇] can be computed to be (φ1, φ2)∇ . Alternatively, the Gaussian Free Field can
be introduced by justifying the formal series F = ∑

αjφj where αj are indepen-
dent standard Gaussians and {φj } is any orthonormal basis for H∇ .

Now let us first focus on the example given in the Introduction and let hn be the
height function as defined in (1.1). The statement now is that the fluctuations of
hn − Ehn are described by the Gaussian Free Field in appropriately chosen coor-
dinates. That is, there exists a simply connected domain D and a homeomorphism

� :D → E : w = (τ, θ) �→ (t, x),

where E is the ellipse (1.2), such that the push-forward of hn −Ehn under the map
� converges to the Gaussian Free Field on D with Dirichlet boundary conditions.
That is,

(2.29) 〈hn ◦ �,φ〉∇ − 〈Ehn ◦ �,φ〉∇ → N
(
0,‖φ‖2∇

)
,

as n → ∞, for some natural pairing 〈hn ◦ �,φ〉∇ . It is important to note that
the Gaussian Free Field is a universal object; the coordinate transform is not and
depends on the specific problem at hand.

The relation with linear statistics is explained as follows (see also [19]), which
also gives the precise form of the pairing 〈hn ◦ �,φ〉∇ that we will use. First, by
integration by parts and a change of variables we obtain

π

∫∫
D

∇hn

(
�(w)

) · ∇φ(w)dm(w)

= −π

∫∫
E
hn(x, t)�φ

(
w(t, x)

)d(τ, θ)

d(t, x)
dx dt,
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where d(τ, θ)/d(t, x) stands for the Jacobian of the map �−1. We then use the
fact that hn(t, x) = ∑n

j=1 χ(−∞,γj (t)](x) to rewrite the right-hand side as

−π

∫
I

n∑
j=1

∫ γj (t)

−∞
�φ

(
w(t, x)

)d(τ, θ)

d(t, x)
dx dt.

Finally, the pairing 〈hn,φ〉∇ is then defined by a discretization of the integral
over t ,

(2.30)

〈hn,φ〉∇ = −
N∑

m=1

1

tm+1 − tm

×
n∑

j=1

π

∫ γj (t
(n)
m )

−∞
�φ

(
w(tm, x)

)d(τ, θ)

d(t, x)
dx.

Now note that 〈hn,φ〉∇ = Yn(g) where Yn(g) is the linear statistic as in (2.24) with

g(t, y) = −π

∫ y

−∞
�φ

(
w(t, x)

)d(τ, θ)

d(t, x)
dx.

Hence the pairing of the height function with a test function, reduces to a linear
statistic for the point process {γj (tm)}n,N

j=1,m=1 and we can apply Proposition 1.1 to
find its limiting fluctuations, which leads to (2.29) as we will show below.

We will state the result in the more general setup of Theorem 2.9. That is, we
consider a probability measure of the form in (2.1) satisfying Assumption 2.1 in
the orthogonal polynomial situation (2.10). We also assume that the conditions of
Corollary 2.8 are satisfied. That is, there exists interval I = [α,β] and functions
a0 : I →R, a1 : I →R and a function τ(t) such that we have the limits (2.26) and
(2.27) for some partitioning {t (n)

m } of I . For simplicity, we will assume that τ is
continuously differentiable and τ ′(t) > 0 for t ∈ I .

We thus obtain the random points {(m,xj,m)}n,Nn

j=1,m=1 and we ask for the fluc-
tuations of the height function defined by

h
(
t (n)
m , x

) = #{j | xj,m ≤ x}.
Then the region E and the coordinate transform � are determined by the function
τ as follows. First, define

E = {
(t, x) | −2a1(t) ≤ x − a0(t) ≤ 2a1(t)

}
.

Note that τ(t) is strictly increasing, and hence it has an inverse t (τ ). Then, with

D = {
(τ, θ) | τ ∈ (

τ(α), τ (β)
)
, θ ∈ (0, π)

}
,

the map

� : D → E : (τ, θ) �→ (
t (τ ), x(τ, θ)

) = (
t (τ ),2a

(
t (τ )

)
cos θ

)
,
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is a bijection and has the inverse

�−1 : E → D : (t, x) �→ (
τ(t), θ(t, x)

) =
(
τ(t), arccos

x

2a(t)

)
.

In this setting, we have that the push-forward by � of the fluctuations of the height
function hn are governed by the Gaussian Free Field on D in the following sense.

THEOREM 2.10. Let {(m,xj,m)}n,N
j,m=1 be random from a probability measure

of the form (2.1) satisfying the conditions in Theorem 2.9 with the parameters as
described above.

Let φ be a twice continuously differentiable real-valued function with compact
support in D and consider the pairing

〈hn,φ〉∇ := −
N∑

m=1

1

t
(n)
m+1 − t

(n)
m

n∑
j=1

π

∫ xj,m

−∞
�φ

(
w(t, x)

)d(τ, θ)

d(t, x)
dx.

Then, as n → ∞,

〈hn,φ〉∇ −E
[〈hn,φ〉∇] → N

(
0,‖φ‖2∇

)
,

in distribution.

PROOF. We start by recalling that 〈hn,φ〉∇ is the linear statistic Yn(g) as in
(2.24) with

g(t, y) = −π

∫ y

−∞
�φ

(
w(t, x)

)d(τ, θ)

d(t, x)
dx.

Note that x �→ g(t, x) is a continuously differentiable and bounded function.
Moreover, the point process satisfies the assumptions in Theorem 2.9 so that, as
n → ∞,

〈hn,φ〉∇ −E
[〈hn,φ〉∇] → N

(
0, σ (g)2)

,

in distribution, with (see Remark 2.4)

σ(g)2 = 1

π

∞∑
k=1

∫
R

k2

ω2 + k2

∣∣∣∣∫
I

e−iτ(t)ωgk(t)dt

∣∣∣∣2 dω

and

gk(t) = 1

π

∫ π

0
g
(
t, a0(t) + 2a1(t) cos θ

)
cos kθ dθ.

It remains to show that we can rewrite the variance so that it matches with the one
in the statement.

We start by noting that the Jacobian for the map is given by

d(τ, θ)

d(t, x)
= τ ′(t)∂θ

∂x
.
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Then, by a change of variables we have

g(t, y) = π

∫ y

a0(t)−2a1(t)
�φ

(
τ(t), θ(t, x)

)d(τ, θ)

d(t, x)
dx

= πτ ′(t)
∫ y

a0(t)−2a1(t)
�φ

(
τ(t), θ(t, x)

)∂θ

∂x
dx

= πτ ′(t)
∫ θ(t,y)

0
�φ

(
τ(t), θ

)
dθ.

Clearly, since � and �−1 are each others inverse maps, we have

θ
(
t, a0(t) + 2a1(t) cos(t)

) = θ,

and hence

g
(
t, a0(t) + 2a1(t) cos θ

) = πτ ′(t)
∫ θ

0
�φ

(
τ(t), θ̃

)
dθ̃ .

This implies that

kgk(t) = 1

π

∫ π

0
g
(
t, a0(t) + 2a1(t) cos θ

)
k cos kθ dθ

= τ ′(t)
∫ π

0

∫ θ

0
�φ

(
τ(t), θ̃

)
dθ̃k cos kθ dθ

= τ ′(t)
∫ π

0
�φ

(
τ(t), θ

)
k sinkθ dθ

using integration by parts in the last step. We then continue by inserting the last
expressions and using the fact that φ has compact support in D,

k

∫
I

e−iτ(t)ωgk(t)dt =
∫
I

∫ π

0
e−iτ(t)ω�φ

(
τ(t), θ

)
k sinkθ dθτ ′(t)dt

=
∫
R

∫ π

0
e−iτω�φ(τ, θ)k sinkθ dθ dτ

= π(G�φ)(ω, k),

where G is the operator

Gf (ω, k) = 1

π

∫
R

∫ π

0
f (τ, θ)e−iωτ sinkθ dθ dτ.

Since {
√

2
π

sinkθ}∞k=1 is an orthonormal basis for L2([0, π)) and since the integral

over τ is the usual Fourier transform [with normalization (2π)−1/2], we see that G
defines a unitary transform from L2(D) to L2(R) × �2(N). It is also easy to check
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that G�φ(ω, k) = −(ω2 + k2)Gφ(ω, k). We then apply Plancherel’s Theorem to
write

1

π

∞∑
k=1

∫
R

k2

ω2 + k2

∣∣∣∣∫
I

e−iτ(t)ωgk(t)dt

∣∣∣∣2 dω

= π

∞∑
k=1

∫
R

|(G�φ)(ω, k)|2
ω2 + k2 dω = −π

∞∑
k=1

∫
R

G�φ(ω, k)Gφ(ω, k)dω

= −π

∫∫
D

φ�φ = π

∫∫
D

φ�φ = ‖φ‖2∇ ,

and this proves the statement. �

3. Examples. In this section, we will illustrate the main results by discussing
several examples.

3.1. Stationary non-colliding processes. The first class of examples is that of
non-colliding processes for which the classical orthogonal polynomials ensem-
bles are the invariant measures. The construction we will follow is a well-known
approach using Doob’s h-transform and the Karlin McGregor Theorem; see, for
example, [34] for a discussion. An alternative way of defining the processes is to
start with a generator for a single particle process and then define an n-particle
process by constructing a generator on the space of symmetric functions [10, 42].

Suppose we are given a Markov process for a single particle and let us assume
that it has a transition function Pt(x, y)dμ(y) on a subset E ⊂ R that can be
written as

(3.1) Pt(x, y)dμ(y) =
∞∑

j=0

e−λj tpj (x)pj (y)dμ(y),

where

0 = λ0 < λ1 < λ2 < · · ·
and pj (x) are orthogonal polynomials with respect to dμ(y). That is, {pk}k is
the unique family of polynomials such that pk is a polynomial of degree k with
positive leading coefficient and∫

pk(x)p�(x)dμ(x) = δk�.

In other words, we assume that the generator for the Markov process has eigenvec-
tors pj and eigenvalues λj . It is standard that the classical orthogonal polynomials
appear in this way, as we will see.

We then construct a Markov process on the Weyl chamber

Wn = {
(x1, . . . , xn) ∈ R

n | x1 < · · · < xn

}
.
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First, we note that by a theorem of Karlin McGregor it follows, under general
conditions on the Markov process, that the joint probability distribution for the
positions yj after time t > 0 of particles that (1) each perform a single particle
process given by Pt , (2) start at x1, . . . , xn and (3) are conditioned not to collide in
[0,1], is given by

det
(
Pt(xi, yj )

)
.

Then by (2.3) and (3.1) it follows that∫
Wn

det
(
Pt(xi, yj )

)
det

(
pj−1(yk)

)n
j,k=1 dμ(y1) · · ·dμ(yn)

= e−t
∑n−1

j=0 λj det
(
pj−1(xk)

)n
j,k=1.

Moreover, det(pj−1(xk))
n
j,k=1 = c

∏
1≤i<j≤n(xj − xi) is positive. Hence it is a

positive harmonic function and we can apply Doob’s h-transform to arrive at the
transition function

Pt(�x, �y) = et
∑n−1

j=0 λj det
(
Pt(xi, yj )

)n
i,j=1

det(pj−1(yk))
n
j,k=1

det(pj−1(xk))
n
j,k=1

.

This defines the Markov process on Wn that we will be interested in. Finally, it
is not hard to show from (2.3) that the unique invariant measure is given by the
orthogonal polynomial ensemble [34],(

det
(
pj−1(xk)

)n
j,k=1

)2 dμ(x1) · · ·dμ(xn).

In other words, the above construction provides a way for defining a stochastic dy-
namics for which the classical orthogonal polynomial ensembles are the invariant
measures.

We consider this Markov process in the stationary situation. That is, we fix
t1 < t2 < · · · < tN ∈ R and start the Markov process with the invariant measure at
t1. Then we obtain a probability measure for the locations at tm

det
(
pj−1

(
xk(t1)

))n
j,k=1

N−1∏
m=1

det
(
Ptm+1−tm

(
xj (tm), xk(tm+1)

))n
j,k=1

× det
(
pj−1

(
xk(tN)

))n
j,k=1

N∏
m=1

n∏
j=1

dμ
(
xj (tm)

)
,

which, after a symmetrization, is exactly of the form (2.1). In fact, it is an example
of an orthogonal polynomial situation as given in (2.10) with cj,m = e−tmλj . Before
we apply Corollary 2.4, we recall that the orthogonal polynomials on the real line
are subject to a three term recurrence relation

xpk(x) = ak+1pk+1(x) + bkpk(x) + akpk−1(x),
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for some numbers bk ∈ R and ak > 0. We recall that we allow the measure μ

to vary with n so that also bk and ak may vary with n, and hence we will write
ak = a

(n)
k and b

(n)
k .

THEOREM 3.1. Suppose that for some a > 0 and b ∈ R we have

lim
n→∞a

(n)
n+k = a,

lim
n→∞b

(n)
n+k = b,

for k ∈ Z. Then let t1 < · · · < tN ∈ R be such that, for some τj and sequence κn,

lim
n→∞κn(λn+k − λn+l)tj = (k − l)τj

as n → ∞. Then for any f : {1, . . . ,N}×R such that f (m,x) is a polynomial, we
have

Xn(f ) −EXn(f ) → N

(
0,

N∑
m1,m2=1

∞∑
k=1

ke−|τm1−τm2 |kf (m1)
k f

(m2)
k

)
,

where

f
(m)
k = 1

π

∫ π

0
f (m,2a cos θ + b) cos kθ dθ.

Moreover, for any g : I × R → R such that g(t, x) is a polynomial in x we have
that Yn(g) as defined in (2.24) satisfies

Yn(g) −EYn(g) → N

(
0,

∞∑
k=1

∫∫
I×I

e−|τ(t2)−τ(t1)|kkgk(t1)g−k(t2)dt1 dt2

)

as n → ∞, with

gk(t) = 1

π

∫ π

0
g(t, a0 + 2a1 cos θ) coskθ dθ.

PROOF. This is a direct consequence of Corollaries 2.4 and 2.8, with cj,m =
e−tmλj . �

The point is now that for the Markov process related to the classical polynomials
we can easily verify the stated condition by looking up the explicit values of the
parameters in standard reference works on classical orthogonal polynomials, such
as [33].

We will now illustrate the results with some examples. To start with, we consider
the classical Hermite, Laguerre and Jacobi polynomials, which are well known to
be eigenfunctions for a second order differential operator that can be used as the
generator for the Markov process.
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FIG. 2. The left figure shows a sampling from a stationary non-colliding process generated by the
Ornstein–Uhlenbeck process of size n = 20. At the right, we intersect the trajectories at multiple
times tm.

EXAMPLE 3.2 (Non-colliding Ornstein–Uhlenbeck processes). Let us start
where we take Pt(x, y) according to the Ornstein–Uhlenbeck process. This is the
model that was considered by Dyson [22] for β = 2. See Figure 2. In that case, we
have

Pt(x, y)dμ(y) = 1√
2π(1 − e−2t )

e
− (e−t x−y)2

2(1−e−2t ) dy,

as the transition function. By Mehler’s formula for the Hermite polynomials, this
can be expanded as

Pt(x, y)dμ(y) =
∞∑

j=0

e−j tHj (x)Hj (y)e−y2/2 dy,

where Hj(y) are the normalized Hermite polynomials where the orthogonality is

with respect to e−y2/2 dy on R.
The Hermite polynomials satisfy the recurrence

xHk(x) = √
k + 1Hk+1(x) + √

kHk−1(x).

The recurrence coefficients grow and in order to get a meaningful limit we need
to rescale the process. Indeed, when n → ∞ the paths at any given time t fill the
interval (−2

√
n,2

√
n) and we rescale the space variable and introduce the new

variable ξ by

x = √
nξ.

Then the rescaled orthonormal polynomials are pk(ξ) = n−1/4Hk(
√

nξ) and for
these polynomials we have the following recursion

pk(ξ) =
√

k + 1

n
pk+1(ξ) +

√
k

n
pk−1(ξ).

One readily verifies that

a
(n)
n+k → 1, b

(n)
n+k = 0.
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Moreover, since λj = j , we also have

(λn+k − λn+�)tj = (k − �)tj .

Therefore, the conditions of Theorem 3.1 are satisfied with a = 1, b = 0 and τj =
tj . In fact, for the Hermite polynomials one can verify that the second condition
in Theorem 2.5 is satisfied, and hence Theorem 3.1 also holds for function f :
{1, . . . ,N} × R such that x → f (m,x) is a continuously differentiable function
that grows at most polynomially at ±∞. This follows, for example, after a classical
steepest decent analysis on the integral representation of the Hermite polynomials
or by a Riemann–Hilbert analysis. We will leave the tedious details to the reader.

Finally, we note that the non-colliding Brownian bridges model from the Intro-
duction can be obtained from the above model after the change of variables

(
t

ξ

)
�→

⎛⎜⎜⎝
1

1 + e−t

ξ

cosh t

⎞⎟⎟⎠ .

This is discussed in, for example, [30] and we refer to that paper for more details.
This also proves Proposition 1.1. �

EXAMPLE 3.3 (Non-colliding Jacobi diffusions). The next example is that
of Jacobi diffusions, which have also been discussed in [18, 26]. For α,β > −1,
consider the Jacobi diffusion [44]

Pt(x, y)dμ(y) =
∞∑

j=1

e−j (j+α+β+1)p
α,β
j (x)p

α,β
j (y)yα(1 − y)β dy

on [0,1], where p
(α,β)
j (x) is the polynomial of degree j with positive leading

coefficient satisfying∫ 1

0
p

(α,β)
j (x)p

(α,β)
k (x)xα(1 − x)β dx = δjk.

Also in this case, the recurrence coefficient are explicit. Without giving them, we
mention that it can easily be computed that

an+k → 1

4
, bn+k → 1/2.

In fact, these limits hold for any measure w(x)dx on [0,1] with positive weight
w(x) > 0 (and even more general, the Denisov–Rakhmanov Theorem [47], Theo-
rem 1.4.2, says that it holds for any general measure for which the essential support
is [0,1] and for which the density of the absolutely continuous part is strictly pos-
itive on (0,1)).
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In this case, the λj = j (j + α + β + 1) is quadratic. For that reason, we will
consider times tj = n(α + β + 2)τj for some fixed τj ’s, so that we have

κntj (λn+k − λn+�) = τj (k − �),

with κn = 1
n(α+β+2)

, and hence both conditions in Theorem 3.1 are satisfied with
a = 1/4 and b = 1/2. �

EXAMPLE 3.4 (Non-colliding squared radial Ornstein–Uhlenbeck processes).
In the next example, we replace the Ornstein–Uhlenbeck process with its squared
radial version. That is,

Pt(x, y)dμ(y) = 1

1 − e−t

(
y

xe−t

)r/2
e− xe−t

1−e−t − y

1−e−t Ir

(
2
√

e−t xy

1 − et

)
on [0,∞) where r > −1 is a parameter and Ir stands for the modified Bessel func-
tion of the first kind of order r . The squared radial Ornstein–Uhlenbeck process is
related to the squared Bessel process in a similar way as the Ornstein–Uhlenbeck
process is to Brownian motion. Indeed, the squared Bessel process can be obtained
by a change of variables. The latter process has been studied in the literature in the
context of non-colliding processes before. In [35], it was used to define a dynamic
version of the Laguerre ensemble from Random Matrix Theory. See Figure 3 for a
sample.

Note that we can expand the transition function as [44]

Pt(x, y)dμ(y) =
∞∑

j=1

e−j t j !
�(j + r + 1)

L
(r)
j (x)L

(r)
j (x)yre−y dy,

where L
(r)
j (x) is the generalized Laguerre polynomial of degree r (with orthogo-

nality with respect to yre−y dy). These polynomials satisfy the recursive relation

xL
(r)
k = −(k + 1)L

(r)
k+1(x) + (2k + r + 1)L

(r)
k (x) − (k + r)L

(r)
k−1(x).

FIG. 3. The left figure shows a sampling from a stationary non-colliding process generated by the
squared radial Ornstein–Uhlenbeck process of size n = 20. At the right, we intersect the trajectories
at multiple times tm.
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Note that the recursion coefficients are growing, which means that we need to
rescale the process. Moreover, the Laguerre polynomials are not normalized. Using
an appropriate normalization and rescaling, it is straightforward to show that the
conditions of Theorem 3.1 are satisfied with a = 1, b = 2 and τj = tj . To the best
of our knowledge, we believe that this example is a new result that has not appeared
before. It is also possible to prove the conditions of Theorems 2.5 and 2.9. �

The three examples above can also be obtained from stochastic evolution for
matrices. See [18, 22, 35] for more details. They are continuous in time and space.
The next examples are concerned with a discrete space variable, based on birth and
death processes. These are processes that model a population that can increase or
decrease by one. By tuning the birth/death rates (which may depend on the size
of the population), one obtains classical orthogonal polynomials of a discrete vari-
able. We refer to [44] for more details and background. In the n-particle construc-
tion as before, we then arrive at stochastic evolution for which the classical discrete
orthogonal polynomial ensembles are the invariant measures. We emphasize that
there are other constructions [40] that lead to discrete orthogonal polynomial en-
sembles, such as the Charlier processes. Although there may be relations, these
examples should not be confused with each other.

EXAMPLE 3.5 (Non-colliding Meixner Ensemble). In the first example, we
start with a birth and death process on {0,1, . . .} with birth μ(n+γ ) and death rate
n, where n is the size of the population. This process has the transition function

Pt(x, y)dμ(y) =
∞∑

j=0

e−j t μ
j (γ )j

j ! Mj(x;γ,μ)Mj(y;γ,μ)(1 − μ)γ
μy(γ )y

y!
on {0,1,2,3, . . .}. Here, (γ )y denotes the Pochhammer symbol and Mj is the
Meixner polynomial of degree j .

The associated n-particle generalization appeared in [10]. We now show how
the conditions of Theorem 3.1 are met.

The Meixner polynomials satisfy the following recursion

xMk(x;γ,μ) = −μ(k + γ )

1 − μ
Mk+1(x, γ,μ)

+ k(1 + μ) + μγ

1 − μ
Mk(x, γ,μ)

− k

1 − μ
Mk−1(x, γ,μ).

Also in this case, both a rescaling and normalization are needed. We define

pk(ξ) = (−1)k

√
μk(γ )k(1 − μ)γ

k! Mk(ξn;γ,μ).
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Then the recursion turns into

xpk(ξ) =
√

μ(k + γ )(k + 1)

n(1 − μ)
pk+1(ξ) + k(1 + μ) + μγ

1 − μ
pk(ξ)

+
√

μ(γ + k − 1)k

n(1 − μ)
pk−1(ξ).

Now it easily follows that

a
(n)
n+k →

√
μ

1 − μ
, b

(n)
n+k → 1 + μ

1 − μ
.

Also λj so we have τj = tj . This shows that the conditions of Theorem 3.1
hold. �

EXAMPLE 3.6 (Non-colliding Charlier). In the next example, we consider a
birth and death process on {0,1, . . .} with birth μ and death rate n, where n is the
size of the population. This process has the transition function

Pt(x, y)dμ(y) =
∞∑

j=0

e−j t μ
j

j ! Cj(x;μ)Cj (y;μ)e−μ μk

k!
for x, y ∈ {0,1,2,3, . . .}, where Cj(x;μ) is the Charlier polynomial of degree j .

To apply Theorem 3.1 for the corresponding n-particles process, we recall that
the recursion for the Charlier reads

xCk(x;μ) = −μCk+1(x;μ) + (k + μ)Ck(x;μ) − kCk−1(x;μ).

As before, we renormalize

pk(x) = (−1)k

√
μk

k! Ck(x;μ),

which gives the new recurrence

xpk(x) = √
μ(k + 1)pk(x) + (k + μ)pk(x) + √

μkpk−1(x).

Now note that this case is special, since the ak’s and bk’s grow with different rates.
This is a well-known feature of the Charlier polynomials. It means that there are
two ways to get an interesting limit, which we will treat separately.

In the first one, we shift and rescale the space variable according to ξ =
(x − n)/

√
n, and set p̂k(ξ) = n1/4pk(n + √

nx). These polynomials satisfy the
recurrence

p̂k(ξ) =
√

μ(k + 1)

n
p̂k+1(ξ) + k − n + μ√

n
pk(ξ) +

√
μk

n
pk−1(ξ).

Hence we see that

a
(n)
n+k → √

μ and b
(n)
n+k → 0.
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Combining this with the fact λj = j , we see that in this way the conditions of
Theorem 3.1 are met.

In the second way, we allow μ to vary with n and write μ = μ̃n. Then we con-
sider the new variable ξ = x/n, and set p̃k(ξ) = √

np̃k(xn). Now the recurrence
becomes

p̃k(ξ) =
√

μk(k + 1)

n
p̃k+1(ξ) + k(1 + μ)

n
p̃k(ξ) +

√
μk

n
p̃k−1(ξ).

In this case, we have

a
(n)
n+k → √

μ and b
(n)
n+k → 1 + μ.

Combining this again with the fact λj = j , we see that also in this way the condi-
tions of Theorem 3.1 are met.

Finally, we want to mention that this process is different from what is usually
referred to as the Charlier process [36, 41], which is non-colliding Poisson random
walks starting from densely packed initial points. In that case, we only allow for
up jumps. The Charlier Ensemble appears there as the fixed time distribution, but
not as the invariant measure. �

EXAMPLE 3.7 (Non-colliding Krawtchouck). In the final example, we con-
sider a birth and death process on {0,1, . . . ,M} with birth rate p(M − n) and
death rate n(1 − p), where n is the size of the population, p ∈ (0,1) and M ∈ N.
We then have the transition function

(3.2)

Pt(x, y)dμ(y)

=
M∑

j=0

e−j t

(
M

j

)
pj (1 − p)M−j

× Kj(x;M,p)Kj(y;M,p)

(
M

k

)
pk1(−p)M−k

on {0,1,2,3, . . . ,M}, where Kj is the Krawtchouk polynomial of degree j .
In order for the n-particles process to make sense, we need enough available

nodes for all the paths. That is, we need a M ≥ n. In fact, when taking the limit
n → ∞, we will assume that Mn also goes to infinity such that

Mn

n
→ γ > 1.

The Krawtchouk polynomial satisfy the recurrence

xKk(x;M,p) = p(M − k)Kk+1(x;M,p)

− (
p(M − k) + k(1 − p)

)
Kk(x;M,p)

+ k(1 − p)Kk−1(x;M,p).
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In this case, we define the rescaled and normalized polynomials

pk(x) = (−1)k
(
M

k

)1/2 (
p

1 − p

)k/2
(−1)kKk(x;M,p),

and for these polynomials we get the recursion

xpk(x) =
√

p(1 − p)

√
(k + 1)(M − k)

n
pk+1(x) + pM − 2pk + k

n
pk(x)

+
√

p(1 − p)

√
k(M − k + 1)

n
pk−1(x).

Hence in this model we have, with M/n → γ ,

a
(n)
n+k,n →

√
p(1 − p)γ , b

(n)
n+k,n → pγ − 2p + 1,

and, again λj = j , so that the conditions of Theorem 3.1 are satisfied.
The invariant measure for the n-particle process is the Krawtchouk Ensemble.

This ensemble also appears in random domino tilings of an Aztec diamond [29].
However, the multi-time processes here is different from the extended Krawtchouk
Ensemble in [29]. It is also different form the process introduced in [36] for which
the single time distribution is a Krwatchouk ensembles. �

3.2. Nonstationary example. We now discuss a nonstationary example. An in-
teresting feature of this example, is that the biorthogonal families do no longer
consists of classical special functions. As a consequence, the correlation kernel
cannot be expressed in terms of a double integral formula and its asymptotics is a
challenging problem. In some special cases, this has been carried out by the author
[21] using a 4 × 4 Riemann–Hilbert problem. Hence, proving Central Limit The-
orems from the asymptotics of the correlation kernel (as in, e.g., [8, 19, 37]) seems
difficult. However, the benefit of our method is that in these cases the conditions
on the recurrence coefficients can still be checked with relative ease.

Consider the same construction ideas as the non-colliding Ornstein–Uhlenbeck
process of Example 3.2, but instead of having the invariant measure as initial con-
dition, we take the initial points random from a Unitary Ensemble. That is, we take
xj random from the probability measure on Rn proportional to∏

1≤i<j≤n

(xi − xj )
2e−n

∑n
j=1 V (xj ) dx1 · · ·dxn,

where V is a polynomial of even degree and positive leading coefficient (so that
the above measure is indeed of finite mass). See also Figure 4. Then if we start
the non-colliding Ornstein–Uhlenbeck process from these initial points and look
at the positions {xj,m}n,N

j=1,m=1 at times

0 = t1 < · · · < tN,
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FIG. 4. The non-colliding Ornstein–Uhlenbeck process started from arbitrary points at t = 0. In
the example of Section 3.2, we take those initial points randomly from a Unitary Ensemble.

then we find that the following joint probability for these locations is proportional
to

(3.3)

det
(
x

j−1
k,1

)n
j,k=1

N∏
m=1

det
(
Tm(xj,m, xk,m+1)

)n
j,k=1

× det
(
x

j−1
k,m

)n
j,k=1

N∏
m=1

n∏
j=1

dμm(xj,m),

where, with �m = e−(t
(n)
m+1−t

(n)
m ),

Tm(x, y) = (2π)−1/2 exp
(−n�2

m(x2 + y2) + n�mxy

1 − �2
m

)

=
∞∑

j=0

e−j tHj (
√

nx)Hj (
√

ny)

and

dμm(x) =
{

e−nV (x) dx, m = 1,

e−nx2/2 dx, m = 2, . . . ,N.

(Note that we have rescaled space immediately.)
The functions in the determinant are not in the right form, as Assumption 2.1 is

not yet satisfied. Hence the first thing to do is to rewrite the probability density. We
start by defining pj,n to be the normalized orthogonal polynomial (with positive
leading coefficient) with respect to e−nV (x) dx. Now define

φj,1(x) = pj−1,n(x),

and φj,m = Tm−1 · · ·T1φj,1, for m = 2, . . . ,N . To define the ψj,N ’s we first expand
pj−1,n in terms of Hermite functions

pj,n(x) =
j∑

k=0

cj,kHk(x),
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where Hn(x) are the normalized Hermite polynomials. We then define

ψj,N(x) =
j−1∑
k=0

cj,kektN Hk(x).

It is then straightforward to check that

ψj,m(x) = T ∗
m · · ·T ∗

N−1ψj,N(x) =
j−1∑
k=0

cj,kektmHk(x).

Hence, we also have φj,1(x) = ψj,1(x) = pj−1,n(x) and the bi-orthogonality con-
dition is satisfied. In the following lemma, we show that these indeed are bi-
orthogonal families and that they satisfy a recursion.

LEMMA 3.8. The φj,m satisfy a recurrence relation

x

⎛⎜⎝φ1,m(x)

φ2,m(x)
...

⎞⎟⎠ = Jm

⎛⎜⎝φ1,m(x)

φ2,m(x)
...

⎞⎟⎠
with

(J)j,k =
{

e−tm(J )j,k, if j > k,

e−tm(J )j,k + 2
(
V ′(J )

)
j,k sinh(tm), if j ≤ k,

where J is the Jacobi matrix associated to the polynomials pj .

REMARK 3.1. Note that J is a banded matrix and V is assumed to be a poly-
nomial. Hence the matrix V ′(J ) that one obtains after inserting J into V ′ is well-
defined and banded.

PROOF. For m = 1, the statement is trivial since then ψj,1 = φj,1 = pj−1,n

and the recurrence matrix is J by definition, which is also the result when we
substitute tm = 0 in the statement.

So it remains to deal with the case m > 1. We first claim that

(3.4) p′
j−1,n(x) = n

∑
k<j

(
V ′(J )

)
k,jpk−1,n(x).

To see this, we note that p′
j−1,n(x) is a polynomial of degree j − 2, and hence it

can be expanded in terms of the polynomials pk−1,n for k = 0, . . . , j − 1. That the
coefficients in the expansion are indeed as stated follows from an integration by
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parts

(3.5)

∫
pk−1,n(x)p′

j−1,n(x)e−nV (x) dx

= n

∫
V (x)pk−1,n(x)pj−1,n(x)e−nV (x) dx

−
∫

p′
k−1,n(x)pj−1,n(x)e−nV (x) dx

= (
V ′(J )

)
k,j ,

where the second integral in the middle part vanishes by orthogonality and the fact
that k < j .

Then, for m > 1, we have

φj,m(x) = 1√
2π(1 − e−2tm)

∫
pj−1,n(y)e

−n(V (y)+ e−2tm (x2+y2)−2e−tmxy

2(1−e−2tm )
)
dy.

Hence, by integration by parts,

(3.6)

xφj,m(x) = −2 sinh tm

n
e
− ne−2tmx2

2(1−e−2tm )

×
∫

pj−1,n(y)e
−nV (y)− ne−tmy2

2(1−e−2tm )
∂

∂y
e− nxy

2 sinh tm dy

= 2 sinh tm

∫ (
−p′

j−1,n(y)/n

+ pj−1,n(y)V ′(y) + pj−1,n(y)
e−tmy

2 sinh tm

)

× e
−n(V (y)+ e−2tm (x2+y2)−2e−tmxy

2(1−e−2tm )
)
dy.

The statement now follows by a rewriting of the latter using the recurrence matrix
J and using (3.4). �

From Lemma 3.8, it in particular follows that if the recurrence coefficients
for the orthogonal polynomials have the required asymptotic behavior, then also
the recurrence coefficients for φj,m have the required behavior and Theorems 2.3
and 2.7 apply.

PROPOSITION 3.9. If the recurrence coefficients ak,n and bk,n for pk,n satisfy

an+k,n → a, bn+k,n → b,

as n → ∞, then Theorem 2.2 applies where

a(m)(z) = 2 sinh(tm)
(
V ′(az + b + a/z)

)
+ + e−tm(az + b + a/z),
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where (V ′(az+b+a/z))+ is the part of the Laurent polynomial V ′(az+b+a/z)

containing the nonnegative powers.
Moreover, Theorem 2.6 also applies with∑

j

aj (t)z
j = 2 sinh(t)

(
V ′(az + b + a/z)

)
+ + e−t (az + b + a/z).

The conditions of the latter proposition are met, when the polynomial V is such
that the zeros of pn accumulate on a single interval [17]. This happens, for exam-
ple, when V is convex.

Finally, we note that the above model is a special case of the Hermitian multi-
matrix model. In the present setting, the limiting distribution of points at a given
time t can also be computed using the recurrence coefficients, as was done in [20]
for the special case where V is an even quartic. Moreover, in [20] it was shown
that this limiting distribution is a particular component of a vector of measures that
uniquely minimizes an equilibrium problem.

3.3. Brownian bridges with starting and ending at several points. Next, we
briefly comment on a generalization to the model of Brownian bridges from the
Introduction. Instead of conditioning that all paths start and end at the same point,
we allow for several starting points, say x1, . . . , xr , and several ending points,
y1, . . . , ys keeping r, s ∈ N fixed as n → ∞. This more general model also fits
within the framework of the present paper. Indeed, also in this case we also get
polynomials that satisfy orthogonality relations, but these will now be multiple or-
thogonal of mixed type [16]. In the special case that s = 1 or r = 1, we obtain
multiple Hermite polynomials [3]. Also for such polynomials recurrence relations
exist and one may try to analyze the global fluctuations for such systems using
the techniques of the present paper. However, preliminary calculations by the au-
thors indicate that the recurrence matrices do no longer have Laurent structure at
infinity, but we encounter block Laurent matrices instead. In the case of r = 1
and s = 1, the author has verified in preliminary calculations that the ideas in
the present paper can be extended to prove Gaussian Free Field correlations in
that case. This extension requires some nontrivial effort and will therefore be pre-
sented in a forthcoming manuscript. The general case of arbitrary r and s also falls
within the framework but it seems that more technicalities need to be overcome.
The author intends to return to this question in future work.

3.4. Lozenge tilings of a hexagon. The last example that we will treat is that of
lozenge tilings of an abc-hexagon. See Figures 5 and 6. This well-studied model
can also be viewed as a model of discrete non-intersecting paths. It was proved
in [43] (in a more general context) that the height function associated to the paths
indeed has Gaussian Free Field fluctuations. We will show here that it also follows
from our general results. We first give the two equivalent descriptions of the model
in terms of tilings and in terms of non-intersecting paths, starting with the latter.
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FIG. 5. A lozenge tiling of an abc-hexagon (l) and the equivalent representation in terms of non-in-
tersecting paths (r).

Fix a, b, c ∈ N and without loss of generality we assume that b ≤ c. Then
we consider a collection �γ of c zig-zag paths γj : {0,1, . . . , b + c} → Z for
j = 1, . . . , a such that

1. They start γ (0) = 2j − 1 and end at γ (b + c) = c − b + 2j − 1 for j =
1, . . . , a.

2. At each step by one to the right, the path goes up or down by one, that is,
γj (k + 1) = γj (k) ± 1.

FIG. 6. A sampling of a random tiling of a large regular hexagon (l) and the alternative representa-
tion in terms of non-intersecting paths (r). The disordered regime, circle inside the hexagon, and the
frozen corners are clearly visible. (These figures are produced using a code that was kindly provided
to the author by Leonid Petrov.)
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3. The paths never cross γj (k) < γj+1(k).

Note that due to the conditions on the starting and endpoints, each path will consist
of b down steps and c up steps. We then take the uniform measure on all such �γ .
This is equivalent to say that we consider a random walkers with given starting
and ending points conditioned never to intersect.

A different representation is that of lozenge tiling of the hexagon. Indeed, if we
take an abc-hexagon with corners (0,0), (0,2a), (c,2a + c), (b + c,2a + c − b),
(b + c, c − b) and (b,−b) and tile this hexagon with lozenges of

type I , type II and type III .
To make the connection with the above path model, we associate to each tiling of
the hexagon a collection of paths by drawing a down step on a lozenge of type
I and an up step on a type III lozenge going through the centers of the lozenges.
That is,

type I , type II and type III .
It is then easy to see that this indeed defines a collection of zig-zag paths that do not
intersect and start and end from the given points. Moreover, by taking the uniform
measure on all possible tiling, we obtain the uniform measure on all zig-zag paths.

In [25, 30], it was proved that the locations of the paths {(k, γj (k))}b+c−1,a
k=1,j=1 form

a determinantal point process with a kernel constructed out of the Hahn polynomi-
als. We recall that the Hahn polynomials q

(α,β)
k,M are the orthonormal polynomials

with respect to the weight

w
(α,β)
M (x) = 1

x!(x + α)!(M + β − x)!(M − x)! ,

on {0,1, . . . ,M}, that is,

M∑
x=0

q
(α,β)
k,M (x)q

(α,β)
�,M (x)w

(α,β)
N = δk�.

They have the explicit representation

q
(α,β)
k,M = (−M − β)k(−M)k

k!d(α,β)
k,M

3F2

(−k, k − 2M − α − β − 1,−x

−M − β,−M
;1

)
,

where 3F2 is the hypergeometric function and

d
(α,β)
k,M

2 = (α + β + M + 1 − k)M+1

(α + β + 2kM + 1 − 2k)k!(β + M − k)!(α + M − k)!(M − k)! ,

and (α)M = α(α + 1) · · · (α + M − 1) denotes the usual Pochhammer symbol.
From [33], Section 9.5, it follows that the normalized Hahn polynomials have the
recurrence

(3.7) xq
(α,β)
k,M (x) = ak+1q

(α,β)
k+1,M(x) + bkq

(α,β)
k,M (x) + akq

(α,β)
k−1,M(x),
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where

(3.8) ak =
√

(M − k + 1)k(M − k + 1 + α)(M − k + 1 + β)(M − k + 1 + α + β)(2M − k + 2 + α + β)

(1 + 2M − 2k + α + β)(2 + 2M − 2k + α + β)2(3 + 2M − 2k + α + β)
,

and

(3.9)

bk = (2M + α + β + k − 1)(M + β − k)(M − k)

(2M − 2k + α + β)(2M − 2k + α + β + 1)

+ k(2M + α + β + 1 − k)(M − k + α + 1)

(2M − 2k + α + β + 2)(2M − 2k + α + β + 1)
.

Now we come back to the tiling process. We first need some notation in which
we follow [30]. Set αr = |c − r|, βr = |b − r|, Lr = b − br and

Mr =

⎧⎪⎪⎨⎪⎪⎩
r + a − 1, 0 ≤ r ≤ b,

b + a − 1, b ≤ r ≤ c,

a + b + c − 1 − r, c ≤ r ≤ b + c.

Then, as shown in [25, 30], the locations of the paths {(m,γj (m)} (or, equiva-
lently, the centers of the tiles of type II) form a determinantal point process on
{0,1, . . . ,B + C} ×Z with kernel

(3.10)

Ka(r,Lr + 2x + 1, s,Ls + 2y + 1)

=

⎧⎪⎪⎨⎪⎪⎩
a−1∑
k=0

√
(a + s − 1 − k)!(a + b + c − r − 1 − k)!
(a + r − 1 − k)!(a + b + c − s − 1 − k)!q

(αr ,βr )
k,Mr

(x)q
(αs ,βs )
k,Ms

(y), r ≤ s,

−
∞∑

k=a

√
(a + s − 1 − k)!(a + b + c − r − 1 − k)!
(a + r − 1 − k)!(a + b + c − s − 1 − k)!q

(αr ,βr )
k,Mr

(x)q
(αs ,βs )
k,Ms

(y), r > s.

The question of interest is what happens with the system as the hexagon becomes
large. That is, we introduce a big parameter n and scale a, b and c such that

a/n → 1, b/n → B > 0, c/n → C > 0.

Then we take ρm ∈ (0,B + C) for m = 1, . . . ,N and set rr = [nρr ] where [·]
denotes the integer part. We also rescale the process along the vertical axis by n

(hence we replace x by [nx]).
We then set

pj,m(x) = q
αrm,βrm

j,Mrm

([nx])
and

cj,m =
√

(a + b + c − rm − 1 − j)!
(a + rm − 1 − j)! ,

and consider the probability measure (2.1) with φj,m = cj,mpj−1,m and ψj,m =
1/cj,mpj−1,m as in (2.10) [with Tm(x, y) = ∑∞

j=0 cj,m+1/cj,mpj,m(x)pj,m+1(y)].
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Denote the recurrence coefficients for pj,m by a
(n)
j,m and b

(n)
j,m. Then, from (3.8),

(3.9) and the choice of the parameters is not hard to show that there exists functions
F1 and F2 as n → ∞,

a
(n)
n+k,m → F1(ρm;B,C), b

(n)
n+k,m → F2(ρm;B,C),

for any k ∈ N. In other words, condition (2.18) is satisfied. Moreover, we also we
easily verify (2.19) and find

lim
n→∞

cl,m

ck,m

= eτm(k−l) with τm = 1

2
ln

1 + B + C − ρm

1 + ρm

.

Hence we see that Theorem 2.4 applies. Also note that after rescaling with n the
hexagon will always be contained in a fixed compact set for every n, hence also
Corollary 2.5 applies.

Similarly, in the same way one can verify that Corollary 2.8, Theorem 2.9 and
Theorem 2.10 apply. We leave the precise statement to the reader.

4. From linear statistics to the recurrence matrices. In this section, we
show how the moments and cumulants of the linear statistics are connected to
the matrices Jm.

The determinantal structure of the process means that we can express the mo-
ments of linear statistics in terms of the kernel Kn,N (2.8). Indeed, it is standard
that from (2.7) and some computations one can show

EXn(f ) =
N∑

m=1

∫
f (m,x)Kn,N(m,x,m,x)dμm(x),

implying that Kn,N(m,x,m,x) is the mean density. Moreover,

(4.1)

VarXn(f ) =
N∑

m=1

∫
f (m,x)2Kn,N(m,x,m,x)dμm(x)

−
N∑

m1,m2=1

∫∫
f (m1, x1)f (m2, x2)Kn,N(x1,m1, x2,m2)

× Kn,N(x2,m2, x1,m1)dμm1(x1)dμm2(x2)

and similar expressions hold for the higher terms.
Although we use these expressions in the proofs of Theorem 2.5 and 2.9, the

general strategy in this paper is based on a different approach. The key identity is
the following lemma, connecting the moments to the recurrence matrices Jm.

LEMMA 4.1. Suppose that f (m,x) is a polynomial in x and Jm is bounded
for m = 1, . . . ,N , then

(4.2) E
[
eλXn(f )] = det

((
eλf (1,J1)eλf (2,J2) · · · eλf (N,JN))

i,j

)n
i,j=1.
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In case one of the Jm is an unbounded matrix, the equality is understood as an
equality between formal power series by expanding each exponential. More pre-
cisely, with RM(x) = ∑M

k=0 xk/k! consider the expansion

(4.3)

det
((

RM

(
λf (1,J1)

)
RM

(
λf (2,J2)

) · · ·RM

(
λf (N,JN)

))
i,j

)n
i,j=1

=
∞∑

k=0

Dk,M(f )
λk

k! ,

then we have E[(Xn(f ))k] = Dk,M(f ), for k ≤ M .

REMARK 4.1. Before we come to the proof, we note that since the Jm’s are
banded matrices and each fm(m,x) is a polynomial in x, we have that f (m,Jm)

and the product of the matrices Rm(f (Jm,m)) are well-defined so that the deter-
minant at the left-hand side of (4.3) makes sense.

PROOF. It is enough to prove (4.3). In case all Jm are bounded, we then obtain
(4.2) by taking the limit M → ∞ in a straightforward way.

We first note that the first M + 1 terms of the (formal) expansions

E
[
eλXn(f )] = E

[
n,N∏

j,m=1

eλf (m,xm,j )

]

and

E

[
n,N∏

j,m=1

RM

(
λf (m,xm,j )

)]

are equal. To prove the lemma, it thus suffices to prove that the last expectation
equals the left-hand side of (4.3). To this end, we note

E

[
n,N∏

j,m=1

RM

(
λf (m,xm,j )

)]

= 1

(n!)N
∫

· · ·
∫ (

n,N∏
j,m=1

RM

(
λf (m,xm,j )

))
det

(
φj,1(x1,k)

)n
j,k=1

×
N−1∏
m=1

det
(
Tm(xm,i, xm+1,j )

)n
i,j=1

× det
(
ψj,N(xN,k)

)n
j,k=1

N∏
m=1

n∏
j=1

dμm(xm,j )

= 1

(n!)N
∫

· · ·
∫

det
(
φj,1(x1,k)

)n
j,k=1
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×
N−1∏
m=1

det
(
RM

(
λf (m,xm,i)

)
Tm(xm,i, xm+1,j )

)n
i,j=1

× det
(
RM

(
λf (N,xN,k)

)
ψj,N(xN,k)

)n
j,k=1

N∏
m=1

n∏
j=1

dμm(xm,j ).

For convenience, we set some notation Am = RM(λf (m,Jm)). Now the state-
ment is a special case (where sj = j ) of the more general claim

(4.4)

1

(n!)N
∫

· · ·
∫

det
(
φsj ,1(x1,k)

)n
j,k=1

×
N−1∏
m=1

det
(
RM

(
λf (m,xm,i)

)
Tm(xm,i, xm+1,j )

)n
i,j=1

× det
(
RM

(
λf (N,xN,k)

)
ψj,N(xN,k)

)n
j,k=1

N∏
m=1

n∏
j=1

dμm(xm,j )

= det
(
(A1 · · ·AN)si,sj

)n
i,j=1,

for any s1 < · · · < sn.
The proof of (4.4) goes by induction to N .
The case of N = 1 is a direct consequence of Andreiéf’s identity in (2.3)

1

n!
∫

· · ·
∫

det
(
φsj ,1(x1,k)

)n
j,k=1

× det
(
RM

(
λf (1, x1,k)

)
ψsj ,1(x1,k)

)n
j,k=1

n∏
j=1

dμ1(x1,j )

= det
(∫

RM

(
λf (1, x)

)
φsj ,1(x)ψsi,1(x)dμ1(x)

)n

i,j=1

= det
(
(A1)si ,sj

)n
i,j=1.

For N > 1, we use Andreiéf’s identity to write

(4.5)

1

n!
∫

· · ·
∫

det
(
φsj ,1(x1,k)

)n
j,k=1

× det
(
RM

(
λf (x1,i ,1)

)
T1(x1,i , x2,j )

)n
i,j=1

n∏
j=1

dμ1(x1,j )

= det
(∫

T1(x, x2,i)RM

(
λf (x,1)

)
φsj ,N(x)dμ1(x)

)
.
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By using the recurrence and the fact that∫
T1(x, x2,i)φk,1(x)dμ1(x) = φk,2(x2,i )

we find that the right-hand side of (4.5) can be written as

det
(∑

k

Asj ,kφk,2(x2,i )

)n

i,j=1

= ∑
l1<l2<···<ln

det(Asj ,li )
n
i,j=1 det

(
φlj ,2(x2,i )

)n
i,j=1

where we used Cauchy–Binet in the last step. By inserting the latter with (4.5)
back into the left-hand side of (4.4) and using the induction hypothesis we find
that the left-hand side of (4.4) can be written as∑

l1<l2<···<ln

det
(
(A1)sk,lj

)n
j,k=1 det

(
(A2 . . .AN)lj ,si

)n
i,j=1

= det
(
(A1 . . .AN)si ,sk

)n
i,k=1,

where we used Cauchy–Binet in the last step again. This proves the claim in (4.4),
and hence the statement. �

This lemma also has a convenient consequence. Since all Jm are banded, each
entry (

RM

(
λf (1,J1)

)
RM

(
λf (2,J2)

) · · ·RM

(
λf (N,JN)

))
i,j

for i, j = 1, . . . , n only depends on some entries of the individual Jm’s. By writing
out the matrix product it is not hard to see that these entries do not depend on any
(Jm)rs for m = 1, . . . ,N and r, s > S for some sufficiently large S. Hence if we
define the cut-offs

(Jm,S)j,k =
{
(Jm)j,k, j, k ≤ S,

0, otherwise,

and expand

(4.6)

det
((

eλf (1,Jm,S)eλf (2,J2,S) · · · eλf (N,JN,S))
i,j

)n
i,j=1

=
∞∑

k=0

λk

k! D̃k,S(f ),

then for each k ∈ N we have E[(Xn(f ))k] = D̃k,S(f ) for sufficient large S (which
may depend on k). The benefit is that the matrix in the determinant consists of a
product of bounded operators and the series is convergent. Hence we do not have
to worry about formal series and this will be convenient for technical reasons.
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Instead of the moments, it will be more convenient to work with the cumulants
Ck(Xn(f )). These are special combinations of the linear statistic, determined by
the (formal) generating function

(4.7) logE
[
exp

(
λXn(f )

)] =
∞∑

k=1

λk

k! Ck

(
Xn(f )

)
.

Note that C1(Xn(f )) = EXn(f ) and C2(Xn(f )) = VarX(f ). The kth cumulant
can be expressed in terms of the first k moments and vice versa. Since the first
terms in the expansion on the right-hand side of (4.6) are the moments, we can
take the logarithm at both sides and immediately obtain the following lemma.

LEMMA 4.2. Let Ck,S(f ) be the coefficients in the series

log det
((

eλf (1,Jm,S)eλf (2,J2,S) · · · eλf (N,JN,S))
i,j

)n
i,j=1 =

∞∑
k=0

λk

k! Ck,S(f ),

then Ck(Xn(f )) = Ck,S(f ) for sufficiently large S.

Using this representation, we will give useful expressions for all the cumulants.
We will do this in the next section in a more general setup.

5. Expansions of Fredholm determinant. In this section, we will look at the
expansion given in Lemma 4.2, where we replace the f (m,Jm,S)’s in the determi-
nant by general banded and bounded operators Am.

5.1. Preliminaries. We start by recalling traces and determinants for trace
class operators. We refer to [24, 46] for more details.

For a compact operator A on a separable Hilbert space H, we define the singular
values

σ1(A) ≥ σ2(A) ≥ σ3(A) ≥ · · · > 0,

as the square roots of the eigenvalues of the self-adjoint compact operators A∗A.
The space of trace class operators is then defined as the Banach space

B1(H) =
{
A

∣∣∣ ∞∑
k=1

σk(A) < ∞
}
,

equipped with the trace norm

‖A‖1 =
∞∑

k=1

σk(A).

The space of Hilbert–Schmidt operators is then defined as the Hilbert space

B2(H) =
{
A

∣∣∣ ∞∑
k=1

σk(A)2 < ∞
}
,
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equipped with the Hilbert–Schmidt norm

‖A‖2 =
( ∞∑

k=1

σk(A)2

)1/2

.

We also denote the operator norm by ‖A‖∞ and the space of bounded operators
by B∞(H).

The following identities are standard. For any A ∈ B∞(H) and B ∈ B1(H), we
have

‖AB‖1, ‖BA‖1 ≤ ‖A‖∞‖B‖1.

Similarly, for any A ∈ B∞(H) and B ∈ B2(H) we have

‖AB‖2, ‖BA‖2 ≤ ‖A‖∞‖B‖2.

For any A,B ∈ B2(H), we have

‖AB‖1 ≤ ‖A‖2‖B‖2.

The trace class operators B1(H) are precisely the operators for which we can define
the trace, denote by TrA, by naturally extending the trace for finite rank operators.
We note that

|TrA| = ‖A‖1.

For any trace class operator A ∈ B1(H), we can also define the operator determi-
nant det(I + A) by natural extension from the finite rank operators. Here, we note
that ∣∣det(I + A) − det(I + B)

∣∣
≤ ‖A − B‖1 exp

(‖A‖1 + ‖B‖1 + 1
)
.

A particular relation between the trace and the determinant that we will use is the
following

(5.1) log det(I + A) =
∞∑

j=1

(−1)j+1

j
TrAj ,

valid for any A ∈ B1(H) for which ‖A‖∞ < 1 (ensuring the convergence of the
right-hand side).

5.2. A cumulant-type expansion. Let A1, . . . ,AN be bounded operator on
�2(N) [in the coming analysis we will identify bounded operators on �2(N) with
their semi-infinite matrix representations with respect to the canonical basis]. We
will also use the notation Pn for the projection operators on �2(N) defined by

Pn : (x1, x2, . . .) �→ (x1, . . . , xn,0,0, . . .),
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and Qn = I − Pn. Then

(5.2) det
(
I + Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

)
,

is a well-defined and entire function of λ. By taking A = eλA1eλA2 · · · eλAN − I in
(5.1) for sufficiently small λ, we define C

(n)
k (A1, . . . ,AN) by

log det
(
I + Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

)
=

∞∑
k=1

λkC
(n)
k (A1, . . . ,AN),

which is valid for small λ. In Lemma 4.2 we have shown that the relation between
the cumulant Ck(Xn(f )) and the general coefficient C

(n)
k (A1, . . . ,AN) is given by

(5.3) Ck

(
Xn(f )

) = C
(n)
k

(
f (1,J1,S), . . . , f (N,JN,S)

)
,

for sufficiently large S. We will use this connection only in Section 6 when we
give the proofs of the main results. In this section, we focus on general proper-
ties of C

(n)
k (A1, . . . ,AN). To start with, an easy consequence of the above is the

following.

LEMMA 5.1. We have

(5.4)
C

(n)
k (A1, . . . ,AN)

= 1

2π i

∮
|z|=ρ

Tr log
(
I + Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

) dλ

λk+1 ,

where 0 < ρ < (2
∑N

j=1 ‖Aj‖∞)−1.

PROOF. The only remaining is the choice of ρ. To this end, we note that∥∥Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

∥∥∞

≤ |λ|
N∑

j=1

‖Aj‖∞ exp

(
|λ|

N∑
j=1

‖Aj‖∞
)
,

and that 1
2e

1
2 < 1. Hence the integrand at the right-hand side of (5.4) is well-defined

and analytic for |λ| < ρ. This proves the statement. �

By expanding the logarithm, we obtain another useful expression.
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LEMMA 5.2. We have

(5.5)

C
(n)
k (A1, . . . ,AN)

=
k∑

j=1

(−1)j+1

j

∑
�1+···+�j=k

�i≥1

∑
(rs,v)∈R�1,...,�j

Tr
∏j

s=1(PnA
rs,1
1 · · ·Ars,N

N Pn)

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N ! ,

where

R�1,...,�j
=

{
(rs,v)

j,N
s=1,v=1 | rs,v ∈ {0,1,2, . . .},

N∑
v=1

rs,v = �s

}
.

PROOF. We note the following expansion, which is valid for any bounded
operators A1, . . . ,AN and sufficiently small λ,

log
(
1 + Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

)
=

∞∑
j=1

(−1)j+1

j
Tr

(
Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

)j

=
∞∑

j=1

(−1)j+1

j

( ∞∑
r1,...,rN=0

r1+···+rN≥1

λr1+···+rN TrPnA
r1
1 · · ·ArN

N Pn

)j

=
∞∑

j=1

(−1)j+1

j

( ∞∑
�=1

λ�
∑

r1,...,rN=�

TrPnA
r1
1 · · ·ArN

N Pn

r1! · · · rN !
)j

=
∞∑

j=1

(−1)j+1

j

∞∑
�1,...,�j=1

λ�1+···+�j

× ∑
(rs,v)∈R�1,...,�j

Tr
∏j

s=1(PnA
rs,1
1 · · ·Ars,N

n Pn)

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N !

=
∞∑

j=1

(−1)j+1

j

∞∑
k=j

λk

× ∑
�1+···+�j=k

∑
(rs,v)∈R�1,...,�j

Tr
∏j

s=1(PnA
rs,1
1 · · ·Ars,N

n Pn)

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N !
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=
∞∑

k=1

λk
k∑

j=1

(−1)j+1

j

∑
�1+···+�j=k

∑
(rs,v)∈R�1,...,�j

Tr
∏j

s=1(PnA
rs,1
1 · · ·Ars,N

n Pn)

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N ! .

This proves the statement. �

In the proofs of the main theorems, it will be important to have the following
continuity result.

LEMMA 5.3. Let A1, . . . ,AN and B1, . . . ,BN be semi-infinite matrices, then∣∣C(n)
k (A1, . . . ,AN) − C

(n)
k (B1, . . . ,BN)

∣∣
≤ 2e

(2 − √
e)2

(
2 max

(
N∑

j=1

‖Aj‖∞,

N∑
j=1

‖Bj‖∞
))k−1 N∑

j=1

‖Aj − Bj‖1.

PROOF. We start by writing

(5.6)

C
(n)
k (A1, . . . ,AN)

− C
(n)
k (B1, . . . ,BN)

× 1

2π i

∮
|z|=ρ

Tr
(
log

(
I + Pn

(
eλA1eλA2 · · · eλAN − I

)
Pn

)
− log

(
I + Pn

(
eλB1eλB2 · · · eλBN − I

)
Pn

)) dλ

λk+1 .

We estimate the integrand using

(5.7)
∣∣Tr

(
log(I + A) − log(1 + B)

)∣∣ ≤ ‖A − B‖1

(1 − ‖A‖∞)(1 − ‖B‖∞)
.

If we take ρ = (2 max(
∑N

j=1 ‖Aj‖∞,
∑N

j=1 ‖Bj‖∞))−1, then

∥∥(
eλA1eλA2 · · · eλAN − I

)∥∥∞ ≤
√

e

2
,(5.8)

∥∥(
eλB1eλB2 · · · eλBN − I

)∥∥∞ ≤
√

e

2
(5.9)
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for λ = ρ. Moreover,

(5.10)

∥∥(
eλA1eλA2 · · · eλAN − I

) − (
eλB1eλB2 · · · eλBN − I

)∥∥
1

=
∥∥∥∥∥

N∑
j=1

eλA1 · · · eλAj−1
(
eλAj − eλBj

)
eλBj+1 · · · eλBN

∥∥∥∥∥
1

≤
N∑

j=1

∥∥eλA1
∥∥∞

· · ·∥∥eλAj−1
∥∥∞

∥∥eλAj − eλBj
∥∥

1

∥∥eλBj+1
∥∥∞ · · ·∥∥eλBN

∥∥∞

≤ |λ|
N∑

j=1

‖Aj − Bj‖1 exp |λ|
(

N∑
j=1

(‖Aj‖∞ + ‖Bj‖∞
))

≤ e
∑N

j=1 ‖Aj − Bj‖1

2 max(
∑N

j=1 ‖Aj‖∞,
∑N

j=1 ‖Bj‖∞)
.

By substituting (5.8), (5.9) and (5.10) into (5.7) and using the result and the value
of ρ to estimate the integral (5.6), we obtain the statement. �

5.3. A comparison principle. In the next step, we will prove a comparison
principle for C

(n)
k (A1, . . . ,AN) in case the Aj are banded matrices.

We start with an easy lemma.

LEMMA 5.4. Let N ∈ N and A1, . . . ,AN banded matrices with (Aj )rs = 0
if |r − s| > aj . Then A1 · · ·AN is a banded matrix such that (A1 · · ·AN)rs = 0 if
|r − s| > a1 + · · · + aN and (A1 · · ·AN)rs only depends on entries (Aj )k� with
|k − r|, |� − s| ≤ a1 + · · · + aN for j = 1, . . . ,N .

PROOF. Write

(A1 · · ·AN)rs = ∑
v1,...,vN−1

(A1)rv1(A2)v1v2 · · · (AN)vT −1s .

By the assumption of the lemma, each term in the sum can only be nonzero if
|vj−1 − vj | ≤ aj for j = 1, . . . ,N (where we have set v0 = r and vN = s for no-
tational convenience). But then by the triangular inequality, we see that the only
possibility of obtain a nonzero value is in case |r − s| ≤ a1 + · · · + aN , which
proves the first part of the statement. Moreover, we only have contribution of en-
tries (Aj )vj−1vj

with

|r − vj−1| ≤ |r − v1| + · · · + |vj−2 − vj−1| ≤ a1 + · · · + aN

and

|r − vj | ≤ |r − vj | + · · · + |vN − vN−1| ≤ a1 + · · · + aN,
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which proves the second part of the lemma. �

The following is the core of the proof of the main results of this paper.

PROPOSITION 5.5. Let N ∈ N and A1, . . . ,AN be banded matrices such that
(Aj )rs = 0 if |r − s| > aj . Set a = supj=1,...,N aj . Then

C
(n)
k (A1, . . . ,AN) = C

(n)
k (Rn,a(k+1)A1Rn,a(k+1), . . . ,Rn,2a(k+1)ANRn,2a(k+1)),

where

Rn,� = Pn+� − Pn−�.

PROOF. Note that since each λPnAmPn is trace class [and for trace class op-
erators A, B we have det(eAeB) = det eA+B = eTr(A+B)], we can write

λTr(PnA1Pn + · · · + PnANPn)

= log det
(
eλPnA1PneλPnA2Pn · · · eλPnANPn

)
= log det

(
I + (

eλPnA1PneλPnA2Pn · · · eλPnANPn − I
))

.

By expanding the right-hand side in the same way as in the proof of Lemma 5.2
and comparing terms at both sides, we find the identity:

k∑
j=1

(−1)j

j

∑
�1+···+�j =k

�i≥1

∑
(rs,v)∈R�1,...,�j

Tr
∏j

s=1
∏N

u=1(PnAuPn)
rs,u

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N ! = 0,

for k ≥ 2. But then we can write

C
(n)
k (A1, . . . ,AN)

=
m∑

j=1

(−1)j+1

j

∑
�1+···+�j=k

�i≥1

∑
(rs,v)∈R�1,...,�j

Tr(
∏j

s=1(PnA
rs,1
1 · · ·Ars,N

N Pn) − ∏j
s=1

∏N
u=1(PnAuPn)

rs,u)

r1,1! · · · r1,N !r2,1! · · · r2,N ! · · · rj,1! · · · rj,N ! ,

for m ≥ 2. We prove the theorem by showing that the each summand only depends
on some entries of Aj that are all centered around the nn-entries.

Note that by a telescoping series, we have

A
r�,p
p − (PnApPn)

r�,p =
r�,p−1∑
q=0

A
r�,p−q−1
p (Ap − PnApPn)(PnApPn)

q
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and

Pn

(
N∏

u=1

A
r�,u
u

)
Pn −

N∏
u=1

(PnAuPn)
r�,u

=
N∑

p=1

Pn

(p−1∏
u=1

A
r�,u
u

)(
A

r�,p
p − (PnApPn)

r�,p
)( N∏

v=p+1

(PnAvPn)
r�,v

)
Pn

=
N∑

p=1

r�,p−1∑
q=0

Pn

(p−1∏
u=1

A
r�,u
u

)
A

r�,p−q−1
p (Ap − PnApPn)(PnApPn)

q

×
(

N∏
v=p+1

(PnAvPn)
r�,v

)
Pn.

We use the fact that P 2
n = Pn to rewrite this to

Pn

(
N∏

u=1

A
r�,u
u

)
Pn −

N∏
u=1

(PnAuPn)
r�,u

=
N∑

p=1

r�,p−1∑
q=0

Pn

(p−1∏
u=1

A
r�,u
u

)
A

r�,p−q−1
p (ApPn − PnApPn)(PnApPn)

q

×
(

N∏
v=p+1

(PnAvPn)
r�,v

)
.

Finally, by another telescoping series we find

j∏
s=1

(
PnA

rs,1
1 · · ·Ars,N

n Pn

) −
j∏

s=1

(
Pn(A1Pn)

rs,1 · · · (ANPn)
rs,N

)

=
j∑

�=1

N∑
p=1

r�,p−1∑
q=0

(
�−1∏
s=1

(
PnA

rs,1
1 · · ·Ars,N

N Pn

)
Pn

(p−1∏
u=1

A
r�,u
u

))

× (
A

r�,p−q−1
p (ApPn − PnApPn)(PnApPn)

q)
×

(
N∏

v=p+1

(PnAvPn)
r�,v

)( j∏
s=�+1

(
Pn(A1Pn)

rs,1 · · · (PnANPn)
rs,N

))

=
j∑

�=1

N∑
p=1

r�,p−1∑
q=0

TrQ1(ApPn − PnApPn)Q2
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with

Q1 =
(

�−1∏
s=1

(
PnA

rs,1
1 · · ·Ars,N

N Pn

)(p−1∏
u=1

A
r�,u
u

))
A

rk,p−q−1
p ,

Q2 = (PnApPn)
q

(
N∏

v=p+1

(PnAvPn)
rk,v

)

×
( j∏

s=�+1

(
Pn(A1Pn)

rs,1 · · · (PnANPn)
rs,N

))
.

Let us compute

(5.11)

TrQ1(ApPn − PnApPn)Q2

=
n∑

r0=1

∑
r1,r2

(Q1)r0r1(ApPn − PnApPn)r1r2(Q2)r2r0 .

The fact of the matter is that because of the band structure the matrix

ApPn − PnApPn

is of finite rank and the nonzero entries are concentrated around the nn-entry.
Hence we can restrict the sum to terms with |r1,2 − n| ≤ a. Now, since Q1 and
Q2 are a product of band matrices, they are themselves also band matrices. The
number of terms in the product is at most k (ignoring the Pn) and the bandwidth
of each term is at most a. Hence (Q1)r0r1 = 0 if |r0 − r1| > ak and (Q2)r2r0 = 0 if
|r2 − r0| > ak. By combining the latter observations, we see that the trace in (5.11)
only depends on (Q1)r0r1 and (Q1)r2r0 with |r0 −n| ≤ a(k + 1) and |r1,2 −n| ≤ a.
By Lemma 5.4, we then also see that these entries only depend on entries (Am)rs

with |r − n| ≤ a(k + 1) and |s − n| ≤ a(k + 1) for m = 1, . . . ,N . Concluding, we
have that C

(n)
m (A1, . . . ,AN) only depends on (Am)rs with |r − n| ≤ 2a(k + 1) and

|s − n| ≤ 2a(k + 1), for m = 1, . . . ,N . This proves the statement. �

COROLLARY 5.6. Let N ∈ N and A1, . . . ,AN,B1, . . . ,BN be banded ma-
trices such that (Aj )rs = 0 if |r − s| > aj and (Bj )rs = 0 if |r − s| > bj . Set



ON GLOBAL FLUCTUATIONS FOR NON-COLLIDING PROCESSES 1329

c = max{aj , bj | j = 1, . . . ,N}. Then

(5.12)

∣∣C(n)
k (A1, . . . ,AN) − C

(n)
k (B1, . . . ,BN)

∣∣
≤

(
max

(
N∑

j=1

‖Rn,2c(k+1)AjRn,2c(k+1)‖∞,

N∑
j=1

‖Rn,2c(k+1)BjRn,2c(k+1)‖∞
))k−1

× 2k+2c(k + 1)e

(2 − √
e)2

N∑
j=1

∥∥Rn,2c(k+1)(Aj − Bj)Rn,2c(k+1)

∥∥∞,

where Rn,2c(k+1) is as in Proposition 5.5.

PROOF. By combining Lemma 5.3 and Proposition 5.5, we obtain∣∣C(n)
k (A1, . . . ,AN) − C

(n)
k (B1, . . . ,BN)

∣∣
≤

(
2 max

(
N∑

j=1

‖Rn,2c(k+1)AjRn,2c(k+1)‖∞,

N∑
j=1

‖Rn,2c(k+1)BjRn,2c(k+1)‖∞
))k−1

2e

(2 − √
e)2

×
N∑

j=1

‖Rn,2c(k+1)AjRn,2c(k+1) − Rn,2c(k+1)BjRn,2c(k+1)‖1.

Now the statement follows by noting that the ranks of

Rn,2c(k+1)AjRn,2c(k+1) and Rn,2c(k+1)BjRn,2c(k+1)

are 4c(k + 1) + 1 and for any finite rank operator R with rank r(R) we have
‖R‖1 ≤ r(R)‖R‖∞. �

Note that the latter corollary is a pure universality result. Whatever the limits
are, they must be the same. It particularly implies that we only need to compute
a special case to conclude a general result. This is what we will do in the next
paragraph.

5.4. Special case of banded Toeplitz operators. We now compute the limiting
values of C

(n)
m (A1, . . . ,AN) in case the Aj are banded Toeplitz operators. We will

first recall various basic notions and properties we will need. For further details
and background on Toeplitz operators, we refer to the book [11].
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For a Laurent polynomial a(z) = ∑p
j=−q aj z

j , the Toeplitz operator T (a) is
defined by the semi-infinite matrix:(

T (a)
)
jk = aj−k, j, k = 1, . . . ,

viewed as an operator on �2(N). Of importance to us will also be the Hankel oper-
ator defined by the semi-infinite matrix:(

H(a)
)
jk = aj+k−1, j, k = 1, . . . .

Note that H(a) is of finite rank. The Toeplitz and Hankel operators are related by

T (ab) = T (a)T (b) + H(a)H(b̃),

with b̃(z) = b(1/z). An important consequence of this formula that we will fre-
quently use is

(5.13)
[
T (a), T (b)

] = H(b)H(ã) − H(a)H(b̃).

Finally, we mention that∥∥T (a)
∥∥∞ ≤ ‖a‖∞ and

∥∥H(a)
∥∥∞ ≤ ‖a‖∞,

where ‖a‖∞ denotes L∞-norm of a, which by continuity is simply the maximum
of a.

5.4.1. The case N fixed. The main purpose of this paragraph is to prove the
following proposition.

PROPOSITION 5.7. Let N ∈ N and a(m, z) = ∑
� a�(m)z� for m = 1, . . . ,N ,

be Laurent polynomials in z. For m = 1, . . . ,N , we denote the Toeplitz operator
with symbol a(m, z) by T (a(m)). Then

(5.14)

lim
n→∞ det

(
I + Pn

(
eT (a(1))eT (a(2)) · · · eT (a(N)) − I

)
Pn

)
e−n

∑N
m=1 a0(m)

= exp

(
N∑

m1=1

N∑
m2=m1+1

∞∑
�=1

�a�(m1)a−�(m2)

+ 1

2

N∑
m=1

∞∑
�=1

�a�(m)a−�(m)

)
.

Before we come to the proof, we first mention that the following immediate
corollary.

COROLLARY 5.8. Under the same assumptions and notation as in Proposi-
tion 5.7, we have

lim
n→∞C

(n)
k

(
T

(
a(1)

)
, . . . , T

(
a(N)

)) = 0,
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for k ≥ 3, and

lim
n→∞C

(n)
k

(
T

(
a(1)

)
, . . . , T

(
a(N)

))
=

N∑
m1=1

N∑
m2=m1+1

∞∑
�=1

�a�(m1)a−�(m2) + 1

2

N∑
m=1

∞∑
�=1

�a�(m)a−�(m)

for k = 2.

The proof of Proposition 5.7 that we will present here relies on the following
beautiful identity due to Ehrhardt.

LEMMA 5.9 ([23], Corollary 2.3). Let A1, . . . ,AN be bounded operators such
that

1. A1 + · · · + AN = 0,
2. [Ai,Aj ] is trace class for 1 ≤ i < j ≤ N .

Then eA1eA2 · · · eAN − I is of trace class and

det eA1eA2 · · · eAN = exp
1

2

∑
1≤i<j≤n

Tr[Ai,Aj ],

where the left-hand side is a Fredholm determinant.

REMARK 5.1. In the special case n = 3, the identity reads

det e−AeA+Be−B = exp
(
−1

2
Tr[A,B]

)
,

which is an identity that lies behind the Strong Szegő Limit Theorem. It has also
been used in [13] in the context of Central Limit Theorem for linear statistics for
bi-orthogonal ensembles.

We now come to the following.

PROOF OF PROPOSITION 5.7. We start by defining s(z) = ∑N
j=1 a(j, z) and

split s(z) = s+(z)+ s−(z) where s+ is the polynomial part of s(z), that is, s+(z) =∑
k≥0 skz

k . Then we note that T (s+) is lower triangular and T (s−) is strictly upper
triangular. Hence

PnT (s+)Pn = PnT (s+) and PnT (s−)Pn = T (s−)Pn.

By expanding the exponential and iterating the latter identities we therefore have
(where we recall that Qn = I − P − n)

ePnT (s+)Pn = PneT (s+)Pn + Qn = PneT (s+) + Qn,
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and

ePnT (s−)Pn = PneT (s−)Pn + Qn = eT (s−)Pn + Qn.

Moreover,

(5.15)

(
Qn + PneT (s+)Pn

)
(Qn + PnBPn)

(
Qn + PneT (s−)Pn

)
= Qn + PneT (s+)PnBPneT (s−)Pn

= Qn + PneT (s+)BeT (s−)Pn

= I + Pn

(
eT (s+)BeT (s−) − I

)
Pn,

for any operator B . We then write

e−n
∑N

j=1 a
(j)
0 = e−TrPnT (s+)Pn = det e−PnT (s+)Pn = det

(
Qn + Pne−T (s+)Pn

)
,

and

1 = e−TrPnT (s−)Pn = det e−PnT (s−)Pn = det
(
Qn + Pne−T (s−)Pn

)
.

By combining this with (5.15) and taking B = eT (a(1))eT (a(2)) · · · eT (a(N)), we see
that we can rewrite the left-hand side of (5.14) as

(5.16) det
(
I + Pn

(
e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−) − I

)
Pn

)
.

The idea is now to invoke Lemma 5.9. To this end, we first note that

T (s) +
N∑

j=1

T
(
a(j)) = 0,

and that for 1 ≤ j, k ≤ N we have that[
T

(
a+(j)

)
, T

(
a−(k)

)] = H
(
a+(j)

)
H

(
ã−(k)

)
,

is of finite rank, and hence of trace class, from which it follows that also the second
condition of the proposition is satisfied and that

e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−) − I

is of trace class. Hence

(5.17)
Pn

(
e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−) − I

)
Pn

→ e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−) − I,

in trace norm. By continuity of the Fredholm determinant, we can therefore take
the limit n → ∞ and obtain

(5.18)
lim

n→∞ det
(
I + Pn

(
e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))eT (s−) − I

)
Pn

)
= det eT (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−).
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Moreover, by the same proposition,

(5.19) det e−T (s+)eT (a(1))eT (a(2)) · · · eT (a(N))e−T (s−) = exp
1

2
TrS1,

with

S1 = −
N∑

j=1

[
T (s+), T

(
a(j))] + [

T (s+), T (s−)
]

+
N∑

j=1

∑
k>j

[
T

(
a(j)

)
, T

(
a(k)

)] −
N∑

j=1

[
T

(
a(j)

)
, T (s−)

]
.

By splitting a(m) = a+(m)+a−(m) and using the definition of s±, we can rewrite
this to

S1 =
N∑

j=1

∑
k>j

[
T

(
a(j)

)
, T

(
a(k)

)] −
N∑

j=1

N∑
k=1

[
T

(
a(j)

)
, T

(
a−(k)

)]

=
N∑

j=1

∑
k>j

[
T

(
a(j)

)
, T

(
a+(k)

)] −
N∑

j=1

∑
k≤j

[
T

(
a(j)

)
, T

(
a−(k)

)]

=
N∑

j=1

∑
k>j

H
(
a(k)

)
H

(
ã(j)

) +
N∑

j=1

∑
k≤j

H
(
a(j)

)
H

(
ã(k)

)
,

where in the last step we used (5.13). By taking the trace, we find

TrS1 =
N∑

j=1

N∑
k=j+1

∞∑
�=1

�a�(k)a−�(j) +
N∑

j=1

j∑
k=1

∞∑
�=1

�a�(j)a−�(k)

= 2
N∑

j=1

N∑
k=j+1

∞∑
�=1

�a�(k)a−�(j) +
N∑

j=1

∞∑
�=1

�a�(j)a−�(j).

Hence the statement follows after inserting the latter expression for TrS1 into
(5.19) and combining the result with (5.18). �

5.4.2. The case Nn → ∞. We now come to the case that N = Nn is depending
on n in such a way that Nn → ∞ as n → ∞. In this paragraph, we prove the
following proposition.

PROPOSITION 5.10. Let a(t, z) = ∑p
j=−q aj (t)z

j be a t dependent Laurent
polynomial for which the aj (t) are piecewise continuous on an interval [α,β]. Let
{Nn}n∈N be a sequence such that Nn → ∞ as n → ∞. Moreover, for each n let

α = t
(n)
1 < t

(n)
2 < · · · < t

(n)
Nn

< t
(n)
Nn+1 = β
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be a partitioning of [α,β] for which the mesh supj=0,...,Nn
(tj+1 − tj ) → 0 as

n → ∞. Then

det

(
I + Pn

(
Nn∏

m=1

e(tm+1−tm)T (a(t
(n)
m )) − I

)
Pn

)
e−∑Nn

m=1(tm+1−tm)a0(t
(n)
m )

= exp

( ∞∑
�=1

∫∫
α<t1<t2<β

�a�(t1)a−�(t2)dt1 dt2

)
.

COROLLARY 5.11. Under the same assumptions and notation as in Proposi-
tion 5.10, we have

lim
n→∞C

(n)
k

(
T (a(1)

)
, . . . , T

(
a(Nn)

)) = 0,

for k ≥ 3, and

lim
n→∞C

(n)
k

(
T (a(1)

)
, . . . , T

(
a(N)

)) = 2
∞∑

�=1

∫∫
α<t1<t2<β

�a�(t1)a−�(t2)dt1 dt2,

for k = 2.

The proof of Proposition 5.10 goes along the same lines as the proof of Propo-
sition 5.7. The main difficulty is that (5.17) (with N and the symbols depending on
n) is no longer immediate and requires a proof. Hence we cannot deduce (5.18).
We overcome this issue by proving the following.

LEMMA 5.12. Let {Nn}n be a sequence of integers. For each n ∈ N let A
(n)
j for

j = 1, . . . ,Nn be a family of Toeplitz operators satisfying the following conditions

• A
(n)
1 + · · · + A

(n)
Nn

= 0,

• the A
(n)
j ’s are banded with width c which is independent of j and n,

• ∑Nn

j=1 ‖A(n)
j ‖∞ < r , for some constant r independent of n.

Then

(5.20) lim
n→∞

∥∥Pn

(
eA

(n)
1 · · · eA

(n)
Nn − I

)
Pn − (

eA
(n)
1 · · · eA

(n)
Nn − I

)∥∥
1 = 0.

PROOF. Note that

Pn

(
eA

(n)
1 · · · eA

(n)
Nn − I

)
Pn − (

eA
(n)
1 · · · eA

(n)
Nn − I

)
= −Qn

(
eA

(n)
1 · · · eA

(n)
Nn − I

)
Pn − (

eA
(n)
1 · · · eA

(n)
Nn − I

)
Qn.
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Hence it suffices to prove that the two terms at the right-hand side separately con-
verge to zero in trace norm. Here, we will only show that for the second term, that
is, we show that

(5.21) lim
n→∞

∥∥(
eA

(n)
1 · · · eA

(n)
Nn − I

)
Qn

∥∥
1 → 0.

The arguments for first term are analogous and left to the reader.
We first claim that for Aj and r , c satisfying the stated conditions, we have

(5.22)
∥∥(

eA1 · · · eAN − I
)
Qn

∥∥
1 ≤ e2r

∑
2≤s<t≤N

∥∥[As,At ]
∥∥

1

∑
m2+m3≥n/(2c)

rm2+m3

m2!m3! ,

for any n ≥ 2c and N ∈ N.
The proof of this statement goes by induction to N .
We start with N = 3. In that case, we recall a result from [12], Lemma 4.2, that

if A1 + A2 + A3 = 0 then

eA1eA2eA3 − I =
∞∑

m1=0

∞∑
m2=1

∞∑
m3=0

m2−j−1∑
j=0

A
m1
1 A

j
2[A2,A3]Am2−j−1

2 A
m3
3

m1!m2!m3!(m1 + m2 + m3 + 1)

(this follows easily after differentiating etA1etA2etA3 with respect to t , expanding
the exponentials and then integrate again for t from 0 to 1). Since Aj are banded

with bandwidth c, we also have A
m2−j−1
2 A

m3
3 is banded with bandwidth c(m2 +

m3 − j − 1) but that means that

A
m2−j−1
2 A

m3
3 Qn = Qn−c(m2+m3−j−1)A

m2−j−1
2 A

m3
3 Qn

and thus

[A2,A3]Am2−j−1
2 A

m3
3 Qn = [A2,A3]Qn−c(m2+m3−j−1)A

m2−j−1
2 A

m3
3 Qn.

Since by assumption A2 and B3 are banded Toeplitz matrices of bandwith c, we
see by (5.13) that [A1,A2] is sum of product of two Hankel matrices with Laurent
polynomials as their symbols. All the nontrivial entries for these Hankel operators
are in the upper left c × c block, and hence

[A2,A3]Qm = 0

for m ≥ c. Hence, for n ≥ 2c, we can restrict the sum to terms with m2 + m3 ≥
n/2c and write∥∥(

e−AeA+Be−B − I
)
Qn

∥∥
1

=
∥∥∥∥∥

∞∑
m1=0

∑
m2≥1,m3≥0,

m2+m2≥n/2c

m2−j−1∑
j=0

(A1)
m1(A2)

j [A2,A3](A2)
m2−j−1(A3)

m3Qn

m1!m2!m3!(m1 + m2 + m3 + 1)

∥∥∥∥∥
1
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≤
∞∑

m1=0

∑
m2≥1,m3≥0,

m2+m2≥n/2c

m2−j−1∑
j=0

‖A1‖m1∞ ‖A2‖j∞‖[A1,A2]‖1‖A2‖m2−j−1∞ ‖A3‖m3∞
m1!m2!m3!(m1 + m2 + m3 + 1)

≤ er
∥∥[A2,A3]

∥∥
1

∑
m2+m3≥n/(2c)

rm2+m3

m2!m3! ,

and this proves the statement for N = 3 (with a slightly better bound).
Now suppose the statement is true for for N − 1 ≥ 2. We then first write

eA1eA2 · · · eAN − I

= eA1eA1eA2 · · · eAN−2eAN−1+AN
(
e−AN−1−AN eAN−1eAN − I

)
+ eA1eA2 · · · eAN−2eAN−1+AN − I.

The first term at the right-hand side can be estimate by as in the case N = 3 giving

(5.23)

∥∥eA1eA1eA2 · · · eAN−2eAN−1+AN
(
e−AN−1−AN eAN−1eAN − I

)∥∥
1

≤ e
∑N

j=1 ‖Aj‖∞∥∥e−AN−1−AN eAN−1eAN − I
∥∥

1

≤ e2r
∥∥[AN−1,AN ]∥∥1

∑
m2+m3≥n/(2c)

rm2+m3

m2!m3! .

Moreover, since

N−2∑
j=1

‖Aj‖∞ + ‖AN−1 + AN‖∞ <

N∑
j=1

‖Aj‖∞ ≤ r

and AN−1 +AN by linearity is also a Toeplitz operator with bandwidth c, we have
by the induction hypothesis that we find that

(5.24)

∥∥eA1eA2 · · · eAN−2eAN−1+AN − I
∥∥

≤ e2r

( ∑
1≤s<t≤Nn−2

∥∥[As,At ]
∥∥

1 +
N−2∑
s=1

∥∥[As,AN−1 + AN ]∥∥1

)

× ∑
m2+m3≥n/(2c)

rm2+m3

m2!m3!

≤ e2r

( ∑
1≤s<t≤Nn−1

∥∥[As,At ]
∥∥

1 +
N−2∑
s=1

∥∥[As,AN ]∥∥1

)

× ∑
m2+m3≥n/(2c)

rm2+m3

m2!m3! .
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Hence, by combining (5.23) and (5.24) we obtain the claim (5.22) for any N ∈ N.
To complete the proof, we recall again that by (5.13) we have that [As,At ] is

sum of product of two Hankel matrices with Laurent polynomials as their symbols.
All the nontrivial entries for these Hankel operators are in the upper left c × c

block, and hence they are of rank c. Since we also have ‖H(a)‖∞ ≤ ‖T (a)‖∞, we
therefore find ∥∥[As,At ]

∥∥
1 ≤ 2c2‖As‖∞‖At‖∞.

But then we have∑
2≤s<t≤N

∥∥[As,At ]
∥∥

1 ≤ 2c2
∑

2≤s<t≤N

‖As‖∞‖At‖∞ < r2c2.

After inserting this into (5.22), we obtain

∥∥(
eA1 · · · eAN − I

)
Qn

∥∥
1 ≤ 2r2c2e2r

∑
m2+m3≥n/(2c)

rm2+m3

m2!m3! ,

for any n ≥ 2c, N ∈ N and operators {Aj }Nj=1 satisfying the conditions of the

proposition (with respect to c and r). By setting N = Nn, Aj = A
(n)
j and taking

n → ∞, we obtain (5.21). This completes the proof. �

PROOF OF PROPOSITION 5.10. We argue exactly the same as in the proof of
Proposition 5.7 until (5.16) giving

(5.25) det
(
I + Pn

(
eA

(n)
0 eA

(n)
1 · · · eA

(n)
N+1 − I

)
Pn

)
,

where

A(n)
m = (

t
(n)
m+1 − t (n)

m

)
T

(
a
(
t (n)
m

))
, m = 1, . . . ,N

and

A
(n)
0 = −

N∑
m=1

(
t
(n)
m+1 − t (n)

m

)
T

(
a+

(
t (n)
m

))
and

A
(n)
N+1 = −

N∑
m=1

(
t
(n)
m+1 − t (n)

m

)
T

(
a−

(
t (n)
m

))
.

Hence it is clear that A(n)0 + · · · + A
(n)
N+1 = 0. Moreover, each A

(n)
m is a banded

Toeplitz matrix with bandwidth max(p, q). Finally, we check the condition on the
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norm of the matrices. To this end,

(5.26)

N∑
m=1

∥∥A(n)
m

∥∥∞ =
N∑

m=1

(
t
(n)
m+1 − t (n)

m

)∥∥T (
a
(
t (n)
m

))∥∥∞

=
N∑

m=1

(
t
(n)
m+1 − t (n)

m

)∥∥a(
t (n)
m

)∥∥∞

≤ (β − α) sup
t

∥∥a(t)
∥∥∞

≤ (β − α)

p∑
j=−q

sup
t

∣∣aj (t)
∣∣.

The latter is finite, since we assume that the aj are piecewise continuous. A similar

argument shows that also ‖A(n)
0 ‖∞,‖A(n)

N+1‖ ≤ ∑p
j=−q supt |aj (t)|. Hence the last

condition of Lemma 5.12 is also satisfied. It then follows from that lemma that

(5.27)
lim

n→∞ det
(
I + Pn

(
eA

(n)
0 eA

(n)
1 · · · eA

(n)
N+1 − I

)
Pn

)
= lim

n→∞ det
(
eA

(n)
0 eA

(n)
1 · · · eA

(n)
N+1

)
.

The right-hand side is the exponential of a trace that we can compute in the same
way as we have done in the proof of Proposition 5.7, which gives

(5.28)

lim
n→∞ det

(
I + Pn

(
eA

(n)
0 eA

(n)
1 · · · eA

(n)
N+1 − I

)
Pn

)
= lim

n→∞ exp

(
2

Nn∑
m1=1

(
t
(n)
m1+1 − t (n)

m1

)

×
Nn∑

m2=m1+1

(
t
(n)
m2+1 − t (n)

m2

) ∞∑
�=1

�a�

(
t (n)
m1

)
a−�

(
t (n)
m′′

)

+
Nn∑

m=1

(
t
(n)
m+1 − t (n)

m

)2
∞∑

�=1

�a�(m)a−�(m)

)
.

In the limit n → ∞, the double sum in the exponent converges to a Riemann–
Stieltjes integral and the single sum tends to zero. We thus proved the statement.

�

6. Proofs of the main results.

6.1. Proof of Theorem 2.2. To prove that the difference of the moments con-
verges to zero, it is sufficient to prove that for k ≥ 2 we have

Ck

(
Xn(f )

) − C̃k

(
Xn(f )

) → 0,
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as n → ∞, where the Ck’s are the cumulants defined in (4.7). By Lemmas 4.1 and
4.2, and this means that we need to prove that, for given k ≥ 2,
(6.1)

C
(n)
k

(
f (1,J1,S), . . . , f (N,JN,S)

) − C
(n)
k

(
f (1, J̃1,S), . . . , f (N, J̃N,S)

) → 0,

as n → ∞ for S sufficiently large. The key ingredient is Corollary 5.6.
Since x �→ f (m,x) is a polynomial and Jm and J̃m are banded, it is not hard to

see that (2.13) implies that, for given k, � ∈ Z,(
f (m,Jm)

)
n+k,n+� − (

f (m, J̃m)
)
n+k,n+� → 0,

as n → ∞.
Now, let k ∈ N. Note that for any S ∈ N we have that both f (m,Jm,S) and

f (m, J̃m,S) are banded matrices with a bandwidth ρ that is independent of n. With
Rn,2ρ(k+1) as in Corollary 5.6, we then have

(6.2)
∥∥Rn,2ρ(k+1)

(
f (m,Jm,S) − f (m, J̃m,S)

)
Rn,2ρ(k+1)

∥∥∞ → 0,

as n → ∞ for sufficiently large S. We also have by the first condition in Theo-
rem 2.2 that there exists an M > 0 such that

(6.3)
∥∥Rn,2ρ(k+1)f (m, J̃m,S)Rn,2ρ(k+1)

∥∥∞ < M,

for n ∈ N. Hence, by (6.2), we can also choose M to be large enough so that we
have

(6.4)
∥∥Rn,2ρ(k+1)f (m,Jm,S)Rn,2ρ(k+1)

∥∥∞ < M,

for n ∈ N. The statement now follows by (6.1) and inserting (6.2), (6.3) and (6.4)
for sufficiently large S into the conclusion of Corollary 5.6.

6.2. Proof of Theorem 2.3. To prove that Xn(f ) − EXn(f ) converges to a
normally distributed random variable, it is sufficient to prove that the kth cumulant
converges to zero if k ≥ 3 and to the stated value of the variance if k = 2. By (5.3),
this means that we need to show that, for given k > 2,

lim
n→∞C

(n)
k

(
f (1,J1,S), . . . , f (N,JN,S)

) = 0,

for some sufficiently large S, and that the variance C
(n)
k converges to the stated

value.
Let k ∈ N. The assumptions of the theorem imply that

lim
n→∞

(
(Jm)n+k,n+l − (

T
(
a(m)

))
n+k,n+l

) = 0,

with a(z) = ∑p
j=−q a

(m)
j zj where aj are the values in (2.15). Since x �→ f (x,m)

is a polynomial, it is not hard to see that also

lim
n→∞

((
f (m,Jm,S)

)
n+k,n+l − (

T
(
b(m)

))
k,l

) = 0,

for a sufficiently large S and with b(m) = ∑
k f

(m)
k zk and f

(m)
k as in (2.17). The

statement then follows after applying Corollaries 5.6 and 5.8.
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6.3. Proof of Theorem 2.5. We now show how the results can be extended to
allow for more general functions in the case (2.10). We recall that the variance of
the linear statistics is given in terms of the kernel Kn,N as in (4.1). Note that for
fixed m the kernel in this situation reads

Kn,N(m,x,m,y) =
n∑

j=1

pj,m1(x)pj,m1(y),

and hence Kn,N(m,x,m,y) = Kn,N(m,y,m,x). This symmetry is a key property
in the coming analysis. We start with the following estimate on the variance.

LEMMA 6.1. Let f (m,x) be such that ∂f
∂x

(m,x) is a bounded function. Then

Var
N∑

m=1

n∑
j=1

f
(
m,xj (tm)

) ≤ N

2

N∑
m=1

∥∥∥∥∂f

∂x
(m,x)

∥∥∥∥2

∞
∥∥[Pn,Jm]∥∥2

2.

PROOF. Let us first deal with the special case that N = 1. In that case, the
variance of a linear statistic can be written as [with Kn,N(x,1, y,1) shortened to
Kn,N(x, y)]

Var
n∑

j=1

f
(
xj (t)

) =
∫

f (x)2Kn,N(x, x)dμ(x)

−
∫∫

f (x)f (y)Kn,N(x, y)Kn,N(y, x)dμ(x)dμ(y).

By using the fact that, by orthogonality, we have
∫

Kn,N(x, y)Kn,N(y, x)dμ(y) =
Kn,N(x, x) we can rewrite this in symmetric form

(6.5)

Var
n∑

j=1

f
(
xj (t)

)
= 1

2

∫∫ (
f (x) − f (y)

)2
Kn,N(x, y)Kn,N(y, x)dμ(x)dμ(y).

We now use the fact that Kn,N(x, y) is symmetric [and hence Kn,N(x, y)Kn,N(y,

x) ≥ 0] to estimate this as

(6.6)

Var
n∑

j=1

f
(
xj (t)

)
≤ 1

2

∥∥f ′∥∥∞
∫∫

(x − y)2Kn,N(x, y)Kn,N(y, x)dμ(x)dμ(y).

It remains to estimate the double integral. To this end, we note that

1

2

∫∫
(x − y)2Kn,N(x, y)Kn,N(y, x)dμ(x)dμ(y) = ∥∥[Pn,J ]∥∥2

2,
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proving the statement for N = 1. For general N , we use the inequality
Var

∑N
m=1 Xm ≤ N

∑N
m=1 VarXm, valid for any sum of random variables. �

In the next lemma, we show that we can approximate the variance for linear
statistics by linear statistic corresponding to polynomials.

LEMMA 6.2. Assume there exists a compact set E ⊂R such that

(1) S(μ
(n)
m ) ⊂ E for m = 1, . . . ,N and n ∈ N,

or, more generally,

(2) for k ∈ N and m = 1, . . . ,N we have∫
R\E

|x|kKn,N(m,x,m,x)dμ(n)
m (x) = o(1/n),

as n → ∞.

Then for any functionf such that x �→ f (m,x) is a continuously differentiable
function with at most polynomial growth at ±∞, we have

(6.7) VarXn(f ) ≤ N

2

N∑
m=1

sup
x∈E

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2∥∥[Pn,Jm]∥∥2
2 + o(1),

as n → ∞.

PROOF. If the supports of μ(m) all lie within a compact set of R (independent
of n), then this is simply Lemma 6.1. Now suppose the measure is not compactly
supported but condition (2) is satisfied with some E. Then we write again

(6.8) Var
N∑

m=1

n∑
j=1

f
(
m,xj (tm)

) ≤ N

N∑
m=1

Var
n∑

j=1

f
(
m,xj (tm)

)
.

Each term in the sum at the right-hand side can be written in the form of (6.5) and
we have

Var
n∑

j=1

f
(
m,xj (tm)

)
= 1

2

∫∫
E×E

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)

+ 1

2

∫∫
(R\E)×E

(
f (m,x) − f (m,y)

)2(6.9)

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)



1342 M. DUITS

+ 1

2

∫∫
R×(R\E)

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y).

Now, since

Kn,N(m,x,m,y)Kn,N(m,y,m,x) ≤ Kn,N(m,x,m,x)Kn,N(m,y,m,y),∫
R

Kn,N(m,y,m,y)dμ(y) = n,

and g has at most polynomial growth at infinity, we have

(6.10)

∫∫
(R\E)×E

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)

≤
∫∫

(R\E)×E

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,x)Kn,N(m,y,m,y)dμ(x)dμ(y)

= o(1/n)

∫
Kn,N(m,y,m,y)dμ(y) = o(1),

as n → ∞. For the same reasons,

(6.11)

∫∫
R×(R\E)

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y) = o(1),

as n → ∞. Moreover,

(6.12)

∫∫
E×E

(
f (m,x) − f (m,y)

)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)

≤ sup
x∈E

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2 ∫∫
E×E

(x − y)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)

≤ sup
x∈E

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2 ∫∫
R×R

(x − y)2

× Kn,N(m,x,m,y)Kn,N(m,y,m,x)dμ(x)dμ(y)

= sup
x∈E

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2∥∥[Pn,Jm]∥∥2
2.
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By inserting (6.10), (6.11) and (6.12) into (6.9) and the result into (6.8), we obtain
the statement. �

We need one more lemma.

LEMMA 6.3. Let a
(m)
0 ∈ R and a

(m)
1 > 0 for m = 1, . . . ,N . Then for any real

valued function f on {1, . . . ,N} × R such that x �→ f (m,x) is continuously dif-
ferentiable, we have that

σ(f )2 =
∞∑

k=1

∞∑
m1,m2=1

e−|τm1−τm2 |kf (m1)
k f

(m2)
k ,

is finite, where

f
(m)
k = 1

2π

∫ 2π

0
f

(
m,a

(m)
0 + 2a

(m)
1 cos θ

)
e−ikθ dθ.

Moreover, for some constant C we have

σ(f )2 ≤ CN

N∑
m=1

sup
x∈Fm

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2,
where Fm = [a(m)

0 − 2a
(m)
1 , a

(m)
0 + 2a

(m)
1 ].

PROOF. We start by recalling Remark 2.4 on the symmetric case. By the same
arguments leading to (2.23), we see that we can write

σ(f )2 =
∞∑

k=1

∫ ∞
−∞

∣∣∣∣∣
N∑

m=1

e−iτmωkf
(m)
k

∣∣∣∣∣
2

dω

k2 + ω2 ,

showing that σ(f )2 is indeed positive (if finite). To show that it is finite, we note
by applying Cauchy–Schwarz on the sum over m and using

(6.13)
∫ dω

k2 + ω2 ≤
∫ dω

1 + ω2 = π,

it easily follows that

(6.14) σ(f )2 ≤ C0N

N∑
m=1

∞∑
k=1

k2∣∣f (m)
k

∣∣2,
for some constant C0 > 0. Then by integration by parts we find

kf
(m)
k = 1

2π

∫ 2π

0

∂f

∂x

(
m,a

(m)
0 + 2a

(m)
1 cos θ

)
a

(m)
1 sin θe−ikθ dθ.
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By applying Parseval and using the compactness of F to estimate the L2 norm by
the L∞ norm, we find there exists a constant C such that

∞∑
k=1

k2∣∣f (m)
k

∣∣2 ≤ C sup
x∈Fm

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2.
By inserting this back into (6.14), we obtain the statement. �

PROOF OF THEOREM 2.5. For any function p on {1, . . . ,N} × R such that
x �→ p(m,x) is a polynomial, we can write

(6.15)

∣∣E[
eitXn(f )] − e− σ(f )2t2

2
∣∣

≤ ∣∣E[
eitXn(f )] −E

[
eitXn(p)]∣∣

+ ∣∣E[
eitXn(p)] − e− σ(p)2t2

2
∣∣ + ∣∣e− σ(p)2t2

2 − e− σ(f )2t2

2
∣∣.

We claim that we can choose p such that the first and last term at the right-hand
side are small. Let G be a compact set containing both the compact set E and all
Fm from Lemmas 6.2 and 6.3, respectively. For ε > 0, choose p such that

(6.16)
N∑

m=1

sup
x∈Fm

∣∣∣∣∂f∂x
(m,x) − ∂p

∂x
(m,x)

∣∣∣∣2 < ε,

and such that p(m,x) is a polynomial in x. Also note that by the assumptions of
Theorem 2.3, there exists a constant C0 such that

(6.17)
∥∥[Pn,Jm]∥∥2 ≤ C0,

for n ∈ N and m = 1, . . . ,N .
We now recall that for any two real valued random variables X, Y with EX =

EY we have the identity

(6.18)

∣∣E[
eitX] −E

[
eitY ]∣∣ = ∣∣E[

eitX − eitY ]∣∣
≤ E

[∣∣1 − eit (X−Y )
∣∣]

≤ |t |E[|X − Y |]
≤ |t |√Var(X − Y),

for t ∈ R. This means by Lemma 6.2, (6.16) and (6.17) that∣∣E[
eitXn(f )] −E

[
eitXn(p)]∣∣ ≤ |t |

√
VarXn(f − p) ≤ |t |C1ε,

for t ∈ R some constant C1. Moreover, by Lemma 6.3 and (6.16) we have that∣∣e− σ(p)2t2

2 − e− σ(f )2t2

2
∣∣ ≤ C2ε
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for some constant C2. By substituting this back into (6.15) and applying Theo-
rem 2.3, we obtain∣∣E[

eitXn(f )] − e− σ(f )2t2

2
∣∣ ≤ (C1 + C2)ε

∣∣E[
eitXn(p)] − e− σ(p)2t2

2
∣∣

→ (C1 + C2)ε,

as n → ∞. Since ε was arbitrary, we have |E[eitXn(f )]− e− σ(f )2t2

2 | → 0 as n → ∞
and the statement follows. �

6.4. Proof of Theorem 2.6. The proof is a simple extension of the proof of
Theorem 2.2 and is again a consequence of Corollary 5.6. The main difference
being that (6.2), (6.3) and (6.4) are not sufficient, since the the number of terms in
Corollary 5.6 grows with n. Instead, we replace (6.2) with

Nn∑
m=1

∥∥Rn,2ρ(k+1)

(
f (m,Jm,S) − f (m, J̃m,S)

)
Rn,2ρ(k+1)

∥∥∞

≤
Nn∑

m=1

(
t
(n)
m+1 − t (n)

m

)
× ∥∥Rn,2ρ(k+1)

(
g(m,Jm,S) − g(m, J̃m,S)

)
Rn,2ρ(k+1)

∥∥∞
≤ (β − α)

× sup
m=1,...,Nn

∥∥Rn,2ρ(k+1)

(
g(m,Jm,S) − g(m, J̃m,S)

)
Rn,2ρ(k+1)

∥∥∞

→ 0,

as n → ∞ for sufficiently large S, by the condition (2.25) (and the exact same rea-
soning as in the beginning of the proof of Theorem 2.5). We also replace (6.3) by

(6.19)

Nn∑
m=1

∥∥Rn,2ρ(k+1)f (m, J̃m,S)Rn,2ρ(k+1)

∥∥∞

≤
Nn∑

m=1

(
t
(n)
m+1 − t (n)

m

)∥∥Rn,2ρ(k+1)g(m, J̃m,S)Rn,2ρ(k+1)

∥∥∞

≤ (β − α) sup
m=1,...,Nn

∥∥Rn,2ρ(k+1)g(m, J̃m,S)Rn,2ρ(k+1)

∥∥∞,

which is bounded in n by the assumption in the theorem and the fact that g(m,x)

is a polynomial in x. This also shows that

(6.20)
Nn∑

m=1

∥∥Rn,2ρ(k+1)f (m,Jm,S)Rn,2ρ(k+1)

∥∥∞,
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is also bounded n. Hence, by inserting these identities in the conclusion of Corol-
lary 5.6 we proved the statement.

6.5. Proof of Theorem 2.7. The proof is exactly the same as the proof of The-
orem 2.3, with the only difference that we now rely on (the proof of) Theorem 2.6
and use Corollary 5.11 in the final step instead of Corollary 5.8.

6.6. Proof of Theorem 2.9. The proof of Theorem 2.9 also follows the same
arguments. We start with the following adjustment of Lemma 6.2.

LEMMA 6.4. Assume there exists a compact set E ⊂ R such that

(1) S(μ
(n)
m ) ⊂ E for m = 1, . . . ,Nn and n ∈ N,

or, more generally,

(2) for k ∈ N, we have

sup
m=1,...,Nn

∫
R\E

|x|kKn,N(m,x,m,x)dμ(n)
m (x) = o(1/n),

as n → ∞.

Then for any function g such that x �→ g(t, x) is a continuously differentiable
function with at most polynomial growth at ±∞, that is, g(t, x) = O(|x|M) as
|x| → ∞, for some M independent of t ∈ I , we have

(6.21)
VarXn(f ) ≤ N

2

N∑
m=1

(
t
(n)
m+1 − t (n)

m

)2
∥∥∥∥∂g

∂x

∥∥∥∥2

L∞(I×E)

× sup
m=1,...,Nn

∥∥[Pn,Jm]∥∥2
2 + o(1),

as n → ∞.

PROOF. We use the same arguments as in the proof of Lemma 6.2. The only
possible issue that we need to address is that in (6.7) the constant in the o(1) term
my depend on N and hence, in the present situation, also on n. However, by the
fact we take the supremum over m in (6.21) we have that the constant in the o(1)

terms in (6.10) and (6.11) can be chosen such that they do not on n. By following
the same proof, we see that the constant in the o(1) does not depend on n, and
hence we have

VarXn(f ) ≤ Nn

2

Nn∑
m=1

sup
x∈E

∣∣∣∣∂f∂x
(m,x)

∣∣∣∣2∥∥[Pn,Jm]∥∥2
2 + o(1),

as n → ∞. Since f is considered to be of the special type (2.24), we rewrite the
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latter in terms of g,

VarXn(f ) ≤ Nn

2

Nn∑
m=1

(
t
(n)
m+1 − t (n)

m

)2
∥∥∥∥∂g

∂x

∥∥∥∥2

L∞(I×E)

∥∥[Pn,Jm]∥∥2
2 + o(1),

as n → ∞. The statement now follows by estimating the summands in terms of
their suprema. �

LEMMA 6.5. Let a
(m)
0 and a

(m)
1 be piecewise continuous function on I for

m = 1, . . . ,Nn. Then for any real valued function g on {1, . . . ,N} × R such that
x �→ g(τ, x) is continuously differentiable, we have that

σ(g)2 =
∞∑

k=1

∫∫
I×I

e−|τ1(t)−τ2(t)|kgk(t1)gk(t2)dt1 dt2,

is finite, where

gk(t) = 1

2π

∫ 2π

0
g
(
m,a0(t) + 2a1(t) cos t

)
e−ikθ dθ.

Moreover, for some constant C we have

σ(f )2 ≤ C

∥∥∥∥∂g

∂x

∥∥∥∥2

L∞(F )

,

where F = {(t, x) | x ∈ [a0(t) − 2a1(t), a0(t) + 2a1(t)], t ∈ I }.

PROOF. As in (2.28) we rewrite σ(g)2 as

σ(g)2 = 1

π

∞∑
k=1

∫
k2

ω2 + k2

∣∣∣∣∫
I

e−iωτ(t)gk(t)dt

∣∣∣∣2 dω,

showing that σ(g)2 is positive (if finite). By applying the Cauchy–Schwarz in-
equality to the integral over t , the estimate (6.13) and the Plancherel Theorem we
have

σ(g)2 ≤ (β − α)π

∞∑
k=1

∫
R

k2∣∣gk(t)
∣∣2 dt.

Then by integration by parts we find

kgfk(t) = 1

2π

∫ 2π

0

∂g

∂x

(
t, a0(t) + 2a1(t) cos θ

)
a1(t) sin θe−ikθ dθ.

By applying Parseval and estimating the L2 norm by the L∞ norm, we find there
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exists a constant C such that
∞∑

k=1

k2∣∣gk(t)
∣∣2 ≤ C

∥∥∥∥∂g

∂x

∥∥∥∥2

L∞(F )

,

and this completes the proof. �

PROOF OF THEOREM 2.9. The proof of is now identical to the proof of Theo-
rem 2.9, with only difference being that we use Theorem 2.7, Lemmas 6.4 and 6.5
instead of Theorem 2.3 and Lemmas 6.2 and 6.3. �
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