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GAUSSIAN AND NON-GAUSSIAN FLUCTUATIONS FOR
MESOSCOPIC LINEAR STATISTICS IN
DETERMINANTAL PROCESSES!
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We study mesoscopic linear statistics for a class of determinantal point
processes which interpolate between Poisson and random matrix statistics.
These processes are obtained by modifying the spectrum of the correlation
kernel of the Gaussian Unitary Ensemble (GUE) eigenvalue process. An ex-
ample of such a system comes from considering the distribution of noncol-
liding Brownian motions in a cylindrical geometry, or a grand canonical en-
semble of free fermions in a quadratic well at positive temperature. When
the scale of the modification of the spectrum of the correlation kernel, related
to the size of the cylinder or the temperature, is different from the scale in
the mesoscopic linear statistic, we obtain a central limit theorem (CLT) of
either Poisson or GUE type. On the other hand, in the critical regime where
the scales are the same, we observe a non-Gaussian process in the limit. Its
distribution is characterized by explicit but complicated formulae for the cu-
mulants of smooth linear statistics. These results rely on an asymptotic sine-
kernel approximation of the GUE kernel which is valid at all mesoscopic
scales, and a generalization of cumulant computations of Soshnikov for the
sine process. Analogous determinantal processes on the circle are also con-
sidered with similar results.
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1. Introduction and results.

1.1. Introduction. Recently, there has been a lot of discussion about universal-
ity of random matrix statistics at mesoscopic or intermediate scales. For instance,
the proofs of the local semicircle law and the Wigner—-Dyson—Gaudin—-Mehta con-
jecture, see [5, 18] for further references, the work [16, 17] on random band ma-
trices and the so-called metal-insulator transition, or the CLT for linear statistics
of orthogonal polynomial ensembles [§8]. One motivation to investigate these mod-
els comes from E. Wigner’s fundamental observation that the spectral statistics
of complicated quantum systems exhibit universal patterns. On the other hand,
eigenvalues of quantum systems which are classically integrable are expected to
be described by Poisson statistics [20]. Therefore, it is natural to investigate the
transition from Poisson to random matrix statistics at intermediate scales. There
are many ways to interpolate between the two point processes, for instance using
Dyson’s Brownian motion, one gets a determinantal process called the deformed
Gaussian unitary ensemble [23]. For this model, the transition has been investi-
gated using mesoscopic linear statistics in [14]. The authors proved different CLT's
with fluctuations which depend on the scale of the test function that samples the
eigenvalues. In this paper, we will study the fluctuations of another general class
of determinantal processes which interpolate between Poisson and GUE statistics
that we call modified GUEs (see Definition 1.1). Instead of adding an independent
matrix to the GUE, we directly modify or mollify the spectrum of the correlation
kernel of the process. This has the effect of introducing some extra disorder in the
system while keeping the determinantal structure. Our main motivation to study
such ensembles comes from the so-called MNS ensemble which was introduced
by Moshe, Neuberger and Shapiro in [29] (see also [11, 23]), and corresponds to
the joint probability density function of the positions of a grand canonical sys-
tem of free fermions at positive temperature confined in a harmonic potential. In
general, it is also of interest to investigate fluctuations of determinantal processes
whose correlation kernels are not necessarily reproducing.



MESOSCOPIC FLUCTUATIONS IN DETERMINANTAL POINT PROCESSES 1203

1.2. The modified Gaussian unitary ensembles. Let X be a Polish space
equipped with some reference measure d . Note that in the sequel, we will only be
interested in the two cases X = R or the unit circle T equipped with the Lebesgue
measure. A point process is a random measure on X of the form & =} §y,. The
support of the measure E is the object of interest, it is called a point configuration
{X;} and we assume that it has neither double point nor accumulation point. Point
processes are usually described by their correlation functions py, p2, ... which are
characterized by

o0 1
) E[T1+exn|=>" = [ TTeGnm@i, ... x)dux) - duiq)
k‘ xk
i k=1" i

for any continuous function g : X — C with compact support. A point process is
called determinantal if all its correlation functions exist and satisfy the identity

pk(x1, ..., xx) = det[K (x;, x;)].
kxk

Hence, a determinantal process is characterized by its correlation kernel K : X x
X — R and we will denote by Ex the corresponding probability measure on the
space of point configurations. Moreover, the kernel K defines an integral operator
K on L*(d ) which is locally trace-class so that the RHS of formula (1.1) is a
Fredholm determinant:

(1.2) Ex []‘[ 1+ g(Xi):| =det[] + Kgl 2

In most cases, the operator K is self-adjoint (although there are natural examples of
non-Hermitian determinant processes, such as the deformed GUE studied in [14]).
Then the kernel K defines a determinantal process if and only if all the spectrum
of the operator /C lies in [0, 1]. These facts are well known and we refer to [21,
22, 38] for different introductions to the theory of (determinantal) point processes
and to the survey [4] for an overview of several applications. In this paper, we
will investigate examples of determinantal processes with correlation kernels of
the general form

(1.3) K. y) =) p oc)v(y),
k=0

where (9)72, is an orthonormal basis in Lz(d[L) and 0 < p,lcv < 1. A classical
example of such correlation kernel is that of the GUE eigenvalue process denoted
by

N—1

(1.4) Ky (o)=Y oe0)ee (),
k=0
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where ¢ (x) = /= h (x” */_)e 7 ) /2 and hj are the normalized Hermite

polynomials with respect to the weight ¢~ on R. The parameter N € N is the di-
mension of the matrix and the variance of the entries is scaled so that the eigenvalue
density at the origin is also of order N as N — oo. For some background on the
GUE process, we refer to [30], Chapters 2-5, and to Appendix A for a collection of
standard facts on the asymptotics of the Hermite polynomials and the GUE kernel.
In the following, our main interest is in determinantal processes whose correlation
kernels are modifications of K, (I)V , in the sense that, instead of taking the spectrum
p,iv = 1y <N, we assume that k — p,ﬂv is a function which decays smoothly. The
following class of functions will be called shapes:

§={¥:R— [0, 1]]¥" <0 is Riemann integrable,
(L.5)
W e L'(0,00) and (1 — ¥) € L' (—00,0)}

and, for any W € §, we let
(1.6) B3 :/ W(x)(1 — W(x))dx
R

DEFINITION 1.1. A modified GUE is a determinantal process on R (with re-
spect to the Lebesgue measure) whose correlation kernel K \]I\,’ o 18

(1.7) Ky, (x,y)= Z w( )wk(x)wk(y)

where W € §, N > 0, @ € (0, 1) and 7 > 0. In the sequel, the parameter « is called
the modification scale, t is called the temperature and we assume that the shape
U is normalized so that B%I, =1.

Note that he kernel K g o 18 not reproducing, so that the number particles in the
configuration, denoted by #, is random. Moreover, a simple computation shows
that E Ky, [#] ~ N and the density of particles at the origin is also of order N

(global scahng) According to [21], Theorem 7, another correlation kernel for the
modified GUE is given by

o0
(1.8) K@, y) =Y Mo (0)pe(y),
k=0
where I,gv are independent Bernoulli random variables with E[I,ﬁv 1= (r N"‘)

Hence, the modified ensembles are more random than the GUE and the amount of
extra randomness may be estimated by a Riemann sum approximation:

o8}
k—
VarKN [#] = ZVar Ik ZW( Ne
=0 T

N k—N a0l
)(1_\p( ))NTN B2.
TN¢
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Heuristically, it means that the more the spectrum of the correlation kernel is mod-
ified, the more disorder is forced into the system. So we expect that, for large
modifications, the modified ensembles behave like the Poisson process rather than
like the GUE.

REMARK 1.2. According to formula (1.7), for any ¢ > 0, the shapes ¥ and
W, (t) = WV (t/o) define the same modified GUE at different temperatures. More-
over, by formula (1.6), B\zl,g = O'B%I, and the condition B\Zy = 1 fixes the temperature
7 > 0 so that

(1.9) Vargy [#]=1N*+ o (D).
Vo N—o0

Our interest in determinantal processes with correlation kernels of the form (1.7)
is mainly motivated by the following example that we call the MNS ensemble.
In [29], motivated by the physics of mesoscopic conductors, Moshe, Neuberger
and Shapiro introduced an ensemble of unitary invariant Hermitian matrices whose
eigenvalue distribution interpolates between the GUE and the Poisson process.
This model was rigorously analyzed in [23] and it was proved that its grand canon-
ical version is a determinantal process with correlation kernel on R given by

= (D) (y)

(110) K{/Xa(x,y)zkz(:)m
for some 7 > 0 and 0 < o < 1. So the MNS ensemble is a modified GUE with
shape (1) = (1 + €' )~1. Moreover, this model has two natural interpretations.

First, since the rescaled Hermite functions (¢x)r>0 are the eigenfunctions of
the Schrédinger operator —A + ’TzTNxZ on R, the MNS process describes a grand
canonical system of free fermions at positive temperature confined in a quadratic
external well. Note that the probability that the kth state of this harmonic oscilla-
tor is occupied is equal to the Fermi factor (1 + e*=N/T)=l where T = N7 is
the temperature of the system. Thus, the classical GUE corresponds to the ground
state of the system. Namely, taking the temperature to zero [i.e., the limit T — 0 in
(1.10)], one recovers the GUE kernel K (I)V , (1.4). On the other hand, for large tem-
perature (i.e., taking T — 00), the kernel degenerates to that of a Poisson process
on R. Therefore, at a heuristic level, the MNS ensemble interpolates between Pois-
son and random matrix statistics. We shall prove that such a transition occurs for
smooth mesoscopic linear statistics of the process and analyze the critical regime.

The kernel (1.10) also occurs in connection with the KPZ equation (Kardar—
Parisi-Zhang), where it is related to the crossover distribution for the height func-
tion; see [2, 11, 27, 34, 35]. We are not aware of any connection between the
present work and the KPZ equation. Second, in [23], it was shown that the MNS
process also describes a system of Brownian particles moving on a cylinder and
conditioned not to collide (by rotation invariance, the distribution of the particles
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is stationary). We have seen that the parameter N is the expected number of par-
ticles and one can check that the length § of the cylinder where the particles are
diffusing is related to the temperature T of the free Fermions by 8 = 4sinh(7 ).
This particle system is expected to behave like Dyson’s Brownian motion [3, 14],
and this provides another heuristic description of the transition. Namely, at small
scales, the particles remain roughly independent, while when S gets large the tra-
jectories start regularizing because of the noncolliding constraints until eventually
the joint law of the particles becomes the same as that of GUE eigenvalues.

In general, one can think of \p(’;]—VIX ) as the probability that the kth state of a
quantum system is occupied. Then 1 — W corresponds to the distribution function
of a probability measure on R and we denote by ® = —W’ the corresponding
density. For technical reasons, it will be easier to consider the following subclass
of shapes:

(1.11) ¢ ={WeF|P(x)=—¥(x) <e " for some ¢ > 0},

which contains the MNS shape ¥ (1) = (1 + /)L

In random matrix theory, it is well known that there are different scalings to look
at the eigenvalues. The global or macroscopic scale refers to the whole eigenvalue
process. On the other hand, the local or microscopic scale is that of individual
eigenvalues, that is, the gaps between consecutive eigenvalues are of order 1. At
this ultimate scale, in the Hermitian case, universality means that the rescaled point
process converges in the bulk to the celebrated sine process. Any scale in between
is called mesoscopic. In other words, a mesoscopic random variable is a function
of the point process which depends on a growing fraction of the total number of
particles. A typical example of such observables is the following class of linear
statistics.

DEFINITION 1.3. Given a point process & with density of order N at the
origin and a function f : X — C with compact support, for any 0 < § < 1, we
define

f3(x) = f(xN°),

and we call a mesoscopic linear statistic the random variable
(1.12) Bfs=>_ f(XiN%).

i
In the following, the parameter § is called the scale.

We will investigate the asymptotic distribution of mesoscopic linear statistics of
the modified GUEs. Note that since the density at the origin is of order N, we have

(1.13) E v [Ef5]~N1‘5/f(x)dx.
W, R
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If § < 1, this expectation diverges as N — oo and it is natural to consider centered
linear statistics instead,

(1.14)

anR

=Y f(XiN°) - Exy [Efs].

For any random variable Z with a well-defined Laplace transform, its cumulants
C"[Z] are given by the power series

(1.15) logE[e'?] ch[z

For determinantal processes, it turns out that there are explicit formulae, in terms
of the correlation kernel K, for the cumulants of a linear statistic 2f =Y f(X;).
Taking g(x) = e//® — 1 for some function f € C (%) with compact support and
t € R in equation (1.2), we see that

Ex[e'®/] = det[T+ K (e —1)].

Since the operator /C is assumed to be locally trace-class, the RHS of this equation
is a Fredholm determinant and taking logarithm (see, for instance, [37], Chapter 3),
we obtain

logEx [¢'®/] = Tr{log(I+ K ("™ —1))]
=§ (e — 1)),

If we expand ¢/ ) — 1 =Y f (x)”;—! and use linearity of Tr, we deduce that the
cumulants of the random variable Ef are given by

n I+1

~ (—1) n!

(1.16)  CkIEf1=Y — —
I=1 my,omy=1 MM

mi+---+mj=n

1)1—}—1

Tr[f™K - fMK],

where we interpret ™/ as multiplication operators acting on L2(X, du). In par-
ticular, we have

Te[f™K - fK]
(1.17)
/ FO)™K (x1,x0) -+ f(xe)" K (x¢, xp) [ | dp(x)),

j<t

so that, provided the precise asymptotics of the correlation kernel K is available,
we may deduce from formula (1.16) the limit law of the linear statistic Ef. For
instance, we get a CLT with variance o2 if, for any n > 2,

Jim Ck[Ef]=0 and lim CX[Ef]1=0".
N—o00
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A composition of n € N is a tuple m = (m, mo, ..., my) of positive integers
such that |[m| =m + --- + my = n, where £ = £(m) is called the length of m.
Using the notation

! -1 £+1
(1.18) <”) ~ " ad Mmy =D (”)
it will be convenient to rewrite formula (1.16) as
(1.19) %[Ef]= Z M(m) Tr[ f™ K --- f™K].
lm|=n

1.3. Main results. In this section, we summarize the main results of Sections 3
and 4 about the asymptotics of sufficiently smooth linear statistics of the modified
GUE:s. For any function f € L' N L%(R), we define its Fourier transform:

fa) = / f@0)e 2 gy,
R

We let H'/2(R), respectively, H I(R), be the (homogeneous) Sobolev spaces of
real-valued L2-functions equipped with the norms

(1.20) IIfIIHl/z—/If(u)l uldu = 2 2//R2

a2 fI5, =/R|f<u>|2|ulzdu=M—Z/RU/(XNZW-

SO -f»

x_

dxdy,

We also denote by Co(R), H,, 1/2

compactly supported functlons

(R), HO1 (R), etc., the corresponding subspaces of

THEOREM 1.4. For any parameters 0 < § < o < 1 and for any bounded func-
tion f € Hy*(R),

(1.22) Var v [Efg]:EN“_‘S/f(x)zdx—i— o (N*7?).
V.o 2 R N—o0

This asymptotics implies the following classical CLT as N — oc:
_a=d ~
(1.23) N=T Efs = N0, Tl f113./2).

PROOF. The asymptotic expansion of the variance is proved in Section 3.1.
Then the CLT (1.23) follows directly from the estimates (1.13) and (1.22) by ap-
plying Theorem 1 in [40]. O

Hence, we will call the set {§ € [0,1) : § < a} the Poisson scales because
the variance of any linear statistic is diverging in this regime. Viewing the pro-
cess &, (1.14), as a random distribution acting on C3°(R), Theorem 1.4 implies
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that, once normalized, it converges at any scale § < « to a white noise with inten-
sity T/2, that is, a centered Gaussian field E4, on the real line with covariance

E[Eco(f)EBoo(8)] = <f»g>L2(]R)'

At scales § > «, like for the GUE, the variance of smooth statistics remains
bounded. Therefore, we expect a limiting process with nontrivial correlations. Ac-
tually, by comparing linear statistics of the modified GUEs with that of the sine
process, we will obtain the following CLT.
THEOREM 1.5. Let W € € and f € H,'?
oa<8<1,thenas N — oo,

(R) be a bounded function. If 0 <

Efs = N(O, [1£11512)-
PROOF. See Section 3.2. U

Hence, we will call the set {6 € (0, 1) : @ < &} the GUE scales by analogy with
Theorem 3.6 below. The interpretation of Theorem 1.5 is that the centered modified
GUEs converge weakly at any scale § > o to a Gaussian process =g on the real
line with covariance

E[Eo(f)Eo(g)] = (f. &) g1r2-

In contrast to a white noise, the Gaussian process Eg is spatially correlated and
self-similar as can be seen from formula (1.20). Theorems 1.4 and 1.5 imply that
the modified GUEs undergo a transition from Poisson to random matrix statistics
when the mesoscopic scale § is equal to the modification scale « of its correlation
kernel. Our next question is what happens at the critical scale? The first step is to
investigate the variance of linear statistics.

THEOREM 1.6. Let W € € and f € Hy'”

scale 0 <o < 1,

(R) be a bounded function. For any

ngnoo VarKN [Efa]

(1.24) =21//|f(u)|2/ W) (1= (4 u/t"))dudt
R

ZZT//f(X)de—l- //‘f(x)

where ® = —W' and the parameter v’ = 7 > 0.

b('(x — )P dx dy,
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PROOF. See Appendix B. [

Since @ is a probability distribution function, it is clear that formula (1.24) in-

terpolates between || f ||%1l ;» as T — 0, respectively, 27| f ||i2 as T — o0. Hence,

we recover the variances of Theorem 1.4 and Theorem 1.5, respectively. In anal-
ogy, we would also expect Gaussian fluctuations when é = «. Surprisingly, at this
critical scale, the cumulants of linear statistics of the modified ensembles have non-
trivial limits. In order to formulate our main result, we need to introduce additional
notation. Let

R ={xeR":x; <--- <x,},

and for any r € R,
R ={x eR" :x; 4+ +x, =t}.
For any composition m and for any & < £(m), we let
(1.25) my=mi+my+---+myg.
For any u € R™! we define
Umgo+1 + -+ + Ui, ifs <i,

;i s
(1.26) A=Y uj— > uj=1{—uwm41 — - —um, ifi<s,

j=1 j=1 0 ifi =s,
so that A™ = (Ag‘s) is a £(m) x £(m) antisymmetric matrix. If o € S(n) is
a permutation of [n] = {1,...,n}, we will use the shorthand notation cu =
(Uo(1y, .-+, Usm)) and we define 5(0) = argmin(o) € [n] x [n — 1] x --- x [1]
as follows. That is, for any / € [n], the number s;(o") is given implicitly by the
relation

(1.27) o(sp)=min{o(j):j=1,...,1}.
For any 7 > 0 and any composition m of n > 2, let

(1.28) GPu,x)= Y mgx{A;f;l(u)—r(x(,(i)—x(,(m)},
oeS(n) =

where we used the shorthand notation £ = £(m) and sy = 5¢m) (o). Note that, since
Afj‘z’5 ,(u) = 0, the functions G (u, x) are nonnegative on R” x R Finally, for
any function ¥ € §, let Bl =0and, for all n > 2,

n—1
(129 BY =D b / @)W ) (1= w0))"™
k=0 R
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where the coefficients b} are given by

k+1
n__ _ 1+l n—I n
(1.30) bp=> (-1 <k+1—l> > <m)
=1 m|=n
£(m)=I

Note that since b(z) = —b% =1, formula (1.29) implies that

B2 = / x®(x)(1 —2W(x))dx
R
Then, using that for any shape W € §, we have
d
O(x)(1 —2¥(x)) = —E{lll(x)(l —¥(x))},
we recover formula (1.6) by an integration by part.

THEOREM 1.7. Let 0 <o« < 1, ¥ € §*, and consider the determinantal pro-
cess with kernel K \}IJV o+ For any bounded function f € HO1 /2 (R), the centered linear
statistic & fo converges in distribution as the density N — oo to a random vari-
able denoted By ¢4 f . Moreover, if f € HO1 (R), then the cumulants of By 1 f are
given by for all n > 2,

C"[E\pyrf]zer(’p/Rf(z)" dt —2 > M(m)
|m|=n

(1.31)

/ a’u/ dxsﬁ{]"[f(u ) (x;) }Gm(u x).

PROOF. See Section4.2. U

It seems to be a difficult problem to recover the Laplace transform of the random
variable Ey ; f from formula (1.31). In fact, we are only able to infer a few prop-
erties of its distribution, such as the fact that it is not Gaussian and the dependence
in the temperature 7.

THEOREM 1.8. For any shape V¥ € § and any t > 0, the random process
By, which arise from the limit of a modified ensemble at the critical scale § = o
is not Gaussian.

Surprisingly, the proof of Theorem 1.8 is rather involved and relies on two sep-
arate arguments. First, we show that, if there exists n > 2 such that the parameter
By, # 0, then the random process Ey, . is not Gaussian and that, unexpectedly, this
criterion is satisfied by all modified GUEs except the MNS ensemble.
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PROPOSITION 1.9. The only function ¥ € § which satisfies the conditions
By, =0 forall n > 2 is the MNS shape (t) = 1/(1 +e').

PROOF. See Section4.3. [

This special property of the MNS ensemble might be related to the fact that
this process originates from free fermions and it would be interesting to know
whether it has any physical interpretation. From a probabilistic perspective, the
main consequence of Proposition 1.9 is that we need another argument to show
that the process Ey ; is not Gaussian. To this end, we show in Section 4.4 that the

—€TX

Schwartz function y(x) = 2e ? cos(2m x) satisfies if € is sufficiently small:

(1.32) CUEy y1#£0.

We must look at the 4th cumulant since C3[Ew,r f1=0 for any test function be-
cause of certain symmetries; see Proposition 4.19. Let us also point out that there is
nothing special about the function y(x) except that it is simple enough to provide
a good example.

To conclude, we have seen that the MNS ensemble describes noncolliding
Brownian motions in a cylindrical geometry. In this case, the diagram of Figure 1
shows that the particle statistics at a given mesoscopic scale § exhibit a sharp tran-
sition from Poisson to GUE at time N . This situation is similar to that of the
Dyson’s Brownian motion which was investigated in [14]. However, the transi-
tions are different: for the MNS ensemble, there is no intermediate regime which
depends on the test function f and unexpectedly the critical fluctuations are not

1

3 GUE
Efs = NO. £

Critical'scale
Non-Gausspdan Fluctuations

Poisson
Var Efs ~ N¢9

(sampling scale) & Microscopic scale 1
Classical CLT |

0

0 Macroscopic scale o (modification scale)

F1G. 1. Diagram of the fluctuations for a smooth linear statistics of a modified GUE as a function
of the scale § and the modification scale «.



MESOSCOPIC FLUCTUATIONS IN DETERMINANTAL POINT PROCESSES 1213

Gaussian. In both interpretations, either as noncolliding Brownian motions, or as
a grand canonical ensemble of free fermions, it is not clear why this phenomenon
occurs at a certain relation between the sampling scale of the linear statistic and
the size of cylinder, or the temperature. Actually, it would be very interesting to
get another description than Theorem 1.7 of the random field Ey, ; which arises at
the critical scale in order to understand how the spatial correlations disappear in
the transition from the H'!/2-Gaussian noise Eq to the white noise E,. Another
point of interest would be to understand how the processes By, ; depend on the
shape W and why the MNS Ensemble appears to be special.

1.4. Outline of the main ideas. For determinantal processes, a general strat-
egy to obtain a CLT for linear statistics is to use formula (1.16) to show that all
cumulants of order > 3 converge to zero. This approach has been applied to many
classical models in 1 or 2 dimensions using a wide range of techniques; see, for
example, [1, 8-10, 32, 33, 39, 40]. In this paper, it is applied to the modified ensem-
bles of Definition 1.1. To the authors’ knowledge, the results of this paper at the
critical scale provide the first example of a determinantal point process for which
the fluctuations of a mesoscopic linear statistic are not Gaussian in the limit. At
the global scale, non-Gaussian limits can be obtained for unitary invariant Hermi-
tian matrix models with several cuts, but the mechanism is different. In fact, it was
recently proved in [25] that, at mesoscopic scales, such models are also described
in the large N limit by the H'/2-Gaussian noise Eg appearing in Theorem 1.5.
To prove Theorems 1.5 and 1.7, we use a perturbative approach which consists in
comparing the correlation kernels of two processes to establish that a given linear
statistic Ef has the same limit for both ensembles as their density N — oo. To
this end, we will use the following definition.

DEFINITION 1.10. Two families of kernels (K™)y-0o and (LY)y~0 defined
on the same space X are asymptotically equivalent (written as K = LV) if, for
any ¢ € N and any functions f1, ..., fr € Cgo(%),

lim Tr[ iKY - fikN] = lim Te[ ALY - foLV].
N—o00 N—o00

Definition 1.10 does not apply only to correlation kernels, but to all families of
kernels which are locally trace-class. However, if both K N and LV define de-
terminantal processes and KV = LV by formula (1.19), these processes have
the same limit. For instance, Theorem 1.5 is proved by showing that the kernel
K \]I\,”a and the GUE kernel Kév are asymptotically equivalent at any scale § > «
and using the CLT for the mesoscopic GUE (see Theorem 3.6 proved in [5, 19,
25]). On the other hand, at the critical scale, § = «, the kernels K@,”a are not
asymptotically equivalent to any kernel which has been studied previously and
we will need to compute the limits of the cumulants explicitly. If ¥ € §, re-
call that ® = —W’ and define & € (0, 1) such that by the mean-value theorem:
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k4§ k+1
‘[Na (TNof)—\IJ(TNa)_ (.[ch

and 7 is a nondecreasing function, we define the kernel

Z q><k + fk) sin[27n(k)(x — y)]
TN® T(x—y)

(1.33) Ly, (x.y) =

o
TN SEve

Lemma 4.1 below shows that the kernel LN defines a determinantal process
on R and the next proposition implies that, at sufﬁ01ently small scales, mesoscopic
linear statistics of the critical modified GUE with shape W and the determinantal
process with kernel L{X’,7 have the same limit.

PROPOSITION 1.11. Let W € &, nk) = N'""*/T+k/N/2 and T =
(log N)2. Forall 1/3 < a < 1, the rescaled correlation kernel of the modified GUE
satisfies N =% K\I]\,”a(xN_“, YN~ = L]\I\,”n(x, y) in the sense of Definition 1.10.

PROOF. See Section4.1. [

Proposition 1.11, combined with the analysis of the determinantal process with
correlation kernel LN w,, performed in Section 4.1, implies Theorem 1.7 in the
regime 1/3 <o < 1. The main technical challenge of this argument is to obtain
the asymptotic expansion of the GUE kernel at all mesoscopic scales. We show in
Appendix A that, if M ~ N, then for any § > 0,

sin[an/z_’S«/M(X—)’)]_i_ 0 (N1—36)
n(x —y) N—oo

(134) N7PKM(xN°, yN~%) =

uniformly for all x, y in compact subsets of R. Note that when § < 1/3, the error
term in formula (A.11) does not converge to 0, hence the restriction in Proposi-
tion 1.11. This restriction comes from the fact the GUE kernel is not asymptoti-
cally translation-invariant at large scales because of the curvature of the semicircle
density and the proof of Theorem 1.7 in the general case relies on a different argu-
ment which basically consists in unfolding the point process to reduce again to the
case of the kernel Llll\l’,r]; see Proposition 4.11. The advantage of this approach is

that the kernel LN is translation-invariant and we can compute the cumulants of
its linear statlstlcs by using the method devised in [39] to prove a CLT for meso-
scopic linear statistics of the circular unitary ensemble (see also Theorem 4 in [40]
for an application to the sine process, as well as some generalizations). In fact,
taking the parameter T — 0 in equation (1.31), we recover Soshnikov’s formula
for the cumulants of mesoscopic statistics of the sine process

ClEwof1=2 / aunf[T 7w} ¥ Mamcpa,
i lm|=n

where GG'(u) = 37 c5(n) max{uuz (1) + -+ + U (y)s - - (1) + -+ gy, 0}
Then the main combinatorial lemma of [39] implies that for any n > 2,
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>~ M(@m)G§' (1) = 0 so that the process Ey o (which is independent of W) is Gaus-
sian. The details of the computations are given in the proof of Proposition 4.15.
For the modified ensembles, it is worth noting that there is no counterpart of
the main combinatorial lemma, that is, for generic points u € Rg and x € R,
> Mm)GP(u, x) # 0 for any 7 > 0 and n # 3. With Lemma C.1, we use this
fact to prove equation (1.32). The bottom line is that the combinatorial structure
behind the cumulants of the sine process, which corresponds to the continuous
counterpart of the strong Szegd theorem, is very sensitive. In general, CLTs with
bounded variance are due to special correlations which are rather sensitive to per-
turbations such as small modifications of the kernel of a determinantal process. In
the remainder of this section, we provide a basic example which elaborates on this
fact and illustrates how asymptotic normality breaks down. Before proceeding, we
will define the circular counterparts of the modified GUEs. These processes are of
interest because there is no asymptotic analysis required in order to apply Sosh-
nikov’s method while they retain the same features as the modified GUEs. In the
sequel, we let T = [—%, %] with the boundary points identified.

DEFINITION 1.12. A modified CUE is a determinantal process on T whose
correlation kernel K ;,V (with respect to the uniform measure) is of the form

(1.35) KN (x.y)=) ppe? 0=,
keZ

where pV = p,lcv so that the integral operator ICIIY is self-adjoint on L?(T).

REMARK 1.13. In this section, the spectrum of the kernel K i]?V is arbitrary

except for the constraints p,iv € [0, 1]. However, when we refer to a modified CUE
in Sections 2.2, 2.3 and 4, like in Definition 1.1, it is understood that for all k € Z,

k| — N
1.36 N:w( )
( ) Pk TNo

for a shape W € § such that B%l, = 1, a modification scale « € (0, 1), and a temper-
ature 7 > 0.

A special case is the so-called Dyson’s Circular Unitary Ensemble (CUE) which
has the correlation kernel

1.37 KN (x,y) = i2mk(x—y) _ sin(2N + D (x — y))
o o |k§N€ sin(w (x — y))

This process describes the eigenvalues of a random matrix distributed according
to the Haar measure on the group U/ (2N + 1). The cumulants of its linear statistics
were computed explicitly in [39] and a similar computation yields the following
formula in the case of the modified CUE:s.
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LEMMA 1.14. For any continuous function f : T — R,
£m)—1

8= [TFap 3 M Y TT Pyt

ueZy J m|=n keZ j=0
where f (k) is the kth Fourier coefficient of f.

PROOF. See Section2.1. [

In particular, we can use this formula to investigate the behavior of a (global) lin-
ear statistics under some very simple modification of the spectrum of the CUE ker-
nel. For instance, we can remove a single mode by choosing for some 0 <m < N,
(1.38) P = L= — Ljkj=N-m-

Then K i,v is still a projection kernel and, by Lemma 1.14, the 3rd cumulant of a
linear statistic is given by

o 3
SHEEEDY 1‘[f<u,-){2pk — 2 Y Pl + P )

MGZS i keZ keZ

+2 Z Pk Pk+uy Pk+uj+u, } .
keZ

We can symmetrize this expression using permutations of the u;’s and the con-
dition u| + ur = —us3; this yields
(139)  CinlEf1= 3 [1F @) 3 pell = 3pksus + 2Pkt Pias).

MEZ?) i keZ

If we consider function g;(¢) =2cos(2mjt) + a cos(4mjt) with parameters a € R
and j € Z4, we have

g () =5, (jul) + %62]-(|u|),

so that the only frequencies u € Zg which contribute to (1.39) are given by all
possible permutations of (£, =, F2j) and an elementary computation gives

(1.40) CinlE8j1=3a Y pill = 2pks — pevaj +2pij Pij

keZ
In the CUE case, when p,’cv = Lx<n, it is easy to check that C}N [Egj] =0 forall
Jj € Z4 as we expected. However, it seems clear that for some generic choice of
coefficients 0 < p,ﬂv < 1, the expression (1.40) will be nonzero. For instance in the
case (1.38), for any j,m < N,

cﬁ(l,jv[agj] =12a(1 — Lj<|m2))-
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Thus, if we remove a mode near the edge of the spectrum of the CUE kernel
(m < 2j), the linear statistics Eg; cannot be asymptotically Gaussian while its
variance remains bounded:

C2y[Bgi1= Y 18> > pr(l — prru) < j(2+d?).
r ueZ keZ

In particular, even if the correlation kernel K ;JV is reproducing, we can get non-
Gaussian behavior. This example also shows that it is the edge of the spectrum of
the correlation kernel which is influencing the distribution of the point process, a
fact which is also emphasized by [40], Theorem 4. Moreover, using Lemma 1.14,
we can also check that when removing M different modes at the edge of the spec-
trum, all cumulants are of order M for large N. Hence, if we remove sufficiently
many modes, the system begins to behave like a Poisson process when N — oo.
Finally, note that according to (1.8), removing modes is comparable to smooth-
ing the spectrum of the correlation kernel. Hence, this example illustrates why the
modified ensembles of Definition 1.1 are not Gaussian at the critical scale (6 = ).
Actually, the strategy to obtain (1.32) is similar to this example but the computa-
tions are much more involved.

1.5. Overview of the rest of the paper. In Section 2, we begin by analyzing
the modified CUEs of Definition 1.12. This setting is simpler than that of Sec-
tion 1.2 and we can focus on the combinatorial structure of the cumulants. In par-
ticular, in Sections 2.2 and 2.3, we show that, if the spectrum of the kernel is given
by p,iv = W( I’;';év ), then the results presented on Figure 1 hold for the modified
CUEs as well. The main results of Section 1.3 are proved in Sections 3 and 4. The
asymptotics of the variance in the Poisson regime, formula (1.22), is computed in
Section 3.1, while in the GUE regime, Theorem 1.5 is proved in Section 3.2. Both
the critical modified CUEs and GUEs are analyzed, in a common framework, in
Section 4. In particular, the proof of Theorem 1.7 is divided in two steps. First, the
limits of the cumulants are established in Theorem 4.4 (see also Proposition 4.13).
Then the weak convergence of linear statistics is established in Corollary 4.10. In
Section 4.3, we show that the random processes Ey ; defined by Theorem 1.7 are
not Gaussian and we prove the special property of the MNS ensemble (see The-
orem 1.9) by computing the generating function of the coefficient BYf,. We also
prove that, as it is expected from Figure 1, the random field Ey . converges to a
Gaussian process in both limits 7 — 0 and T — o0; see Proposition 4.15. Finally,
in Section 4.4, we show that the critical MNS ensemble is not Gaussian by veri-
fying (1.32). All the asymptotics that are required to analyze the modified GUEs
are gathered in Appendix A. In Appendix B, we prove Theorem 1.6 and, as an
example, we compute the critical variance of linear statistics of the MNS ensem-
ble. In Appendix C, we prove some technical lemmas which shows that there is no
counterpart of the main combinatorial lemma for the modified ensemble. Finally,
we will use the following conventions:
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C > 0 is a universal constant which changes from line to line.

xny L zy iflimy 00 XN /2y = +00.

xy ~zy iflimy o xy/zy = 1.

xy ~zy iflimy_oo(xy —zn) =0.

xy = O(zy) if there exist k > 0 and C > 0 such that |xy| < Czy|log N|“.

2. Modified circular unitary ensembles. We present the counterparts of the
results of Section 1.3 for the modified CUEs (see Definition 1.12). Along the way,
we set up definitions and lemmas that will also be used in Sections 3 and 4. We
consider circular ensembles as simplified models which are helpful to understand
the combinatorial structure behind the cumulants of linear statistics of the MNS
model because no asymptotic estimates are required to pass to the limit. In Sec-
tion 2.1, we review the method introduced in [39]. In Section 2.2, we show that the
modified CUEs exhibit the same transition as in Figure 1. Finally, in Section 2.3,
we provide asymptotically equivalent kernels for the modified CUEs in the critical
regime § = o and deduce a limit theorem from the results of Section 4.

2.1. Soshnikov’s method: Proof of Lemma 1.14. In [40], Lemma 1, Soshnikov
proved that the cumulants of linear statistics of a determinantal process are given
by

W[Ef1= 2: M(m) Tr[ f™ K £ ... f™K],
|m|=n
where K is the correlation kernel of the process and the sum is over all composi-
tions m of n [see formula (1.19) and the above notation]. Applying this formula to
a modified CUE and using elementary Fourier analysis, we obtain Lemma 1.14.

PROOF OF LEMMA 1.14. The correlation kernel of the modified CUE is
K[[,V xX,y) =2 kez p,jcve’z”k(y_x), and, by (1.17), we have for any composition m
of n,

£(m)
2.1 T ™MK KN = 3 [ e i — ki),
KEZl(m) i=1

where by convention ko = k¢m). Moreover, for any indices 5,7 € Z and m € N,

fis—r= > fa—rfla—k)-- f(s—kn1).

kezm—1

So, if mj =my + ---+ m; as in definition (1.25), we can write for any i =
0,...,£—1,

Stk — k)

= Z f(kmi+1 - km,')f(kﬁﬂrz - kﬁ[«kl) e f(kﬁi_;_l - kﬁi.{.l*l)
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and if we make the change of variables «; = ky; in equation (2.1), putting every-
thing together we obtain
£(m)
T MK e ik = Y Hf(k —ki—1) ]"[ pk,
keZntlikg=ky i=1

We can also make the change of variables u; = k; —k;_j foralli =1,...,n in
the previous sum. This maps {k € Z" : ko = k;} into {(ko, u) € Z x Zg} and we
conclude that

£(m)
Tl’[fleII,vfmz fmJKN Z Hf(u ) Z l_[ pk0+ul+ +um
ueZy i koeZ i=1

Hence, Lemma 1.14 follows directly from formula (1.19). O

In Section 1.4, we used Lemma 1.14 to show that a modified CUE has non-
Gaussian fluctuations at the macroscopic scale. In the sequel, we will use it to
investigate fluctuations at mesoscopic scales. Let f € Co(R), 0 < § < 1, and recall
that T = [—%, %] with the endpoints identified. When the parameter N is suffi-

ciently large, the function f(-N?) is supported in [—%, %] and it can be extended
to some function f5 € C(T). Then the Fourier coefficients of f5 are given by, for
any u € 7,

) =N fuN~?),

so that
. £(m)
22) CyylEfsl=N"" 3 [T/ @N7°) 37 M@ Y~ TT P+, -
! ezl i m|=n keZ i=1 ’

2.2. Central limit theorems. For now on, we will assume that the spectrum of
the modified CUE correlation kernel is given by p,](V =y |k‘§£/ ), (1.36). More-

T
over, to keep the notation simple, we will write pj instead of p,ﬂv . We begin by

proving a classical CLT at the Poisson scales (§ < «). The proof relies on an
elementary variance computation. Observe that the asymptotic variance of The-
orem 2.1 matches that of Theorem 1.4 only up to a multiplicative constant. The
difference is due to our normalization. Namely, the scaling (1.36) implies that the
modified CUEs have density 2N at the origin and

(2.3) EK}y[Efg]:{2N+N_O>OO(N°‘)}N_5/f(x)dx.

THEOREM 2.1. Consider a modified CUE with kernel (1.35)—(1.36) and let
1/2
fe H

tic N o f5 converges in distribution to a Gaussian random variable with vari-
ance 27| £

(R). Forany scale 0 < 6 < a < 1, the centered and rescaled linear statis-

LX®R)



1220 K. JOHANSSON AND G. LAMBERT

PROOF. When n =2, equation (2.2) reads

(2.4) C,%{z)v[Ef(s]: BN F@NT) F(—uNT) D" prl = presa).

UeZ keZ

We let ak2 = px(1 — py) for any k > 0. Since p_j = px, we have for any u € Z,

> k(1= prs) = po(l = pu) + Y pi(2 = Piu — Pk—u)

kel k>0
=po(l = pu) +2Y 0f + D PPk — Phu — Pk—u)-
k>0 k>0

Since the coefficients py € [0, 1] and the shape W is nonincreasing, we can check
that for any u € Z,

< lu|

> pe(pk — Prta)

k>0
(2.5)

so that

S el = ps) — 220,3‘ <2ul +1.
keZ k>0

If we combine this estimate with formula (2.4), for any real-valued test function f,
we obtain

’N C2VIES]—2N S| F N of

ueZ k>0

(2.6) R
< N7 Y| @N )P 2lul + 1).

UEL
If we also assume that f € H 1/2(R), the RHS satisfies
o0
N3 | f(N~? 2|u|+1)<CN5/ | ) [*lv]dv

UEL

and (2.6) yields the estimate

Na—“cﬁ(g[afg]:zN—az\f(uN NS of i+ ,0 (N> ™) £113,0,2)-
UEZ k>0

Moreover, according to formula (1.6), a Riemann sum approximation gives

2.7) lim N7 of = /\p(n—l)(l—w(n—l))dz:rBﬁ,.
R

N—o0 k=0

By convention B%I, =1 and we conclude that when § < «,

lim N°7¢ Cyy[Efs] =12t / i@ ds.

N—o0
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Since the variance of the random variable Ef; is diverging like N~ and its ex-
pected value is of order N'~% by formula (2.3), the CLT follows from Soshnikov’s
theorem 1 in [40]. [

Note that, using the upper-bound (2.5) and the limit (2.7), we have for all u € Z

> okl = pe) <2lul+ O (N9).
kel N—o0

Hence, by formula (2.4),

@8)  ChyIEf1 =28 Y f@N )P lan|+ 0 (V).

UeZ

This shows that for any f € HO1 / 2, the variance of the linear statistic 2 f5 remains
bounded in the regime § > «. Actually, if (1.36) holds, we have in the regime
d>a,

2.9) Jim Vargy[Efs]= 172

This suggests that at any scale § > «, we should observe the same limit theorem
for the modified CUEs as for the mesoscopic CUE and sine process. We can prove
formula (2.9) in the same way we obtained Theorem 2.1 but the argument is al-
ready technical and becomes really involved when it comes to computing the limits
of higher-order cumulants. A better approach consists in deducing the CLT from
Soshnikov’s theorem [39] by proving that the cumulants of a given linear statistic
have the same limits regardless of the shape W of the modified CUE.

THEOREM 2.2. Consider a modified CUE with kernel (1.35)—(1.36) and let
fe H(} (R). For any scale 1 > § > o > 0, the linear statistics Efs converges in
distribution to a Gaussian random variable with variance || f ||%11 -

PROOF. Let us decompose py = Ljkj<ny + &k Where & = lIl(lkl‘v_aN) — Likj<n-
We can write

and ) collects all the terms which contain at least one factor &4y, +..+u;;, When

terms exactly add up to C ;’{ ~LEfs] and, since | pg|, |ex| < 1 for all k € Z, we have

"1
|5N(f,5,a,\lf)|§227 Z (I’:l)N—na Z Z|€k|'
l

=1 " menN! ezl k=0

we expand the products ]—[g_l Pk+ui+-+uz, 0 formula (2.2). Plainly, all other

Hf(uiN_s)
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Moreover, by the definition of ¢, we have the estimates
0

T lal= Y. 1—W(kN“)§CN°‘/ 1 —W(r)dt,
0<k<N —N<k<0 —00
o0
D ekl =) WkNT) < CN"‘/ () dt.
0

N<k 0<k

Both integrals are finite since W € § and there exists a positive constant C,, > 0
such that

EV (8,0, W) < CuNo /R TT1F @l d" .
0 1

The assumption f € HO1 (R), guarantees that for any n € N,
[ Tl <cc,
Rp

so that EN = O(N®7%) as N — oo. Therefore, the cumulants C?(N[Ef(;] and

P
Cv[ESs] have the same limits for all n € N and the CLT follows directly from
Theorem 1 in [39]. [

REMARK 2.3. In the terminology of Definition 1.10, we have just proved
that the rescaled kernels N*‘SK]/,V (N%x, N*‘Sy) and N KN (N%x, N*‘Sy) are
asymptotically equivalent in the regime § > «. We could also have deduced this
fact from Lemma 2.6 below by checking that the CUE kernel KV which is given
by (1.37) satisfies the property L' B at any scale 8 € [0, 1].

2.3. The critical regime. It remains to look at what happens at the critical scale
8 = a. We have already seen that the variance remains bounded as N — oo and we
can compute its limit by applying a Riemann sum approximation to formula (2.4).
By symmetry,

Chy[ELd = 2NT2 30 fuN ™) f(=uN ) 3 (Pku+ Pita) (1 = i)
u>0 k>0

Since pyyj = \IJ(#) for any j > — N, we can check that for any 0 < o« < 1 and
for any t > 0,

Nh_r)nOO Var KY [Efel

(2.10) :2/()oof(u)f(—u)/R(\IJ(t;u>+W<ttu>)(l—\ll<£>>dtdu
2.11) :2/R|f(u)|2/R\p<HT”><1—\p<£)>dtdu.
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Because of some subtle cancellations, it is difficult to use formula (2.2) to com-
pute the limits of the higher-order cumulants by Riemann sum approximations.
Another approach is to rewrite the correlation kernel of the modified CUE before
using the cumulants formulae. From Definition 1.12, a summation by parts yields

KN =Y(pt = piy) KK (x. y)
2.12) =
= = ()
k=—N

where the parameters & € (0, 1) are given by the mean-value theorem. Now, we
may use formula (2.12) to relate the kernel K ;,V to the sine kernel.

PROPOSITION 2.4. At the critical scale § = «, the modified CUE kernel KII,V

and the kernel L{I\i,7 given by (1.33) with n(k) = (N + k + %)N‘“ are asymptoti-
cally equivalent in the sense of Definition 1.10.

By Proposition 1.11, a similar approximation holds for the modified GUEs.
There is only a minor difference in the definition of the function 7 so that the limits
of the cumulants of both models can be computed in a common framework which
is presented in Section 4. In order to prove Propositions 1.11 and 2.4, we need
to provide a criterion to check whether two kernels are asymptotically equivalent.
First, we need to introduce a new definition. A similar concept was introduced
in [32] to control cumulants of some complex determinantal processes.

DEFINITION 2.5. A family of kernels (L") y~ satisfies the property L' B if
for any compact set A C X, there exists a sequence I'y : X — R™ and v > 0 such
that and all (x, y) € AZ,

ILN (x, )| < T (x —y),
and

N — 0 1() NV,
”IN”ll(A) N (l g | )
wherefi_—{x_—y—z:y,zeA}.

LEMMA 2.6. Two families of kernels (L™ )y~o and (K™)y-q are asymptoti-
cally equivalent if (LN) N~o has the property L' B and there exists k > 0 such that
for any compact set A C X,

sup{|LY (x, y) — KN (x, )| : (x,y) € A%} = LO_(NT).

— 00
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PROOF. Let £ e N and f1,..., fr € Co(R). If we replace KN =1LN + EV,
we get

Tr[KNfi- KN f ] =Te[ LN fi - LV ]+ Y. Te[J A TE A
Jke{LN EN}

Note that all terms of the last sum contains at least one operator EV . By assump-
tion, we can suppose that all the test functions are supported in a compact set A and
sup{|EN (x, y)|: (x, y) € A2} < CN~*.If we first look at a trace which contains a
single operator EV, by formula (1.17), we have the estimate:

|Tr[J1f1---J€fg]‘

4
<N ] ||fk||oo/Az|f1(X1)LN(X1,X2)---LN(Xe—l,XE)H_[ dutx)).
k=2 j

J

Since LM has the property L!'B, there exists 'y : X — R* such that
|LN (x, Xk+1)| < Tn(xr — xx+1) and a change of variables yields

4

Tl fie- 9] < N T felloolITW I i
k=2

A similar argument shows that any trace which contains j operators EV is bounded
by N™/¥ times a logarithmic correction coming from || I"y|| ;1 A Therefore, using

the notation O introduced in Section 1.5, we get
(2.13) Te[KY fi--- KN fi] =Te[ LN f1--- LY fi] +N0 (N7%).
— 00

According to Definition 1.10, this completes the proof. [

PROOF OF PROPOSITION 2.4. A Taylor expansion of the function sin(w (x —
y)N~%) in the denominator of formula (2.12) shows that
N™*K)(xN~* yN~)
(2.14)

. k + &\ sinQ2mrn(k)(x —y))
> o(Txe)

= O (N¢
TN¢ i TN + ( )

— T(x —y) N—o00
and the error term is uniform over any compact subset of R?. Then, by Lemma 2.6,
it is enough to prove that the RHS family of kernels which we denoted by

L{I\,”n(x, y) satisfies the property L'B. Since the kernel L{I\f’n(x, y) is translation-
invariant on R, we can choose I'y(x) = |L]q\j,,,(0, x)|. It is well known that there
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exists a universal constant C > 0 such that for any s > 0 and n > 0,

L]
c & <k+f§k

dy < Clog(sn).

sinn(x —y) ‘

This implies that

2.15) IPw L = —= >log(sn(k)).

Since n(k) = N'=% + k+1/2 and fo ®(t)logtdt < oo, we deduce from the esti-
mate (2.15) that there is a constant C which only depends on the shape W so that
ITN I p1— ) < Clog(sN). U

Proposition 2.4 implies that the determinantal processes with correlation kernels
K 2’ and LN have the same limit at the critical scale. By Corollary 4.10, this yields
the followmg limit theorem for linear statistics of the critical modified CUEs.

THEOREM 2.7. Let f € H(} (R), 0 <a <1 and V¥ € €. The linear statistic
Efy of the determinantal process with correlation kernel (1.35)—(1.36) converges
in distribution as N — oo to a random variable Ey ¢ f whose cumulants are given

by formula (1.31). In particular, up to a scaling, this is the same limit theorem as
for the critical modified GUEs.

3. Central limit theorems for the modified GUEs. We begin in Section 3.1
by proving some technical lemmas that are required to compute the asymptotic
variance of linear statistics of the modified GUEs. In Section 3.2, we prove The-
orem 1.5 by comparing the rescaled correlation kernel of a modified GUE to that
of the classical GUE using the perturbative method developed in Section 2.3. All
these results are based on the asymptotics of the Hermite polynomials and the GUE
kernel which are presented in Appendix A.

3.1. Proof of Theorem 1.4. We start by proving a classical formula for the
variance of linear statistics which is valid in a general context.

LEMMA 3.1. Given a determinantal process with a correlation kernel K of
type (1.3), for any test function f € Co(X), we have

Varg [Ef]= Y of / F )20 p(dx)
k=0

1
T3 //(f(x) — FO))’IK (e, p) P dx) nidy),

where o*kz = p,jcv(l — p,iv).
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PROOF. If we apply formula (1.19) when n =2,

Varg[Ef] = / f)?K (x, x)p(dx)
—/ FX)FOK(x, y)K(y, x)u(dx)n(dy)
= % // (f) = FO)*K (x, K (v, ) p(dx)p(dy)
- [ 10K KO @@

+/f(JC)ZK(x,x)u(abc).

Note that when the kernel K is reproducing, the last two terms cancel. In general,
since the function v are orthonormal, we get

- // FOOPK (6 1)K (v 1) (dx) (dy) + / F)?K (x, 1) (d)

==Y ppj / @ M) (dy) / f ()20 (0)@7 () (dx)
k,j
+> / F )20k ()P (x) e (dx)
k

:ZUlcz/f(x)2|<ﬂk(x)|2M(dx). .
%

We can use Lemma 3.1 to compute the asymptotics of the variance for linear
statistics of the modified GUEs. We call the reproducing variance the quantity

1
G vo(h) =3 [[150) = FIPIKY ot 0 dxay.

This definition comes from the fact that, if the correlation kernel K is reproducing,
then okz =0 for all k € Z and Varg[Ef] = Vo(f) for any linear statistic. On the
other hand, we call the Poisson variance the quantity

(3.2) Va(f)=Z<7k2/f(x)2190k(X)|2dx.
k=0

This is motivated by the observation that Varg [#] = V(1) and, as we already men-
tioned in the Introduction, this quantity measures the extra randomness induced in
the process because the correlation kernel is not reproducing. In particular, for a
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modified GUE we have
k—N k—N
(3.3) a,fzxp< )(1 —\p( >>
TNY TN¢
and
00 0
(3.4 VarK\zyv’a [#] = ;sz ~ rN"‘/ lIJ(t)(l — \IJ(t))dt

which gives formula (1.9). We shall see that, except at the critical scale § = «,
there is only one component of the variance which is asymptotically relevant.

LEMMA 3.2. Forany O < «, 6 < 1 and for any f € Co(R), we have

Volh =38 [ pwldx+ o (V)

REMARK 3.3. Itis not difficult to adapt the proof so that Lemma 3.2 holds for
any function f € L?(R) which is uniformly continuous. In particular, by Morrey’s
inequality, this covers all test functions in the Sobolev space H'(R).

PROOF. Since the rescaled Hermite functions satisty |¢k|;2 =1 for all k > 0
and we suppose that the test function f is bounded, by formula (3.2), for any
O<e<l,

V= Y ok / 5P loxaPdr+ (17 X ofue).

|k|<N1-¢€ |k|>N1-€

The condition W € § guarantees that, if € < 1 — «, the error term is converging
to 0 as N — oo. Actually, under the stronger assumption that W € €&, this term
decays faster than any power of N and it will be neglected in the following. More-
over the assumption that f has compact support in conjunction with the condition
|k| < N'=¢ implies that we can use the bulk asymptotic for the Hermite functions,
formula (A.2). Namely, for any x € supp(f),

(3.5) onk(xN %) = cos[(N +k)<% = F(xNN_5)>] + 0 (N7,

where we set xy =x2% >+ N+ Lhen

Vo(f5)=N"" 3" o%m

k| <N1—€

< / fy?

2dx+0(N—5)}.

cos|:(N —+ k)(% — F(XNN_‘S)):|
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Observe that according to formula (3.4), we have Z|k‘< Nl—e 01%, +x = O(N®) and
the previous estimate gives

N—8
Vo (fy) = {VarKN #1712,

+ Y =DVHef
|k|<N1=¢€

x /f(x)zcos[Z(N +k)F(xyN7°)]dx + O(N““S)}.

The second term is a sum of oscillatory integrals and we will show that it converges
to 0. Let us make the change of variable z = N® F (xy N ~%). By Definition A.1,

/ f(x)*cos[2(N + k) F (xy N~°)] dx

k
N

2N?® k P _
8 / fz(T\/l + NG(ZN_S))G (eN %) cos[2(N + k)N 2] dz.

Since the function f is uniformly continuous (we assume that f has compact
support in [—%, %]), there exists a sequence €y \ 0 such that uniformly over all

lz| < L and all |k| < N1,

‘fz(zNa\/jG(ZN_a)) fZ(ZGﬂ(O)Z)‘_GN.

Since G’(0) = 1/2, it follows that for any |k| < N1 7€,

2
== 1+
T

/ )2 cos[2(N + k) F (xy N %) dx

_—/f < )cos 2(N +k)N~°z]dz + O(ey).

Since the sequence (N — N'"¢)N =% — 0o as N — oo, by the Riemann—Lebesgue
lemma, we can also assume that

sup
[k|<N1-¢

/f(x)zcos[z(N+k)F(xNN—5)]dx <en.

Thus, going back to the Poisson variance, we have shown that

N 5
Vo (fs) = 5 Vargy FHIILA N2 + NQOO(EN)}.
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The lemma follows after replacing Var K [#] by formula (1.9). O

In order to prove formula (1.22), it remains to estimate the reproducing vari-
ance Vp(f). Before proceeding, we need to recall a few properties of the GUE
correlation kernel (1.4). We refer to Appendix A for further details. First, note that
according to the convention of Definition 1.1, the Christoffel-Darboux formula,
(A.6), implies that for any x, y € R and M > 0,

(3.6) (x = MK (x, y) =VM/N (e )om—1(3) — em—1()om ().

Moreover, the uniform bound (A.5) for the Hermite functions implies that there
exists C > 0 such that, for any n > 0,

3.7 @nlloc < CNVAn=1/12,
In particular, |K(/)W (x,y|<C V'NM and by formula (3.6), this gives us a simple
bound for the GUE kernel. For any x, y € R, we have
1/3

K (x, )| < CWNM) A liw_ o

The connection with the modified GUE kernel comes from a summation by
parts:

0
K§ oG, y)=>"(pk — prs) K (x, )

k=0
(3.8)
1 ad k+ &
= Z Q>< e )Kév+k(x,y),
k=—N

where ® = —W’ and & € (0, 1) are given by the mean-value theorem. If we further
suppose that the shape W € €&, (1.11), there exists ¢ > 0 so that for any I' > 0,

k N1/3
k|>T Ne 2 lx — yl

(3.9) ‘rzva

By formula (3.8), this implies that for any sequence I'y > 0,

1 k+§k N4k
KY  (x,y)= > <I>< )Ko Rix, y)
TN® k| =T N TN®

b0 (v 2Y)
N—oo |x — ¥l

(3.10)

uniformly for all x, y € R.
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REMARK 3.4. The assumption W € & implies that by choosing I'y =
(logN )2, the error in formula (3.10) decays faster than any power of N. Anal-
ogous approximations hold for more general shapes, although with an error term
which may not be good enough to deal with all mesoscopic scales. Moreover, the
condition ¥ € € leads to a straightforward proof, otherwise we would need to take
into account the speed of decay of W and to produce more precise estimates.

LEMMA 3.5. Forany 0 <« < 1 and any scale 0 < § < 1, there exists a con-
stant C > 0 such that for any function f € HO1 / Z(R), the reproducing variance

satisfies for all sufficiently large N,

Vo(fs) < ClLf 13-
PROOF. To simplify the notation, let us assume that the temperature t = 1 and

set the parameters & = 0. We will also let xy = xN~8, YN = yN_‘S and fix L >0
so that supp(f) C [—%, %]. By formula (3.1) and the approximation (3.10),

1
Vo = 3 //|fs(X) — HOPIKY .y Pdx dy

(3.11) < //Ifa(X)—fs(y)|2!1?ql\,’,a(x,y)\2dxdy
+ 0 _(I1fsllznpN'Pemt),

where

(3.12) K o) =N > @kN*)K) ™, y).

|k|<I'yN¢

By formula (1.20), || f51%,1,» = Il f1I3;1> and, if we let 'y = (log N)?, the error in

the previous estimate converges to 0 and it remains to show that
2| 2
J[15560) = HIPIRY . 0 dxay

(3.13) = //}f(x) — FOPINTRY yen, yn) [P dx dy

2
§C||f||H1/2-

According to the sine-kernel approximation (A.10), if the density N is sufficiently
large compared to L, there exists a constant C > 0 such that for all k| < 'y N¢
and forall x,y € [-L, L],

INT R (e, yw)| < .
lx — yl
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Since, for any I" > 0,
1

k+ &
TN@ Z (D( TN« )51’

|k|<I'N*

(3.14)

this implies that for all x,y € [—L, L],

INTRY oy yw)| <

lx =yl

Hence, by a change of variables,

//|fa(X) — IR G )P dxdy

(3.15) <C // fO =0 P
[-L,L]? X =y

+ // |F) = FOIPINTPRY fGons yw) | dx dy.
R2\[-L,L]?

For any L > 0, the first integral on the RHS of (3.15) is bounded by || f 1B 2 and
to obtain the upper-bound (3.13), it suffices to show that there exists a constant
C(f) = 0 which only depends on the test function f such that

(3.16) //Rz\[ @ - FOIPINTRY v yw) P dxdy < —— (f)

Thus, choosing the parameter L sufﬁc1ently large, by formula (3.11), this implies
that the variance Vo(fs) < C| f 112 2 The rest of the proof is rather technical
and is devoted to prove the estimate (3.16). Since the function f is supported in
[—%, %], by symmetry of the GUE kernel, we have

//R2\[ . L]2|f(x) - f()’)}2|N751?€,]’a(xN, yN)|2dx dy

e fx) — f(y)
(3.17) <4NTH Y O(NTY)D(jNTE //y|<L/z ‘

k| < N¥ r=
HEWE

ZKé\H—k

v
x |(xn — yw) (v, yN) Ky (e, ya) | dx dy.

Since gx(x) =,/ ”\/*/Eﬁhk(x%), we deduce from the bulk asymptotic (A.2) with

y = 1/6 that there exists a universal constant C > 0 such that for all |k| < Ty N¢

and for all |x| < 2(7%/\;_1),
C
(3.18) [N+ (X)] < (4NT+I< —a2x2yl/A
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In particular, for any |y| < L/2, we have |on+x(yn)| < C, and by formula (3.6),
we get

N+j
|(xn — yN)ZK(/)V+k(XN, yW Ky T (xen, )|

< C2(|<PN+1<(XN)<PN+J' N+ |on4k ) oN+j—1 (xn) |

+ [N k=1 (N ON+ (N | + [N k=1 (N ON+ j—1 () ]).

Jk’j - //|y|<L/2
x>L

By (3.17), we see that there exists C > 0 such that

Let
JSx) — 2

~(xN)|dxdy.
X —

//Rz\[ L L]2|f(x) - f(}’)|2{N_8E\IpV,a(XN, yN)|2dxdy

(3.19) <CN™2 3 QKN *)P(jN*)
k| < N®
HEVE
X {Jk,j + Jij—1+ Jk—1,j + Jk—1,j-1}

So that in order to prove the estimate (3.16), by (3.14), it remains to show that
Jk,j <C(f)/L forall |k|,|j| < T"N¥. To do so, we shall combine the asymptotics
from Appendix A. First of all, since supp(f) C [— %, %], we have for any |x| > L,

‘f(x)—f(y)'Sjl 21 flloo 4 f lloo

yesp() [ o = Lyesupp(f) ™
and, if C(f) =4/ f % |supp f], we get
/“2 f@) - f(y) ‘ _CW)
-L/2

T2
Hence, by a change of variables,

o© d
(3.20) Jej <C(HNT / lon k@ ens (0] S
LN—$ X

Suppose that j > k and let ay. = 2(7% We split the integral:

/ 6|<0N+1<()C)§0N+j()C)|

{/ / / }|§0N+k(x)§0N+J(X)|—
LN—$

(3.21)
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Using the upper-bound (3.18), the first integral is bounded by

/a | ) A( ){dx <C2/a dx
s ON+k (X)ON+j(x 2= v x2(4NT+k _”2x2)1/2'

Since a? < 477—;]( when N is sufficiently large, we obtain

CN?’

a- dx
(3.22) [ Jovaons ]S <

Using the uniform bound (3.7), since a4 —a_ = ;i[N ~1/2 the contribution from
the edge integral gives

a4+ dx _
(3.23) [ onseon |G < e

Finally, we have

o0 dx 1/6 o0 dx
|¢N+k(x)(PN+j(x)|x—2 <CN |</>N+k(X)|F,
a a.

+ +

and the estimate (A.4) implies that, for all x > a,

_ 2/2N3/4
v i ()] = CN VA SHT

Thus, we obtain for all |k|, | j| < T N9,

o d
(3.24) / o4k (NP4 ()| 5 < CNY/ 122V
a ’ X

+
If we put together the estimates (3.22)—(3.24), we have proved that when N is
sufficiently large,
dx CN?
_—
x2 = L
Hence, it follows from formula (3.20) that for any | j|, |k| < 'y N%, the integral

Jr,j < C(f)/L. By (3.19) and (3.14), we conclude that the estimate (3.16) holds
and this completes the proof. [

(3.25) / lon 1k (X)@nj (x)]
LN

We are now ready to give the proof of formula (1.22), and hence of Theorem 1.4.

It follows immediately from Lemmas 3.1, 3.2 and 3.5 that in the regime § < «, for
any test function f € HO1 2N L*®(R),

=1 Foaa—s 2 a3
VaI'KqIY’a[ufg]—2N /Rf(x) dx+N_0)oo(N ).
Note that the same argument shows that, in the regime § > «,

(3.26) Vargy [8fs1 = C(If 172+ 1£15)-
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At the GUE scales (8§ > «), the limit of the variance is given by Theorem 1.5 which
is proved in the next section. At the critical scale 6 = o, by Lemma 3.2, the Poisson
variance V, (f,) converges to %H f ||i2 and the limit of the reproducing variance
Vo(f«) is computed in Appendix B by a Riemann sum approximation.

3.2. Proof of Theorem 1.5.

THEOREM 3.6. Let B be the GUE eigenvalue process with correlation kernel
K(I)V given by (1.4). Forany0 <6 <l and any f € Hol/2 N L*®(R), we have as the

number of eigenvalues N — 0o,

Efs = N(0, ||f||12ql/2)-

Theorem 3.6 was first established in [6, 7] for the resolvent function x +—>
(x —z)~! where Jz > 0. A general proof was given only recently in [19]. Their ar-
gument exploits a nice connection between the characteristic polynomial of a GUE
matrix and a log-correlated Gaussian process. In [5], a generalization of Theo-
rem 3.6 is proved for Gaussian 8-Ensembles. Yet another generalization to certain
classes of orthogonal polynomial ensembles is made in [9, 25]. In particular, the
proof of Theorem 3.6 in [25] is based on the cumulant computations presented in
Section 4 and the sine-kernel asymptotics of Theorem A.2. We now turn to the ap-
proximation of the modified GUE correlation kernels at the so-called GUE scales
(6 > «). By Definition 1.10, Proposition 3.7 below combined with Theorem 3.6
implies the central limit Theorem 1.5.

PROPOSITION 3.7. For any shape V € €, the kernel Kfl,v’a and the GUE ker-
nel Kév are asymptotically equivalent at any scale § > o,

NTOKY (NP x, NPy) = NTKY (N0, N7%).

PROOF. To simplify the notation, let us assume that the temperature r = 1 and
the parameters & = 0. The condition ¥ € € implies that for any I > 0,

YT WENT) 4+ Y (1-W(kNY)<CN% .
k>TN* k<—I'N%

So, if we let I'y = (log N)?, these sums decay faster than any power of N and
combined with the uniform bound (3.7), this implies that

N—1 FyN¢
K o= o)+ > WEN)onk()on+k ()
k=0 k=0
'yN¢

— > (1 =Y (=kN"*)on-k(®X)pn-i(Y)
k=1
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with a uniform error. Moreover, for any L > 0, the bulk estimate (3.18) implies
that that all x, y e [—-L, L],

Y Jen+k(N7°x)on4k(N°y)| < 2C*Ty N
[k|<I'yN¢

Since the function ¥ € [0, 1], this yields

N—1
N7KY N, N2y) =N 3" e (N °x)u(N°y) + O (N*7)
k=0 N—o0

uniformly for all x, y € [-L, L]. The sum on the RHS corresponds to the rescaled
GUE kernel. Thus, by Lemma 2.6, to prove that the kernels K\]I—\l/,a and K(I)V are
asymptotically equivalent, it remains to show that the latter satisfies the property
L'B. Taking M = N in the approximation (A.10) implies that there exists a posi-
tive constant Cr, such that for any 0 < § < 1,

log N
N if v — y| < =
INTKY (N2 yNT) [ < Tn(r—y):=Cr{ log N
if | — y| > —o

Ix — yl N

and we immediately check that f_LL n(z)dz <4CplogN. O

4. Cumulants of the critical models. In this section we prove Theorems 1.7
and 2.7, then we analyze the random processes Ey, ; which arise from the critical
modified ensembles. In fact, we will not investigate directly the modified ensem-
bles but the processes with kernel L]\E,n given by (1.33). By Propositions 1.11
and 2.4, there are two choices of the function n which correspond to the modified
GUEs and CUEs, respectively. However, our analysis works as long as n satisfies
the conditions (4.4)—(4.5) below. In Section 4.1, we show that LN W is the correla-
tion kernel of a determinantal process and we prove Proposition 1.11. The conver-
gence of smooth linear statistics of these processes is established in Section 4.2;
see Corollary 4.10. The main result in Section 4.3 is that, for all W € § such that
W # ¢ and for all = > 0, the random variables Ey ; f are not Gaussian. Then, in
Section 4.4, we show by constructing an example that, despite the special property
of the shape ¥, the MNS ensemble at the critical scale also converges to a random
process which is not Gaussian.

4.1. Asymptotically equivalent kernels for the critical modified GUEs.
LEMMA 4.1. Let N,t,T' >0, 2 € (0,1), ¥ € § and n be a nondecreasing

function. The kernel L{g p given by (1.33) defines a translation-invariant determi-
nantal process on R.
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PROOF. Since the kernel LG,’ p» We can define its Fourier transform:

~ 1 k + &
4.1 LY ()=— d><—>1 - :
4.1) vy W) =—g kl;m vl R SIORICIC)

Plainly, the function LY | € L' (R) and by (1.33),

(4.2) Ly ,(x,y) = /ng’n(v)e"zm(x_y)dv.

In [40], it is established that for any translation-invariant kernel L, the condition
0<L<lI, guarantees that it defines a determinantal point process. Recall that the
parameters & have been chosen so that CID(I?;,%) =W(; ]f,a) — W( 5;;
follows that for any v € R,

rN”

Ly, <w(-rr <1

Moreover, since ® > 0 by assumption, /L\{},’ , = 0 and we conclude that LY , 1s the
correlation kernel of a determinantal process. [l

PROOF OF PROPOSITION 1.11. Letl/3<a <1,V e and 'y = (logN)Z.
We also assume that 7 = 1 and combine the approximation (3.10) of the modi-
fied GUE kernel K \II\,’ with the asymptotic formula of Theorem A.3 with xo = 0.
Namely, taking § = « in formula (A.11), we obtain

N7KY (xN~*, yN~%)

N Y q)(k-l—f;‘k)sm [x N /TH+k/N(x — y)]

1-3a
N¢ T(x —y) +0(N )

lk|<I'ny N«

The estimates (2.15) shows that, with n(k) = %Nl_“«/l + k/N, the kernel L{\yl,n
given by (1.33) has the property L' B and it follows from Lemma 2.6 that

NT*Ky ,(xN~® yN~®) =Ly (x, y). O

Propositions 1.11 and 2.4 imply that each of the modified ensembles have an
asymptotically equivalent kernel at the critical scale of the form LA\I,’,U with
(i) nk)= (N + k)N~ for the modified CUEs,

4.3
4-3) ) nk)= %Nl_“«/l + k/N for the modified GUEs.

In the sequel, we will compute the limits of the cumulants for any determinantal
process with kernel L Wy which satisfies the following conditions. The function n
is nondecreasing and it satisfies uniformly for all |k| < Ty N¢,

(4.4) 1) =N"+pkN"*+ 0 (N7,
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where v, B8, € > 0 such that NV > I'y and

4.5) lim N'max{¥((y),1—¥(-Ty)}=0.

N—o00
In particular, for the modified GUEs (resp., CUEs), the asymptotics (4.4) holds
withv=1— o« and 8 = 1/4 (resp., B = 1) and, if the shape W € €&, the condition
(4.5) holds for any « € (0, 1) with I'y = (log N)2.

4.2. Proof of Theorem 1.7. Given the expression (4.2) for the kernel L{I\f’n, we
can repeat the proof of Lemma 1.14 replacing sums by integrals and we get the
following formula:

"y [Ef1= /R AT 3 vom)

im|=n
4.6)
£(m)

x/Rl_[Zg’n(v+m+---+um,)dv,
i=1

where the sum is over all compositions m of n € N, (1.18). Combining this formula
with (4.1), we get an expression for the cumulants that is appropriate to pass to the
limit as N — oo. In this section, to simplify the notation, we will assume that
& = 0 and (unless stated otherwise) all sums run over |k;| < I'y N¢. We define for
any composition m of n > 2, the function

£(m)
“.7 Hm(u,k)=/ H ]]-|U+M1+"'+Mmi|§77(ki)dv‘

i=1

LEMMA 4.2. For any [ € Co(R), the cumulants of a linear statistics of the
determinantal process with correlation kernel (1.33) are given by

A n k;
CLg,n[“f]_<rN“> 2 Hq)(tN"‘)

ki<--<kyi=1

(4.8)
x | []f@) > Mm) Y Hm(u,ok)d" 'u.

Ry |m|=n oeSh)

PROOF. To simplify the notation, let us also assume that r = 1. By formula
(4.1), for any composition m of n of length £ and any v € R, we have

4 4
. _ ki
(4.9) [TL5, =N 3 H@(—Na)ﬂmsmki)-
i=1

ki,....kgi=1
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If weletely =0andef, =1— N0y, [T, ®(;k) forall £ <n,
we get

[0 bl = 3 TTo(50c) [Tz

By (4.7), this implies that

L
{1 _eg}/ ]"[Lg,n(v+u1 + - Fum) dv
Ri—j
(4.10)

=N"" 3 ]‘[@( )Hm(u k).

ki, kyi=1

Observe that by (4.9), since N™“ )", ®(k N~%) < 1 and we assume that the con-
dition (4.4) holds, we have fR ]_[le Lg’n(vi) dv; < CN". Moreover, by definition
0< ef\, < W (I'), so that according to condition (4.5),

lim eN/l_[Lq),](v—Ful—f- “+uzm,)dv=0.

N—o0

Thus, by formula (4.10),

¢
/ [1L8,@+ur+-- +um)dv

Ri=1
~NT N H@(Na) >~ Hm(u,0k).
k<-<k,i=1 oeS(n)
We conclude by using formula (4.6). U
In the following, we will always use the conventions £ = £(m), Am = Am (u)

and s = sy(m) (o). Moreover, can express the function Hy (1, k) using the notatlon
(1.26)—(1.27).

LEMMA 4.3.  Let k € ZL and u € Rj. For any permutation o € S(n) and any
composition m of n > 2,

Han(1t, 0k) = [20 (ko (s)) — max{ A, = n(ko@) + (ks (o)

+
— max{ A?‘s - n(ka(i)) + U(ka(S))}] :

i<t
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PROOF. Letv; = 27;1 u ;. The change of variable w = v — v, in (4.7) gives

4

J4
Hu(u,0k) = [ [T 2w am j<nthoe dw = | w :[w + AT | < nko) .
i=1 i=1

By definition min; <¢{o (i)} = o (s), and since the function 7 is nondecreasing, for
any k € Z',

(4.11) N(ko () = minn ko i))-

Then, since AY'; = 0 by (1.26), we obtain
12
MU+ AR < 1)} = [=nko ) +max{= AT = n(koa) + ko @)}
i=I -

(ko (9) = max{ AT, = n(ks) +n(koe))]
This interval is nonempty if the condition
2n(ks (s)) > r{lggi{z\?,’s — (ke (@)) + nko(s)}
+ lgliag{—Al‘f‘s — (ks (i) + n(ko(s)) }

is satisfied, which completes the proof. [J

We are now ready to prove our main result, that is, to compute the limits of the
cumulants of linear statistics of the modified ensembles by applying a Riemann
sum approximation to formula (4.8). The argument is quite similar to the proof of
Lemma 2 in [39], but more involved. To keep the proof as transparent as possible,
it relies on three lemmas which will be proved afterwards.

THEOREM 4.4. Assume that the conditions (4.4)—(4.5) are satisfied and let
fe HOI(R). Foranyn > 2,

W Cry (8]
=2BTB}, / f(@®"dt
R
_2/ du/ dxﬂi{l_[f(ui)QD(xi)} > Mm)GR, (u, x),
0 L i=1 Im|=n

where G (u, x) and BYy, are defined by formulae (1.28) and (1.29).
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PROOF. Throughout the proof, we will use the familiar inequality (3.14) with-
out any reference. Let |u|; = |u1| + -+ + |uy| and

T = (rli’“)n Z ﬁ cp(rllc\;“)

klf"'fkn i=1

(4.12) x Y M(m)

lm|=n
< 2 (7ko @) —max (AT, = ko) +nkow)] ).
o €S(n) =
If the parameter N is sufficiently large, we claim that for any u € R}, any o € S(n),
and for all k € Z' such that |k|c < Ty N7,

[Hin(u. ) = 20k e)) + max{ AP, = ko) + n(koo)]

(4.13) + rln<a[x{—Af“5 —n(ksi)) + n(ka(s))}‘
v
= 2
18|ulq else.

First, note that, since A, =0, maxifg{:i:A;f‘s — n(ks(i)) + nks )} = 0. More-
over, by (4.11),

max{£ AT = nko @) +nlko(s)} = max{£ATL},

i<t

and, by (1.26), for any composition m of n, we have |A2‘5| < |u|y forall i <¢£.
Hence, we conclude that

(4.14) 0 < max{£AR, —n(ko) + ko)) < lulr.

When the parameter N is large, condition (4.4) implies that for any |«| < 'N?,

NV
(4.15) - <n(k) <2N".
Thus, if we also suppose that |u|; < NTV, by (4.14),
Nlko(s) > max{£AT, —1(ko ) + 1(ko ()}

v

By Lemma 4.3, we conclude that when |u|; < ]\é ,

Hm(u, 0k) —2n(ks(s)) + I}lgg({l\:ng — ks i) + nlko(s) }

+max{— AT, — (ko)) + 1(ko(s)} =0.

i<t
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For the second estimate, we observe that the estimate (4.15) implies that
0 <Hm(u,o0k) < 277(ko(5)) <4N".

Then, by the triangle inequality and (4.14), the LHS of (4.13) is bounded by SNV +
2|u|1. Thus, we have also proved (4.13) in the case when |u|; > NTU If we combine
this estimate with formula (4.8) for the cumulants of the random variable E f, there
exists a positive constant C,, which only depends on n such that if the parameter
N is sufficiently large,

CZ@ [Ef]_/R Hf(u,'){T,'\’,(u)+T,'\l,(—u)}d"_lu
7 0 i

(4.16)
=G /]R R Y B (PRI
0 i

where the function Y} (u) is given by (4.12). Taking fi =--- = f, = f in
Lemma 4.6 below implies that the RHS of (4.16) converges to 0 as N — 00. Thus,
the limits of the cumulants are given by

Jim Cpy [Ef]= lim_ /R ljfwo{mu) +Th (-} d"u
4.17) =2Nlim m{]‘[ f(u,-)}m(u)d"—lu.
TRy L

The next step is to compute the limit of Y} (1) as N — oo; see (4.20). Observe
that, according to condition (4.4) and since the max function is Lipschitz continu-
ous, we get uniformly for all u € R},

1 \" ! ki
=) ¥ Tlo(1) X Mm
TN i Teki=t STV i
ka(s) - kl m ka(i) — ko(ﬁ)
(4.18) xae%;n)<n(k1)+ﬂ7 —I}lsagi{l\i,s_ﬁT})
0 (N79).
+ 0 (N7

By Lemma 4.5 below, > M(m) = 0 and we can remove the two terms 7 (k1) and
k1N ~¢ from formula (4.18) since they do not depend on m. Hence, we have proved
that

kUS m —€
< Y Maw(p X 0GR wh)+ 0 (V).
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where G™

BN-a is given by (1.28). Then a Riemann sum approximation implies that

Yo, @)= lim Y} (u)

= [ TIe@/m ¥ Mam(p 2 2w - G d'=

RL 1 |m|=n oeSn)

The first sum is independent of the Fourier variable u € Rjj and it can be computed
explicitly; see Lemma 4.7 below. Furthermore, making the change of variables
X; = z; T, we obtain

(4.20) YL (u) = ptBY — / [[®G) D M@)GE, (u, x)d"x.
Rn

<i=lI |m|=n
Now, we can deduce the limits of the cumulants of the random variable Ef from
equations (4.17) and (4.20). By (1.28) and the estimate |A?‘5| <|uli, we get
4.21) sup{GT'(x,u) : x e RY, v > 0} <n!lul;.

Moreover, since |ky ()| < k1| + |k, | for any k € an’ by formula (4.19), there exists
a constant C which only depends on n such that for any N > 0,

(4.22) Ty @] < C/Rn [Te@i/0) (0 + 1x1] + xn] + lul1) d"x.

<i=1

The assumption ¥ € § guarantees that the RHS of (4.22) is finite. From
Lemma 4.6 below, (4.20) and the dominated convergence theorem, we conclude
that

lim C", [Ef]

Nooo Ly,
=2/]Rg ﬂt{]lf[f(u»}

X (,BtB’\i, — HCI)(x,-) Z M(m)Gg‘T(u,x)d"x) d" u.

RL ;1 lm|=n

The final observation is that the integral over R{j can be written as a convolution,
namely, a change of variables gives

n n—1
/ Hf(u,-)d”—lu=/ Fo [T f@i —vic) f(—v—pd™ o
Rj i=1 R i=2

= fx-x f(0).
e e’

n
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If we replace f#---% f = f7 and evaluate at 0, we get ng [T fupd—u=
fR f ()" dt and the proof of Theorem 4.4 is complete. [

Now we prove the lemmas that we used to get Theorem 4.4. The first lemma is

classical, it was already used in [39], as well as in the context of other invariant
ensembles [1, 32, 33].

LEMMA 4.5. Foranyn > 1,

ZM(m):{(l) gz: and Y [M@m)| <nt2""".

|m|=n Im|=n

We have assumed that our test function f has compact support since the original
problem is to study mesoscopic linear statistics. However, this assumption is not
necessary to prove Theorem 4.4. We shall certainly require that f € L!(R) and,
according to the estimate (4.16), the regularity condition needed to prove Theo-
rem 4.4 is that, for any n > 2, the integral

/Rn‘f(”l)‘”f(unﬂ(l + Jul1) d"u < o0.

A sufficient condition is provided by the next lemma since by assumption: || f loo <
IfllLr < oo.

LEMMA 4.6. For any functions fi, ..., f, € H'(R),

Aﬂ|f1<u1>---fn<un)|(1 |+ Junl) d" " u
(4.23) 0 )
<n2" TT(Fillos + I £ill 1)
j=1

PROOF. By the Cauchy—Schwarz inequality,

/Rfmul)fz(—j;uj) (1+ lur|) duay
(4.24) s2(2||f1||oo||fz||oo+/|u|>1 fl(u)fz(—u—zuj) |u|du)

j>2
<22 fillooll 2llos + Il fill g1 £212)-
A similar argument shows that for any f € L' N H'(R),

(4.25) 1A v I N2 <200 Flloo + 1L )



1244 K. JOHANSSON AND G. LAMBERT

Hence, it follows from (4.24) that

/R ﬁ(m)ﬁ(— Zuj)‘(l Tl ) duer <401 P lloo + 1l ) (1 Fallos 1 2l
22
and, if we combine this estimate with (4.25),

/ |f1(”1)"'fn(un)‘(l + |M1|)d"_lu
Ry

<4l filloo + 1Al ) (1 f2lloo + L2l ) TT 1511

j>2
n A
<2" [T i oo + 1Ll )
j=1

The upper-bound (4.23) follows by symmetry. [

The next lemma explains how the shape-dependent constant By, defined by
(1.29) arises in (4.20).

LEMMA 4.7. Foranyn>1,

“’:/R [TeG) . D Mm)xge d"x

<i=lI o€S(n) lm|=n

(4.26)
n—1
k=0 R

where, according to formula (1.27), X5 (s) = min;<¢m){Xs (i)} for all x € R, and
the coefficients by are given by formula (1.30).

PROOF. Let P, be the uniform probability measure on the symmetric group
S(n), so that we can view o (s;) = min; <;{o (i)} as a random variable. Then we can
rewrite equation (4.26) as

(4.27) 'Jp =n!/R [TeG) D M@)E,[xqs,]d"x.

<i=1 Im|=n
We claim that forany /=1, ...,n and forany k =0, ...,n — 1,
k+ 1\ !(n=1)!
) ) n! '
To see this, observe that if k 4+ 1 < [, since there are only k elements in {1, ..., n}

which are greater than n — k, one of the / first elements of ¢ has to be less than
n — k and, therefore, the probability in question is 0.

(4.28) Plmin (1) = n — k] = (
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On the other hand, if [ < k + 1, then n — k is smaller than the minimum of the /
first entries of o if and only if these entries are drawn from the set {n — k, ..., n}.
Since the order of these entries and that of the (n — /) last entries is irrelevant, the
number of such permutations is (k“lLl)l!(n —1)!. Hence, by definition and equation
(4.28), the distribution of o (s;) is

P,[o(s;) =n —k] = (’;)_1 (z f 1) :

Then, by definition of M, (1.18),
> M@I)E, [xo(s,)]

lm|=n
4.29) | |
n [+1 — n—
(=D n n k
- z (l) 2 <m>z<l—1>x”"“
=1 Im|=n k=0
£(m)=[

If we integrate successively over xy, ..., x,—r—1 and over x, ..., X,—k+1, and use

the relationship ® = —W¥’, we find that for any k =0, ...,n — 1,

1
Tkl —k—1)!
Then, if we combine formulae (4.27), (4.29) and (4.30), we get

" " n! fn\ ! n
Bq;zg(—l)H_lF(l) > ()

/ W) (1= W) o x)xdx.
R

|m|=n
£(m)=l
n—1 1 ) .
xg)(k—z+1>z(n_k_1),/ﬂ§‘1’(ﬂ (1—w) @ (x)x dx.

We see that we can simplify ’;—,’ (] )_1 from the previous formula and exchange the
sums over [ and k. In the end, we obtain

n—1/n

n —1

=Xz (7)) 2 ()
k=0 \I=1 el?:rll)::nl

x/\Il(x)k(l—\D(x))"_k_ld>(x)xdx.
R

If we define the array b} according to (1.30), the lemma is proved. [
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The cumulant problem is generally not discussed directly in the literature, so
we provide a simple criterion which guarantees uniqueness of the law of a random
variable given its cumulants.

LEMMA 4.8. Given a sequence of random variables X y whose Laplace trans-
form is well defined and such that for any n > 1, C"[Xy] — C5, as N — oo. If
there exists constants c, v > 0, such that

|Ch| < ent”,

then there exists a random variable X, whose cumulants satisfy C"[X ] = Ch,
and the sequence Xy = X.

The condition of Lemma 4.8 is very natural and its proof follows from a straight-
forward repetition of the argument that is used when dealing with the Hamburger
moment problem (see, e.g., Section 3.3.3 in [15]). Next, we use this criterion to
deduce from Theorem 4.4 the weak convergence of linear statistics Zf for any
determinantal process with correlation kernel L{I\f’n.

DEFINITION 4.9. In the sequel, the quantity 27 B, fR f (@)™ dr will be called
the Poisson component of the nth cumulant and we will use the decomposition

lin'lN—>oo CZ@,][EJC] = 2TB,&/ fR f(t)n dt + er\i/,r[f] where

4 f1= —2/Rn duiﬂ{]‘[ f(un}

0 i=1

(4.31) .
x/ [[®G) Y. M@m)GP(u, x)dx.
R

Ti=1 |m|=n

This name is motivated by linear statistics of the Poisson point process whose
cumulants are equal to t’ [ f ()" dt where 7’ is the intensity.

COROLLARY 4.10. Consider the determinantal process with correlation ker-
nel L{},’m and let f € H(} (R). If the conditions (4.4)—(4.5) hold, then the random
variable Ef converges in distribution as N — oo to a random variable Ey ' f
where t/ = Bt and whose cumulants are given by

(4.32) C'[Ey . f]1=21'Bl, /R FO"dr+ &% LIf1.

PROOF. We can estimate the growth of &, ,[f] and the Poisson compo-
nent separately. We start by giving an upper-bound for the constant BY,. By for-
mula (4.27),

n :n!/n [TeG) D M@)E,[x,]d"x.

<i=l1 Im|=n
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Obviously, for any x € R, E,[x4(s,)] < x, and if we use formula (4.30),

/ [[®G)Elxs,]d"x < [ [ PCi)xnd"x
Rn n

<i=l1 <i=l1

1 n—1
e /R(l — W) P(x)xdx.

Moreover, since 0 < ® = —W¥' and 0 < ¥ < 1, we have for any n > 1,

/(I—W(x))n1<I>(x)xdxf/oodD(x)xdx:/oo\If(x)dx.
R 0 0

On the other hand, if we use that x; < E,[x,(s,)] and apply the same method, we
can show that

/ HCD(Xi)En[Xs@]d"X > ! /\I’(x)”_lcb(x)xdx
R n—=—0D!Jr

Li=1
—W(0 n—1 0
. (n(_)])' / (1 — W(x))dx.

These estimates show that there exists a positive constant C which only depends
on the shape W such that forany I =1, ..., n,

/R [T ® () Ealxon]d’x

n .
<i=1

n! <Cn.

Using the estimate of Lemma 4.5 and (4.27), this implies that [BY| < C(n +
1)12"~1. Hence, for any n > 2, the Poisson component is bounded by

(4.33) B’&J/Rf(t)" dt‘ <C'n+ D2 lloo)" " I f Nl

Now, we estimate the growth of (‘5’&,’ ~Lf1, (4.31). Applying the upper-bound
(4.21), we see that

&%, Lf1] <200 Y [Mm))|
(4.34) "“':’; n
x | T @l 4+ uad ™ | TT@wnd".

0i=1 RL =1
By symmetry [p. [Tio; ®(xi)d"x = %(fR d(x)dx)" = % and Lemmas 4.5
and 4.6 provide bounds for the other factors of the RHS of (4.34). We obtain
(4.35) &G A1 <+ D (1 flloo + 1 )"

The estimates (4.33) and (4.35) show that the limits of Theorem 4.4 satisfy the cri-
terion of Lemma 4.8 for any choice of parameters 7’ > 0, ¥ € §, and f € H(} (R).
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Hence, they corresponds to the cumulants of some random variable which we de-
note by Ey ./ f,and Ef = By o f as N - oo. [

For the critical modified CUEs, according to formulae (4.3)(i) and (4.4), the pa-
rameter B = 1. Hence, Theorem 2.7 follows directly from Proposition 2.4 and
Corollary 4.10. Likewise, in the GUE setting, the parameter 8 = 1/4 by for-
mula (4.3)(ii). Provided that 1/3 < o < 1, by Proposition 1.11, we conclude that
at the critical scale, a modified GUE with shape W € & converges in distribution
to the random field Ey /4. In order to deal with all mesoscopic scales, we can use
the asymptotic expansion of Theorem A.2 instead of Theorem A.3. Namely, if we
combine formula (3.10) with the sine-kernel approximation (A.10), we obtain for
any scales 0 <, < 1,

NTKY ,(xN7°, yN %)

w0 ke 2 ek

|k|<Ty N
| e N Y-
S+ DE G~ FEGEN
T(x —y) N=o0 |

The RHS of (4.36) does not corresponds to a translation-invariant, so we cannot
defined its Fourier transform. However, it is related to the kernel L{}J”n, (1.33),
by a change of variables and we can exploit this fact to compute the limits of
critical linear statistics of the modified GUE at any scale, including the regime
O<a<1/3.

PROPOSITION 4.11. Let W e €&, f € Co(R),and 0 <o < 1. We have
. n T noore
i Ciy (31 = Jm . 12w
for any n > 2 where

4.37) gn(x) = f(%NaG<%))

and the function G is given by Definition A.1.

PROOF. Let supp(f) C [—L, L]. Observe that for any |k| < 'y N¢ and any
x,y €[—2L,2L], a Taylor expansion gives

(v i) =0 gie) = el () - (o)

FNN_a)
N+k )

+Nngx—w



MESOSCOPIC FLUCTUATIONS IN DETERMINANTAL POINT PROCESSES 1249
Thus, taking § = « in equation (4.36), we get forany 0 < o < 1,

N"K§ ,(xN~*, yN %)

1 k
(4.38) =— <I>< a)
TN |k|<ZF:N0' TN
VNN FR(F G o) — FGF |, (N,
JT()C — y) N—)oo

where the error term is uniform for all x, y € [-2L, 2L]. Following the proof of
Lemma 2.6, this approximation implies that for any any composition m,

T fd" Ko £ K o]

“39 = Y H (rN"‘) [LL]sz(xJ)’

kezt =1
lkj|<TnyN*

. T XN T X+l
VNIV FRFG o) = FERD 0 5 (V2.

n(xj—xﬁ_l) N—o00

where xy4+1 = x1. There exists Ny € N such that for all N > Ny, we can make the
change of variables y; = n_lN‘SF(% %) in the integral (4.39). Since 0 < F'(x) <
2 for any |x| < 1, this change of variables maps the interval |x;| < L to some
subset of |y;| < L forany N > N. Hence, if we let gn (y) = f(%N“G(%)) and
n(k) is given by (4.3)(ii), we obtain

/ Hf( oy SN+ O E G ) = FG
Xj
[-L,L]¢

j=I1 E(XJ—XJJ,-l)

(4.40)

G'(FH) sin2en(k)(vj — vj+D] ,
— m;j d*x
LL ﬂ VO TN e (6T — 6T,

A Taylor expansion gives for any y,z € [—4L,4L],

G(yN™*) —G(N™%)
N=*G'(yN™®)

] —u .

G’ (F) sin[27 (k) (y — 2)] _ sin2rn(k)(y — 2)]
N*(G(3%) — G(F%)) T(y—2) N—o0

(4.41) (N~%).
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Hence, if we combine formulae (4.39), (4.41) and (4.41), we have proved that

Tr[flel]IY,a e f(TKKlI]Y,a]

o

¢ ki ¢ sin[2mn(k)(y — 2)]
_ o J >/ A\ dt
S 10 <1'N"‘ o El gn(y)) y

kezt =1 7y —2)
lkj|<TNe

+ 0 (N7%).

N—o0

By (1.33), we can write this equation as

T K SR ) =T LY, gL, )+ O (N,

o0

and the proposition follows from formula (1.19). [

By Proposition 4.11, to complete the proof of Theorem 1.7, it remains to extend
the argument of Theorem 4.4 to deal with test functions of the form (4.37). As we
can see from the next lemma, such functions depend mildly on the density N and
it is not difficult to complete the proof.

LEMMA 4.12. Let f € C'(R) with support in [—L, L] and 0 < § < 1. For
any N > (2L)'/%, the function gy (x) = f(%N‘SG %)) has compact support in
[—L, L]. Moreover, we have

1gn — flloo= O (N7%) and |lgn — fllg = o(1).
N—o00 N—o00

PROOF. By Definition A.1, 0 < F’ < 2 and the map x > %N‘SG(%) is a
dilation. Therefore, when N > (2L)1/ 8 the function gn iswell definedon [—L, L]
and gy(x) =0 for all x € [-L, L]\ supp(f). By continuity, we can assume that
gn(x) =0 for all |x| > L. Hence, gy € C(% (R) with supp(gn) C supp(f). Then,
by Lipschitz continuity of f, for any |x| < L,

TX

lgn (x) — f(x)| < CN‘S‘2G<%> ~ N <CL?*N~¢,

where we used that G is smooth with G(0) = 0 and G’(0) = 1/2. This implies that
v = Floe = [ lewto = fe0ldx = 0N,
[-L,L]
Similarly, by the triangle inequality,

gy () = f/0)] < ||f/||oo]2G/<%> - 1\ +

r(2vo(5)-ro
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Since f is continuous, limy_ o [gy(x) — f'(x)] = O for all x € [-L, L]. By
(1.21) and the dominated convergence theorem, we conclude that as N — oo,

gy — £l =#/{_L’L]\gﬁv()c)—f’(x)\zdx%0- 0
PROPOSITION 4.13. Let f € C(%(R), O<a<1,and V¥ € €. If n is given by
(4.3)(i1) and gy is given by (4.37), then for any n > 2,
Nli_gnooC'igyn[EgN] =C"[Ey,rafl
PROOF. We can take f = gy in formula (4.8). In particular, the estimate

(4.16) is still valid for the test function gy. Let |u|; = |u1| + - - - + |u,| and the
function Yy (1) be given by (4.12). We need to prove that

(4.42) lim 1 lea}|u|11_“§1v(ui)|d”_lu=0,
2 .
1

N=oco [~ lluli>

and

@43 Jim /]R |Maw - [T 7w
0' i

i

T8 )| d" =0,

Indeed these limits imply that

lim C", [Egn]=2 li KT T enu) Y ) d" !
im Cfy [Bev1 =2 im_ | {UgN(u»} fwd

N—o0

=2 lim m{]‘[ﬂui)}m(u)d"lu,
Ry i

N—o0

and the rest of the proof is identical to that of Theorem 4.4. To complete our argu-
ment, it remains to show (4.42) and (4.43). First, observe that

| | o . n—1
/Rg ]1{|M|1>—N12_a}|u|1 i 8N )| d" ™ u
(4.44)

n
A n]
S,;,/Rg]l{luk|>%}|u|11?[|gN(uz)|d u.

Let Ay ={veR:|v| > %} and define the function gy by its Fourier transform
gN =14, &n- Then by Lemma 4.6 we have

o , n—1
/n]1{|u|1>N12—_a}|u|1H|gN(ul)|d u
Ry ;
(4.45)
~(llg 0 -1
§n22n 1(||CIN“°°+”qN”Hl)(”gN”oo-l-IIgN||H1)” -
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Since, || F'||oc <2, a change of variables yields

446)  lgnlo S/'f(%NaG(%»

Moreover,

L
lgn I =/Ig/N(x)|2dx=2/_L|f/(z)lzG/(F(2jffa))dZ’

and, since G'(F(t)) = F'(t) =2+/1 — t? for any |t| < 1, we obtain that ||gN||§-11 =
41 f ”%11 for all N sufficiently large. By (4.45), this implies that

o . n—1
/Rgl{lull>'vlza}|u|l?“g’v(”l)}d u

<n22" (anlloo + lgn L) LAl Lt 4 20 F )"

Obviously, |gnllcc — 0 and to conclude that (4.42) holds it remains to estimate
llgn |l 1. The main observation is that

/!éN(w — Ly f o1 dv < llgn — f121.

Then by the triangle inequality
A 2
[ sz(ngN — flI3, +/A | f )| |v|2dv).
N

The first term converges to O by Lemma 4.12, and so does the second term by
the dominated convergence theorem. We conclude that ||gy || 71 — 0 and we have
established (4.42). The proof of the estimate (4.43) is very similar. We observe that
n
[Ten@d =TT fwd=>"(anw) — fap)[]éanv@) ] fw).
i i

j=1 i>j i<j

dx < /’f(Z)|dZ= (NAIFAR

By (4.22), there exists a constant C > 0 which depends only on n and the shape W
such that [y (u)| < C{1 + |u|1} and we obtain

/Hézv(ui)—nf(ui)
Ryl i i

I )| d™

(14 ul}d" tu.

<cy ) - Fapl|[1en@) ] Fau
j=1

0 i>j i<j
Thus, by Lemma 4.6 and the facts ||gn|loo < || fllz1 and lIgnll g1 < 211 fl g1, we

get
/Ra

T (u)] d"u

[Tév@d =T fwd

l 1

(4.47) 1

<Cn®2" Y 1én — flloo + llgn — Fllg) (NI + 20 F )"
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Lemma 4.12 implies that the RHS of (4.47) converges to 0 as N — oo and the
limit (4.43) follows. [

By Propositions 4.11 and 4.13, if f € Cé (R), we have for any 0 < o < 1 and
any n > 2,

(4.48) lim Cly [Efe]=C"[Ey,r/af].

N—o0 K\I/,a

In the proof of Corollary 4.10, we have established that the sequence
(C"[Ew,¢/4 fDn>2 satisfies the condition of Lemma 4.8. This implies that, consid-
ering the determinantal process with correlation kernel K \’IY «» the random variable

(4~49) Efoz = E\D,r/4f
as N — oo. In order to complete the proof of Theorem 1.7, we use a density
argument to extend (4.49) to all test functions in HO1 2N L*®(R).

PROOF OF THEOREM 1.7. Let " = t/4. First, observe that for any x, y € R,
|eix — e"y|2 <4|x — y|>.

By Chebyshev’s inequality, this implies that, if X and Y are mean-zero random
variables defined on the same probability space, for any £ € R,

[E[e/$X — ¢$]| < 4|£|y/Var[X — Y].

For critical linear statistics of the modified GUEs, using the estimate (3.26) which

is valid when § = «, we obtain for any test functions f, h € HO1 /2 (R),

(4.50) [Eyy [e555 — 55| < Clel /I f = hIZ, 4 1F = il
Moreover, formula (B.4) implies that under the same assumptions,
4.51) [E[e’s 30t — 520 T < ClelIf — hIZ, + 1 — Bl 0.

By the triangle inequality,
|EK% [eisafa] _ E[eiSE\p,r/‘f“
(4.52) < |EKN [eiSEfa _ eié‘Eha“ + }E[eiéE\p’r/h _ eiéE\p,T/f:H

V.«

+ (B [e5e] — B[ei$Zuct)|

If we suppose that h € Cé (R), by (4.49), the last term in the RHS of (4.52) con-
verges to 0 as N — oo. Thus, using the upper-bound (4.50) and (4.51), for any
feH,*NL®R)and £ €R,

limsup|Ey [e 5] — E[e/5Zvr /]|

N—oo Y

(4.53)
<2CIEWIF = hIZs+ 1Lf = Al e
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Since, the space Cé is dense in the Sobolev space Hol/ 2 with respect to the
norm \/|| || + - H1/2’ [28], Theorem 7.14, the RHS of the inequality (4.53)

is arbitrary small by choosing h € Cé (R) appropriately, and we conclude that
Efe = By fasN—oo U

4.3. Properties of the random process g . In this section, we study the ran-
dom variables Ey ; f which arise from the limit of linear statistics of the criti-
cal modified ensembles. Because of the complicated structure of the cumulants in
Theorem 1.7, we cannot get much information about the random fields By ; ex-
cept that they are not Gaussian. However, as we expect from Figure 1, we recover
Gaussian fluctuations in both limits T — oo and T — 0; see Proposition 4.15.
Proposition 4.14 provides a sufficient condition under which the field By ; is not
Gaussian and it leads us to compute the Laplace transform of the Poisson compo-
nent of the field Ey, ;. Moreover, we show that the Poisson component of the ran-
dom field By ; is Gaussian if and only if W is the MNS shape ¥/ (t) = (1 + eH~
see Proposition 1.9. Then a natural problem that remains unanswered is whether
the sequence &y ; given by (4.31) also corresponds to the cumulants of some ran-
dom variables, so that the field & ; would be the superposition of a white noise
and an independent non-Gaussian process.

PROPOSITION 4.14. If the shape V € § satisfies the condition BY, # 0 for
some n > 2. Then, for any v > 0, the random process Ey . defined in Corol-
lary 4.10 is not Gaussian.

PROOF. It is clear from the definition (1.28) that lim;_, o G7'(u, x) = 0 and
it follows from (4.31) that for any n > 2 and f € HO1 R), limr— 00 &Y, (f) =
Hence, by formula (4.32),

(4.54) C'[Ey . fl= ZIB{}J/ f@)"dt+ o(1).
R T—00

Thus, the Poisson component dominates at large temperature and the random field

of Ey, ;[ is not Gaussian since there are test functions such that C"[Ey ; f] #

0 whenever By, # 0. This observation is actually valid at any temperature 7 >

0 because of the scaling property of the cumulants. By definition, G (u, x) =

rG‘f‘(u /7, x) and the change of variables u; = Tv; leads to

’fp,r[flz—z/ dviﬁ{nrf(rvi)} ch(x,) > Mm)GP (v, x) dx.
Rg i=1

RL ;1 Im|=n

Hence, by (4.32), the random variables Ey . f and Ey ; f(5) have the same dis-
tribution. [J
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PROPOSITION 4.15.  For any function f € HO1 (R), the rescaled random vari-
able TV 2E\p,t f converges in distribution as Tt — 00 to a Gaussian random vari-

able with variance || f ||%2. On the other hand, Ey 1 f converges in distribution as

2

T — 0 to a Gaussian random variable with variance || f || i

PROOF. When t — o0, the asymptotic of the cumulants of the random vari-
ables By ; f are given by formula (4.54) and

ClEucle )=y [ fardre o ().

Hence, we obtain

lim C"[t7 28y . (f)] =

T—>00

BLIfI7.  ifn=2,

0 ifn>3.
Taking the limit as T — 0 is more subtle. We shall see that we recover the cu-
mulants of the sine process given by [39], Lemma 2, and the cancellation follows

from the main combinatorial lemma. For a given composition m of n and u € R,
by Definition (1.28),

(4.55) 0@ x)= > max{A7 )]},
o€S(n) =

where s = sym)(0), (1.27). The important fact is that this expression becomes
independent of the variable x. So, in the following, we will denote Gg‘ (u) instead
of G (u, x) and we define

4.56) A™w) =i+ +umur 4ty oo ur + o+, 0).
By definition (1.26), for any u € R}, we have

Um+1 + -+ U, if s <i,
APN) = Y1+ g uy o+ um, ifi <s,
0 ifi =s.
For any s = 1, ..., £(m) we let 5 € S(n) be the cyclic permutation given by

ns(i)=my+i modn.
Then we see that {Ag‘s(u) ci=1,...,0 ={AMgu) i =1,...,¢} and, by
(4.55), we obtain

0= ) ma{afcrn),

ceSm) =

Z Gy (u) =n! Z I}’lf.g({A?l(ﬂu)}.

weS(n) weSn) —

4.57)
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By dominated convergence, we can pass to the limit T — 0 in formulae (4.31)—
(4.32). The two integrals decouple and, since fR" [T'_; ®(x;)d"x =1/n!, we ob-
tain

: npe 5og 1 m n—
(458) lim C'[Eyo f1=- /IR gm{l"[ﬂuf)}; > MG ) d"u.

i=1 " Im|=n

This limit is independent of the shape ¥ and it will be denoted by C"[Eq f]. If

we use the notation (4.56), Soshnikov’s main combinatorial lemma reads for any
u e R}
0°

(4.59) > > M(m) max{A™(ru)} =

weS(n) lm|=n

—luy|  ifn=2,
0 ifn>3.

Next, we symmetrize formula (4.58) over all permutations of u, by equations
(4.57) and (4.59), we conclude that for any n > 3,

C'[Eof1=0

and
C*[Eof]= /R F) f(—u)luldu.

This shows that the random field E¢ is Gaussian with covariance structure given
by (f, &) g2 U

In the proof of Proposition 4.14, we have seen that the temperature t > 0 can
be treated just as a scaling parameter. Therefore, in the sequel, we will assume
that 7 = 1 and write Egy = By 1, G™ = G‘l“, etc. By Definition 4.9, the behav-
ior of the Poisson component of the field Ey is encoded by the coefficients B,
(1.29). In the remainder of this section, we will compute the generating func-
tion of the sequence By, and prove Proposition 1.9. We start by a combinatorial
lemma.

PROPOSITION 4.16. For any z, w € C so that |lw(e' T2 — 1)| < |1 + w|,

oo n—1 k+1_n (14+w)z
AW we —-1)
(4.60) Z:“;)bk n! - 1 + wel+w)z -~
n=1 k=

PROOF. By equation (1.30),

k+1 B !
=yt (0Th) T

=1
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So that if we exchange the order of summation between the indices k and /,

oo n—1 wkt1 " 00 n (_I)I—H n—1 n—1 il
nW n

LYY L a X ()
n=1k=0 n=1 =1 nyp,..n;>1 : tk=l—1

ni+---+nj=n

=2 Y 4w
nyl---ny!
n=1 =1 nyp,...,n;>1
ni+---+nj=n

Then, since Y 02;a" > n,.. n>1 = (e* — 1)! for any a € C, if we ex-

ni+---+n;=n
change the order of summation between l and n, we obtain
n—1 k+l "

i:: g i s (HLw)l(e(Hw)z ).

This proves (4.60) using the identity » ; ;(— 1! +1$l

1+I§,1f|.5§| <1. O
If we substltute W=7 \p\;x()x) and z = &(1 — W (x)) into (4.60), we obtain for any
[E] <e™ ",

e k+1 nk-t _ Y@ — 1)
Z Zbk\lf() L=y = e -1

nl kO

Integrating both sides, by definition (1.29), this implies that

SVET . x(ef —1)
(4.61) ;EB\D—/R1+Lp(x)(e§_1)cl>(x)dx.

Motivated by Proposition 4.14, it is meaningful to raise the question: which
shape W satisfies the conditions BYy, = 0 for all n > 2? Since we assume that B\II, =
0 and B%I, =1, by formula (4.61), this amounts to solving the integral equation

4.62 XD d—g2
(462) /Rl+\ll(x)(e€—1) (dx =17

PROOF OF PROPOSITION 1.9.  Since (1 — W) is a cumulative distribution func-
tion, we can make the change of variable s = W (x) in the RHS of formula (4.61)
and this leads to the identity

=& [N YT
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where W1 is the generalized inverse of W; Ul(s) =inf{r e R: W(r) <1}. If we
also make the change of variable w = (1 — ¢f)~!, we see that equation (4.62) gives

s—w

1 -1 2
(4.64) / ki) ds:%(log(l—w_l))z.
0

Note that, since W is continuous, the function ¥~! is continuous almost every-
where. Moreover, the conditions W € L'(0, 00) and (1 — W) € L' (—00, 0) guar-
antees that the RHS of formula (4.64) defines an analytic function in C \ [0, 1].
Thus, if we use the principal branch of the logarithm, the LHS of formula (4.64)
is also analytic in the same domain and, by analytic continuation, equation (4.64)
holds for any w € C\ [0, 1]. It is well known that, for any ¢ € (0, 1) where the
function W~! is continuous,

1 —1
1im~3</ L@ds):n\rl(r).
™0 \Jo s—(+in)

For the principal branch, for any ¢ € (0, 1),
limlog(1 — (¢ 4+in)~") =log(t ™' = 1) +inx.
UANY

Hence, by (4.64), these limits implies that if & € § is solution of (4.61), then for
almost all r € (0, 1),

(4.65) ) =log(r™' = 1).

Since, by assumption, wlig nonincreasing, equation (4.65) holds for all # € (0, 1)
and it is straightforward to see that this amounts to W (x) = 1/(1 4+ ¢¥), so that the
unique solution of equation (4.62) is the MNS shape . 0O

By Definition 4.9, Proposition 1.9 means that the Fermi statistics ¥ (t) =
1/(1 + €') is the only shape in § for which the Poisson component of the field
8y corresponds to a Gaussian process. In general, formula (4.63) implies that
Laplace transform of the Poisson component of the random process Ey is given
by for all f € Co(R) and all |&] <e™ /|l floos

o0 sn ; ; _ 1 lIJ_l(t)
(4.66) exp(rgmBq,/Rf(t) dt>_exp</R/O (esf(x)_l)l+tdtdx).

In particular, for an arbitrary shape W € §, it seems very difficult to check whether
the RHS of formula (4.66) defines a positive definite function in the variable £ so
that the Poisson component of the field Ey comes from a random process.
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4.4. Fluctuations of the critical MNS ensemble. Propositions 1.9 and 4.14 im-
ply that for any modified Ensemble whose shape W =£ v/, the limiting fluctuations
at the critical scale are not Gaussian. The goal of this section is to prove that this is
also the case for the MNS ensemble. Our first attempt is to compute the third cumu-
lant of the random variable Ey, f, but it turns out that it vanishes for any test func-
tion; see Proposition 4.19. Consequently, we construct a test function y € S(R)
such that C4[E¢ y] # 0. Our strategy to simplify formula (4.31) is to symmetrize
the functions G™ with respect to all permutations of the variables u; and to look for
cancellations. There are even more simplifications available using the constraints
ujp+---+u,; =0 and the DHK formulae; see Remark 4.20 below. However, as we
emphasized in the Introduction, it turns out there is no counterpart of Soshnikov’s
main combinatorial lemma for the modified ensembles and already for the 4th cu-
mulant, there are not enough cancellations to rewrite formula (4.31) in a simple
way. Moreover, we shall only consider the following subclass of shapes.

DEFINITION 4.17. A shape W € § is called symmetric if its differential —
is even. In other words, if it satisfies 1 — W (—¢) = W (¢) for all r € R.

We can deduce from Proposition 4.16 that the triangular array b; satisfies for
any k =0,. - 1,0} =(— 1)”+1bn |_x- This implies that for any symmetric
shape the map x > ®(x) Y} éb”‘-ll(x)k(l — W(x))" 1= is even when the index
n is odd. Thus, for any m > 1,

n—1
(4.67) B%I,mH:/RxCD(x)Zbk\IJ(x) 1—wx)" "*dx =0,
k=0

LEMMA 4.18. We define the function w : R* — R? by
@ (v1,v2) = [w1]7 + [v2] " + [v1 + v2] " — 2max{0, vy, vi + v2}.
By formula (4.32), for any ¥ € § and any function f € H(} (R), we have
CEy f] =2B§I,/f(x)3dx +24/3d2u§)t{n f(ui)}/ ds®(s)
(4.68) 0 i :
X //(0 o d?z®(s +21)P(s + 21 + )@ (U1 — 21, U2 — 22),
where d*u = duy duy and it is understood that Uz = —uj — uj.

PROOF. See Appendix C. [J

The important feature of formula (4.68) is that the functions f and ® are cou-
pled by a function & which only depends on the variables u; — z;. Moreover, it
follows from the DHK formula (4.69), that this function is anti-symmetric and this
leads to the following result.
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PROPOSITION 4.19. If the shape V € § is symmetric, then for any function
f € Hi(R), we have C*[Ey f1=0.

PROOF. First, observe that by (4.67), the constant B%I, = 0 and it remains to
show that the second term in formula (4.68) vanishes as well. For any w € R2, we
easily check that

(4.69) max{0, vy, vy 4 v2} + max{0, va, vi + v2} = [V1]" + [v2] ™ + [v1 + v2] "
This implies that we may express
@ (v1, v2) = max{0, v2, vi + v2} — max{0, vy, v + v2}.

In particular, @ (v, v2) = —@ (v2, v1) and it follows that

/// <I>(x)CI>(x+zl)<I>(x+Z1+22)w(u1—zl,uz—zz)dxdzz
Rx (0,00)2

=/// D(—y—z21 —22)P(=y —22)
Rx(0,00)2

X ®(=y)w (uy — 21, u2 — 22)dyd’z

(4.70)
=/// NPy +21)P(y + 21 +22)@ (U — 22, Uz —21) dy d’z
R x (0,00)2
Z—/// Q(y)P(y+z1)
R x(0,00)2
X ®(y + 21+ 22)@ (uz — 21, u1 — 22) dy d*z.
At first, we made the change of variable y = —x — z1 — z». In the second equality,

we used the assumption that @ is symmetric and permuted the variables z; and z».
For the last equality, we used the anti-symmetry of the function z. This shows
that the integral (4.70) changes sign under permutation of the variables u; and u>.
Because of this fact and the symmetry of formula (4.68), the 3rd cumulant of the
random variable Ey f vanishes. [

REMARK 4.20. The Dyson, Hunt, Kac (DHK) formulae are the following
remarkable identities. For any n > 2,

Z max{uz(1y, Ug(1) + Ug(2)s s Ug(l) + -+ Uzgn—1), 0}
TeS(n)

"1
= Z Z;[un(1)+-~+un(1)]+-

meS(n) =1

When n = 2, this reduces to formula (4.69). We refer to Simon’s book [36], Sec-
tion 6.5, for a proof of (4.71) and an application to the strong Szegd theorem.

4.71)
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Actually, the proof of Soshnikov’s main combinatorial lemma (4.59) is also based
on these formulae; see [26], Appendix A. We can also apply the formulae (4.71)
to the cumulants of linear statistics of the modified ensembles but, except for the
third cumulant, this only leads to partial simplifications.

To compute the 4th cumulant, we make the change of variables x € R%
(s,2) e R x Ri given by
§=X1, 1 =X2 — X1, 2 =X3 — X2, 73 = X4 — X3,
in equation (4.31). We get
&) (H=-2

(0,003

4
d3z®(z)/ d3um{]"[f(u,~)}
R§ i=1

x Y M@m)G™(u, 2),

Im|=4

4.72)

where G"‘(u, ) is the image of x — G™ (u, x) under this change of variables (this
function does not depend on the variable s) and

4.73) O(2) =/ GS)P(s +z1)P(s +21 +22)@ (s + 21 + 22 +23) ds.
R

It is worth noting that, since the function ¢ is even, we have ©®(z3,22,21) =
®(z1, 22, z3) but no further symmetry. We are not able to obtain a compact for-
mula for the 4th cumulant and it turns out to be simpler to compute the value of the
functions G™ (u, 7) at certain well-chosen points and deduce from formula (4.72)
that (’5?” (y) # 0 when the test function y which is sufficiently concentrated around
these points. The technical result that we need is summed up by Lemma C.1 which
implies that

(4.74) 3 / 0@ Y Mm)G™(v,2)d*z=029....
V14 tvg=0 (0,00) Im|—4
vie{—1,1}
The integral can be performed analytically or numerically using Mathematica.
To complete our argument, we also need the following approximation lemma. Its
proof is rather straightforward and for completeness it will be given after our ex-
ample.

LEMMA 4.21. Let g(x) = e and

Ql(u):/ 0@ > Mm)G™(u, z) d’z.
(0,00)

|m|=4



1262 K. JOHANSSON AND G. LAMBERT

For any v € R*, we have
lim 6_4/ g(ul — v1> . “g<u4 _ v4)91(u)d3u = Q(So(vl -+ vg).
e—0 Ré € € 2

We let y(x) = De—eTx? cos(2m x) with € > 0, so that

=)+ 51
€ €

and by Lemma 4.21, we obtain

4
lim d3u‘R<n }/ d’z0(z) Z M(m)G™ (u, z)
(0,00)3

e—0 m|—4

(4.75)

= % > A).

vi+--+vg=0
vie{—1,1}

The RHS of equation (4.75) is given by (4.74) and by formula (4.72), this implies
that

lim &y (y) = —0.29....
e—>0

Since the constant Bf// = 0 by Proposition 1.9, we conclude that, if the parameter

€ is sufficiently small, C4[E,/,y] # 0 and the linear statistics By, y is not Gaussian.

PROOF OF LEMMA 4.21. Letus fix ve R* and let r(v) = v + - - - + va. It is
easy to see that the functions u — G™(u, z) are Lipchitz continuous with respect
to |u|o with constants which can be chosen independently of z € ]Ri. Then the
function 2 (u) is also Lipschitz continuous on R? and a change of variables yields

64/ g(ul_Ul>...g<u4_v4>2l(u)d3u
Ré € €

:/4 g(wl)---g(w4)2l(v+ew)d3w

—20) [ gtwngwdut 0 ().
R—r(v)/e e—>0

If welet X, e N(e™ r(v) ) it is easy to see that

(4.76) [, s g do =Bl

R—r(v)/e
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Sothatif r(v) =vi+---+v4 =0, then E[e‘”Xg] = % for any € > 0 and it follows

that
_ . 1
lim 6—4/ g<“‘ i ) . ..g(”“ v4>9{(u)d4u — ().
e—>0 Rﬁ € € 2

On the other hand if r(v) # 0, by equation (4.76),

lim gwp) -+ g(ws) d*w =0.

4
e—0 Rr(v)/e |

APPENDIX A: ASYMPTOTICS OF THE HERMITE POLYNOMIALS

In this section, we provide some background on the asymptotics of the Hermite
polynomials and the GUE kernel; see, for instance, [30], Proposition 5.1.3, or [12],
Section 2.2. These asymptotics are named after Plancherel-Rotach, [31], and can
be derived using the classical saddle point method. To investigate the statistics of
Hermitian invariant ensembles, one is usually interested in uniform asymptotics
of the Christoffel-Darboux kernels. Based on the Riemann—Hilbert problem for
orthogonal polynomials, the sine-kernel asymptotics have been established in [13]
at the microscopic scale for a large class of potentials. These results have recently
been extended to mesoscopic scales in [24] (see also [25]), and we will briefly
review the case of the GUE kernel. Let 4, be the normalized Hermite polynomial

. 2 . .
of degree n € N with respect to e on R and define the Hermite functions:

2

(A.1) D (xX) = hp(x)e™ T .

DEFINITION A.1. We define on [—1, 1] the functions o(t) =2+/1 — ¢Z and

F(x)= /X o(t)dt = arcsin(x) + x4/ 1 — x2.
0

The map F is a diffeomorphism from |x| < 1 to |x| < % and we let G be its
inverse.

The Hermite polynomials have the following bulk asymptotics:

2 174 1

V,(V2nx) = ——— —
1— 2

B2) <n( X )) JT

1
X {cos(n% —nF(x)— 3 arcsin(x)> + ngoo('g_3/2”_3y/2)}’

for all [x| <1 — Bn=2/3*Y where 0 <y <2/3 and 0 < B < 1. Observe that, in
the case y = 2/3, we obtain an asymptotics valid in any fixed interval [—1 +
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B,1 — B] with a uniform error term of order 1/n. While the Hermite functions
have oscillatory behavior inside the bulk, they have exponential decay outside:

—nH(x) —3y/2
ﬁn(«/ﬂx)ze {1+0(n=>r )}’
T2nvx2 — 1

for all |x| > 1 + n=2/3tY where 0 < y < 2/3 and the function H is even and
defined for any x > 1 by

X
H(x):/ 2y/t? — 1dt = xy/x? — 1 —log(x +/x2 — 1).
1

In particular, since 4*76()( —1)3/2 < H(x), there exist a constants C > 0 such that
—-1/2

(A.3)

forany x > 1+n

NP
(Ad) |9, (v 2n%)| < Ce™ ¥ =DY2,

At the edge, the asymptotics is also well known but, since we are only interested
in bulk linear statistics in this paper, we will not need any precise estimate and use
instead the uniform bound

(A.5) 190 lloo < cyn™ /12,

where cy is a universal constant and the exponent is sharp. We define the
Christoffel-Darboux kernel:

= N O ()N 1(y) — Oy_1(x)D
(A.6) KévD(x, y) = Z B ()00 (y) = \/; N(X)ON l(y)z = yN 1(x) N(y)’
n=0

and the Wigner semicircle law, for any |¢| < V2,

(A7) oty = —2-12 = %ﬁe(%)

At the microscopic scale, it is well known that we get the sine kernel in the limit
for any |xo| < v/2,

. T b3 ¢ sin [ @sc (x0) (§ — ¢)]

lim ——KQ (x/Nxo+—,\/Nx0+ ): :
N—oo /2N cD V2N ~2N T —2¢)

Using the results of [13], these asymptotics can be extended to mesoscopic scales.

In the sequel, L is an arbitrary large positive constant and |xg| < /2.

THEOREM A.2. Forany —1/2 <X <1/2, we have
N K& (VNxo +EN* /Nxo + ¢ N*)

. xo+ N2 xgfNT2 A
_SINECEE - FETE (v

w(é—1¢) N—00
uniformly forall §,¢ € [-L, L].
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Theorem A.2 was first proved in [24] using the Riemann—Hilbert formulation
of [13]. In [25], we produce an elementary proof which is based on the classi-
cal steepest descent method performed in the seminal paper [31]. Note that this
approximation takes into account the density of the Wigner semicircle law, that
is, the fact that the GUE eigenvalues are not uniformly distributed at the global
scale. Namely, by Definition A.1 and (A.7), Theorem A.2 can be rephrased as

NAKéVD(\/Nxo + EN}\, \/ﬁxo + CN}‘)

(A.8)

_sinf N2 [F o (xo + tN T2 dn) e

_ + 0 (N"VE,

7E—0) N0

Note that unlike the sine-kernel, the RHS of (A.8) is not translation-invariant. This
raises complications to compute the limits of the cumulants of large scale linear
statistics of the modified GUEs; cf. Proposition 4.11. However, at sufficiently small
scales, we recover the sine-kernel as a special case of Theorem A.2.

THEOREM A.3. Forany —1/2 <X <0, we have the asymptotic formula
N* K& (v Nxog +EN* V/Nxo + ¢ NY)
in(N1/2+ 7 0. _
— Sln( T[QSC(XO) (‘S;: é‘)) + 0 (Nz)\)

T —2¢) N—oo
uniformly forall £, ¢ € [-L, L].

PROOF. By Definition A.1, we have

F - Fo) =52 ) =3 + 01k = ).

XO+N—1/2+A$ XO+N—1/2+A§

If we let xy = Y and yy = I, EE Taylor expansion gives
XN + YN X0 -
(A9) @<#) = 9(72) +O (N7,

and it follows that

1 X0
F(xy) — F(yn) = ﬁg<ﬁ

Hence, by (A.7), we have proved that

e e R )

=sin[N'/*70e(0)E — O]+ O (1€ —¢IN?).

When A < 0, the error term is converging to O for any x, y € [—L, L], and if we
plug this approximation in the formula of Theorem A.2, we obtain the asymptotics
of Theorem A.3. [J
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REMARK A.4. In the special case xo = 0, since ¢'(0) = 0, the error term in
(A.9) is of order N~'*2* and the sine kernel approximation of Theorem A.3 is
actually valid in the whole range —1/2 < A < 1/6.

Note that the Christoffel-Darboux kernel K éVD is the same, up to a scaling, as the
GUE kernel Kév defined by (1.4) in the Introduction. Namely, if we let A = % -4
for § € (0, 1], by (A.6), we can rewrite

b4
NOKY(xN72, yN %) = —N*KCD<—xNA yN*>
Thus, for any € > 0, if xg =0 and M = N + k for some |k| < N1-€, by Theo-
rem A.2, for all x,y € [—L, L], we have

N K (xN2 yN?)
(A.10) _ r x Ty
_SnMEG Zie) ~ PG g s
T(x =) N=oo

This formula holds at any mesoscopic scales. On the other hand, if we assume

that 1/3 < § <1 (cf. Remark A.4), since ps.(0) = by Theorem A.3, we obtain
the following asymptotics:

sin[r N'273/M(x — y)]
T(x —y)
1-36
+ N—0>oo(N )

NKY(xN2 yN7) =

(A.11)

APPENDIX B: VARIANCE IN THE CRITICAL REGIME

We give two different proofs of Theorem 1.6. First, we use the ideas of Sec-
tion 3.1 to compute the limit of the reproducing variance Vy( f5) at the critical scale
8 = «; see Proposition B.1. Second, we may use (4.48) and compute CZ[E\IJ,r /4 f1
using formula (1.31). Subsequently, we check that the different formulae for the
critical variance are consistent and we apply them to the MNS ensemble.

PROPOSITION B.1. For any shape ¥ € &, any test function f € Hl/2
for any scale 0 < o < 1, we have

Te(&=)l
4t~

11m Vo(fa)—4 2//‘ (X)_

PROOF. By formula (3.1) combined to the estimate (3.16) and the approxima-
tion (4.38), we see that if the support of the test function is included in [—%, %]

(R) and

dxdy.
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and I'y = (log N)2, then

1 A PN
o =z T () () ).
0 2m? 2N2a|k|§;NN°‘ TN¢¥ TN¥ [—L,L]2 X =Yy
ljI<TN N
><5,?’(x,y)s’.v(x,y)dxdyJr % (L—1)+ 0 (N7%),

N—oo
where S (x, y) = sin[/N(N + k) (F(55%) — F(55%))]. Applying a trigono-
metric identity and the Rlemann—Lebesgue lemma like in the proof of Lemma 3.2,
we see that as N — oo,

11 k (x) — f(?
VO(f“ A2 2 2a Z CD( a)q)( tx)// f f - ‘
4 N k| <Ty N® TN TN [-L,L]J? X =Y
|jI<CNN®
(k—j)ﬂ(x—y)> 1
dxd O (L7).
x cos( SN xdy+ L_)oo( )
Finally, the sums converge to Riemann integrals and by the dominated convergence
theorem,
. 1 SO -f»
limsup| Vo(fa) — 4—2// <I>( )P (v)
N—oo T [—-L,L]? X —

B.1
®D m(u—v)(x —y)

271
where the constant C(f) depends only on the test function f by (3.16). To com-
plete the proof, we use that for any w € R,

(B.2) //2 ® (1) (v) cos[27 (u — v)w]dudv = |d
R

and let L — oo in the inequality (B.1). [

(f)
7

xcos|: i|dudvdxdy <

As a consequence of Lemma 3.1, Lemma 3.2 and Proposition B.1, we obtain
that forany 0 <o < 1 and f € H, 1/2 N L*®(R),

lim Var
N—o0 KkIA//,Ot [fa

/f(x) dx+4 2//]1@2 ((Z‘L’_i})>

By Theorem 1.7, this implies that for any W € € so that B%p =land 7 >0,

Var[Sy.« f1= 27 / f o0 dx

T //Rz

J&x) =

x_

dxdy.

(B.3)
fo) -

x_

(r(x — y))\zdx dy.
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REMARK B.2. Such a direct computation seems possible only for the variance
of linear statistics thanks to the special structure of the reproducing variance Vj,
(3.1). Because of the singularity of the correlation kernel K @’ya, it is technically
involved to compute the limit of the higher-order cumulants using similar argu-
ment. Therefore, it is better to exploit instead the fact that the kernel Lg,n given
by (1.33) is translation-invariant and use Soshnikov’s method.

We have seen in Section 4.2 that, up to a scaling, the modified ensembles have
the same limit at the critical scale. Thus, we have three expressions for the vari-
ance of the random variable By ; f; (1.31) and formulae (2.11) and (B.3) in the
circular and Gaussian case, respectively. Note that these formulae are well defined
for any shape W € § and and we will now check that they are consistent. By (1.18),
M(1 + 1) = —1 and by (1.26), for any u € R2,

2, _ (0 —u
A (u)= (uz 0 ) .
Moreover, by definition (1.28), for any x; < x»,
2
GY(u,x) = max{0, up — t(x2 — x1)} + max{—us — 7 (x2 — x1), 0}.
Hence, for any bounded function f € HO1 / 2, by formula (1.31) with n =2,

Var[Ey ¢ f]

(B4) =2t / f(x)*dx
R

+4/ }fA(“)|2// D (x1)P(x2)[u — T(x2 —x1)]+dudx1 dx,.
0 X1 <X

Let us first check that this formula matches with the RHS of (2.11). Using that
® = —W’ and the properties of the shape W, (1.5), some integrations by parts
shows that for any u > 0,

/d)(t)/ q>(z+s)[u—s]+dsdt=5—Bﬁ,+/W(x+u)(1—qf(x))dx.
R 0 2 R

Since, by convention B2 . =t (cf. Remark 1.2), this implies that

Var[By ; f]= Z/w{f(u)|2udu
(B.5) 0

+4/O°|f<u>|2/ W (x4 ) (1 — Wy (1)) dx .
0 R

Moreover, it is easy to check by differentiating with respect to u € R that for any
shape W € §, we have

/\I!(x)(l—\ll(x+u))dx=u+/\If(x-l—u)(l—lll(x))dx
R R



MESOSCOPIC FLUCTUATIONS IN DETERMINANTAL POINT PROCESSES 1269

so that, according to formula (B.5), we obtain
Var[Ey, ¢ f]

- =2 [15wP [ (w() + () (1w (7)) xae

By (2.10), this establishes that the RHS of formulae (B.4) and (2.11) are equals.
It remains to check that formula (B.4) also matches with (B.3). To do so, we will
need the following result.

LEMMA B.3. For any function f € H'*(R) and any w > 0, we have

4712//]1%2 S =f» f(y)

X —
PROOF. By Plancherel’s formula, for any z € R,

cos(27(x — y)w)dxdy = / | @) [lul — w]" du.
R

/’f(x)—f(x—i—z)\zdx:4/|f(u)|zsin2(nuz)du.
R R

Then, by Fubini’s theorem, for any w > 0,

//‘ (x) — f(y)
472

f(X) - f(x +2)|?
B.7) 4n2 //‘

—/|f( )| (/ sin (nuz) cos(2nzw)dz) du.

Moreover, by Residue calculus, one can show that for any w > 0 and u € R,

cos(2m(x — y)w)dxdy

cos2mzw)dxdz

-2
(B.8) /wcos(anz)dzznz[lul —wl*.
Z

Hence, the lemma follows by combining equations (B.7) and (B.8). U

Lemma B.3 implies that

4n2//R2// f(X)

:2/ }f(”)|2// D) P(s)[u—1(s —t)]+dudsdt.
0 t<s

d>(t)<I>(s) cos[2mt(r — s)(x — y)]dxdydsdt
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Then, if we take w = t(s — ¢) in formula (B.2), by symmetry we obtain

// fx)—
47T2 R2 X—=y
:4/ |f(“)|2// O()P(s)[u—1(s —t)]+dudsdt.

Hence, if we add up the Poisson contribution 27 || f|? 12> We conclude that the
RHS of formulae (B.3) and (B.4) are also equals. As an example, let us see
what these formulae look like for the MNS ensemble. The MNS shape is ¢/ (¢) =
(14 ¢")~! and an elementary integration gives for any u € R,

L[ 1 _u
Jyarmtvona=e [ o=

Then, by formula (B.6), we get

| (t(x — y))\zdx dy

- — [P
Var[""f/,ff]_/R|f(u)| tal’lh(zu—_[) du

We can deduce the dual of this formula using equation (B.3). We have

A 212u
and ¢u)=

4
P = oshir/2 sinh[2772u]’

so that

Var[aw,,f]zzr/f(x)zdx

2 i 2d d
+//|f(x)‘f(”| (sinh[2n2r(x—y)]> e

APPENDIX C: THE THIRD AND FOURTH CUMULANTS

To prove Lemmas 4.18 and C.1 below, the strategy is to exploit the symmetries
of formula (4.31) in order to simplify as much as possible the cumulants of the
random variable Ey f. To this end, we will use the following convention. Given
two functions, we write f = g if there exists a permutation o € S(n) such that
fu)=g(ou) orif f(u)=g(—u) for all u € R". For any vector (u;)?_, of real
numbers, we also denote

+
max{uy,...,u,} =max{0, uy, ..., u,}.

Unfortunately, the combinatorial structure behind the cumulants of the modified
ensembles seems to be rather involved, and consequently the following computa-
tions are rather technical.
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PROOF OF LEMMA 4.18. According to definition (1.18), we have M(2 4+ 1) =
—3,M(1%) = 2, and by formula (4.31),

6%[f]=/%d2”m{nf(ui)}/ Ex[To0)
Ry R? i=1

i=1 <

(C.1)
x 3 13G* (U, x) + 3G 2 (u, x) — 4GY (u, 1)}

[m|=n

Hence, to prove formula (4.68), we need only to compute the kernels G112 and
G, By definition (1.26), for any u € R”,

241, (0 —u3\ _ (0 —ur\_ 142
A (Lt)—<u3 0 ):( 0 )——A (u).

ui
Then, by definition (1.28),
G, x) =" 2w, x)
=[u; —x2+x11" +[ug —x3+x117 + [—ug —x2 +x1]"
(C2)
+[—ur —x3 +x1 11+ [ug —x3 + 220" + [—uy —x3 + 21"
= 2([141 ) +X1]+ + [u; +ur — x3 +X1]+ + [up — x3 +XQ]+).

One can check that each term of the first line corresponds to a permutation in S(3)
in the following order 123, 132,213, 312,231, 321. At the second step, we used
the symmetries and the condition u| 4+ u» 4+ u3 = 0. By a similar argument, the
contribution of the composition 13 = (1, 1, 1) is given by

X 0 —uy —Uy —Uuj3
Alk (u) = up 0 —Uus3
Uy +us  uj3 0

and
13 +
G (u,x) =max{uy —xp + x1,up + u3z — x3 + x1}

+

+ max{ur — x3 + x1, up + u3 — x2 + x1}
+

+ max{—up — x + X1, U3 — X3+ x1}
+

+ max{—uy — x3 + x1, u3 — x3 + x1}
+

+ max{—uy —u3z —x2 + x1, —u3 — x3 + x1}

+
+ max{—uy —u3 — x3 + x1, —u3 — x2 + x1}.

It is straightforward to see that the previous formula implies that

(C.3) GIS(u,x)E6mEx{u1—x2+x1,u1+u2—X3 +x1}.
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Then, if we combine formulae (C.2) and (C.3), we get

3G2 (u, x) + 3G 2 (1, x) — 4GY (u, x)
(C.4)
= 12 (U1 — x2 + X1, up — x3 + x2).

Finally, if we make the change of variables x; = x, z; = x> —x; and zo = x3 — x2
in (C.1), formula (C.4) implies that

c3[3¢f]=12/ d2u§7t{nf(ui)}/ dx®(x)
R?2 ; R

x// <I>(x+zl)<l>(x+z1+Z2)w(u1—zl,uz—zz)dzz,
(0,00)2
where it is understood that #3 = —u; — u3 in the first integral. [J

LEMMA C.1. Foranyze€ ]Ri, up to the permutation of 71 and z3, we have

Z Z M(@m)G™ (v, 7)

v1+--+v4=0 |m|=4
vie{—1,1}

=24(4[1 ol 42l -z — ot

R-z]t R-z1—z22—z]"

2 _ +_2_ +
5 5 +[2—2z1 —22] [2 —2z1]

—2max{0,1 —z1,2 —z1 — 22} —2max{0,1 — 21,2 — 23 —Z2—23}>-

PROOF. Wefixz e Ri. We will proceed exactly as in the proof of Lemma 4.18
except that we will not give all the details. We will denote &= =41 or —1 and we
let

’ = miix{l —71,2—171 —zZ}—i-mtlx{l —21,2—21— 22— 23}

+mJ51x{1 —21—2,2—21—22— 23} +22 — 211" +[2—z1 — 2],
o=21-zl"+1—z1 — 220" +[1 —z21 — 22 — z3]"),
¢y =max{l — 22,2 — 22 — 23} + [2— 22l + [1 = 22] " +[1 — 22 — 23]",
Ga=41-z1"+2[1 —z1 —z2]",
¢s=4[1 — 220" +2[1 — 2z — 231",

We will compute the values of G™ (v, z) for all compositions m of 4 and all points
v = (&4, &£, £, +) such that > v; = 0. The computations are not difficult but there
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0 —uiy —up
Uy +up 0 )

are many cases to check. By definition (1.26),
242, \ _ 0 —uU3 — Uy
(C.5) AT () = <u3 e 0 )
Then, by definition (1.28), we can check that
G+ +——) =G — +4)
=22-alt+12 -zt +12-2z1"

+R-—z1 -l "+ R2-n—znlT 12—z —22—z3]").
We used that v; + v = 0 or 2 and that z; > 0 to check which terms are a priori
nonzero. Moreover, for similar reasons,

G+ —+-) =G+ - - =GP (- ++-) =G (- + —+) =0.

If we use the symmetry of the function ® [see (4.73)], under the change of variable
z1 <> z3 and that M(2 4+ 2) = —3, we can conclude that

M2+2) Y G*,2)

V1 +F04=0
U[E{—l, 1}

(C.6)

2— 2" Y — 7y — 72T
<__24<[2_Z1]++[ 22] +[2_Z1_Z2]++[ 71— 22 13])

2 2

in the sense that if we replace the LHS of equation (C.6) by its RHS in formula
(4.72), it does not change of the value of the integral. Let us continue with the
compositions 3 + 1 and 1 4+ 3. We have

Uq

ui

This expression depends on a single variable (say u1) and collecting the nonzero
terms yields

GHl(L, 4,4+, ) =G (4, +, +, 4)
=2([1 -z 1"+ 1 =zt +[1 —z3]"

-z -zl "+l —z2—z]"T+[1 —z21 — 22 — z3]).
We can again use the symmetry of formula (4.72) and, since M(3 + 1) = —2, we
get

M@+1D Y G2 +6" w2
v14-+vg=0
vie{—1,1}
<« —48(2[1 — 11T +[1 — 221"
(C.7)
+2[1—z1 — 2]t +[1 — 21 — 22 — z3])

=—24(c2+2[1 — 211" +2[1 — 2217 +2[1 — 21 — 22]").
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Consider now the composition 1 = 14 1 4 1 + 1. By definition (1.26),

0 —uUn —Up — U3 —Ury — U3 — U4
14 uy 0 —us3 —U3 — U4
A= uy + uj u3 0 —uy
up +uz+ugqs uz+uy Ug 0

If we look at all permutations in S(4) and use the symmetry under permutations of
the u;’s, we get

~ 14
G" (u,2)
_l’_
E4(max{u1 —21,u1+ur—z1 —20,u1 +up+uz —21 —22 — 23}

+m§x{u1 — 71— 22— 23, U1 +ux—21 — 22, U1 +uz+u3z —z1}
—i—mngx{ul —Z1— 22, U1 +ury—z1,uy +upr+u3 —z1 — 22 — 23}
—I—mJax{ul—zl—12—23,u1+u2—21,u1+u2+u3—11—22}
+m+ax{u1—21—12,u1+u2—21—Zz—z3,u1+u2+u3—zl}

+
+max{u; —zi,u1+ux—21 —22 — 23, u1 +uz +uz —z1 —z2}>-

~14 . . . . o s
So we can assume that G1" is given by the RHS of this expression, then it is
straightforward to check that

G' (++——) =8(max{1 — 21,2 = 21 — 23]

+m—i2_iX{1—Zl,2—Zl—22—23}+[2_Zl]+)’
GV (—++) =GV (+ — —) =40,
GV (+ —+-) = 4L,
~14 _ ~14 _
G (——+H=G (—+-H=0

so that, since M(1%) = —6,

M(1%) Z Gt (v, 2)
vi+--+v4=0
vie{—1,1}

(C8) = —24{202 + &y +2miax{l — 21,2 — 21 — 22)

+2mJ5x{1 —21,2—21— 22— 23} +2[2—Z1]+}-
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If we combine formulae (C.6), (C.7) and (C.8), we obtain
> > Mm)G™ (v, 2)

v+ =0 |m|=4
vie{—1,1} £(m)#3

<« —24{3§'2 4+ ¢4+ ZmEx{l —21,2—21 — 22}

(€9  +2max{l —z1,2—z1 —z2 —z3) +2[1 — 1"
+2[1 — 2]t +2[1 —z1 — 221

2=zl T A _ZZ_B]JF}'

3[2—z711"
+32 -] + > >

Finally, we look at the composition 2+ 1+ 1,
0 —u3 —U3— U4 0 —uy —up—up
A2+1+1(u) = us 0 —U4 = uj 0 —Uun ,
U3+ uq Ug 0 up+ur 175) 0
and if we follow the same procedure, we can prove that
G4+ —) =Mt =0+ +5,
G4 _ 4y 4 G 4
=G (4 — -+ P ) =20+ G+ 55,

On the other hand,
0 —Uup —u3 —Up— U3 — U4
Al+2+l — Uy + uz 0 —uy
u +u3 +uy uq 0
0 uy+u  up
=|—-u;—up 0 —uy | .
—uy uj 0

It is not difficult to see that, up to conjugation by a permutation matrix, we have
A2 = A2+141 This implies that G2+ = G2+1+1 because such conjugation
only changes the order of the sum over S(4) in the definition (1.28). Similarly,
we can check that the matrix A'T1%2 is also conjugated to A%>T!*! by a permu-
tation matrix, so that they give the same contribution to the 4th cumulant. Since
M(2 + 1+ 1) =4, putting all terms together, we conclude that

YooY M@mG™(v,2) =24{¢1 + 30 + &3 + G4 + G5

vi+-4v4=0 |m|=4
vie{—1,1} £(m)=3
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Observe that using the symmetry between z; and z3 and the DHK formula (4.69),
we can show that

G 2([1 et —z -l + 2=zt

2— 2]t YO E
+4[ 2 +[2—Zl—22]++[ ikt k) )
2 2
and we get
YooY Mm)G™ (v, 2)
vi+-+v3=0 |m|=4
vie{—1,1} £(m)=3
< 24{30 + a4 o5+ 21 — ]t 201 — 2] "
(C.10)

+2[1—z1 — )T+ 22— 211" +[2— 220
22—z -l 22—z — 22—t

Finally, if we combine formulae (C.9) and (C.10), many terms cancel but not all
of them and we are left with

Z Z M(@m)G™ (v, 7)

v1+---+v4=0 |m|=4
vie{—1,1}

[2—z2]" n R—z1—z22—z3]"

o+
<—24<€5 2—z1]"+ > >

+2—z1 —2]t - 2m+éx{l —21,2—21— 22}
+
—2max{l —z1,2—z1 — 22 —23})-
Finally, if we make the change of variable 7| <> z3,

Cs < 4[1 — 221" +2[1 — z1 — 2],

and we have proved the formula of Lemma C.1. O
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