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GAUSSIAN AND NON-GAUSSIAN FLUCTUATIONS FOR
MESOSCOPIC LINEAR STATISTICS IN

DETERMINANTAL PROCESSES1

BY KURT JOHANSSON AND GAULTIER LAMBERT

KTH Royal Institute of Technology and University of Zürich

We study mesoscopic linear statistics for a class of determinantal point
processes which interpolate between Poisson and random matrix statistics.
These processes are obtained by modifying the spectrum of the correlation
kernel of the Gaussian Unitary Ensemble (GUE) eigenvalue process. An ex-
ample of such a system comes from considering the distribution of noncol-
liding Brownian motions in a cylindrical geometry, or a grand canonical en-
semble of free fermions in a quadratic well at positive temperature. When
the scale of the modification of the spectrum of the correlation kernel, related
to the size of the cylinder or the temperature, is different from the scale in
the mesoscopic linear statistic, we obtain a central limit theorem (CLT) of
either Poisson or GUE type. On the other hand, in the critical regime where
the scales are the same, we observe a non-Gaussian process in the limit. Its
distribution is characterized by explicit but complicated formulae for the cu-
mulants of smooth linear statistics. These results rely on an asymptotic sine-
kernel approximation of the GUE kernel which is valid at all mesoscopic
scales, and a generalization of cumulant computations of Soshnikov for the
sine process. Analogous determinantal processes on the circle are also con-
sidered with similar results.
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1. Introduction and results.

1.1. Introduction. Recently, there has been a lot of discussion about universal-
ity of random matrix statistics at mesoscopic or intermediate scales. For instance,
the proofs of the local semicircle law and the Wigner–Dyson–Gaudin–Mehta con-
jecture, see [5, 18] for further references, the work [16, 17] on random band ma-
trices and the so-called metal-insulator transition, or the CLT for linear statistics
of orthogonal polynomial ensembles [8]. One motivation to investigate these mod-
els comes from E. Wigner’s fundamental observation that the spectral statistics
of complicated quantum systems exhibit universal patterns. On the other hand,
eigenvalues of quantum systems which are classically integrable are expected to
be described by Poisson statistics [20]. Therefore, it is natural to investigate the
transition from Poisson to random matrix statistics at intermediate scales. There
are many ways to interpolate between the two point processes, for instance using
Dyson’s Brownian motion, one gets a determinantal process called the deformed
Gaussian unitary ensemble [23]. For this model, the transition has been investi-
gated using mesoscopic linear statistics in [14]. The authors proved different CLTs
with fluctuations which depend on the scale of the test function that samples the
eigenvalues. In this paper, we will study the fluctuations of another general class
of determinantal processes which interpolate between Poisson and GUE statistics
that we call modified GUEs (see Definition 1.1). Instead of adding an independent
matrix to the GUE, we directly modify or mollify the spectrum of the correlation
kernel of the process. This has the effect of introducing some extra disorder in the
system while keeping the determinantal structure. Our main motivation to study
such ensembles comes from the so-called MNS ensemble which was introduced
by Moshe, Neuberger and Shapiro in [29] (see also [11, 23]), and corresponds to
the joint probability density function of the positions of a grand canonical sys-
tem of free fermions at positive temperature confined in a harmonic potential. In
general, it is also of interest to investigate fluctuations of determinantal processes
whose correlation kernels are not necessarily reproducing.
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1.2. The modified Gaussian unitary ensembles. Let X be a Polish space
equipped with some reference measure dμ. Note that in the sequel, we will only be
interested in the two cases X=R or the unit circle T equipped with the Lebesgue
measure. A point process is a random measure on X of the form �=∑

δXi
. The

support of the measure � is the object of interest, it is called a point configuration
{Xi} and we assume that it has neither double point nor accumulation point. Point
processes are usually described by their correlation functions ρ1, ρ2, . . . which are
characterized by

(1.1) E

[∏
i

1+ g(Xi)

]
=

∞∑
k=1

1

k!
ˆ
Xk

∏
i

g(xi)ρk(x1, . . . , xk) dμ(x1) · · ·dμ(xk)

for any continuous function g : X→ C with compact support. A point process is
called determinantal if all its correlation functions exist and satisfy the identity

ρk(x1, . . . , xk)= det
k×k

[
K(xi, xj )

]
.

Hence, a determinantal process is characterized by its correlation kernel K : X×
X→ R and we will denote by EK the corresponding probability measure on the
space of point configurations. Moreover, the kernel K defines an integral operator
K on L2(dμ) which is locally trace-class so that the RHS of formula (1.1) is a
Fredholm determinant:

(1.2) EK

[∏
i

1+ g(Xi)

]
= det[I +Kg]L2(dμ).

In most cases, the operator K is self-adjoint (although there are natural examples of
non-Hermitian determinant processes, such as the deformed GUE studied in [14]).
Then the kernel K defines a determinantal process if and only if all the spectrum
of the operator K lies in [0,1]. These facts are well known and we refer to [21,
22, 38] for different introductions to the theory of (determinantal) point processes
and to the survey [4] for an overview of several applications. In this paper, we
will investigate examples of determinantal processes with correlation kernels of
the general form

(1.3) K(x,y)=
∞∑
k=0

pNk ϑk(x)ϑk(y),

where (ϑk)
∞
k=0 is an orthonormal basis in L2(dμ) and 0 ≤ pNk ≤ 1. A classical

example of such correlation kernel is that of the GUE eigenvalue process denoted
by

(1.4) KN
0 (x, y)=

N−1∑
k=0

ϕk(x)ϕk(y),
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where ϕk(x) =
√

π
√
N√
2
hk(x

π
√
N√
2
)e
−(x π

√
N√
2
)2/2

and hk are the normalized Hermite

polynomials with respect to the weight e−x2
on R. The parameter N ∈N is the di-

mension of the matrix and the variance of the entries is scaled so that the eigenvalue
density at the origin is also of order N as N →∞. For some background on the
GUE process, we refer to [30], Chapters 2–5, and to Appendix A for a collection of
standard facts on the asymptotics of the Hermite polynomials and the GUE kernel.
In the following, our main interest is in determinantal processes whose correlation
kernels are modifications of KN

0 , in the sense that, instead of taking the spectrum
pNk = 1k<N , we assume that k �→ pNk is a function which decays smoothly. The
following class of functions will be called shapes:

F= {
� :R→[0,1]|� ′ ≤ 0 is Riemann integrable,

(1.5)
� ∈L1(0,∞) and (1−�) ∈ L1(−∞,0)

}
and, for any � ∈ F, we let

(1.6) B2
� =

ˆ
R

�(x)
(
1−�(x)

)
dx.

DEFINITION 1.1. A modified GUE is a determinantal process on R (with re-
spect to the Lebesgue measure) whose correlation kernel KN

�,α is

(1.7) KN
�,α(x, y)=

∞∑
k=0

�

(
k−N

τNα

)
ϕk(x)ϕk(y),

where � ∈ F, N > 0, α ∈ (0,1) and τ > 0. In the sequel, the parameter α is called
the modification scale, τ is called the temperature and we assume that the shape
� is normalized so that B2

� = 1.

Note that he kernel KN
�,α is not reproducing, so that the number particles in the

configuration, denoted by #, is random. Moreover, a simple computation shows
that EKN

�,α
[#] ∼ N and the density of particles at the origin is also of order N

(global scaling). According to [21], Theorem 7, another correlation kernel for the
modified GUE is given by

(1.8) K(x,y)=
∞∑
k=0

INk ϕk(x)ϕk(y),

where INk are independent Bernoulli random variables with E[INk ] = �(k−N
τNα ).

Hence, the modified ensembles are more random than the GUE and the amount of
extra randomness may be estimated by a Riemann sum approximation:

VarKN
�,α
[#] =

∞∑
k=0

Var
[
INk

]= ∞∑
k=0

�

(
k−N

τNα

)(
1−�

(
k −N

τNα

))
∼ τNαB2

�.
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Heuristically, it means that the more the spectrum of the correlation kernel is mod-
ified, the more disorder is forced into the system. So we expect that, for large
modifications, the modified ensembles behave like the Poisson process rather than
like the GUE.

REMARK 1.2. According to formula (1.7), for any σ > 0, the shapes � and
�σ (t)=�(t/σ ) define the same modified GUE at different temperatures. More-
over, by formula (1.6), B2

�σ
= σB2

� and the condition B2
� = 1 fixes the temperature

τ > 0 so that

(1.9) VarKN
�,α
[#] = τNα + o

N→∞(1).

Our interest in determinantal processes with correlation kernels of the form (1.7)
is mainly motivated by the following example that we call the MNS ensemble.
In [29], motivated by the physics of mesoscopic conductors, Moshe, Neuberger
and Shapiro introduced an ensemble of unitary invariant Hermitian matrices whose
eigenvalue distribution interpolates between the GUE and the Poisson process.
This model was rigorously analyzed in [23] and it was proved that its grand canon-
ical version is a determinantal process with correlation kernel on R given by

(1.10) KN
ψ,α(x, y)=

∞∑
k=0

ϕk(x)ϕk(y)

1+ e(k−N)/τNα

for some τ > 0 and 0 < α < 1. So the MNS ensemble is a modified GUE with
shape ψ(t)= (1+ et )−1. Moreover, this model has two natural interpretations.

First, since the rescaled Hermite functions (ϕk)k≥0 are the eigenfunctions of

the Schrödinger operator −
+ π2N
2 x2 on R, the MNS process describes a grand

canonical system of free fermions at positive temperature confined in a quadratic
external well. Note that the probability that the kth state of this harmonic oscilla-
tor is occupied is equal to the Fermi factor (1+ e(k−N)/T )−1 where T = Nατ is
the temperature of the system. Thus, the classical GUE corresponds to the ground
state of the system. Namely, taking the temperature to zero [i.e., the limit τ → 0 in
(1.10)], one recovers the GUE kernel KN

0 , (1.4). On the other hand, for large tem-
perature (i.e., taking τ →∞), the kernel degenerates to that of a Poisson process
on R. Therefore, at a heuristic level, the MNS ensemble interpolates between Pois-
son and random matrix statistics. We shall prove that such a transition occurs for
smooth mesoscopic linear statistics of the process and analyze the critical regime.

The kernel (1.10) also occurs in connection with the KPZ equation (Kardar–
Parisi–Zhang), where it is related to the crossover distribution for the height func-
tion; see [2, 11, 27, 34, 35]. We are not aware of any connection between the
present work and the KPZ equation. Second, in [23], it was shown that the MNS
process also describes a system of Brownian particles moving on a cylinder and
conditioned not to collide (by rotation invariance, the distribution of the particles
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is stationary). We have seen that the parameter N is the expected number of par-
ticles and one can check that the length β of the cylinder where the particles are
diffusing is related to the temperature T of the free Fermions by β = 4 sinh(T −1).
This particle system is expected to behave like Dyson’s Brownian motion [3, 14],
and this provides another heuristic description of the transition. Namely, at small
scales, the particles remain roughly independent, while when β gets large the tra-
jectories start regularizing because of the noncolliding constraints until eventually
the joint law of the particles becomes the same as that of GUE eigenvalues.

In general, one can think of �(k−N
τNα ) as the probability that the kth state of a

quantum system is occupied. Then 1−� corresponds to the distribution function
of a probability measure on R and we denote by � = −� ′ the corresponding
density. For technical reasons, it will be easier to consider the following subclass
of shapes:

(1.11) E= {
� ∈ F|�(x)=−� ′(x)≤ e−c|x| for some c > 0

}
,

which contains the MNS shape ψ(t)= (1+ et )−1.
In random matrix theory, it is well known that there are different scalings to look

at the eigenvalues. The global or macroscopic scale refers to the whole eigenvalue
process. On the other hand, the local or microscopic scale is that of individual
eigenvalues, that is, the gaps between consecutive eigenvalues are of order 1. At
this ultimate scale, in the Hermitian case, universality means that the rescaled point
process converges in the bulk to the celebrated sine process. Any scale in between
is called mesoscopic. In other words, a mesoscopic random variable is a function
of the point process which depends on a growing fraction of the total number of
particles. A typical example of such observables is the following class of linear
statistics.

DEFINITION 1.3. Given a point process � with density of order N at the
origin and a function f : X→ C with compact support, for any 0 < δ < 1, we
define

fδ(x)= f
(
xNδ),

and we call a mesoscopic linear statistic the random variable

(1.12) �fδ =
∑
i

f
(
XiN

δ).
In the following, the parameter δ is called the scale.

We will investigate the asymptotic distribution of mesoscopic linear statistics of
the modified GUEs. Note that since the density at the origin is of order N , we have

(1.13) EKN
�,α
[�fδ] ∼N1−δ

ˆ
R

f (x) dx.
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If δ < 1, this expectation diverges as N→∞ and it is natural to consider centered
linear statistics instead,

(1.14) �̃fδ =
∑
i

f
(
XiN

δ)−EKN
�,α
[�fδ].

For any random variable Z with a well-defined Laplace transform, its cumulants
Cn[Z] are given by the power series

(1.15) logE
[
etZ

]= ∞∑
n=1

Cn[Z] t
n

n! .

For determinantal processes, it turns out that there are explicit formulae, in terms
of the correlation kernel K , for the cumulants of a linear statistic �f =∑

f (Xi).
Taking g(x)= etf (x) − 1 for some function f ∈ C(X) with compact support and
t ∈R in equation (1.2), we see that

EK

[
et�f

]= det
[
I+K

(
etf (x) − 1

)]
.

Since the operator K is assumed to be locally trace-class, the RHS of this equation
is a Fredholm determinant and taking logarithm (see, for instance, [37], Chapter 3),
we obtain

logEK

[
et�f

]= Tr
[
log

(
I+K

(
etf (x) − 1

))]
=

∞∑
l=1

(−1)l+1

l
Tr

[(
K
(
etf (x) − 1

))l]
.

If we expand etf (x) − 1=∑
f (x)n t

n

n! and use linearity of Tr, we deduce that the
cumulants of the random variable �f are given by

(1.16) Cn
K [�f ] =

n∑
l=1

(−1)l+1

l

∑
m1,...,ml≥1
m1+···+ml=n

n!
m1! · · ·ml ! Tr

[
f m1K · · ·f mlK

]
,

where we interpret f mj as multiplication operators acting on L2(X, dμ). In par-
ticular, we have

Tr
[
f m1K · · ·f m�K

]
(1.17)

=
ˆ
X�

f (x1)
m1K(x1, x2) · · ·f (x�)m�K(x�, x1)

∏
j<�

dμ(xj ),

so that, provided the precise asymptotics of the correlation kernel K is available,
we may deduce from formula (1.16) the limit law of the linear statistic �f . For
instance, we get a CLT with variance σ 2 if, for any n > 2,

lim
N→∞Cn

K [�f ] = 0 and lim
N→∞C2

K [�f ] = σ 2.
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A composition of n ∈ N is a tuple m = (m1,m2, . . . ,m�) of positive integers
such that |m| = m1 + · · · + m� = n, where � = �(m) is called the length of m.
Using the notation

(1.18)
(
n

m

)
= n!∏

j mj ! and M(m)= (−1)�+1

�

(
n

m

)
,

it will be convenient to rewrite formula (1.16) as

(1.19) Cn
K [�f ] =

∑
|m|=n

M(m)Tr
[
f m1K · · ·f m�K

]
.

1.3. Main results. In this section, we summarize the main results of Sections 3
and 4 about the asymptotics of sufficiently smooth linear statistics of the modified
GUEs. For any function f ∈L1 ∩L2(R), we define its Fourier transform:

f̂ (u)=
ˆ
R

f (x)e−i2πxu dx.

We let H 1/2(R), respectively, H 1(R), be the (homogeneous) Sobolev spaces of
real-valued L2-functions equipped with the norms

‖f ‖2
H 1/2 =

ˆ
R

∣∣f̂ (u)∣∣2|u|du= 1

4π2

¨
R2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2 dx dy,(1.20)

‖f ‖2
H 1 =

ˆ
R

∣∣f̂ (u)∣∣2|u|2 du= 1

4π2

ˆ
R

∣∣f ′(x)∣∣2 dx.(1.21)

We also denote by C0(R),H
1/2
0 (R),H 1

0 (R), etc., the corresponding subspaces of
compactly supported functions.

THEOREM 1.4. For any parameters 0 < δ < α < 1 and for any bounded func-
tion f ∈H 1/2

0 (R),

(1.22) VarKN
�,α
[�fδ] = τ

2
Nα−δ

ˆ
R

f (x)2 dx + o
N→∞

(
Nα−δ).

This asymptotics implies the following classical CLT as N→∞:

(1.23) N− α−δ
2 �̃fδ ⇒N

(
0, τ‖f ‖2

L2/2
)
.

PROOF. The asymptotic expansion of the variance is proved in Section 3.1.
Then the CLT (1.23) follows directly from the estimates (1.13) and (1.22) by ap-
plying Theorem 1 in [40]. �

Hence, we will call the set {δ ∈ [0,1) : δ < α} the Poisson scales because
the variance of any linear statistic is diverging in this regime. Viewing the pro-
cess �̃, (1.14), as a random distribution acting on C∞0 (R), Theorem 1.4 implies
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that, once normalized, it converges at any scale δ < α to a white noise with inten-
sity τ/2, that is, a centered Gaussian field �∞ on the real line with covariance

E
[
�∞(f )�∞(g)

]= τ

2
〈f,g〉L2(R).

At scales δ ≥ α, like for the GUE, the variance of smooth statistics remains
bounded. Therefore, we expect a limiting process with nontrivial correlations. Ac-
tually, by comparing linear statistics of the modified GUEs with that of the sine
process, we will obtain the following CLT.

THEOREM 1.5. Let � ∈ E and f ∈ H
1/2
0 (R) be a bounded function. If 0 <

α < δ ≤ 1, then as N→∞,

�̃fδ ⇒N
(
0,‖f ‖2

H 1/2

)
.

PROOF. See Section 3.2. �

Hence, we will call the set {δ ∈ (0,1) : α < δ} the GUE scales by analogy with
Theorem 3.6 below. The interpretation of Theorem 1.5 is that the centered modified
GUEs converge weakly at any scale δ > α to a Gaussian process �0 on the real
line with covariance

E
[
�0(f )�0(g)

]= 〈f,g〉H 1/2 .

In contrast to a white noise, the Gaussian process �0 is spatially correlated and
self-similar as can be seen from formula (1.20). Theorems 1.4 and 1.5 imply that
the modified GUEs undergo a transition from Poisson to random matrix statistics
when the mesoscopic scale δ is equal to the modification scale α of its correlation
kernel. Our next question is what happens at the critical scale? The first step is to
investigate the variance of linear statistics.

THEOREM 1.6. Let � ∈ E and f ∈H 1/2
0 (R) be a bounded function. For any

scale 0 < α < 1,

lim
N→∞VarKN

�,α
[�fα]

= 2τ ′
ˆ
R

∣∣f̂ (u)∣∣2 ˆ
R

�(t)
(
1−�

(
t + u/τ ′

))
dudt(1.24)

= 2τ ′
ˆ

f (x)2 dx + 1

4π2

¨ ∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣�̂(
τ ′(x − y)

)∣∣2 dx dy,
where �=−� ′ and the parameter τ ′ = τ

4 > 0.
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PROOF. See Appendix B. �

Since � is a probability distribution function, it is clear that formula (1.24) in-
terpolates between ‖f ‖2

H 1/2 as τ → 0, respectively, 2τ ′‖f ‖2
L2 as τ →∞. Hence,

we recover the variances of Theorem 1.4 and Theorem 1.5, respectively. In anal-
ogy, we would also expect Gaussian fluctuations when δ = α. Surprisingly, at this
critical scale, the cumulants of linear statistics of the modified ensembles have non-
trivial limits. In order to formulate our main result, we need to introduce additional
notation. Let

Rn
< =

{
x ∈Rn : x1 < · · ·< xn

}
,

and for any t ∈R,

Rn
t =

{
x ∈Rn : x1 + · · · + xn = t

}
.

For any composition m and for any k ≤ �(m), we let

(1.25) mk =m1 +m2 + · · · +mk.

For any u ∈R|m|, we define

(1.26) �m
i,s(u)=

mi∑
j=1

uj −
ms∑
j=1

uj =

⎧⎪⎪⎨⎪⎪⎩
ums+1 + · · · + umi

if s < i,

−umi+1 − · · · − ums if i < s,

0 if i = s,

so that �m = (�m
i,s) is a �(m) × �(m) antisymmetric matrix. If σ ∈ S(n) is

a permutation of [n] = {1, . . . , n}, we will use the shorthand notation σu =
(uσ(1), . . . , uσ(n)) and we define s(σ ) = arg min(σ ) ∈ [n] × [n − 1] × · · · × [1]
as follows. That is, for any l ∈ [n], the number sl(σ ) is given implicitly by the
relation

(1.27) σ(sl)=min
{
σ(j) : j = 1, . . . , l

}
.

For any τ > 0 and any composition m of n≥ 2, let

(1.28) Gm
τ (u, x)=

∑
σ∈S(n)

max
i≤�

{
�m
i,s�

(u)− τ(xσ(i) − xσ(s�))
}
,

where we used the shorthand notation �= �(m) and s� = s�(m)(σ ). Note that, since
�m

s�,s�
(u) = 0, the functions Gm

τ (u, x) are nonnegative on Rn × Rn
<. Finally, for

any function � ∈ F, let B1
� = 0 and, for all n≥ 2,

(1.29) Bn
� =

n−1∑
k=0

bnk

ˆ
R

x�(x)�(x)k
(
1−�(x)

)n−1−k
dx,
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where the coefficients bnk are given by

(1.30) bnk =
k+1∑
l=1

(−1)l+1
(

n− l

k+ 1− l

) ∑
|m|=n
�(m)=l

(
n

m

)
.

Note that since b2
0 =−b2

1 = 1, formula (1.29) implies that

B2
� =

ˆ
R

x�(x)
(
1− 2�(x)

)
dx.

Then, using that for any shape � ∈ F, we have

�(x)
(
1− 2�(x)

)=− d

dx

{
�(x)

(
1−�(x)

)}
,

we recover formula (1.6) by an integration by part.

THEOREM 1.7. Let 0 < α < 1, � ∈ F∗, and consider the determinantal pro-
cess with kernel KN

�,α . For any bounded function f ∈H 1/2
0 (R), the centered linear

statistic �̃fα converges in distribution as the density N →∞ to a random vari-
able denoted ��,τ/4f . Moreover, if f ∈H 1

0 (R), then the cumulants of ��,τf are
given by for all n≥ 2,

Cn[��,τf ] = 2τBn
�

ˆ
R

f (t)n dt − 2
∑
|m|=n

M(m)

(1.31)

×
ˆ
Rn

0

du

ˆ
Rn
<

dx�
{

n∏
i=1

f̂ (ui)�(xi)

}
Gm
τ (u, x).

PROOF. See Section 4.2. �

It seems to be a difficult problem to recover the Laplace transform of the random
variable ��,τf from formula (1.31). In fact, we are only able to infer a few prop-
erties of its distribution, such as the fact that it is not Gaussian and the dependence
in the temperature τ .

THEOREM 1.8. For any shape � ∈ F and any τ > 0, the random process
��,τ which arise from the limit of a modified ensemble at the critical scale δ = α

is not Gaussian.

Surprisingly, the proof of Theorem 1.8 is rather involved and relies on two sep-
arate arguments. First, we show that, if there exists n > 2 such that the parameter
Bn
� �= 0, then the random process ��,τ is not Gaussian and that, unexpectedly, this

criterion is satisfied by all modified GUEs except the MNS ensemble.
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PROPOSITION 1.9. The only function � ∈ F which satisfies the conditions
Bn
� = 0 for all n > 2 is the MNS shape ψ(t)= 1/(1+ et ).

PROOF. See Section 4.3. �

This special property of the MNS ensemble might be related to the fact that
this process originates from free fermions and it would be interesting to know
whether it has any physical interpretation. From a probabilistic perspective, the
main consequence of Proposition 1.9 is that we need another argument to show
that the process �ψ,τ is not Gaussian. To this end, we show in Section 4.4 that the

Schwartz function y(x)= 2e−επx2
cos(2πx) satisfies if ε is sufficiently small:

(1.32) C4[�ψ,τ y] �= 0.

We must look at the 4th cumulant since C3[�ψ,τf ] = 0 for any test function be-
cause of certain symmetries; see Proposition 4.19. Let us also point out that there is
nothing special about the function y(x) except that it is simple enough to provide
a good example.

To conclude, we have seen that the MNS ensemble describes noncolliding
Brownian motions in a cylindrical geometry. In this case, the diagram of Figure 1
shows that the particle statistics at a given mesoscopic scale δ exhibit a sharp tran-
sition from Poisson to GUE at time N−δ . This situation is similar to that of the
Dyson’s Brownian motion which was investigated in [14]. However, the transi-
tions are different: for the MNS ensemble, there is no intermediate regime which
depends on the test function f and unexpectedly the critical fluctuations are not

0

11

0

GUE
�̃fδ ⇒N (0,‖f ‖2

H 1/2)

Poisson
Var�fδ ∼Nα−δ
Classical CLT

Critical scale
Non-Gaussian Fluctuations

(sampling scale) δ

α (modification scale)Macroscopic scale

Microscopic scale

FIG. 1. Diagram of the fluctuations for a smooth linear statistics of a modified GUE as a function
of the scale δ and the modification scale α.
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Gaussian. In both interpretations, either as noncolliding Brownian motions, or as
a grand canonical ensemble of free fermions, it is not clear why this phenomenon
occurs at a certain relation between the sampling scale of the linear statistic and
the size of cylinder, or the temperature. Actually, it would be very interesting to
get another description than Theorem 1.7 of the random field �ψ,τ which arises at
the critical scale in order to understand how the spatial correlations disappear in
the transition from the H 1/2-Gaussian noise �0 to the white noise �∞. Another
point of interest would be to understand how the processes ��,τ depend on the
shape � and why the MNS Ensemble appears to be special.

1.4. Outline of the main ideas. For determinantal processes, a general strat-
egy to obtain a CLT for linear statistics is to use formula (1.16) to show that all
cumulants of order ≥ 3 converge to zero. This approach has been applied to many
classical models in 1 or 2 dimensions using a wide range of techniques; see, for
example, [1, 8–10, 32, 33, 39, 40]. In this paper, it is applied to the modified ensem-
bles of Definition 1.1. To the authors’ knowledge, the results of this paper at the
critical scale provide the first example of a determinantal point process for which
the fluctuations of a mesoscopic linear statistic are not Gaussian in the limit. At
the global scale, non-Gaussian limits can be obtained for unitary invariant Hermi-
tian matrix models with several cuts, but the mechanism is different. In fact, it was
recently proved in [25] that, at mesoscopic scales, such models are also described
in the large N limit by the H 1/2-Gaussian noise �0 appearing in Theorem 1.5.
To prove Theorems 1.5 and 1.7, we use a perturbative approach which consists in
comparing the correlation kernels of two processes to establish that a given linear
statistic �f has the same limit for both ensembles as their density N →∞. To
this end, we will use the following definition.

DEFINITION 1.10. Two families of kernels (KN)N>0 and (LN)N>0 defined
on the same space X are asymptotically equivalent (written as KN ∼= LN ) if, for
any � ∈N and any functions f1, . . . , f� ∈ C∞0 (X),

lim
N→∞Tr

[
f1K

N · · ·f�KN ]= lim
N→∞Tr

[
f1L

N · · ·f�LN ]
.

Definition 1.10 does not apply only to correlation kernels, but to all families of
kernels which are locally trace-class. However, if both KN and LN define de-
terminantal processes and KN ∼= LN , by formula (1.19), these processes have
the same limit. For instance, Theorem 1.5 is proved by showing that the kernel
KN
�,α and the GUE kernel KN

0 are asymptotically equivalent at any scale δ > α

and using the CLT for the mesoscopic GUE (see Theorem 3.6 proved in [5, 19,
25]). On the other hand, at the critical scale, δ = α, the kernels KN

�,α are not
asymptotically equivalent to any kernel which has been studied previously and
we will need to compute the limits of the cumulants explicitly. If � ∈ F, re-
call that � = −� ′ and define ξk ∈ (0,1) such that by the mean-value theorem:
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1
τNα �(

k+ξk
τNα )=�( k

τNα )−�( k+1
τNα ) for any k ∈ Z. Then, if N,τ,� > 0, α ∈ (0,1),

and η is a nondecreasing function, we define the kernel

(1.33) LN
�,η(x, y)=

1

τNα

∑
|k|≤�Nα

�

(
k + ξk

τNα

)
sin[2πη(k)(x − y)]

π(x − y)
.

Lemma 4.1 below shows that the kernel LN
�,η defines a determinantal process

on R and the next proposition implies that, at sufficiently small scales, mesoscopic
linear statistics of the critical modified GUE with shape � and the determinantal
process with kernel LN

�,η have the same limit.

PROPOSITION 1.11. Let � ∈ E, η(k) = N1−α√1+ k/N/2 and � =
(logN)2. For all 1/3 < α < 1, the rescaled correlation kernel of the modified GUE
satisfies N−αKN

�,α(xN
−α, yN−α)∼= LN

�,η(x, y) in the sense of Definition 1.10.

PROOF. See Section 4.1. �

Proposition 1.11, combined with the analysis of the determinantal process with
correlation kernel LN

�,η performed in Section 4.1, implies Theorem 1.7 in the
regime 1/3 < α < 1. The main technical challenge of this argument is to obtain
the asymptotic expansion of the GUE kernel at all mesoscopic scales. We show in
Appendix A that, if M ∼N , then for any δ > 0,

(1.34) N−δKM
0

(
xN−δ, yN−δ)= sin[πN1/2−δ√M(x − y)]

π(x − y)
+ O

N→∞
(
N1−3δ)

uniformly for all x, y in compact subsets of R. Note that when δ ≤ 1/3, the error
term in formula (A.11) does not converge to 0, hence the restriction in Proposi-
tion 1.11. This restriction comes from the fact the GUE kernel is not asymptoti-
cally translation-invariant at large scales because of the curvature of the semicircle
density and the proof of Theorem 1.7 in the general case relies on a different argu-
ment which basically consists in unfolding the point process to reduce again to the
case of the kernel LN

�,η; see Proposition 4.11. The advantage of this approach is

that the kernel LN
�,η is translation-invariant and we can compute the cumulants of

its linear statistics by using the method devised in [39] to prove a CLT for meso-
scopic linear statistics of the circular unitary ensemble (see also Theorem 4 in [40]
for an application to the sine process, as well as some generalizations). In fact,
taking the parameter τ → 0 in equation (1.31), we recover Soshnikov’s formula
for the cumulants of mesoscopic statistics of the sine process

Cn[��,0f ] = 2
ˆ
Rn

0

du�
{∏

i

f̂ (ui)

} ∑
|m|=n

M(m)Gm
0 (u),

where Gm
0 (u)=

∑
π∈S(n) max{uπ(1)+ · · ·+uπ(m1), . . . , uπ(1)+ · · ·+uπ(m�−1),0}.

Then the main combinatorial lemma of [39] implies that for any n > 2,
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M(m)Gm

0 (u)= 0 so that the process ��,0 (which is independent of �) is Gaus-
sian. The details of the computations are given in the proof of Proposition 4.15.
For the modified ensembles, it is worth noting that there is no counterpart of
the main combinatorial lemma, that is, for generic points u ∈ Rn

0 and x ∈ Rn
<,∑

M(m)Gm
τ (u, x) �= 0 for any τ > 0 and n �= 3. With Lemma C.1, we use this

fact to prove equation (1.32). The bottom line is that the combinatorial structure
behind the cumulants of the sine process, which corresponds to the continuous
counterpart of the strong Szegő theorem, is very sensitive. In general, CLTs with
bounded variance are due to special correlations which are rather sensitive to per-
turbations such as small modifications of the kernel of a determinantal process. In
the remainder of this section, we provide a basic example which elaborates on this
fact and illustrates how asymptotic normality breaks down. Before proceeding, we
will define the circular counterparts of the modified GUEs. These processes are of
interest because there is no asymptotic analysis required in order to apply Sosh-
nikov’s method while they retain the same features as the modified GUEs. In the
sequel, we let T= [−1

2 ,
1
2 ] with the boundary points identified.

DEFINITION 1.12. A modified CUE is a determinantal process on T whose
correlation kernel KN

p (with respect to the uniform measure) is of the form

(1.35) KN
p (x, y)=

∑
k∈Z

pNk e
i2πk(y−x),

where pN−k = pNk so that the integral operator KN
p is self-adjoint on L2(T).

REMARK 1.13. In this section, the spectrum of the kernel KN
p is arbitrary

except for the constraints pNk ∈ [0,1]. However, when we refer to a modified CUE
in Sections 2.2, 2.3 and 4, like in Definition 1.1, it is understood that for all k ∈ Z,

(1.36) pNk =�

( |k| −N

τNα

)
for a shape � ∈ F such that B2

� = 1, a modification scale α ∈ (0,1), and a temper-
ature τ > 0.

A special case is the so-called Dyson’s Circular Unitary Ensemble (CUE) which
has the correlation kernel

(1.37) KN(x, y)= ∑
|k|≤N

ei2πk(x−y) = sin((2N + 1)π(x − y))

sin(π(x − y))
.

This process describes the eigenvalues of a random matrix distributed according
to the Haar measure on the group U(2N + 1). The cumulants of its linear statistics
were computed explicitly in [39] and a similar computation yields the following
formula in the case of the modified CUEs.



1216 K. JOHANSSON AND G. LAMBERT

LEMMA 1.14. For any continuous function f : T→R,

Cn
KN
p
[�f ] = ∑

u∈Zn
0

∏
j

f̂ (uj )
∑
|m|=n

M(m)
∑
k∈Z

�(m)−1∏
j=0

pNk+u1+···+umj ,

where f̂ (k) is the kth Fourier coefficient of f .

PROOF. See Section 2.1. �

In particular, we can use this formula to investigate the behavior of a (global) lin-
ear statistics under some very simple modification of the spectrum of the CUE ker-
nel. For instance, we can remove a single mode by choosing for some 0 <m≤N ,

(1.38) pNk = 1|k|≤N − 1|k|=N−m.
Then KN

p is still a projection kernel and, by Lemma 1.14, the 3rd cumulant of a
linear statistic is given by

C3
KN
p
[�f ] = ∑

u∈Z3
0

∏
i

f̂ (ui)

{∑
k∈Z

pk − 3

2

∑
k∈Z

pk(pk+u1 + pk+u1+u2)

+ 2
∑
k∈Z

pkpk+u1pk+u1+u2

}
.

We can symmetrize this expression using permutations of the ui’s and the con-
dition u1 + u2 =−u3; this yields

(1.39) C3
KN
p
[�f ] = ∑

u∈Z3
0

∏
i

f̂ (ui)
∑
k∈Z

pk{1− 3pk+u1 + 2pk+u1pk−u2}.

If we consider function gj (t)= 2 cos(2πjt)+ a cos(4πjt) with parameters a ∈R

and j ∈ Z+, we have

ĝj (u)= δj
(|u|)+ a

2
δ2j

(|u|),
so that the only frequencies u ∈ Z3

0 which contribute to (1.39) are given by all
possible permutations of (±j,±j,∓2j) and an elementary computation gives

(1.40) C3
KN
p
[�gj ] = 3a

∑
k∈Z

pk{1− 2pk+j − pk+2j + 2pk+jpk−j }.

In the CUE case, when pNk = 1|k|≤N , it is easy to check that C3
KN [�gj ] = 0 for all

j ∈ Z+ as we expected. However, it seems clear that for some generic choice of
coefficients 0≤ pNk ≤ 1, the expression (1.40) will be nonzero. For instance in the
case (1.38), for any j,m�N ,

C3
KN
p
[�gj ] = 12a(1− 1j≤�m/2�).
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Thus, if we remove a mode near the edge of the spectrum of the CUE kernel
(m < 2j ), the linear statistics �gj cannot be asymptotically Gaussian while its
variance remains bounded:

C2
KN
p
[�gj ] =

∑
u∈Z

∣∣ĝj (u)∣∣2 ∑
k∈Z

pk(1− pk+u)≤ j
(
2+ a2).

In particular, even if the correlation kernel KN
p is reproducing, we can get non-

Gaussian behavior. This example also shows that it is the edge of the spectrum of
the correlation kernel which is influencing the distribution of the point process, a
fact which is also emphasized by [40], Theorem 4. Moreover, using Lemma 1.14,
we can also check that when removing M different modes at the edge of the spec-
trum, all cumulants are of order M for large N . Hence, if we remove sufficiently
many modes, the system begins to behave like a Poisson process when N →∞.
Finally, note that according to (1.8), removing modes is comparable to smooth-
ing the spectrum of the correlation kernel. Hence, this example illustrates why the
modified ensembles of Definition 1.1 are not Gaussian at the critical scale (δ = α).
Actually, the strategy to obtain (1.32) is similar to this example but the computa-
tions are much more involved.

1.5. Overview of the rest of the paper. In Section 2, we begin by analyzing
the modified CUEs of Definition 1.12. This setting is simpler than that of Sec-
tion 1.2 and we can focus on the combinatorial structure of the cumulants. In par-
ticular, in Sections 2.2 and 2.3, we show that, if the spectrum of the kernel is given
by pNk = �(

|k|−N
τNα ), then the results presented on Figure 1 hold for the modified

CUEs as well. The main results of Section 1.3 are proved in Sections 3 and 4. The
asymptotics of the variance in the Poisson regime, formula (1.22), is computed in
Section 3.1, while in the GUE regime, Theorem 1.5 is proved in Section 3.2. Both
the critical modified CUEs and GUEs are analyzed, in a common framework, in
Section 4. In particular, the proof of Theorem 1.7 is divided in two steps. First, the
limits of the cumulants are established in Theorem 4.4 (see also Proposition 4.13).
Then the weak convergence of linear statistics is established in Corollary 4.10. In
Section 4.3, we show that the random processes ��,τ defined by Theorem 1.7 are
not Gaussian and we prove the special property of the MNS ensemble (see The-
orem 1.9) by computing the generating function of the coefficient Bn

� . We also
prove that, as it is expected from Figure 1, the random field ��,τ converges to a
Gaussian process in both limits τ → 0 and τ →∞; see Proposition 4.15. Finally,
in Section 4.4, we show that the critical MNS ensemble is not Gaussian by veri-
fying (1.32). All the asymptotics that are required to analyze the modified GUEs
are gathered in Appendix A. In Appendix B, we prove Theorem 1.6 and, as an
example, we compute the critical variance of linear statistics of the MNS ensem-
ble. In Appendix C, we prove some technical lemmas which shows that there is no
counterpart of the main combinatorial lemma for the modified ensemble. Finally,
we will use the following conventions:
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• C > 0 is a universal constant which changes from line to line.
• xN � zN if limN→∞ xN/zN =+∞.
• xN ∼ zN if limN→∞ xN/zN = 1.
• xN � zN if limN→∞(xN − zN)= 0.
• xN = Ō(zN) if there exist κ > 0 and C > 0 such that |xN | ≤ CzN | logN |κ .

2. Modified circular unitary ensembles. We present the counterparts of the
results of Section 1.3 for the modified CUEs (see Definition 1.12). Along the way,
we set up definitions and lemmas that will also be used in Sections 3 and 4. We
consider circular ensembles as simplified models which are helpful to understand
the combinatorial structure behind the cumulants of linear statistics of the MNS
model because no asymptotic estimates are required to pass to the limit. In Sec-
tion 2.1, we review the method introduced in [39]. In Section 2.2, we show that the
modified CUEs exhibit the same transition as in Figure 1. Finally, in Section 2.3,
we provide asymptotically equivalent kernels for the modified CUEs in the critical
regime δ = α and deduce a limit theorem from the results of Section 4.

2.1. Soshnikov’s method: Proof of Lemma 1.14. In [40], Lemma 1, Soshnikov
proved that the cumulants of linear statistics of a determinantal process are given
by

Cn
K [�f ] =

∑
|m|=n

M(m)Tr
[
f m1Kfm2 · · ·f m�K

]
,

where K is the correlation kernel of the process and the sum is over all composi-
tions m of n [see formula (1.19) and the above notation]. Applying this formula to
a modified CUE and using elementary Fourier analysis, we obtain Lemma 1.14.

PROOF OF LEMMA 1.14. The correlation kernel of the modified CUE is
KN
p (x, y)=

∑
k∈ZpNk ei2πk(y−x), and, by (1.17), we have for any composition m

of n,

(2.1) Tr
[
f m1KN

p · · ·f mjKN
p

]= ∑
κ∈Z�(m)

�(m)∏
i=1

pNκi f̂
mi (κi − κi−1),

where by convention κ0 = κ�(m). Moreover, for any indices s, r ∈ Z and m ∈N,

f̂ m(s − r)= ∑
k∈Zm−1

f̂ (k1 − r)f̂ (k2 − k1) · · · f̂ (s − km−1).

So, if mj = m1 + · · · + mj as in definition (1.25), we can write for any i =
0, . . . , �− 1,

f̂ mi+1(kmi+1 − kmi
)

=∑
f̂ (kmi+1 − kmi

)f̂ (kmi+2 − kmi+1) · · · f̂ (kmi+1 − kmi+1−1)
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and if we make the change of variables κi = kmi
in equation (2.1), putting every-

thing together we obtain

Tr
[
f m1KN

p f
m2 · · ·f mjKN

p

]= ∑
k∈Zn+1:k0=kn

n∏
i=1

f̂ (ki − ki−1)

�(m)∏
i=1

pNkmi
.

We can also make the change of variables ui = ki − ki−1 for all i = 1, . . . , n in
the previous sum. This maps {k ∈ Zn : k0 = kn} into {(k0, u) ∈ Z × Zn

0} and we
conclude that

Tr
[
f m1KN

p f
m2 · · ·fmjKN

p

]= ∑
u∈Zn

0

∏
i

f̂ (ui)
∑
k0∈Z

�(m)∏
i=1

pNk0+u1+···+umi .

Hence, Lemma 1.14 follows directly from formula (1.19). �

In Section 1.4, we used Lemma 1.14 to show that a modified CUE has non-
Gaussian fluctuations at the macroscopic scale. In the sequel, we will use it to
investigate fluctuations at mesoscopic scales. Let f ∈ C0(R), 0 < δ < 1, and recall
that T = [−1

2 ,
1
2 ] with the endpoints identified. When the parameter N is suffi-

ciently large, the function f (·Nδ) is supported in [−1
2 ,

1
2 ] and it can be extended

to some function fδ ∈ C(T). Then the Fourier coefficients of fδ are given by, for
any u ∈ Z,

f̂δ(u)=N−δf̂
(
uN−δ),

so that

(2.2) Cn
KN
p
[�fδ] =N−nδ ∑

u∈Zn
0

∏
i

f̂
(
uiN

−δ) ∑
|m|=n

M(m)
∑
k∈Z

�(m)∏
i=1

pNk+u1+···+umi .

2.2. Central limit theorems. For now on, we will assume that the spectrum of
the modified CUE correlation kernel is given by pNk = �(

|k|−N
τNα ), (1.36). More-

over, to keep the notation simple, we will write pk instead of pNk . We begin by
proving a classical CLT at the Poisson scales (δ < α). The proof relies on an
elementary variance computation. Observe that the asymptotic variance of The-
orem 2.1 matches that of Theorem 1.4 only up to a multiplicative constant. The
difference is due to our normalization. Namely, the scaling (1.36) implies that the
modified CUEs have density 2N at the origin and

(2.3) EKN
p
[�fδ] = {

2N + O
N→∞

(
Nα)}N−δ

ˆ
f (x) dx.

THEOREM 2.1. Consider a modified CUE with kernel (1.35)–(1.36) and let
f ∈H 1/2

0 (R). For any scale 0≤ δ < α < 1, the centered and rescaled linear statis-

tic N
δ−α

2 �̃fδ converges in distribution to a Gaussian random variable with vari-
ance 2τ‖f ‖2

L2(R)
.
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PROOF. When n= 2, equation (2.2) reads

(2.4) C2
KN
p
[�fδ] =N−2δ

∑
u∈Z

f̂
(
uN−δ)f̂ (−uN−δ)∑

k∈Z
pk(1− pk+u).

We let σ 2
k = pk(1− pk) for any k ≥ 0. Since p−k = pk , we have for any u ∈ Z,∑

k∈Z
pk(1− pk+u)= p0(1− pu)+

∑
k>0

pk(2− pk+u − pk−u)

= p0(1− pu)+ 2
∑
k>0

σ 2
k +

∑
k>0

pk(2pk − pk+u − pk−u).

Since the coefficients pk ∈ [0,1] and the shape � is nonincreasing, we can check
that for any u ∈ Z, ∣∣∣∣∑

k>0

pk(pk − pk+u)
∣∣∣∣≤ |u|

(2.5)

so that
∣∣∣∣∑
k∈Z

pk(1− pk+u)− 2
∑
k>0

σ 2
k

∣∣∣∣≤ 2|u| + 1.

If we combine this estimate with formula (2.4), for any real-valued test function f ,
we obtain ∣∣∣∣Nδ C2

KN
p
[�fδ] − 2N−δ ∑

u∈Z

∣∣f̂ (
uN−δ)∣∣2 ∑

k>0

σ 2
k

∣∣∣∣
(2.6)

≤N−δ ∑
u∈Z

∣∣f̂ (
uN−δ)∣∣2(2|u| + 1

)
.

If we also assume that f ∈H 1/2(R), the RHS satisfies

N−δ ∑
u∈Z

∣∣f̂ (
uN−δ)∣∣2(2|u| + 1

)≤ CNδ

ˆ ∞

0

∣∣f̂ (v)∣∣2|v|dv
and (2.6) yields the estimate

Nδ−α C2
KN
p
[�fδ] = 2N−δ ∑

u∈Z

∣∣f̂ (
uN−δ)∣∣2N−α ∑

k>0

σ 2
k + O

N→∞
(
Nδ−α‖f ‖2

H 1/2

)
.

Moreover, according to formula (1.6), a Riemann sum approximation gives

(2.7) lim
N→∞N−α ∑

k>0

σ 2
k =

ˆ
R

�
(
tτ−1)(1−�

(
tτ−1))dt = τB2

�.

By convention B2
� = 1 and we conclude that when δ < α,

lim
N→∞Nδ−α C2

KN
p
[�fδ] = 2τ

ˆ ∞

−∞
∣∣f̂ (ξ)∣∣2 dξ.
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Since the variance of the random variable �fδ is diverging like Nα−δ and its ex-
pected value is of order N1−δ by formula (2.3), the CLT follows from Soshnikov’s
theorem 1 in [40]. �

Note that, using the upper-bound (2.5) and the limit (2.7), we have for all u ∈ Z∑
k∈Z

pk(1− pk+u)≤ 2|u| + O
N→∞

(
Nα).

Hence, by formula (2.4),

(2.8) C2
KN
p
[�fδ] ≤ 2N−δ ∑

u∈Z

∣∣f̂ (
uN−δ)∣∣2{∣∣uN−δ∣∣+ O

N→∞
(
Nα−δ)}.

This shows that for any f ∈H 1/2
0 , the variance of the linear statistic �fδ remains

bounded in the regime δ ≥ α. Actually, if (1.36) holds, we have in the regime
δ > α,

(2.9) lim
N→∞VarKN

p
[�fδ] = ‖f ‖2

H 1/2 .

This suggests that at any scale δ > α, we should observe the same limit theorem
for the modified CUEs as for the mesoscopic CUE and sine process. We can prove
formula (2.9) in the same way we obtained Theorem 2.1 but the argument is al-
ready technical and becomes really involved when it comes to computing the limits
of higher-order cumulants. A better approach consists in deducing the CLT from
Soshnikov’s theorem [39] by proving that the cumulants of a given linear statistic
have the same limits regardless of the shape � of the modified CUE.

THEOREM 2.2. Consider a modified CUE with kernel (1.35)–(1.36) and let
f ∈ H 1

0 (R). For any scale 1 ≥ δ > α > 0, the linear statistics �fδ converges in
distribution to a Gaussian random variable with variance ‖f ‖2

H 1/2 .

PROOF. Let us decompose pk = 1|k|≤N + εk where εk =�(
|k|−N
Nα )− 1|k|≤N .

We can write

Cn
KN
p
[�fδ] = Cn

KN [�fδ] + EnN(f, δ,α,�)

and EnN collects all the terms which contain at least one factor εk+u1+···+umi when

we expand the products
∏l−1

i=0pk+u1+···+umi in formula (2.2). Plainly, all other
terms exactly add up to Cn

KN [�fδ] and, since |pk|, |εk| ≤ 1 for all k ∈ Z, we have

∣∣EN(f, δ,α,�)
∣∣≤ 2

n∑
l=1

1

l

∑
m∈Nl

(
n

m

)
N−nδ ∑

u∈Zn
0

∣∣∣∣∏
i

f̂
(
uiN

−δ)∣∣∣∣∑
k≥0

|εk|.
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Moreover, by the definition of εk , we have the estimates∑
0≤k≤N

|εk| =
∑

−N≤k≤0

1−�
(
kN−α)≤ CNα

ˆ 0

−∞
1−�(t) dt,

∑
N<k

|εk| =
∑
0≤k

�
(
kN−α)≤ CNα

ˆ ∞

0
�(t) dt.

Both integrals are finite since � ∈ F and there exists a positive constant Cn > 0
such that ∣∣EN(f, δ,α,�)

∣∣≤ CnN
α−δ

ˆ
Rn

0

∏
i

∣∣f̂ (vi)∣∣dn−1v.

The assumption f ∈H 1
0 (R), guarantees that for any n ∈N,ˆ

Rn
0

∏
i

∣∣f̂ (vi)∣∣dn−1v <∞,

so that EN = O(Nα−δ) as N →∞. Therefore, the cumulants Cn
KN
p
[�fδ] and

Cn
KN [�fδ] have the same limits for all n ∈ N and the CLT follows directly from

Theorem 1 in [39]. �

REMARK 2.3. In the terminology of Definition 1.10, we have just proved
that the rescaled kernels N−δKN

p (N
−δx,N−δy) and N−δKN(N−δx,N−δy) are

asymptotically equivalent in the regime δ > α. We could also have deduced this
fact from Lemma 2.6 below by checking that the CUE kernel KN which is given
by (1.37) satisfies the property L1B at any scale δ ∈ [0,1].

2.3. The critical regime. It remains to look at what happens at the critical scale
δ = α. We have already seen that the variance remains bounded as N→∞ and we
can compute its limit by applying a Riemann sum approximation to formula (2.4).
By symmetry,

C2
KN
p
[�fα] � 2N−2α

∑
u>0

f̂
(
uN−α)f̂ (−uN−α)∑

k>0

(pk−u + pk+u)(1− pk).

Since pN+j =�(
j

τNα ) for any j >−N , we can check that for any 0 < α < 1 and
for any τ > 0,

lim
N→∞VarKN

p
[�fα]

= 2
ˆ ∞

0
f̂ (u)f̂ (−u)

ˆ
R

(
�

(
t − u

τ

)
+�

(
t + u

τ

))(
1−�

(
t

τ

))
dt du(2.10)

= 2
ˆ
R

∣∣f̂ (u)∣∣2 ˆ
R

�

(
t + u

τ

)(
1−�

(
t

τ

))
dt du.(2.11)
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Because of some subtle cancellations, it is difficult to use formula (2.2) to com-
pute the limits of the higher-order cumulants by Riemann sum approximations.
Another approach is to rewrite the correlation kernel of the modified CUE before
using the cumulants formulae. From Definition 1.12, a summation by parts yields

KN
p (x, y)=

∞∑
k=0

(
pNk − pNk+1

)
Kk(x, y)

(2.12)

= 1

τNα

∞∑
k=−N

�

(
k+ ξk

τNα

)
sin((2N + 2k+ 1)π(x − y))

sin(π(x − y))
,

where the parameters ξk ∈ (0,1) are given by the mean-value theorem. Now, we
may use formula (2.12) to relate the kernel KN

p to the sine kernel.

PROPOSITION 2.4. At the critical scale δ = α, the modified CUE kernel KN
p

and the kernel LN
�,η given by (1.33) with η(k)= (N + k + 1

2)N
−α are asymptoti-

cally equivalent in the sense of Definition 1.10.

By Proposition 1.11, a similar approximation holds for the modified GUEs.
There is only a minor difference in the definition of the function η so that the limits
of the cumulants of both models can be computed in a common framework which
is presented in Section 4. In order to prove Propositions 1.11 and 2.4, we need
to provide a criterion to check whether two kernels are asymptotically equivalent.
First, we need to introduce a new definition. A similar concept was introduced
in [32] to control cumulants of some complex determinantal processes.

DEFINITION 2.5. A family of kernels (LN)N>0 satisfies the property L1B if
for any compact set A⊆X, there exists a sequence �N :X→R+ and ν > 0 such
that and all (x, y) ∈A2, ∣∣LN(x, y)

∣∣≤ �N(x − y),

and

‖�N‖L1(Ã)
= O

N→∞
(| logN |ν),

where Ã= {x = y − z : y, z ∈A}.

LEMMA 2.6. Two families of kernels (LN)N>0 and (KN)N>0 are asymptoti-
cally equivalent if (LN)N>0 has the property L1B and there exists κ > 0 such that
for any compact set A⊆X,

sup
{∣∣LN(x, y)−KN(x, y)

∣∣ : (x, y) ∈A2}= O
N→∞

(
N−κ).
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PROOF. Let � ∈ N and f1, . . . , f� ∈ C0(R). If we replace KN = LN + EN ,
we get

Tr
[
KNf1 · · ·KNf�

]= Tr
[
LNf1 · · ·LNf�

]+ ∑
J k∈{LN,EN }

Tr
[
J 1f1 · · ·J �f�

]
.

Note that all terms of the last sum contains at least one operator EN . By assump-
tion, we can suppose that all the test functions are supported in a compact set A and
sup{|EN(x, y)| : (x, y) ∈A2} ≤ CN−κ . If we first look at a trace which contains a
single operator EN , by formula (1.17), we have the estimate:∣∣Tr

[
J 1f1 · · ·J �f�

]∣∣
≤ CN−κ

�∏
k=2

‖fk‖∞
ˆ
A�

∣∣f1(x1)L
N(x1, x2) · · ·LN(x�−1, x�)

∣∣∏
j

dμ(xj ).

Since LN has the property L1B , there exists �N : X → R+ such that
|LN(xk, xk+1)| ≤ �N(xk − xk+1) and a change of variables yields

∣∣Tr
[
J 1f1 · · ·J lf�

]∣∣≤ CN−κ
�∏

k=2

‖fk‖∞‖�N‖�−1
L1(Ã)

‖f1‖L1 .

A similar argument shows that any trace which contains j operators EN is bounded
by N−jκ times a logarithmic correction coming from ‖�N‖L1(Ã)

. Therefore, using

the notation Ō introduced in Section 1.5, we get

(2.13) Tr
[
KNf1 · · ·KNf�

]= Tr
[
LNf1 · · ·LNf�

]+ Ō
N→∞

(
N−κ).

According to Definition 1.10, this completes the proof. �

PROOF OF PROPOSITION 2.4. A Taylor expansion of the function sin(π(x −
y)N−α) in the denominator of formula (2.12) shows that

N−αKN
p

(
xN−α, yN−α)

(2.14)

= 1

τNα

∞∑
k=−N

�

(
k+ ξk

τNα

)
sin(2πη(k)(x − y))

π(x − y)
+ O

N→∞
(
N−α)

and the error term is uniform over any compact subset of R2. Then, by Lemma 2.6,
it is enough to prove that the RHS family of kernels which we denoted by
LN
�,η(x, y) satisfies the property L1B . Since the kernel LN

�,η(x, y) is translation-

invariant on R, we can choose �N(x) = |LN
�,η(0, x)|. It is well known that there
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exists a universal constant C > 0 such that for any s > 0 and n > 0,ˆ s

−s

∣∣∣∣sinn(x − y)

x − y

∣∣∣∣dy ≤ C log(sn).

This implies that

(2.15) ‖�N‖L1[−s,s] ≤
C

τNα

∞∑
k=−N

�

(
k+ ξk

τNα

)
log

(
sη(k)

)
.

Since η(k)=N1−α + k+1/2
Nα and

´∞
0 �(t) log t dt <∞, we deduce from the esti-

mate (2.15) that there is a constant C which only depends on the shape � so that
‖�N‖L1[−s,s] ≤ C log(sN). �

Proposition 2.4 implies that the determinantal processes with correlation kernels
KN
p and LN

�,η have the same limit at the critical scale. By Corollary 4.10, this yields
the following limit theorem for linear statistics of the critical modified CUEs.

THEOREM 2.7. Let f ∈ H 1
0 (R), 0 < α < 1 and � ∈ E. The linear statistic

�fα of the determinantal process with correlation kernel (1.35)–(1.36) converges
in distribution as N→∞ to a random variable ��,τf whose cumulants are given
by formula (1.31). In particular, up to a scaling, this is the same limit theorem as
for the critical modified GUEs.

3. Central limit theorems for the modified GUEs. We begin in Section 3.1
by proving some technical lemmas that are required to compute the asymptotic
variance of linear statistics of the modified GUEs. In Section 3.2, we prove The-
orem 1.5 by comparing the rescaled correlation kernel of a modified GUE to that
of the classical GUE using the perturbative method developed in Section 2.3. All
these results are based on the asymptotics of the Hermite polynomials and the GUE
kernel which are presented in Appendix A.

3.1. Proof of Theorem 1.4. We start by proving a classical formula for the
variance of linear statistics which is valid in a general context.

LEMMA 3.1. Given a determinantal process with a correlation kernel K of
type (1.3), for any test function f ∈ C0(X), we have

VarK [�f ] =
∞∑
k=0

σ 2
k

ˆ
f (x)2

∣∣ϕk(x)∣∣2μ(dx)
+ 1

2

¨ (
f (x)− f (y)

)2∣∣K(x,y)
∣∣2μ(dx)μ(dy),

where σ 2
k = pNk (1− pNk ).
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PROOF. If we apply formula (1.19) when n= 2,

VarK [�f ] =
ˆ

f (x)2K(x,x)μ(dx)

−
¨

f (x)f (y)K(x, y)K(y, x)μ(dx)μ(dy)

= 1

2

¨ (
f (x)− f (y)

)2
K(x,y)K(y, x)μ(dx)μ(dy)

−
¨

f (x)2K(x,y)K(y, x)μ(dx)μ(dy)

+
ˆ

f (x)2K(x,x)μ(dx).

Note that when the kernel K is reproducing, the last two terms cancel. In general,
since the function ψk are orthonormal, we get

−
¨

f (x)2K(x,y)K(y, x)μ(dx)μ(dy)+
ˆ

f (x)2K(x,x)μ(dx)

=−∑
k,j

pkpj

ˆ
ϕj (y)ϕk(y)μ(dy)

ˆ
f (x)2ϕk(x)ϕj (x)μ(dx)

+∑
k

pk

ˆ
f (x)2ϕk(x)ϕk(x)μ(dx)

=∑
k

σ 2
k

ˆ
f (x)2

∣∣ϕk(x)∣∣2μ(dx). �

We can use Lemma 3.1 to compute the asymptotics of the variance for linear
statistics of the modified GUEs. We call the reproducing variance the quantity

(3.1) V0(f )= 1

2

¨ ∣∣f (x)− f (y)
∣∣2∣∣KN

�,α(x, y)
∣∣2 dx dy.

This definition comes from the fact that, if the correlation kernel K is reproducing,
then σ 2

k = 0 for all k ∈ Z+ and VarK [�f ] = V0(f ) for any linear statistic. On the
other hand, we call the Poisson variance the quantity

(3.2) Vσ (f )=
∞∑
k=0

σ 2
k

ˆ
f (x)2

∣∣ϕk(x)∣∣2 dx.
This is motivated by the observation that VarK [#] = Vσ (1) and, as we already men-
tioned in the Introduction, this quantity measures the extra randomness induced in
the process because the correlation kernel is not reproducing. In particular, for a
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modified GUE we have

(3.3) σ 2
k =�

(
k−N

τNα

)(
1−�

(
k −N

τNα

))
and

(3.4) VarKN
�,α
[#] =

∞∑
k=0

σ 2
k ∼ τNα

ˆ ∞

−∞
�(t)

(
1−�(t)

)
dt,

which gives formula (1.9). We shall see that, except at the critical scale δ = α,
there is only one component of the variance which is asymptotically relevant.

LEMMA 3.2. For any 0 < α, δ < 1 and for any f ∈ C0(R), we have

Vσ (fδ)= τ

2
Nα−δ

ˆ
R

f (x)2 dx + o
N→∞

(
Nα−δ).

REMARK 3.3. It is not difficult to adapt the proof so that Lemma 3.2 holds for
any function f ∈ L2(R) which is uniformly continuous. In particular, by Morrey’s
inequality, this covers all test functions in the Sobolev space H 1(R).

PROOF. Since the rescaled Hermite functions satisfy ‖ϕk‖L2 = 1 for all k ≥ 0
and we suppose that the test function f is bounded, by formula (3.2), for any
0 < ε < 1,

Vσ (fδ)=
∑

|k|<N1−ε
σ 2
N+k

ˆ
fδ(x)

2∣∣ϕN+k(x)∣∣2 dx +O

(
‖f ‖2∞

∑
|k|>N1−ε

σ 2
N+k

)
.

The condition � ∈ F guarantees that, if ε < 1 − α, the error term is converging
to 0 as N →∞. Actually, under the stronger assumption that � ∈ E, this term
decays faster than any power of N and it will be neglected in the following. More-
over the assumption that f has compact support in conjunction with the condition
|k|<N1−ε implies that we can use the bulk asymptotic for the Hermite functions,
formula (A.2). Namely, for any x ∈ supp(f ),

(3.5) ϕN+k
(
xN−δ)= cos

[
(N + k)

(
π

2
− F

(
xNN

−δ))]+ O
n→∞

(
N−δ),

where we set xN = x π
2

√
N

N+k . Then

Vσ (fδ)=N−δ ∑
|k|<N1−ε

σ 2
N+k

×
{ˆ

f (x)2
∣∣∣∣cos

[
(N + k)

(
π

2
− F

(
xNN

−δ))]∣∣∣∣2 dx +O
(
N−δ)}.
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Observe that according to formula (3.4), we have
∑
|k|<N1−ε σ 2

N+k =O(Nα) and
the previous estimate gives

Vσ (fδ)= N−δ

2

{
VarKN

�,α
[#]‖f ‖2

L2

+ ∑
|k|<N1−ε

(−1)N+kσ 2
N+k

×
ˆ

f (x)2 cos
[
2(N + k)F

(
xNN

−δ)]dx +O
(
Nα−δ)}.

The second term is a sum of oscillatory integrals and we will show that it converges
to 0. Let us make the change of variable z=NδF(xNN

−δ). By Definition A.1,ˆ
f (x)2 cos

[
2(N + k)F

(
xNN

−δ)]dx
= 2

π

√
1+ k

N

×
ˆ

f 2
(

2Nδ

π

√
1+ k

N
G
(
zN−δ))G′(zN−δ) cos

[
2(N + k)N−δz

]
dz.

Since the function f is uniformly continuous (we assume that f has compact
support in [−L

2 ,
L
2 ]), there exists a sequence εN ↘ 0 such that uniformly over all

|z|<L and all |k|<N1−ε ,∣∣∣∣f 2
(

2Nδ

π

√
1+ k

N
G
(
zN−δ))− f 2

(
2G′(0)z

π

)∣∣∣∣≤ εN .

Since G′(0)= 1/2, it follows that for any |k|<N1−ε ,ˆ
f (x)2 cos

[
2(N + k)F

(
xNN

−δ)]dx
= 1

π

ˆ
f 2

(
z

π

)
cos

[
2(N + k)N−δz

]
dz+O(εN).

Since the sequence (N−N1−ε)N−δ →∞ as N→∞, by the Riemann–Lebesgue
lemma, we can also assume that

sup
|k|≤N1−ε

∣∣∣∣ˆ f (x)2 cos
[
2(N + k)F

(
xNN

−δ)]dx∣∣∣∣≤ εN .

Thus, going back to the Poisson variance, we have shown that

Vσ (fδ)= N−δ

2
VarKN

�,α
[#]{‖f ‖2

L2 + O
N→∞(εN)

}
.



MESOSCOPIC FLUCTUATIONS IN DETERMINANTAL POINT PROCESSES 1229

The lemma follows after replacing VarKN
�,α
[#] by formula (1.9). �

In order to prove formula (1.22), it remains to estimate the reproducing vari-
ance V0(f ). Before proceeding, we need to recall a few properties of the GUE
correlation kernel (1.4). We refer to Appendix A for further details. First, note that
according to the convention of Definition 1.1, the Christoffel–Darboux formula,
(A.6), implies that for any x, y ∈R and M ≥ 0,

(3.6) (x − y)KM
0 (x, y)=√

M/N
(
ϕM(x)ϕM−1(y)− ϕM−1(x)ϕM(y)

)
.

Moreover, the uniform bound (A.5) for the Hermite functions implies that there
exists C > 0 such that, for any n≥ 0,

(3.7) ‖ϕn‖∞ ≤ CN1/4n−1/12.

In particular, |KM
0 (x, y)| ≤ C

√
NM and by formula (3.6), this gives us a simple

bound for the GUE kernel. For any x, y ∈R, we have

∣∣KM
0 (x, y)

∣∣≤ C(
√
NM)∧ M1/3

|x − y| .

The connection with the modified GUE kernel comes from a summation by
parts:

KN
�,α(x, y)=

∞∑
k=0

(pk − pk+1)K
k
0 (x, y)

(3.8)

= 1

τNα

∞∑
k=−N

�

(
k+ ξk

τNα

)
KN+k

0 (x, y),

where �=−� ′ and ξk ∈ (0,1) are given by the mean-value theorem. If we further
suppose that the shape � ∈ E, (1.11), there exists c > 0 so that for any � > 0,

(3.9)
∣∣∣∣ 1

τNα

∑
|k|>�Nα

�

(
k+ ξk

τNα

)
KN+k

0 (x, y)

∣∣∣∣≤ Ce−c�
(
N3/2 ∧ N1/3

|x − y|
)
.

By formula (3.8), this implies that for any sequence �N > 0,

KN
�,α(x, y)=

1

τNα

∑
|k|≤�NNα

�

(
k+ ξk

τNα

)
KN+k

0 (x, y)

(3.10)

+ O
N→∞

(
e−c�N

(
N3/2 ∧ N1/3

|x − y|
))

uniformly for all x, y ∈R.
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REMARK 3.4. The assumption � ∈ E implies that by choosing �N =
(logN)2, the error in formula (3.10) decays faster than any power of N . Anal-
ogous approximations hold for more general shapes, although with an error term
which may not be good enough to deal with all mesoscopic scales. Moreover, the
condition � ∈ E leads to a straightforward proof, otherwise we would need to take
into account the speed of decay of � and to produce more precise estimates.

LEMMA 3.5. For any 0 < α < 1 and any scale 0 < δ ≤ 1, there exists a con-
stant C > 0 such that for any function f ∈ H

1/2
0 (R), the reproducing variance

satisfies for all sufficiently large N ,

V0(fδ)≤ C‖f ‖2
H 1/2 .

PROOF. To simplify the notation, let us assume that the temperature τ = 1 and
set the parameters ξk = 0. We will also let xN = xN−δ, yN = yN−δ and fix L> 0
so that supp(f )⊂ [−L

2 ,
L
2 ]. By formula (3.1) and the approximation (3.10),

V0(fδ)= 1

2

¨ ∣∣fδ(x)− fδ(y)
∣∣2∣∣KN

�,α(x, y)
∣∣2 dx dy

≤
¨ ∣∣fδ(x)− fδ(y)

∣∣2∣∣K̃N
�,α(x, y)

∣∣2 dx dy(3.11)

+ O
N→∞

(‖fδ‖2
H 1/2N

1/3e−c�N
)
,

where

(3.12) K̃N
�,α(x, y)=N−α ∑

|k|≤�NNα

�
(
kN−α)KN+k

0 (x, y).

By formula (1.20), ‖fδ‖2
H 1/2 = ‖f ‖2

H 1/2 and, if we let �N = (logN)2, the error in
the previous estimate converges to 0 and it remains to show that¨ ∣∣fδ(x)− fδ(y)

∣∣2∣∣K̃N
�,α(x, y)

∣∣2 dx dy
=
¨ ∣∣f (x)− f (y)

∣∣2∣∣N−δK̃N
�,α(xN, yN)

∣∣2 dx dy(3.13)

≤ C‖f ‖2
H 1/2 .

According to the sine-kernel approximation (A.10), if the density N is sufficiently
large compared to L, there exists a constant C > 0 such that for all |k| ≤ �NN

α

and for all x, y ∈ [−L,L],∣∣N−δKN+k
0 (xN, yN)

∣∣≤ C

|x − y| .
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Since, for any � > 0,

(3.14)
1

τNα

∑
|k|≤�Nα

�

(
k+ ξk

τNα

)
≤ 1,

this implies that for all x, y ∈ [−L,L],∣∣N−δK̃N
�,α(xN, yN)

∣∣≤ C

|x − y| .
Hence, by a change of variables,¨ ∣∣fδ(x)− fδ(y)

∣∣2∣∣K̃N
�,α(x, y)

∣∣2 dx dy
≤ C

¨
[−L,L]2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2 dx dy(3.15)

+
¨

R2\[−L,L]2
∣∣f (x)− f (y)

∣∣2∣∣N−δK̃N
�,α(xN, yN)

∣∣2 dx dy.
For any L> 0, the first integral on the RHS of (3.15) is bounded by ‖f ‖2

H 1/2 and
to obtain the upper-bound (3.13), it suffices to show that there exists a constant
C(f )≥ 0 which only depends on the test function f such that

(3.16)
¨

R2\[−L,L]2
∣∣f (x)− f (y)

∣∣2∣∣N−δK̃N
�,α(xN, yN)

∣∣2 dx dy ≤ C(f )

L
.

Thus, choosing the parameter L sufficiently large, by formula (3.11), this implies
that the variance V0(fδ) ≤ C‖f ‖2

H 1/2 . The rest of the proof is rather technical
and is devoted to prove the estimate (3.16). Since the function f is supported in
[−L

2 ,
L
2 ], by symmetry of the GUE kernel, we have¨

R2\[−L,L]2
∣∣f (x)− f (y)

∣∣2∣∣N−δK̃N
�,α(xN, yN)

∣∣2 dx dy
≤ 4N−2α

∑
|k|≤�Nα

|j |≤�Nα

�
(
kN−α)�(

jN−α)¨
|y|<L/2
x>L

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2(3.17)

× ∣∣(xN − yN)
2KN+k

0 (xN, yN)K
N+j
0 (xN, yN)

∣∣dx dy.
Since ϕk(x)=

√
π
√
N√
2
hk(x

π
√
N√
2
), we deduce from the bulk asymptotic (A.2) with

γ = 1/6 that there exists a universal constant C > 0 such that for all |k| ≤ �NN
α

and for all |x|< 2(
√
N+k−1)
π
√
N

,

(3.18)
∣∣ϕN+k(x)∣∣≤ C

(4N+k
N

− π2x2)1/4
.
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In particular, for any |y|< L/2, we have |ϕN+k(yN)| ≤ C, and by formula (3.6),
we get ∣∣(xN − yN)

2KN+k
0 (xN, yN)K

N+j
0 (xN, yN)

∣∣
≤ C2(∣∣ϕN+k(xN)ϕN+j (xN)∣∣+ ∣∣ϕN+k(xN)ϕN+j−1(xN)

∣∣
+ ∣∣ϕN+k−1(xN)ϕN+j (xN)

∣∣+ ∣∣ϕN+k−1(xN)ϕN+j−1(xN)
∣∣).

Let

Jk,j =
¨
|y|<L/2
x>L

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣ϕN+k(xN)ϕN+j (xN)∣∣dx dy.
By (3.17), we see that there exists C > 0 such that¨

R2\[−L,L]2
∣∣f (x)− f (y)

∣∣2∣∣N−δK̃N
�,α(xN, yN)

∣∣2 dx dy
≤ CN−2α

∑
|k|≤�Nα

|j |≤�Nα

�
(
kN−α)�(

jN−α)(3.19)

× {Jk,j + Jk,j−1 + Jk−1,j + Jk−1,j−1}.
So that in order to prove the estimate (3.16), by (3.14), it remains to show that
Jk,j ≤ C(f )/L for all |k|, |j | ≤ �Nα . To do so, we shall combine the asymptotics
from Appendix A. First of all, since supp(f )⊂ [−L

2 ,
L
2 ], we have for any |x|>L,∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣≤ 1y∈supp(f )
2‖f ‖∞
|x −L/2| ≤ 1y∈supp(f )

4‖f ‖∞
|x|

and, if C(f )= 4‖f ‖2∞| suppf |, we get
ˆ L/2

−L/2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2 dy ≤ C(f )

|x|2 .

Hence, by a change of variables,

(3.20) Jk,j ≤ C(f )N−δ
ˆ ∞

LN−δ

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 .

Suppose that j ≥ k and let a± = 2(
√
N+k±1)
π
√
N

. We split the integral:

ˆ ∞

LN−δ

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2

(3.21)

=
{ˆ a−

LN−δ
+
ˆ a+

a−
+
ˆ ∞

a+

}∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 .
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Using the upper-bound (3.18), the first integral is bounded byˆ a−

LN−δ

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤ C2

ˆ a−

LN−δ
dx

x2(4N+k
N

− π2x2)1/2
.

Since a2− ≤ 4N+k
πN

when N is sufficiently large, we obtain

(3.22)
ˆ a−

LN−δ

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤

CNδ

L
.

Using the uniform bound (3.7), since a+ − a− = 4
π
N−1/2, the contribution from

the edge integral gives

(3.23)
ˆ a+

a−

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤ CN−1/6.

Finally, we haveˆ ∞

a+

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤CN1/6

ˆ ∞

a+

∣∣ϕN+k(x)∣∣dx
x2 ,

and the estimate (A.4) implies that, for all x > a+,∣∣ϕN+k(x)∣∣≤ CN1/4e
− 2

√
2πN3/4

3
√
N+k .

Thus, we obtain for all |k|, |j | ≤ �Nα ,

(3.24)
ˆ ∞

a+

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤ CN5/12e−2

√
2N1/4

.

If we put together the estimates (3.22)–(3.24), we have proved that when N is
sufficiently large,

(3.25)
ˆ ∞

LN−δ

∣∣ϕN+k(x)ϕN+j (x)∣∣dx
x2 ≤

CNδ

L
.

Hence, it follows from formula (3.20) that for any |j |, |k| ≤ �NN
α , the integral

Jk,j ≤ C(f )/L. By (3.19) and (3.14), we conclude that the estimate (3.16) holds
and this completes the proof. �

We are now ready to give the proof of formula (1.22), and hence of Theorem 1.4.
It follows immediately from Lemmas 3.1, 3.2 and 3.5 that in the regime δ < α, for
any test function f ∈H 1/2

0 ∩L∞(R),

VarKN
�,α
[�fδ] = τ

2
Nα−δ

ˆ
R

f (x)2 dx + o
N→∞

(
Nα−δ).

Note that the same argument shows that, in the regime δ ≥ α,

(3.26) VarKN
�,α
[�fδ] ≤ C

(‖f ‖2
L2 + ‖f ‖2

H 1/2

)
.
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At the GUE scales (δ > α), the limit of the variance is given by Theorem 1.5 which
is proved in the next section. At the critical scale δ = α, by Lemma 3.2, the Poisson
variance Vσ (fα) converges to τ

2‖f ‖2
L2 and the limit of the reproducing variance

V0(fα) is computed in Appendix B by a Riemann sum approximation.

3.2. Proof of Theorem 1.5.

THEOREM 3.6. Let � be the GUE eigenvalue process with correlation kernel
KN

0 given by (1.4). For any 0 < δ < 1 and any f ∈H 1/2
0 ∩L∞(R), we have as the

number of eigenvalues N→∞,

�̃fδ ⇒N
(
0,‖f ‖2

H 1/2

)
.

Theorem 3.6 was first established in [6, 7] for the resolvent function x �→
(x− z)−1 where �z > 0. A general proof was given only recently in [19]. Their ar-
gument exploits a nice connection between the characteristic polynomial of a GUE
matrix and a log-correlated Gaussian process. In [5], a generalization of Theo-
rem 3.6 is proved for Gaussian β-Ensembles. Yet another generalization to certain
classes of orthogonal polynomial ensembles is made in [9, 25]. In particular, the
proof of Theorem 3.6 in [25] is based on the cumulant computations presented in
Section 4 and the sine-kernel asymptotics of Theorem A.2. We now turn to the ap-
proximation of the modified GUE correlation kernels at the so-called GUE scales
(δ > α). By Definition 1.10, Proposition 3.7 below combined with Theorem 3.6
implies the central limit Theorem 1.5.

PROPOSITION 3.7. For any shape � ∈ E, the kernel KN
�,α and the GUE ker-

nel KN
0 are asymptotically equivalent at any scale δ > α,

N−δKN
�,α

(
N−δx,N−δy

)∼=N−δKN
0
(
N−δx,N−δy

)
.

PROOF. To simplify the notation, let us assume that the temperature τ = 1 and
the parameters ξk = 0. The condition � ∈ E implies that for any � > 0,∑

k>�Nα

�
(
kN−α)+ ∑

k<−�Nα

(
1−�

(
kN−α))≤ CNαe−�.

So, if we let �N = (logN)2, these sums decay faster than any power of N and
combined with the uniform bound (3.7), this implies that

KN
�,α(x, y)�

N−1∑
k=0

ϕk(x)ϕk(y)+
�NN

α∑
k=0

�
(
kN−α)ϕN+k(x)ϕN+k(y)

−
�NN

α∑
k=1

(
1−�

(−kN−α))ϕN−k(x)ϕN−k(y)
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with a uniform error. Moreover, for any L > 0, the bulk estimate (3.18) implies
that that all x, y ∈ [−L,L],∑

|k|≤�NNα

∣∣ϕN+k(N−δx
)
ϕN+k

(
N−δy

)∣∣≤ 2C2�NN
α.

Since the function � ∈ [0,1], this yields

N−δKN
�,α

(
N−δx,N−δy

)=N−δ
N−1∑
k=0

ϕk
(
N−δx

)
ϕk

(
N−δy

)+ Ō
N→∞

(
Nα−δ)

uniformly for all x, y ∈ [−L,L]. The sum on the RHS corresponds to the rescaled
GUE kernel. Thus, by Lemma 2.6, to prove that the kernels KN

�,α and KN
0 are

asymptotically equivalent, it remains to show that the latter satisfies the property
L1B . Taking M =N in the approximation (A.10) implies that there exists a posi-
tive constant CL such that for any 0 < δ ≤ 1,

∣∣N−δKN
0
(
xN−δ, yN−δ)∣∣≤ �N(x − y) := CL

⎧⎪⎪⎨⎪⎪⎩
N if |x − y|< logN

N
,

1

|x − y| if |x − y| ≥ logN

N
,

and we immediately check that
´ L

−L �N(z) dz≤ 4CL logN . �

4. Cumulants of the critical models. In this section we prove Theorems 1.7
and 2.7, then we analyze the random processes ��,τ which arise from the critical
modified ensembles. In fact, we will not investigate directly the modified ensem-
bles but the processes with kernel LN

�,η given by (1.33). By Propositions 1.11
and 2.4, there are two choices of the function η which correspond to the modified
GUEs and CUEs, respectively. However, our analysis works as long as η satisfies
the conditions (4.4)–(4.5) below. In Section 4.1, we show that LN

�,η is the correla-
tion kernel of a determinantal process and we prove Proposition 1.11. The conver-
gence of smooth linear statistics of these processes is established in Section 4.2;
see Corollary 4.10. The main result in Section 4.3 is that, for all � ∈ F such that
� �= ψ and for all τ > 0, the random variables ��,τf are not Gaussian. Then, in
Section 4.4, we show by constructing an example that, despite the special property
of the shape ψ , the MNS ensemble at the critical scale also converges to a random
process which is not Gaussian.

4.1. Asymptotically equivalent kernels for the critical modified GUEs.

LEMMA 4.1. Let N,τ,� > 0, α ∈ (0,1), � ∈ F and η be a nondecreasing
function. The kernel LN

�,η given by (1.33) defines a translation-invariant determi-
nantal process on R.
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PROOF. Since the kernel LN
�,η, we can define its Fourier transform:

(4.1) L̂N
�,η(v)=

1

τNα

∑
|k|≤�Nα

�

(
k+ ξk

τNα

)
1[−η(k),η(k)](v).

Plainly, the function L̂N
�,η ∈L1(R) and by (1.33),

(4.2) LN
�,η(x, y)=

ˆ
R

L̂N
�,η(v)e

i2πv(x−y) dv.

In [40], it is established that for any translation-invariant kernel L, the condition
0≤ L̂≤ 1, guarantees that it defines a determinantal point process. Recall that the
parameters ξk have been chosen so that 1

τNα �(
k+ξk
τNα )=�( k

τNα )−�( k+1
τNα ) and it

follows that for any v ∈R,

L̂N
�,η(v)≤�

(−�τ−1)≤ 1.

Moreover, since �≥ 0 by assumption, L̂N
�,η ≥ 0 and we conclude that LN

�,η is the
correlation kernel of a determinantal process. �

PROOF OF PROPOSITION 1.11. Let 1/3 < α < 1, � ∈ E, and �N = (logN)2.
We also assume that τ = 1 and combine the approximation (3.10) of the modi-
fied GUE kernel KN

�,α with the asymptotic formula of Theorem A.3 with x0 = 0.
Namely, taking δ = α in formula (A.11), we obtain

N−αKN
�,α

(
xN−α, yN−α)

=N−α ∑
|k|≤�NNα

�

(
k+ ξk

Nα

)
sin[πN1−α√1+ k/N(x − y)]

π(x − y)
+O

(
N1−3α).

The estimates (2.15) shows that, with η(k) = 1
2N

1−α√1+ k/N , the kernel LN
�,η

given by (1.33) has the property L1B and it follows from Lemma 2.6 that

N−αKN
�,α

(
xN−α, yN−α)∼= LN

�,η(x, y). �

Propositions 1.11 and 2.4 imply that each of the modified ensembles have an
asymptotically equivalent kernel at the critical scale of the form LN

�,η with

(4.3)
(i) η(k)= (N + k)N−α for the modified CUEs,

(ii) η(k)= 1
2N

1−α√1+ k/N for the modified GUEs.

In the sequel, we will compute the limits of the cumulants for any determinantal
process with kernel LN

�,η which satisfies the following conditions. The function η

is nondecreasing and it satisfies uniformly for all |k| ≤ �NN
α ,

(4.4) η(k)=Nν + βkN−α + O
N→∞

(
N−ε),
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where ν,β, ε > 0 such that Nν � �N and

(4.5) lim
N→∞Nν max

{
�(�N),1−�(−�N)}= 0.

In particular, for the modified GUEs (resp., CUEs), the asymptotics (4.4) holds
with ν = 1− α and β = 1/4 (resp., β = 1) and, if the shape � ∈ E, the condition
(4.5) holds for any α ∈ (0,1) with �N = (logN)2.

4.2. Proof of Theorem 1.7. Given the expression (4.2) for the kernel LN
�,η, we

can repeat the proof of Lemma 1.14 replacing sums by integrals and we get the
following formula:

Cn

LN
�,η

[�f ] =
ˆ
Rn

0

dn−1u
∏
i

f̂ (ui)
∑
|m|=n

M(m)

(4.6)

×
ˆ
R

�(m)∏
i=1

L̂N
�,η(v + u1 + · · · + umi

) dv,

where the sum is over all compositions m of n ∈N, (1.18). Combining this formula
with (4.1), we get an expression for the cumulants that is appropriate to pass to the
limit as N →∞. In this section, to simplify the notation, we will assume that
ξk = 0 and (unless stated otherwise) all sums run over |ki | ≤ �NN

α . We define for
any composition m of n≥ 2, the function

(4.7) Hm(u, k)=
ˆ
R

�(m)∏
i=1

1|v+u1+···+umi |≤η(ki) dv.

LEMMA 4.2. For any f ∈ C0(R), the cumulants of a linear statistics of the
determinantal process with correlation kernel (1.33) are given by

Cn

LN
�,η

[�f ] �
(

1

τNα

)n ∑
k1≤···≤kn

n∏
i=1

�

(
ki

τNα

)
(4.8)

×
ˆ
Rn

0

∏
i

f̂ (ui)
∑
|m|=n

M(m)
∑

σ∈S(n)
Hm(u, σk) d

n−1u.

PROOF. To simplify the notation, let us also assume that τ = 1. By formula
(4.1), for any composition m of n of length � and any v ∈R�, we have

(4.9)
�∏

i=1

L̂N
�,η(vi)=N−α� ∑

k1,...,k�

�∏
i=1

�

(
ki

Nα

)
1|vi |≤η(ki).
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If we let εnN = 0 and ε�N = 1−N−α(n−�)∑
k�+1,...,kn

∏n
i=�+1�( ki

Nα ) for all � ≤ n,
we get

�∏
i=1

L̂N
�,η(vi)

{
1− ε�N

}=N−αn ∑
k1,...,kn

n∏
i=1

�

(
ki

Nα

) �∏
i=1

1|vi |≤η(ki).

By (4.7), this implies that

{
1− ε�N

}ˆ
R

�∏
i=1

L̂N
�,η(v + u1 + · · · + umi

) dv

(4.10)

=N−αn ∑
k1,...,kn

n∏
i=1

�

(
ki

Nα

)
Hm(u, k).

Observe that by (4.9), since N−α ∑
κ �(κN−α) ≤ 1 and we assume that the con-

dition (4.4) holds, we have
´
R

∏�
i=1 L̂

N
�,η(vi) dv1 ≤ CNν . Moreover, by definition

0≤ ε�N ≤�(�), so that according to condition (4.5),

lim
N→∞ ε�N

ˆ
R

�∏
i=1

L̂N
�,η(v + u1 + · · · + umi

) dv = 0.

Thus, by formula (4.10),

ˆ
R

�∏
i=1

L̂N
�,η(v + u1 + · · · + umi

) dv

�N−αn ∑
k1≤···≤kn

n∏
i=1

�

(
ki

Nα

) ∑
σ∈S(n)

Hm(u, σk).

We conclude by using formula (4.6). �

In the following, we will always use the conventions �= �(m), �m
i,s =�m

i,s(u)

and s= s�(m)(σ ). Moreover, can express the function Hm(u, k) using the notation
(1.26)–(1.27).

LEMMA 4.3. Let k ∈ Zn≤ and u ∈ Rn
0. For any permutation σ ∈ S(n) and any

composition m of n≥ 2,

Hm(u, σk)=
[
2η(kσ(s))−max

i≤�
{
�m
i,s − η(kσ(i))+ η(kσ(s))

}
−max

i≤�
{−�m

i,s − η(kσ(i))+ η(kσ(s))
}]+

.
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PROOF. Let vi =∑mi

j=1 uj . The change of variable w = v − vs in (4.7) gives

Hm(u, σk)=
ˆ
R

�∏
i=1

1|w+�m
i,s|≤η(kσ(i)) dw =

∣∣∣∣∣
�⋂

i=1

{
w :∣∣w+�m

i,s

∣∣≤ η(kσ(i))
}∣∣∣∣∣.

By definition mini≤�{σ(i)} = σ(s), and since the function η is nondecreasing, for
any k ∈ Zn≤,

(4.11) η(kσ(s))=min
i≤� η(kσ(i)).

Then, since �m
s,s = 0 by (1.26), we obtain

�⋂
i=1

{∣∣w+�m
i,s

∣∣≤ η(kσ(i))
}= [

−η(kσ(s))+max
i≤l

{−�m
i,s − η(kσ(i))+ η(kσ(s))

}
,

η(kσ(s))−max
i≤l

{
�m
i,s − η(kσ(i))+ η(kσ(s))

}]
.

This interval is nonempty if the condition

2η(kσ(s)) > max
i≤�

{
�m
i,s − η(kσ(i))+ η(kσ(s))

}
+max

i≤�
{−�m

i,s − η(kσ(i))+ η(kσ(s))
}

is satisfied, which completes the proof. �

We are now ready to prove our main result, that is, to compute the limits of the
cumulants of linear statistics of the modified ensembles by applying a Riemann
sum approximation to formula (4.8). The argument is quite similar to the proof of
Lemma 2 in [39], but more involved. To keep the proof as transparent as possible,
it relies on three lemmas which will be proved afterwards.

THEOREM 4.4. Assume that the conditions (4.4)–(4.5) are satisfied and let
f ∈H 1

0 (R). For any n≥ 2,

lim
N→∞Cn

LN
�,η

[�f ]

= 2βτBn
�

ˆ
R

f (t)n dt

− 2
ˆ
Rn

0

du

ˆ
Rn
<

dx�
{

n∏
i=1

f̂ (ui)�(xi)

} ∑
|m|=n

M(m)Gm
βτ (u, x),

where Gm
τ (u, x) and Bn

� are defined by formulae (1.28) and (1.29).
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PROOF. Throughout the proof, we will use the familiar inequality (3.14) with-
out any reference. Let |u|1 = |u1| + · · · + |un| and

ϒn
N(u)=

(
1

τNα

)n ∑
k1≤···≤kn

n∏
i=1

�

(
ki

τNα

)

× ∑
|m|=n

M(m)(4.12)

× ∑
σ∈S(n)

(
η(kσ(s))−max

i≤�
{
�m
i,s − η(kσ(i))+ η(kσ(s))

})
.

If the parameter N is sufficiently large, we claim that for any u ∈Rn
0, any σ ∈ S(n),

and for all k ∈ Zn≤ such that |k|∞ <�NN
α ,∣∣∣Hm(u, σk)− 2η(kσ(s))+max

i≤�
{
�m
i,s − η(kσ(i))+ η(kσ(s))

}
+max

i≤�
{−�m

i,s − η(kσ(i))+ η(kσ(s))
}∣∣∣(4.13)

≤
⎧⎨⎩0 if |u|1 ≤ Nν

2
,

18|u|1 else.

First, note that, since �m
s,s = 0, maxi≤�{±�m

i,s − η(kσ(i))+ η(kσ(s))} ≥ 0. More-
over, by (4.11),

max
i≤�

{±�m
i,s − η(kσ(i))+ η(kσ(s))

}≤max
i≤�

{±�m
i,s

}
,

and, by (1.26), for any composition m of n, we have |�m
i,s| ≤ |u|1 for all i ≤ �.

Hence, we conclude that

(4.14) 0≤max
i≤�

{±�m
i,s − η(kσ(i))+ η(kσ(s))

}≤ |u|1.
When the parameter N is large, condition (4.4) implies that for any |κ| ≤ �Nα ,

(4.15)
Nν

2
< η(κ) < 2Nν.

Thus, if we also suppose that |u|1 ≤ Nν

2 , by (4.14),

η(kσ(s)) > max
i≤�

{±�m
i,s − η(kσ(i))+ η(kσ(s))

}
.

By Lemma 4.3, we conclude that when |u|1 ≤ Nν

2 ,

Hm(u, σk)− 2η(kσ(s))+max
i≤�

{
�m
i,s − η(kσ(i))+ η(kσ(s))

}
+max

i≤�
{−�m

i,s − η(kσ(i))+ η(kσ(s))
}= 0.
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For the second estimate, we observe that the estimate (4.15) implies that

0≤Hm(u, σk)≤ 2η(kσ(s))≤ 4Nν.

Then, by the triangle inequality and (4.14), the LHS of (4.13) is bounded by 8Nν+
2|u|1. Thus, we have also proved (4.13) in the case when |u|1 > Nν

2 . If we combine
this estimate with formula (4.8) for the cumulants of the random variable �f , there
exists a positive constant Cn which only depends on n such that if the parameter
N is sufficiently large,∣∣∣∣Cn

LN
�,η

[�f ] −
ˆ
Rn

0

∏
i

f̂ (ui)
{
ϒn
N(u)+ϒn

N(−u)
}
dn−1u

∣∣∣∣
(4.16)

≤ Cn

ˆ
Rn

0

1{|u|1>Nν

2 }|u|1
∏
i

∣∣f̂ (ui)∣∣dn−1u,

where the function ϒn
N(u) is given by (4.12). Taking f1 = · · · = fn = f in

Lemma 4.6 below implies that the RHS of (4.16) converges to 0 as N→∞. Thus,
the limits of the cumulants are given by

lim
N→∞Cn

LN
�,η

[�f ] = lim
N→∞

ˆ
Rn

0

∏
i

f̂ (ui)
{
ϒn
N(u)+ϒn

N(−u)
}
dn−1u

= 2 lim
N→∞

ˆ
Rn

0

�
{∏

i

f̂ (ui)

}
ϒn
N(u)d

n−1u.(4.17)

The next step is to compute the limit of ϒn
N(u) as N →∞; see (4.20). Observe

that, according to condition (4.4) and since the max function is Lipschitz continu-
ous, we get uniformly for all u ∈Rn

0,

ϒn
N(u)=

(
1

τNα

)n ∑
k1≤···≤kn

n∏
i=1

�

(
ki

τNα

) ∑
|m|=n

M(m)

× ∑
σ∈S(n)

(
η(k1)+ β

kσ(s) − k1

Nα
−max

i≤�

{
�m
i,s − β

kσ(i) − kσ(s)

Nα

})
(4.18)

+ O
N→∞

(
N−ε).

By Lemma 4.5 below,
∑

M(m)= 0 and we can remove the two terms η(k1) and
k1N

−α from formula (4.18) since they do not depend on m. Hence, we have proved
that

ϒn
N(u)=

(
1

τNα

)n ∑
k1≤···≤kn

n∏
i=1

�

(
ki

τNα

)
(4.19)

× ∑
|m|=n

M(m)

(
β

∑
σ∈S(n)

kσ(s)

Nα
−Gm

βN−α (u, k)
)
+ O

N→∞
(
N−ε),
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where Gm
βN−α is given by (1.28). Then a Riemann sum approximation implies that

ϒn∞(u) := lim
N→∞ϒn

N(u)

=
ˆ
Rn
<

n∏
i=1

�(zi/τ )
∑
|m|=n

M(m)

(
β

∑
σ∈S(n)

zσ(s) −Gm
β (u, z)

)
dnz.

The first sum is independent of the Fourier variable u ∈Rn
0 and it can be computed

explicitly; see Lemma 4.7 below. Furthermore, making the change of variables
xi = ziτ , we obtain

(4.20) ϒn∞(u)= βτBn
� −

ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)Gm
βτ (u, x) d

nx.

Now, we can deduce the limits of the cumulants of the random variable �f from
equations (4.17) and (4.20). By (1.28) and the estimate |�m

i,s| ≤ |u|1, we get

(4.21) sup
{
Gm
τ (x, u) : x ∈Rn

>, τ > 0
}≤ n!|u|1.

Moreover, since |kσ(s)| ≤ |k1|+|kn| for any k ∈ Zn≤, by formula (4.19), there exists
a constant C which only depends on n such that for any N > 0,

(4.22)
∣∣ϒn

N(u)
∣∣≤ C

ˆ
Rn
<

n∏
i=1

�(xi/τ )
(
1+ |x1| + |xn| + |u|1)dnx.

The assumption � ∈ F guarantees that the RHS of (4.22) is finite. From
Lemma 4.6 below, (4.20) and the dominated convergence theorem, we conclude
that

lim
N→∞Cn

LN
�,η

[�f ]

= 2
ˆ
Rn

0

�
{∏

i

f̂ (ui)

}

×
(
βτBn

� −
ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)Gm
βτ (u, x) d

nx

)
dn−1u.

The final observation is that the integral over Rn
0 can be written as a convolution,

namely, a change of variables gives

ˆ
Rn

0

n∏
i=1

f̂ (ui) d
n−1u=

ˆ
Rn−1

f̂ (v1)

n−1∏
i=2

f̂ (vi − vi−1)f̂ (−vn−1) d
n−1v

= f̂ ∗ · · · ∗ f̂︸ ︷︷ ︸
n

(0).
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If we replace f̂ ∗ · · · ∗ f̂ = f̂ n and evaluate at 0, we get
´
Rn

0

∏n
i=1 f̂ (ui) d

n−1u=´
R
f (t)n dt and the proof of Theorem 4.4 is complete. �

Now we prove the lemmas that we used to get Theorem 4.4. The first lemma is
classical, it was already used in [39], as well as in the context of other invariant
ensembles [1, 32, 33].

LEMMA 4.5. For any n≥ 1,

∑
|m|=n

M(m)=
{

1 if n= 1,

0 if n≥ 2,
and

∑
|m|=n

∣∣M(m)
∣∣≤ n!2n−1.

We have assumed that our test function f has compact support since the original
problem is to study mesoscopic linear statistics. However, this assumption is not
necessary to prove Theorem 4.4. We shall certainly require that f ∈ L1(R) and,
according to the estimate (4.16), the regularity condition needed to prove Theo-
rem 4.4 is that, for any n≥ 2, the integralˆ

Rn
0

∣∣f̂ (u1) · · · f̂ (un)
∣∣(1+ |u|1)dn−1u <∞.

A sufficient condition is provided by the next lemma since by assumption: ‖f̂ ‖∞ ≤
‖f ‖L1 <∞.

LEMMA 4.6. For any functions f1, . . . , fn ∈H 1(R),ˆ
Rn

0

∣∣f̂1(u1) · · · f̂n(un)
∣∣(1+ |u1| + · · · + |un|)dn−1u

(4.23)

≤ n2n
n∏

j=1

(‖f̂j‖∞ + ‖fj‖H 1
)
.

PROOF. By the Cauchy–Schwarz inequality,ˆ
R

∣∣∣∣f̂1(u1)f̂2

(
−∑

j �=2

uj

)∣∣∣∣(1+ |u1|)du1

≤ 2
(

2‖f̂1‖∞‖f̂2‖∞ +
ˆ
|u|>1

∣∣∣∣f̂1(u)f̂2

(
−u−∑

j>2

uj

)∣∣∣∣|u|du)(4.24)

≤ 2
(
2‖f̂1‖∞‖f̂2‖∞ + ‖f1‖H 1‖f2‖L2

)
.

A similar argument shows that for any f ∈ L1 ∩H 1(R),

(4.25) ‖f̂ ‖L1 ∨ ‖f̂ ‖L2 ≤ 2
(‖f̂ ‖∞ + ‖f ‖H 1

)
.
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Hence, it follows from (4.24) thatˆ
R

∣∣∣∣f̂1(u1)f̂2

(
−∑

j �=2

uj

)∣∣∣∣(1+|u1|)du1 ≤ 4
(‖f̂1‖∞+‖f1‖H 1

)(‖f̂2‖∞+‖f2‖H 1
)
,

and, if we combine this estimate with (4.25),ˆ
Rn

0

∣∣f̂1(u1) · · · f̂n(un)
∣∣(1+ |u1|)dn−1u

≤ 4
(‖f̂1‖∞ + ‖f1‖H 1

)(‖f̂2‖∞ + ‖f2‖H 1
) ∏
j>2

‖f̂j‖L1

≤ 2n
n∏

j=1

(‖f̂j‖∞ + ‖fj‖H 1
)
.

The upper-bound (4.23) follows by symmetry. �

The next lemma explains how the shape-dependent constant Bn
� defined by

(1.29) arises in (4.20).

LEMMA 4.7. For any n≥ 1,

Bn
� =

ˆ
Rn
<

n∏
i=1

�(xi)
∑

σ∈S(n)

∑
|m|=n

M(m)xσ(s) d
nx

(4.26)

=
n−1∑
k=0

bnk

ˆ
R

z�(z)�(z)k
(
1−�(z)

)n−1−k
dz,

where, according to formula (1.27), xσ(s) =mini≤�(m){xσ(i)} for all x ∈ Rn
<, and

the coefficients bnk are given by formula (1.30).

PROOF. Let Pn be the uniform probability measure on the symmetric group
S(n), so that we can view σ(sl)=mini≤l{σ(i)} as a random variable. Then we can
rewrite equation (4.26) as

(4.27) Bn
� = n!

ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)En[xσ(s�)]dnx.

We claim that for any l = 1, . . . , n and for any k = 0, . . . , n− 1,

(4.28) P
[
min
i≤l σ (i)≥ n− k

]
=

(
k + 1
l

)
l!(n− l)!

n! .

To see this, observe that if k + 1 < l, since there are only k elements in {1, . . . , n}
which are greater than n− k, one of the l first elements of σ has to be less than
n− k and, therefore, the probability in question is 0.
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On the other hand, if l ≤ k+ 1, then n− k is smaller than the minimum of the l
first entries of σ if and only if these entries are drawn from the set {n− k, . . . , n}.
Since the order of these entries and that of the (n− l) last entries is irrelevant, the
number of such permutations is

(k+1
l

)
l!(n− l)!. Hence, by definition and equation

(4.28), the distribution of σ(sl) is

Pn
[
σ(sl)= n− k

]= (
n

l

)−1 (
k

l − 1

)
.

Then, by definition of M, (1.18),∑
|m|=n

M(m)En[xσ(s�)]
(4.29)

=
n∑
l=1

(−1)l+1

l

(
n

l

)−1 ∑
|m|=n
�(m)=l

(
n

m

) n−1∑
k=0

(
k

l − 1

)
xn−k.

If we integrate successively over x1, . . . , xn−k−1 and over xn, . . . , xn−k+1, and use
the relationship �=−� ′, we find that for any k = 0, . . . , n− 1,

ˆ
Rn
<

n∏
i=1

�(xi)xn−k dnx

(4.30)

= 1

k!(n− k − 1)!
ˆ
R

�(x)k
(
1−�(x)

)n−k−1
�(x)x dx.

Then, if we combine formulae (4.27), (4.29) and (4.30), we get

Bn
� =

n∑
l=1

(−1)l+1n!
l!

(
n

l

)−1 ∑
|m|=n
�(m)=l

(
n

m

)

×
n−1∑
k=0

1

(k − l + 1)!(n− k− 1)!
ˆ
R

�(x)k
(
1−�(x)

)n−k−1
�(x)x dx.

We see that we can simplify n!
l!
(n
l

)−1 from the previous formula and exchange the
sums over l and k. In the end, we obtain

Bn
� =

n−1∑
k=0

(
n∑
l=1

(−1)l+1
(

n− l

k+ 1− l

) ∑
|m|=n
�(m)=l

(
n

m

))

×
ˆ
R

�(x)k
(
1−�(x)

)n−k−1
�(x)x dx.

If we define the array bnk according to (1.30), the lemma is proved. �
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The cumulant problem is generally not discussed directly in the literature, so
we provide a simple criterion which guarantees uniqueness of the law of a random
variable given its cumulants.

LEMMA 4.8. Given a sequence of random variables XN whose Laplace trans-
form is well defined and such that for any n ≥ 1, Cn[XN ] → Cn∞ as N →∞. If
there exists constants c, v > 0, such that∣∣Cn∞

∣∣≤ cn!vn,
then there exists a random variable X∞ whose cumulants satisfy Cn[X∞] = Cn∞
and the sequence XN ⇒X.

The condition of Lemma 4.8 is very natural and its proof follows from a straight-
forward repetition of the argument that is used when dealing with the Hamburger
moment problem (see, e.g., Section 3.3.3 in [15]). Next, we use this criterion to
deduce from Theorem 4.4 the weak convergence of linear statistics �f for any
determinantal process with correlation kernel LN

�,η.

DEFINITION 4.9. In the sequel, the quantity 2τBn
�

´
R
f (t)n dt will be called

the Poisson component of the nth cumulant and we will use the decomposition
limN→∞Cn

LN
�,η

[�f ] = 2τBn
�

´
R
f (t)n dt +Gn

�,τ [f ] where

Gn
�,τ [f ] = −2

ˆ
Rn

0

du�
{

n∏
i=1

f̂ (ui)

}
(4.31)

×
ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)Gm
τ (u, x) dx.

This name is motivated by linear statistics of the Poisson point process whose
cumulants are equal to τ ′

´
R
f (t)n dt where τ ′ is the intensity.

COROLLARY 4.10. Consider the determinantal process with correlation ker-
nel LN

�,η and let f ∈ H 1
0 (R). If the conditions (4.4)–(4.5) hold, then the random

variable �f converges in distribution as N →∞ to a random variable ��,τ ′f
where τ ′ = βτ and whose cumulants are given by

(4.32) Cn[��,τ ′f ] = 2τ ′Bn
�

ˆ
R

f (t)n dt +Gn
�,τ ′ [f ].

PROOF. We can estimate the growth of Gn
�,τ ′ [f ] and the Poisson compo-

nent separately. We start by giving an upper-bound for the constant Bn
� . By for-

mula (4.27),

Bn
� = n!

ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)En[xσ(s�)]dnx.
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Obviously, for any x ∈Rn
<, En[xσ(s�)] ≤ xn and if we use formula (4.30),

ˆ
Rn
<

n∏
i=1

�(xi)En[xs�]dnx ≤
ˆ
Rn
<

n∏
i=1

�(xi)xn d
nx

= 1

(n− 1)!
ˆ
R

(
1−�(x)

)n−1
�(x)x dx.

Moreover, since 0≤�=−� ′ and 0≤� ≤ 1, we have for any n≥ 1,ˆ
R

(
1−�(x)

)n−1
�(x)x dx ≤

ˆ ∞

0
�(x)x dx =

ˆ ∞

0
�(x)dx.

On the other hand, if we use that x1 ≤ En[xσ(s�)] and apply the same method, we
can show thatˆ

Rn
<

n∏
i=1

�(xi)En[xs�]dnx ≥
1

(n− 1)!
ˆ
R

�(x)n−1�(x)x dx

≥ −�(0)n−1

(n− 1)!
ˆ 0

−∞
(
1−�(x)

)
dx.

These estimates show that there exists a positive constant C which only depends
on the shape � such that for any l = 1, . . . , n,

n!
∣∣∣∣∣
ˆ
Rn
<

n∏
i=1

�(xi)En[xσ(sl )]dnx
∣∣∣∣∣≤ Cn.

Using the estimate of Lemma 4.5 and (4.27), this implies that |Bn
� | ≤ C(n +

1)!2n−1. Hence, for any n≥ 2, the Poisson component is bounded by

(4.33)
∣∣∣∣Bn

�

ˆ
R

f (t)n dt

∣∣∣∣≤ C′(n+ 1)!(2‖f ‖∞)n−1‖f ‖L1 .

Now, we estimate the growth of Gn
�,τ ′ [f ], (4.31). Applying the upper-bound

(4.21), we see that∣∣Gn
�,τ ′ [f ]

∣∣≤ 2n! ∑
|m|=n

∣∣M(m)
∣∣

(4.34)

×
ˆ
Rn

0

n∏
i=1

∣∣f̂ (ui)∣∣(|u1| + · · · + |un|)dn−1u

ˆ
Rn
<

n∏
i=1

�(xi) d
nx.

By symmetry
´
Rn
<

∏n
i=1�(xi) d

nx = 1
n!(
´
R
�(x)dx)n = 1

n! and Lemmas 4.5
and 4.6 provide bounds for the other factors of the RHS of (4.34). We obtain

(4.35)
∣∣Gn

�,τ ′ [f ]
∣∣≤ (n+ 1)!4n(‖f ‖∞ + ‖f ‖H 1

)n
.

The estimates (4.33) and (4.35) show that the limits of Theorem 4.4 satisfy the cri-
terion of Lemma 4.8 for any choice of parameters τ ′ > 0, � ∈ F, and f ∈H 1

0 (R).
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Hence, they corresponds to the cumulants of some random variable which we de-
note by ��,τ ′f , and �f ⇒��,τ ′f as N→∞. �

For the critical modified CUEs, according to formulae (4.3)(i) and (4.4), the pa-
rameter β = 1. Hence, Theorem 2.7 follows directly from Proposition 2.4 and
Corollary 4.10. Likewise, in the GUE setting, the parameter β = 1/4 by for-
mula (4.3)(ii). Provided that 1/3 < α < 1, by Proposition 1.11, we conclude that
at the critical scale, a modified GUE with shape � ∈ E converges in distribution
to the random field ��,τ/4. In order to deal with all mesoscopic scales, we can use
the asymptotic expansion of Theorem A.2 instead of Theorem A.3. Namely, if we
combine formula (3.10) with the sine-kernel approximation (A.10), we obtain for
any scales 0 < α, δ < 1,

N−δKN
�,α

(
xN−δ, yN−δ)

= 1

τNα

∑
|k|≤�NNα

�

(
k

τNα

)
(4.36)

×
sin[(N + k)(F (π2

xN1/2−δ√
N+k )− F(π2

yN1/2−δ√
N+k ))]

π(x − y)
+ O

N→∞
(
N−δ).

The RHS of (4.36) does not corresponds to a translation-invariant, so we cannot
defined its Fourier transform. However, it is related to the kernel LN

�,η, (1.33),
by a change of variables and we can exploit this fact to compute the limits of
critical linear statistics of the modified GUE at any scale, including the regime
0 < α ≤ 1/3.

PROPOSITION 4.11. Let � ∈ E, f ∈ C0(R), and 0 < α < 1. We have

lim
N→∞Cn

KN
�,α

[�fα] = lim
N→∞Cn

LN
�,η

[�gN ],
for any n≥ 2 where

(4.37) gN(x)= f

(
2

π
NαG

(
πx

Nα

))
and the function G is given by Definition A.1.

PROOF. Let supp(f ) ⊂ [−L,L]. Observe that for any |k| ≤ �NN
α and any

x, y ∈ [−2L,2L], a Taylor expansion gives

F

(
x
N1/2−α
√
N + k

)
− F

(
y
N1/2−α
√
N + k

)
=

√
N

N + k

{
F

(
x

Nα

)
− F

(
y

Nα

)}

+ O
N→∞

(
(x − y)

�NN
−α

N + k

)
.
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Thus, taking δ = α in equation (4.36), we get for any 0 < α < 1,

N−αKN
�,α

(
xN−α, yN−α)

= 1

τNα

∑
|k|≤�Nα

�

(
k

τNα

)
(4.38)

× sin[√N(N + k)(F (π2
x
Nα )− F(π2

y
Nα ))]

π(x − y)
+ O

N→∞
(
N−α),

where the error term is uniform for all x, y ∈ [−2L,2L]. Following the proof of
Lemma 2.6, this approximation implies that for any any composition m,

Tr
[
f m1
α KN

�,α · · ·f m�
α KN

�,α

]
= ∑

k∈Z�

|kj |≤�NNα

�∏
j=1

�

(
kj

τNα

)ˆ
[−L,L]�

�∏
j=1

f (xj )
mj(4.39)

× sin[√N(N + k)(F (π2
xj
Nα )− F(π2

xj+1
Nα ))]

π(xj − xj+1)
d�x + Ō

N→∞
(
N−α),

where x�+1 = x1. There exists NL ∈N such that for all N ≥NL, we can make the
change of variables yj = π−1NδF(π2

xj

Nδ ) in the integral (4.39). Since 0 <F ′(x)≤
2 for any |x| < 1, this change of variables maps the interval |xj | < L to some
subset of |yj |<L for any N ≥NL. Hence, if we let gN(y)= f ( 2

π
NαG(

πy
Nα )) and

η(k) is given by (4.3)(ii), we obtain

ˆ
[−L,L]�

�∏
j=1

f (xj )
mj

sin[√N(N + k)(F (π2
xj
Nα )− F(π2

xj+1
Nα ))]

π(xj − xj+1)
d�x

(4.40)

=
ˆ
[−L,L]�

�∏
j=1

gN(yj )
mj

G′(πyj
Nα ) sin[2πη(k)(yj − yj+1)]
Nα(G(

πyj
Nα )−G(

πyj+1
Nα ))

d�x.

A Taylor expansion gives for any y, z ∈ [−4L,4L],
G(yN−α)−G(zN−α)

N−αG′(yN−α)
= (y − z)

{
1+ O

N→∞
(
(y − z)N−α)}.

This implies that for any |k| ≤ �Nα ,

(4.41)
G′( πy

Nα ) sin[2πη(k)(y − z)]
Nα(G(

πy
Nα )−G( πz

Nα ))
= sin[2πη(k)(y − z)]

π(y − z)
+ O

N→∞
(
N−α).
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Hence, if we combine formulae (4.39), (4.41) and (4.41), we have proved that

Tr
[
f m1
α KN

�,α · · ·f m�
α KN

�,α

]
= ∑

k∈Z�

|kj |≤�Nα

�∏
j=1

�

(
kj

τNα

)ˆ
[−L,L]�

�∏
j=1

gN(yj )
mj

sin[2πη(k)(y − z)]
π(y − z)

d�y

+ Ō
N→∞

(
N−α).

By (1.33), we can write this equation as

Tr
[
f m1
α KN

�,α · · ·f m�
α KN

�,α

]= Tr
[
g
m1
N LN

�,η · · ·gm�

N LN
�,η

]+ Ō
N→∞

(
N−α),

and the proposition follows from formula (1.19). �

By Proposition 4.11, to complete the proof of Theorem 1.7, it remains to extend
the argument of Theorem 4.4 to deal with test functions of the form (4.37). As we
can see from the next lemma, such functions depend mildly on the density N and
it is not difficult to complete the proof.

LEMMA 4.12. Let f ∈ C1(R) with support in [−L,L] and 0 < δ ≤ 1. For
any N > (2L)1/δ , the function gN(x) = f ( 2

π
NδG(πx

Nδ )) has compact support in
[−L,L]. Moreover, we have

‖ĝN − f̂ ‖∞ = O
N→∞

(
N−δ) and ‖gN − f ‖H 1 = o(1)

N→∞
.

PROOF. By Definition A.1, 0 ≤ F ′ ≤ 2 and the map x �→ 2
π
NδG(πx

Nδ ) is a

dilation. Therefore, when N > (2L)1/δ , the function gN is well defined on [−L,L]
and gN(x)= 0 for all x ∈ [−L,L] \ supp(f ). By continuity, we can assume that
gN(x) = 0 for all |x| > L. Hence, gN ∈ C1

0(R) with supp(gN) ⊂ supp(f ). Then,
by Lipschitz continuity of f , for any |x|<L,∣∣gN(x)− f (x)

∣∣≤ CNδ

∣∣∣∣2G(
πx

Nδ

)
− πx

Nδ

∣∣∣∣≤ CL2N−δ,

where we used that G is smooth with G(0)= 0 and G′(0)= 1/2. This implies that

‖ĝN − f̂ ‖∞ ≤
ˆ
[−L,L]

∣∣gN(x)− f (x)
∣∣dx =O

(
N−δ).

Similarly, by the triangle inequality,∣∣g′N(x)− f ′(x)
∣∣≤ ∥∥f ′∥∥∞∣∣∣∣2G′

(
πx

Nδ

)
− 1

∣∣∣∣+ ∣∣∣∣f ′( 2

π
NδG

(
πx

Nδ

))
− f ′(x)

∣∣∣∣.
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Since f ′ is continuous, limN→∞ |g′N(x) − f ′(x)| = 0 for all x ∈ [−L,L]. By
(1.21) and the dominated convergence theorem, we conclude that as N→∞,

‖gN − f ‖2
H 1 = 1

4π2

ˆ
[−L,L]

∣∣g′N(x)− f ′(x)
∣∣2 dx→ 0. �

PROPOSITION 4.13. Let f ∈ C1
0(R), 0 < α < 1, and � ∈ E. If η is given by

(4.3)(ii) and gN is given by (4.37), then for any n≥ 2,

lim
N→∞Cn

LN
�,η

[�gN ] = Cn[��,τ/4f ].

PROOF. We can take f = gN in formula (4.8). In particular, the estimate
(4.16) is still valid for the test function gN . Let |u|1 = |u1| + · · · + |un| and the
function ϒn

N(u) be given by (4.12). We need to prove that

(4.42) lim
N→∞

ˆ
Rn

0

1{|u|1>N1−α
2 }|u|1

∏
i

∣∣ĝN (ui)∣∣dn−1u= 0,

and

(4.43) lim
N→∞

ˆ
Rn

0

∣∣∣∣∏
i

ĝN (ui)−
∏
i

f̂ (ui)

∣∣∣∣∣∣ϒn
N(u)

∣∣dn−1u= 0.

Indeed these limits imply that

lim
N→∞Cn

LN
�,η

[�gN ] = 2 lim
N→∞

ˆ
Rn

0

�
{∏

i

ĝN (ui)

}
ϒn
N(u)d

n−1u

= 2 lim
N→∞

ˆ
Rn

0

�
{∏

i

f̂ (ui)

}
ϒn
N(u)d

n−1u,

and the rest of the proof is identical to that of Theorem 4.4. To complete our argu-
ment, it remains to show (4.42) and (4.43). First, observe thatˆ

Rn
0

1{|u|1>N1−α
2 }|u|1

∏
i

∣∣ĝN (ui)∣∣dn−1u

(4.44)

≤
n∑

k=1

ˆ
Rn

0

1{|uk |>N1−α
2n }|u|1

∏
i

∣∣ĝN (ui)∣∣dn−1u.

Let AN = {v ∈R : |v|> N1−α
2n } and define the function qN by its Fourier transform

q̂N = 1AN
ĝN . Then by Lemma 4.6 we haveˆ

Rn
0

1{|u|1>N1−α
2 }|u|1

∏
i

∣∣ĝN (ui)∣∣dn−1u

(4.45)
≤ n22n−1(‖q̂N‖∞ + ‖qN‖H 1

)(‖ĝN‖∞ + ‖gN‖H 1
)n−1

.
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Since, ‖F ′‖∞ ≤ 2, a change of variables yields

(4.46) ‖ĝN‖∞ ≤
ˆ ∣∣∣∣f(

2

π
NαG

(
πx

Nα

))∣∣∣∣dx ≤ ˆ ∣∣f (z)∣∣dz= ‖f ‖L1 .

Moreover,

‖gN‖2
H 1 =

ˆ ∣∣g′N(x)∣∣2 dx = 2
ˆ L

−L
∣∣f ′(z)∣∣2G′

(
F

(
πz

2Nα

))
dz,

and, since G′(F (t))= F ′(t)= 2
√

1− t2 for any |t |< 1, we obtain that ‖gN‖2
H 1 ≤

4‖f ‖2
H 1 for all N sufficiently large. By (4.45), this implies thatˆ

Rn
0

1{|u|1>N1−α
2 }|u|

∏
i

∣∣ĝN (ui)∣∣dn−1u

≤ n22n−1(‖q̂N‖∞ + ‖qN‖H 1
)(‖f̂ ‖L1 + 2‖f ‖H 1

)n−1
.

Obviously, ‖q̂N‖∞ → 0 and to conclude that (4.42) holds it remains to estimate
‖qN‖H 1 . The main observation is thatˆ ∣∣q̂N (v)− 1AN

f̂ (v)
∣∣2|v|2 dv ≤ ‖gN − f ‖2

H 1 .

Then by the triangle inequality

‖qN‖2
H 1 ≤ 2

(
‖gN − f ‖2

H 1 +
ˆ
AN

∣∣f̂ (v)∣∣2|v|2 dv).
The first term converges to 0 by Lemma 4.12, and so does the second term by
the dominated convergence theorem. We conclude that ‖qN‖H 1 → 0 and we have
established (4.42). The proof of the estimate (4.43) is very similar. We observe that∏

i

ĝN (ui)−
∏
i

f̂ (ui)=
n∑

j=1

(
ĝN (uj )− f̂ (uj )

)∏
i>j

ĝN(ui)
∏
i<j

f̂ (ui).

By (4.22), there exists a constant C > 0 which depends only on n and the shape �
such that |ϒn

N(u)| ≤ C{1+ |u|1} and we obtainˆ
Rn

0

∣∣∣∣∏
i

ĝN (ui)−
∏
i

f̂ (ui)

∣∣∣∣∣∣ϒn
N(u)

∣∣dn−1u

≤ C

n∑
j=1

ˆ
Rn

0

∣∣ĝN (uj )− f̂ (uj )
∣∣∣∣∣∣∏
i>j

ĝN(ui)
∏
i<j

f̂ (ui)

∣∣∣∣{1+ |u|1}dn−1u.

Thus, by Lemma 4.6 and the facts ‖ĝN‖∞ ≤ ‖f ‖L1 and ‖gN‖H 1 ≤ 2‖f ‖H 1 , we
get ˆ

Rn
0

∣∣∣∣∏
i

ĝN (ui)−
∏
i

f̂ (ui)

∣∣∣∣∣∣ϒn
N(u)

∣∣dn−1u

(4.47)
≤ Cn22n−1(‖ĝN − f̂ ‖∞ + ‖gN − f ‖H 1

)(‖f ‖L1 + 2‖f ‖H 1
)n−1

.
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Lemma 4.12 implies that the RHS of (4.47) converges to 0 as N →∞ and the
limit (4.43) follows. �

By Propositions 4.11 and 4.13, if f ∈ C1
0(R), we have for any 0 < α < 1 and

any n≥ 2,

(4.48) lim
N→∞Cn

KN
�,α

[�fα] = Cn[��,τ/4f ].
In the proof of Corollary 4.10, we have established that the sequence

(Cn[��,τ/4f ])n≥2 satisfies the condition of Lemma 4.8. This implies that, consid-
ering the determinantal process with correlation kernel KN

�,α , the random variable

(4.49) �fα ⇒��,τ/4f

as N →∞. In order to complete the proof of Theorem 1.7, we use a density
argument to extend (4.49) to all test functions in H

1/2
0 ∩L∞(R).

PROOF OF THEOREM 1.7. Let τ ′ = τ/4. First, observe that for any x, y ∈R,∣∣eix − eiy
∣∣2 ≤ 4|x − y|2.

By Chebyshev’s inequality, this implies that, if X and Y are mean-zero random
variables defined on the same probability space, for any ξ ∈R,∣∣E[

eiξX − eiξY
]∣∣≤ 4|ξ |√Var[X− Y ].

For critical linear statistics of the modified GUEs, using the estimate (3.26) which
is valid when δ = α, we obtain for any test functions f,h ∈H 1/2

0 (R),

(4.50)
∣∣EKN

�,α

[
eiξ�fα − eiξ�hα

]∣∣≤ C|ξ |
√
‖f − h‖2

L2 + ‖f − h‖2
H 1/2 .

Moreover, formula (B.4) implies that under the same assumptions,

(4.51)
∣∣E[

eiξ��,τ ′h − eiξ��,τ ′f ]∣∣≤ C|ξ |
√
‖f − h‖2

L2 + ‖f − h‖2
H 1/2 .

By the triangle inequality,∣∣EKN
�,α

[
eiξ�fα

]−E
[
eiξ��,τ ′f ]∣∣

≤ ∣∣EKN
�,α

[
eiξ�fα − eiξ�hα

]∣∣+ ∣∣E[
eiξ��,τ ′h − eiξ��,τ ′f ]∣∣(4.52)

+ ∣∣EKN
�,α

[
eiξ�hα

]−E
[
eiξ��,τ ′h]∣∣.

If we suppose that h ∈ C1
0(R), by (4.49), the last term in the RHS of (4.52) con-

verges to 0 as N →∞. Thus, using the upper-bound (4.50) and (4.51), for any
f ∈H 1/2

0 ∩L∞(R) and ξ ∈R,

lim sup
N→∞

∣∣EKN
�,α

[
eiξ�fα

]−E
[
eiξ��,τ ′f ]∣∣

(4.53)
≤ 2C|ξ |

√
‖f − h‖2

L2 + ‖f − h‖2
H 1/2 .
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Since, the space C1
0 is dense in the Sobolev space H

1/2
0 with respect to the

norm
√
‖ · ‖2

L2 + ‖ · ‖2
H 1/2 , [28], Theorem 7.14, the RHS of the inequality (4.53)

is arbitrary small by choosing h ∈ C1
0(R) appropriately, and we conclude that

�fα ⇒��,τ ′f as N→∞. �

4.3. Properties of the random process ��,τ . In this section, we study the ran-
dom variables ��,τf which arise from the limit of linear statistics of the criti-
cal modified ensembles. Because of the complicated structure of the cumulants in
Theorem 1.7, we cannot get much information about the random fields ��,τ ex-
cept that they are not Gaussian. However, as we expect from Figure 1, we recover
Gaussian fluctuations in both limits τ →∞ and τ → 0; see Proposition 4.15.
Proposition 4.14 provides a sufficient condition under which the field ��,τ is not
Gaussian and it leads us to compute the Laplace transform of the Poisson compo-
nent of the field ��,τ . Moreover, we show that the Poisson component of the ran-
dom field ��,τ is Gaussian if and only if � is the MNS shape ψ(t)= (1+ et )−1;
see Proposition 1.9. Then a natural problem that remains unanswered is whether
the sequence Gψ,τ given by (4.31) also corresponds to the cumulants of some ran-
dom variables, so that the field �ψ,τ would be the superposition of a white noise
and an independent non-Gaussian process.

PROPOSITION 4.14. If the shape � ∈ F satisfies the condition Bn
� �= 0 for

some n > 2. Then, for any τ > 0, the random process ��,τ defined in Corol-
lary 4.10 is not Gaussian.

PROOF. It is clear from the definition (1.28) that limτ→∞Gm
τ (u, x) = 0 and

it follows from (4.31) that for any n ≥ 2 and f ∈ H 1
0 (R), limτ→∞Gn

�,τ (f ) = 0.
Hence, by formula (4.32),

(4.54) Cn[��,τf ] = 2τBn
�

ˆ
R

f (t)n dt + o(1)
τ→∞

.

Thus, the Poisson component dominates at large temperature and the random field
of ��,τf is not Gaussian since there are test functions such that Cn[��,τf ] �=
0 whenever Bn

� �= 0. This observation is actually valid at any temperature τ >

0 because of the scaling property of the cumulants. By definition, Gm
τ (u, x) =

τGm
1 (u/τ, x) and the change of variables ui = τvi leads to

Gn
�,τ [f ] = −2

ˆ
Rn

0

dv�
{

n∏
i=1

τ f̂ (τvi)

}ˆ
Rn
<

n∏
i=1

�(xi)
∑
|m|=n

M(m)Gm
1 (v, x) dx.

Hence, by (4.32), the random variables ��,τf and ��,1f (
·
τ
) have the same dis-

tribution. �
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PROPOSITION 4.15. For any function f ∈H 1
0 (R), the rescaled random vari-

able τ−1/2��,τf converges in distribution as τ →∞ to a Gaussian random vari-
able with variance ‖f ‖2

L2 . On the other hand, ��,τf converges in distribution as

τ → 0 to a Gaussian random variable with variance ‖f ‖2
H 1/2 .

PROOF. When τ →∞, the asymptotic of the cumulants of the random vari-
ables ��,τf are given by formula (4.54) and

Cn[��,τ

(
τ−1/2f

)]= τ 1−n/2Bn
�

ˆ
R

f (t)n dt + o
τ→∞

(
τ−n/2).

Hence, we obtain

lim
τ→∞Cn[τ−1/2��,τ (f )

]= {
B2
�‖f ‖2

L2 if n= 2,

0 if n≥ 3.

Taking the limit as τ → 0 is more subtle. We shall see that we recover the cu-
mulants of the sine process given by [39], Lemma 2, and the cancellation follows
from the main combinatorial lemma. For a given composition m of n and u ∈Rn

0,
by Definition (1.28),

(4.55) Gm
0 (u, x)=

∑
σ∈S(n)

max
i≤�

{
�m
i,s(u)

}
,

where s = s�(m)(σ ), (1.27). The important fact is that this expression becomes
independent of the variable x. So, in the following, we will denote Gm

0 (u) instead
of Gm

0 (u, x) and we define

(4.56) "m(u)= (u1 + · · · + um1, u1 + · · · + um2, . . . , u1 + · · · + um�−1,0).

By definition (1.26), for any u ∈Rn
0, we have

�m
i,s(u)=

⎧⎪⎪⎨⎪⎪⎩
ums+1 + · · · + umi

if s < i,

ums+1 + · · · + un + u1 + · · · + umi
if i < s,

0 if i = s.

For any s = 1, . . . , �(m) we let πs ∈ S(n) be the cyclic permutation given by

πs(i)=ms + i mod n.

Then we see that {�m
i,s(u) : i = 1, . . . , �} = {"m

i (πsu) : i = 1, . . . , �} and, by
(4.55), we obtain

Gm
0 (u)=

∑
σ∈S(n)

max
i≤�

{"m
i (πsu)

}
,

(4.57) ∑
π∈S(n)

Gm
0 (πu)= n! ∑

π∈S(n)
max
i≤�

{"m
i (πu)

}
.
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By dominated convergence, we can pass to the limit τ → 0 in formulae (4.31)–
(4.32). The two integrals decouple and, since

´
Rn
<

∏n
i=1�(xi) d

nx = 1/n!, we ob-
tain

(4.58) lim
τ↘0

Cn[��,τ ′f ] = −2
ˆ
Rn

0

�
{

n∏
i=1

f̂ (ui)

}
1

n!
∑
|m|=n

M(m)Gm
0 (u) d

n−1u.

This limit is independent of the shape � and it will be denoted by Cn[�0f ]. If
we use the notation (4.56), Soshnikov’s main combinatorial lemma reads for any
u ∈Rn

0,

(4.59)
∑

π∈S(n)

∑
|m|=n

M(m)max
{"m(πu)

}= {−|u1| if n= 2,

0 if n≥ 3.

Next, we symmetrize formula (4.58) over all permutations of u, by equations
(4.57) and (4.59), we conclude that for any n≥ 3,

Cn[�0f ] = 0

and

C2[�0f ] =
ˆ
R

f̂ (u)f̂ (−u)|u|du.

This shows that the random field �0 is Gaussian with covariance structure given
by 〈f,g〉H 1/2 . �

In the proof of Proposition 4.14, we have seen that the temperature τ > 0 can
be treated just as a scaling parameter. Therefore, in the sequel, we will assume
that τ = 1 and write �� = ��,1, Gm = Gm

1 , etc. By Definition 4.9, the behav-
ior of the Poisson component of the field �� is encoded by the coefficients Bn

� ,
(1.29). In the remainder of this section, we will compute the generating func-
tion of the sequence Bn

� and prove Proposition 1.9. We start by a combinatorial
lemma.

PROPOSITION 4.16. For any z,w ∈C so that |w(e(1+w)z − 1)|< |1+w|,

(4.60)
∞∑
n=1

n−1∑
k=0

bnk
wk+1zn

n! = w(e(1+w)z − 1)

1+we(1+w)z
.

PROOF. By equation (1.30),

bnk =
k+1∑
l=1

(−1)l+1
(

n− l

k + 1− l

) ∑
n1,...,nl≥1
n1+···+nl=n

n!
n1! · · ·nl! .
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So that if we exchange the order of summation between the indices k and l,

∞∑
n=1

n−1∑
k=0

bnk
wk+1zn

n! =
∞∑
n=1

zn
n∑
l=1

∑
n1,...,nl≥1
n1+···+nl=n

(−1)l+1

n1! · · ·nl!
n−1∑
k=l−1

(
n− l

k+ 1− l

)
wk+1

=
∞∑
n=1

zn
n∑
l=1

∑
n1,...,nl≥1
n1+···+nl=n

(−1)l+1

n1! · · ·nl!w
l(1+w)n−l .

Then, since
∑∞

n=l an
∑

n1,...,nl≥1
n1+···+nl=n

1
n1!···nl ! = (ea − 1)l for any a ∈ C, if we ex-

change the order of summation between l and n, we obtain

∞∑
n=1

n−1∑
k=0

bnk
wk+1zn

n! =
∞∑
l=1

(−1)l+1
(

w

1+w

)l(
e(1+w)z − 1

)l
.

This proves (4.60) using the identity
∑

1≤l(−1)l+1ξ l = ξ
1+ξ , if |ξ |< 1. �

If we substitute w = �(x)
1−�(x)

and z= ξ(1−�(x)) into (4.60), we obtain for any

|ξ |< e−1,

∞∑
n=1

ξn

n!
n−1∑
k=0

bnk�(x)k+1(1−�(x)
)n−k−1 = �(x)(eξ − 1)

1+�(x)(eξ − 1)
.

Integrating both sides, by definition (1.29), this implies that

(4.61)
∞∑
n=1

ξn

n!B
n
� =

ˆ
R

x(eξ − 1)

1+�(x)(eξ − 1)
�(x)dx.

Motivated by Proposition 4.14, it is meaningful to raise the question: which
shape � satisfies the conditions Bn

� = 0 for all n > 2? Since we assume that B1
� =

0 and B2
� = 1, by formula (4.61), this amounts to solving the integral equation

(4.62)
ˆ
R

x(eξ − 1)

1+�(x)(eξ − 1)
�(x)dx = ξ2

2
.

PROOF OF PROPOSITION 1.9. Since (1−�) is a cumulative distribution func-
tion, we can make the change of variable s =�(x) in the RHS of formula (4.61)
and this leads to the identity

(4.63)
∞∑
n=1

ξn

n!B
n
� =

ˆ 1

0

�−1(s)

(eξ − 1)−1 + s
ds,
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where �−1 is the generalized inverse of �; �−1(s)= inf{t ∈R :�(t)≤ t}. If we
also make the change of variable w = (1−eξ )−1, we see that equation (4.62) gives

(4.64)
ˆ 1

0

�−1(s)

s −w
ds = σ 2

2

(
log

(
1−w−1))2

.

Note that, since � is continuous, the function �−1 is continuous almost every-
where. Moreover, the conditions � ∈ L1(0,∞) and (1−�) ∈ L1(−∞,0) guar-
antees that the RHS of formula (4.64) defines an analytic function in C \ [0,1].
Thus, if we use the principal branch of the logarithm, the LHS of formula (4.64)
is also analytic in the same domain and, by analytic continuation, equation (4.64)
holds for any w ∈ C \ [0,1]. It is well known that, for any t ∈ (0,1) where the
function �−1 is continuous,

lim
η↘0

�
(ˆ 1

0

�−1(s)

s − (t + iη)
ds

)
= π�−1(t).

For the principal branch, for any t ∈ (0,1),

lim
η↘0

log
(
1− (t + iη)−1)= log

(
t−1 − 1

)+ iπ.

Hence, by (4.64), these limits implies that if � ∈ F is solution of (4.61), then for
almost all t ∈ (0,1),

(4.65) �−1(t)= log
(
t−1 − 1

)
.

Since, by assumption, �−1 is nonincreasing, equation (4.65) holds for all t ∈ (0,1)
and it is straightforward to see that this amounts to �(x)= 1/(1+ ex), so that the
unique solution of equation (4.62) is the MNS shape ψ . �

By Definition 4.9, Proposition 1.9 means that the Fermi statistics ψ(t) =
1/(1 + et ) is the only shape in F for which the Poisson component of the field
�ψ corresponds to a Gaussian process. In general, formula (4.63) implies that
Laplace transform of the Poisson component of the random process �� is given
by for all f ∈ C0(R) and all |ξ |< e−1/‖f ‖∞,

(4.66) exp

( ∞∑
n=1

ξn

n!B
n
�

ˆ
R

f (t)n dt

)
= exp

(ˆ
R

ˆ 1

0

�−1(t)

(eξf (x) − 1)−1 + t
dt dx

)
.

In particular, for an arbitrary shape � ∈ F, it seems very difficult to check whether
the RHS of formula (4.66) defines a positive definite function in the variable ξ so
that the Poisson component of the field �� comes from a random process.
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4.4. Fluctuations of the critical MNS ensemble. Propositions 1.9 and 4.14 im-
ply that for any modified Ensemble whose shape � �= ψ , the limiting fluctuations
at the critical scale are not Gaussian. The goal of this section is to prove that this is
also the case for the MNS ensemble. Our first attempt is to compute the third cumu-
lant of the random variable �ψf , but it turns out that it vanishes for any test func-
tion; see Proposition 4.19. Consequently, we construct a test function y ∈ S(R)
such that C4[�ψy] �= 0. Our strategy to simplify formula (4.31) is to symmetrize
the functions Gm with respect to all permutations of the variables ui and to look for
cancellations. There are even more simplifications available using the constraints
u1+· · ·+un = 0 and the DHK formulae; see Remark 4.20 below. However, as we
emphasized in the Introduction, it turns out there is no counterpart of Soshnikov’s
main combinatorial lemma for the modified ensembles and already for the 4th cu-
mulant, there are not enough cancellations to rewrite formula (4.31) in a simple
way. Moreover, we shall only consider the following subclass of shapes.

DEFINITION 4.17. A shape � ∈ F is called symmetric if its differential −�
is even. In other words, if it satisfies 1−�(−t)=�(t) for all t ∈R.

We can deduce from Proposition 4.16 that the triangular array bnk satisfies for
any k = 0, . . . , n− 1, bnk = (−1)n+1bnn−1−k . This implies that for any symmetric

shape the map x �→�(x)
∑n−1

k=0 b
n
k�(x)k(1−�(x))n−1−k is even when the index

n is odd. Thus, for any m≥ 1,

(4.67) B2m+1
� =

ˆ
R

x�(x)

n−1∑
k=0

bnk�(x)k
(
1−�(x)

)n−1−k
dx = 0.

LEMMA 4.18. We define the function � :R2 →R2 by

�(v1, v2)= [v1]+ + [v2]+ + [v1 + v2]+ − 2 max{0, v1, v1 + v2}.
By formula (4.32), for any � ∈ F and any function f ∈H 1

0 (R), we have

C3[��f ] = 2B3
�

ˆ
f (x)3 dx + 24

ˆ
R3

0

d2u�
{∏

i

f̂ (ui)

}ˆ
R

ds�(s)

(4.68)

×
¨

(0,∞)2
d2z�(s + z1)�(s + z1 + z2)�(u1 − z1, u2 − z2),

where d2u= du1 du2 and it is understood that u3 =−u1 − u2.

PROOF. See Appendix C. �

The important feature of formula (4.68) is that the functions f̂ and � are cou-
pled by a function � which only depends on the variables ui − zi . Moreover, it
follows from the DHK formula (4.69), that this function is anti-symmetric and this
leads to the following result.
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PROPOSITION 4.19. If the shape � ∈ F is symmetric, then for any function
f ∈H 1

0 (R), we have C3[��f ] = 0.

PROOF. First, observe that by (4.67), the constant B3
� = 0 and it remains to

show that the second term in formula (4.68) vanishes as well. For any w ∈R2, we
easily check that

(4.69) max{0, v1, v1 + v2} +max{0, v2, v1 + v2} = [v1]+ + [v2]+ + [v1 + v2]+.
This implies that we may express

�(v1, v2)=max{0, v2, v1 + v2} −max{0, v1, v1 + v2}.
In particular, �(v1, v2)=−�(v2, v1) and it follows that˚

R×(0,∞)2
�(x)�(x + z1)�(x + z1 + z2)�(u1 − z1, u2 − z2) dx d

2z

=
˚

R×(0,∞)2
�(−y − z1 − z2)�(−y − z2)

×�(−y)�(u1 − z1, u2 − z2) dy d
2z

(4.70)

=
˚

R×(0,∞)2
�(y)�(y + z1)�(y + z1 + z2)�(u1 − z2, u2 − z1) dy d

2z

=−
˚

R×(0,∞)2
�(y)�(y + z1)

×�(y + z1 + z2)�(u2 − z1, u1 − z2) dy d
2z.

At first, we made the change of variable y =−x − z1 − z2. In the second equality,
we used the assumption that � is symmetric and permuted the variables z1 and z2.
For the last equality, we used the anti-symmetry of the function � . This shows
that the integral (4.70) changes sign under permutation of the variables u1 and u2.
Because of this fact and the symmetry of formula (4.68), the 3rd cumulant of the
random variable ��f vanishes. �

REMARK 4.20. The Dyson, Hunt, Kac (DHK) formulae are the following
remarkable identities. For any n≥ 2,∑

π∈S(n)
max{uπ(1), uπ(1) + uπ(2), . . . , uπ(1) + · · · + uπ(n−1),0}

(4.71)

= ∑
π∈S(n)

n∑
l=1

1

l
[uπ(1) + · · · + uπ(l)]+.

When n= 2, this reduces to formula (4.69). We refer to Simon’s book [36], Sec-
tion 6.5, for a proof of (4.71) and an application to the strong Szegő theorem.
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Actually, the proof of Soshnikov’s main combinatorial lemma (4.59) is also based
on these formulae; see [26], Appendix A. We can also apply the formulae (4.71)
to the cumulants of linear statistics of the modified ensembles but, except for the
third cumulant, this only leads to partial simplifications.

To compute the 4th cumulant, we make the change of variables x ∈ R4
< �→

(s, z) ∈R×R3+ given by

s = x1, z1 = x2 − x1, z2 = x3 − x2, z3 = x4 − x3,

in equation (4.31). We get

G4
ψ(f )=−2

ˆ
(0,∞)3

d3z�(z)

ˆ
R4

0

d3u�
{ 4∏
i=1

f̂ (ui)

}
(4.72)

× ∑
|m|=4

M(m)G̃m(u, z),

where G̃m(u, z) is the image of x �→Gm(u, x) under this change of variables (this
function does not depend on the variable s) and

(4.73) �(z)=
ˆ
R

φ(s)φ(s + z1)φ(s + z1 + z2)φ(s + z1 + z2 + z3) ds.

It is worth noting that, since the function φ is even, we have �(z3, z2, z1) =
�(z1, z2, z3) but no further symmetry. We are not able to obtain a compact for-
mula for the 4th cumulant and it turns out to be simpler to compute the value of the
functions G̃m(u, z) at certain well-chosen points and deduce from formula (4.72)
that G4

ψ(y) �= 0 when the test function y which is sufficiently concentrated around
these points. The technical result that we need is summed up by Lemma C.1 which
implies that

(4.74)
∑

v1+···+v4=0
vi∈{−1,1}

ˆ
(0,∞)3

�(z)
∑
|m|=4

M(m)G̃m(v, z) d3z= 0.29 . . . .

The integral can be performed analytically or numerically using Mathematica.
To complete our argument, we also need the following approximation lemma. Its
proof is rather straightforward and for completeness it will be given after our ex-
ample.

LEMMA 4.21. Let g(x)= e−πx2
and

A(u)=
ˆ
(0,∞)3

�(z)
∑
|m|=4

M(m)G̃m(u, z) d3z.
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For any v ∈R4, we have

lim
ε→0

ε−4
ˆ
R4

0

g

(
u1 − v1

ε

)
· · ·g

(
u4 − v4

ε

)
A(u) d3u= A(v)

2
δ0(v1 + · · · + v4).

We let y(x)= 2e−επx2
cos(2πx) with ε > 0, so that

ŷ(u)= ε−1g

(
u− 1

ε

)
+ ε−1g

(
u+ 1

ε

)
and by Lemma 4.21, we obtain

lim
ε→0

ˆ
R4

0

d3u�
{ 4∏
i=1

ŷ(ui)

}ˆ
(0,∞)3

d3z�(z)
∑
|m|=4

M(m)G̃m(u, z)

(4.75)

= 1

2

∑
v1+···+v4=0
vi∈{−1,1}

A(v).

The RHS of equation (4.75) is given by (4.74) and by formula (4.72), this implies
that

lim
ε→0

Gψ(y)=−0.29 . . . .

Since the constant B4
ψ = 0 by Proposition 1.9, we conclude that, if the parameter

ε is sufficiently small, C4[�ψy] �= 0 and the linear statistics �ψy is not Gaussian.

PROOF OF LEMMA 4.21. Let us fix v ∈ R4 and let r(v)= v1 + · · · + v4. It is
easy to see that the functions u �→ G̃m(u, z) are Lipchitz continuous with respect
to |u|∞ with constants which can be chosen independently of z ∈ R3+. Then the
function A(u) is also Lipschitz continuous on R3 and a change of variables yields

ε−4
ˆ
R4

0

g

(
u1 − v1

ε

)
· · ·g

(
u4 − v4

ε

)
A(u) d3u

=
ˆ
R4−r(v)/ε

g(w1) · · ·g(w4)A(v + εw)d3w

=A(v)

ˆ
R4−r(v)/ε

g(w1) · · ·g(w4) d
3w+ O

ε→0
(ε).

If we let Xε ∈N (ε−1r(v), 3
2π ), it is easy to see that

(4.76)
ˆ
R4−r(v)/ε

g(w1) · · ·g(w4) d
3w = E

[
e−πX2

ε
]
.
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So that if r(v)= v1+· · ·+v4 = 0, then E[e−πX2
ε ] = 1

2 for any ε > 0 and it follows
that

lim
ε→0

ε−4
ˆ
R4

0

g

(
u1 − v1

ε

)
· · ·g

(
u4 − v4

ε

)
A(u) d4u= 1

2
A(v).

On the other hand if r(v) �= 0, by equation (4.76),

lim
ε→0

ˆ
R4
r(v)/ε

g(w1) · · ·g(w4) d
4w = 0.

�

APPENDIX A: ASYMPTOTICS OF THE HERMITE POLYNOMIALS

In this section, we provide some background on the asymptotics of the Hermite
polynomials and the GUE kernel; see, for instance, [30], Proposition 5.1.3, or [12],
Section 2.2. These asymptotics are named after Plancherel–Rotach, [31], and can
be derived using the classical saddle point method. To investigate the statistics of
Hermitian invariant ensembles, one is usually interested in uniform asymptotics
of the Christoffel–Darboux kernels. Based on the Riemann–Hilbert problem for
orthogonal polynomials, the sine-kernel asymptotics have been established in [13]
at the microscopic scale for a large class of potentials. These results have recently
been extended to mesoscopic scales in [24] (see also [25]), and we will briefly
review the case of the GUE kernel. Let hn be the normalized Hermite polynomial
of degree n ∈N with respect to e−x2

on R and define the Hermite functions:

(A.1) ϑn(x)= hn(x)e
− x2

2 .

DEFINITION A.1. We define on [−1,1] the functions �(t)= 2
√

1− t2 and

F(x)=
ˆ x

0
�(t) dt = arcsin(x)+ x

√
1− x2.

The map F is a diffeomorphism from |x| < 1 to |x| < π
2 and we let G be its

inverse.

The Hermite polynomials have the following bulk asymptotics:

ϑn(
√

2nx)=
(

2

n(1− x2)

)1/4 1√
π

(A.2)

×
{

cos
(
n
π

2
− nF(x)− 1

2
arcsin(x)

)
+ O

n→∞
(
β−3/2n−3γ /2)},

for all |x| ≤ 1 − βn−2/3+γ where 0 < γ ≤ 2/3 and 0 < β < 1. Observe that, in
the case γ = 2/3, we obtain an asymptotics valid in any fixed interval [−1 +



1264 K. JOHANSSON AND G. LAMBERT

β,1 − β] with a uniform error term of order 1/n. While the Hermite functions
have oscillatory behavior inside the bulk, they have exponential decay outside:

(A.3) ϑn(
√

2nx)= e−nH(x){1+O(n−3γ /2)}√
π
√

2n
√
x2 − 1

,

for all |x| ≥ 1 + n−2/3+γ where 0 < γ < 2/3 and the function H is even and
defined for any x > 1 by

H(x)=
ˆ x

1
2
√
t2 − 1dt = x

√
x2 − 1− log

(
x +

√
x2 − 1

)
.

In particular, since 4
√

2
3 (x − 1)3/2 ≤H(x), there exist a constants C > 0 such that

for any x > 1+ n−1/2,

(A.4)
∣∣ϑn(√2nx)

∣∣≤ Ce−n
4
√

2
3 (x−1)3/2

.

At the edge, the asymptotics is also well known but, since we are only interested
in bulk linear statistics in this paper, we will not need any precise estimate and use
instead the uniform bound

(A.5) ‖ϑn‖∞ ≤ cHn
−1/12,

where cH is a universal constant and the exponent is sharp. We define the
Christoffel–Darboux kernel:

(A.6) KN
CD(x, y)=

N−1∑
n=0

ϑn(x)ϑn(y)=
√
N

2

ϑN(x)ϑN−1(y)− ϑN−1(x)ϑN(y)

x − y
,

and the Wigner semicircle law, for any |t | ≤ √2,

(A.7) �sc(t)= 1

π

√
2− t2 = 1

π
√

2
�

(
t√
2

)
.

At the microscopic scale, it is well known that we get the sine kernel in the limit
for any |x0|<

√
2,

lim
N→∞

π√
2N

KN
CD

(√
Nx0 + πξ√

2N
,
√
Nx0 + πζ√

2N

)
= sin [π�sc(x0)(ξ − ζ )]

π(ξ − ζ )
.

Using the results of [13], these asymptotics can be extended to mesoscopic scales.
In the sequel, L is an arbitrary large positive constant and |x0|<

√
2.

THEOREM A.2. For any −1/2≤ λ < 1/2, we have

NλKN
CD

(√
Nx0 + ξNλ,

√
Nx0 + ζNλ)

=
sin[N(F(

x0+N−1/2+λξ√
2

)− F(
x0+N−1/2+λζ√

2
))]

π(ξ − ζ )
+ O

N→∞
(
N−1/2+λ)

uniformly for all ξ, ζ ∈ [−L,L].
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Theorem A.2 was first proved in [24] using the Riemann–Hilbert formulation
of [13]. In [25], we produce an elementary proof which is based on the classi-
cal steepest descent method performed in the seminal paper [31]. Note that this
approximation takes into account the density of the Wigner semicircle law, that
is, the fact that the GUE eigenvalues are not uniformly distributed at the global
scale. Namely, by Definition A.1 and (A.7), Theorem A.2 can be rephrased as

NλKN
CD

(√
Nx0 + ξNλ,

√
Nx0 + ζNλ)

(A.8)

= sin[πN1/2+λ ´ ξ

ζ
�sc(x0 + tN−1/2+λ) dt]
π(ξ − ζ )

+ O
N→∞

(
N−1/2+λ).

Note that unlike the sine-kernel, the RHS of (A.8) is not translation-invariant. This
raises complications to compute the limits of the cumulants of large scale linear
statistics of the modified GUEs; cf. Proposition 4.11. However, at sufficiently small
scales, we recover the sine-kernel as a special case of Theorem A.2.

THEOREM A.3. For any −1/2≤ λ < 0, we have the asymptotic formula

NλKN
CD

(√
Nx0 + ξNλ,

√
Nx0 + ζNλ)

= sin(N1/2+λπ�sc(x0)(ξ − ζ ))

π(ξ − ζ )
+ O

N→∞
(
N2λ)

uniformly for all ξ, ζ ∈ [−L,L].
PROOF. By Definition A.1, we have

F(x)− F(y)= �

(
x + y

2

)
(x − y)+O

(|x − y|3).
If we let xN = x0+N−1/2+λξ√

2
and yN = x0+N−1/2+λζ√

2
, a Taylor expansion gives

(A.9) �

(
xN + yN

2

)
= �

(
x0√

2

)
+O

(
N−1/2+λ),

and it follows that

F(xN)− F(yN)= 1√
2
�

(
x0√

2

)
(ξ − ζ )N−1/2+λ +O

(|ξ − ζ |N−1+2λ).
Hence, by (A.7), we have proved that

sin
[
N

(
F

(
x0 +N−1/2+λξ√

2

)
− F

(
x0 +N−1/2+λζ√

2

))]
= sin

[
N1/2+λπ�sc(x0)(ξ − ζ )

]+ O
N→∞

(|ξ − ζ |N2λ).
When λ < 0, the error term is converging to 0 for any x, y ∈ [−L,L], and if we
plug this approximation in the formula of Theorem A.2, we obtain the asymptotics
of Theorem A.3. �
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REMARK A.4. In the special case x0 = 0, since �′(0) = 0, the error term in
(A.9) is of order N−1+2λ and the sine kernel approximation of Theorem A.3 is
actually valid in the whole range −1/2≤ λ < 1/6.

Note that the Christoffel–Darboux kernel KN
CD is the same, up to a scaling, as the

GUE kernel KN
0 defined by (1.4) in the Introduction. Namely, if we let λ= 1

2 − δ

for δ ∈ (0,1], by (A.6), we can rewrite

N−δKM
0

(
xN−δ, yN−δ)= π√

2
NλKM

CD

(
π√

2
xNλ,

π√
2
yNλ

)
.

Thus, for any ε > 0, if x0 = 0 and M = N + k for some |k| ≤ N1−ε , by Theo-
rem A.2, for all x, y ∈ [−L,L], we have

N−δKM
0

(
xN−δ, yN−δ)

(A.10)

=
sin[M(F(π2

x√
MNδ−1/2 )− F(π2

y√
MNδ−1/2 ))]

π(x − y)
+ O

N→∞
(
N−δ).

This formula holds at any mesoscopic scales. On the other hand, if we assume

that 1/3 < δ ≤ 1 (cf. Remark A.4), since �sc(0)=
√

2
π

, by Theorem A.3, we obtain
the following asymptotics:

N−δKM
0

(
xN−δ, yN−δ)= sin[πN1/2−δ√M(x − y)]

π(x − y)
(A.11)

+ O
N→∞

(
N1−3δ).

APPENDIX B: VARIANCE IN THE CRITICAL REGIME

We give two different proofs of Theorem 1.6. First, we use the ideas of Sec-
tion 3.1 to compute the limit of the reproducing variance V0(fδ) at the critical scale
δ = α; see Proposition B.1. Second, we may use (4.48) and compute C2[��,τ/4f ]
using formula (1.31). Subsequently, we check that the different formulae for the
critical variance are consistent and we apply them to the MNS ensemble.

PROPOSITION B.1. For any shape � ∈ E, any test function f ∈H 1/2
0 (R) and

for any scale 0 < α < 1, we have

lim
N→∞V0(fα)= 1

4π2

¨ ∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣∣∣�̂(
x − y

4τ−1

)∣∣∣∣2 dx dy.
PROOF. By formula (3.1) combined to the estimate (3.16) and the approxima-

tion (4.38), we see that if the support of the test function is included in [−L
2 ,

L
2 ]
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and �N = (logN)2, then

V0(fα)= 1

2π2τ 2N2α

∑
|k|≤�NNα

|j |≤�NNα

�

(
k

τNα

)
�

(
j

τNα

)¨
[−L,L]2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2

× SN
k (x, y)SN

j (x, y) dx dy + O
L→∞

(
L−1)+ O

N→∞
(
N−α),

where SN
k (x, y) = sin[√N(N + k)(F (π2

x
Nα ) − F(π2

y
Nα ))]. Applying a trigono-

metric identity and the Riemann–Lebesgue lemma like in the proof of Lemma 3.2,
we see that as N→∞,

V0(fα)� 1

4π2

1

τ 2N2α

∑
|k|≤�NNα

|j |≤�NNα

�

(
k

τNα

)
�

(
j

τNα

)¨
[−L,L]2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2

× cos
(
(k − j)π(x − y)

2Nα

)
dx dy + O

L→∞
(
L−1).

Finally, the sums converge to Riemann integrals and by the dominated convergence
theorem,

lim sup
N→∞

∣∣∣∣V0(fα)− 1

4π2

¨
[−L,L]2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2¨
R2
�(u)�(v)

(B.1)

× cos
[
π(u− v)(x − y)

2τ−1

]
dudv dx dy

∣∣∣∣≤ C(f )

L
,

where the constant C(f ) depends only on the test function f by (3.16). To com-
plete the proof, we use that for any w ∈R,

(B.2)
¨

R2
�(u)�(v) cos

[
2π(u− v)w

]
dudv = ∣∣�̂(w)∣∣2,

and let L→∞ in the inequality (B.1). �

As a consequence of Lemma 3.1, Lemma 3.2 and Proposition B.1, we obtain
that for any 0 < α < 1 and f ∈H 1/2

0 ∩L∞(R),

lim
N→∞VarKN

�,α
[fα]

= τ

2

ˆ
R

f (x)2 dx + 1

4π2

¨
R2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣∣∣�̂(
(x − y)

4τ−1

)∣∣∣∣2 dx dy.
By Theorem 1.7, this implies that for any � ∈ E so that B2

� = 1 and τ > 0,

Var[��,τf ] = 2τ
ˆ
R

f (x)2 dx

(B.3)

+ 1

4π2

¨
R2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣�̂(
τ(x − y)

)∣∣2 dx dy.
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REMARK B.2. Such a direct computation seems possible only for the variance
of linear statistics thanks to the special structure of the reproducing variance V0,
(3.1). Because of the singularity of the correlation kernel KN

�,α , it is technically
involved to compute the limit of the higher-order cumulants using similar argu-
ment. Therefore, it is better to exploit instead the fact that the kernel LN

�,η given
by (1.33) is translation-invariant and use Soshnikov’s method.

We have seen in Section 4.2 that, up to a scaling, the modified ensembles have
the same limit at the critical scale. Thus, we have three expressions for the vari-
ance of the random variable ��,τf ; (1.31) and formulae (2.11) and (B.3) in the
circular and Gaussian case, respectively. Note that these formulae are well defined
for any shape � ∈ F and and we will now check that they are consistent. By (1.18),
M(1+ 1)=−1 and by (1.26), for any u ∈R2

0,

�12
(u)=

(
0 −u2
u2 0

)
.

Moreover, by definition (1.28), for any x1 < x2,

G12

τ (u, x)=max
{
0, u2 − τ(x2 − x1)

}+max
{−u2 − τ(x2 − x1),0

}
.

Hence, for any bounded function f ∈H 1/2
0 , by formula (1.31) with n= 2,

Var[��,τf ]
= 2τ

ˆ
R

f (x)2 dx(B.4)

+ 4
ˆ ∞

0

∣∣f̂ (u)∣∣2¨
x1<x2

�(x1)�(x2)
[
u− τ(x2 − x1)

]+
dudx1 dx2.

Let us first check that this formula matches with the RHS of (2.11). Using that
� = −� ′ and the properties of the shape � , (1.5), some integrations by parts
shows that for any u > 0,ˆ

R

�(t)

ˆ ∞

0
�(t + s)[u− s]+ ds dt = u

2
−B2

� +
ˆ
R

�(x + u)
(
1−�(x)

)
dx.

Since, by convention B2
�τ
= τ (cf. Remark 1.2), this implies that

Var[��,τf ] = 2
ˆ ∞

0

∣∣f̂ (u)∣∣2udu
(B.5)

+ 4
ˆ ∞

0

∣∣f̂ (u)∣∣2 ˆ
R

�τ(x + u)
(
1−�τ(x)

)
dx du.

Moreover, it is easy to check by differentiating with respect to u ∈ R that for any
shape � ∈ F, we haveˆ

R

�(x)
(
1−�(x + u)

)
dx = u+

ˆ
R

�(x + u)
(
1−�(x)

)
dx
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so that, according to formula (B.5), we obtain

Var[��,τf ]
(B.6)

= 2
ˆ ∞

0

∣∣f̂ (u)∣∣2 ˆ
R

(
�

(
x − u

τ

)
+�

(
x + u

τ

))(
1−�

(
x

τ

))
dx du.

By (2.10), this establishes that the RHS of formulae (B.4) and (2.11) are equals.
It remains to check that formula (B.4) also matches with (B.3). To do so, we will
need the following result.

LEMMA B.3. For any function f ∈H 1/2(R) and any w > 0, we have

1

4π2

¨
R2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2 cos
(
2π(x − y)w

)
dx dy =

ˆ
R

∣∣f̂ (u)∣∣2[|u| −w
]+

du.

PROOF. By Plancherel’s formula, for any z ∈R,
ˆ
R

∣∣f (x)− f (x + z)
∣∣2 dx = 4

ˆ
R

∣∣f̂ (u)∣∣2 sin2(πuz) du.

Then, by Fubini’s theorem, for any w > 0,

1

4π2

¨ ∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2 cos
(
2π(x − y)w

)
dx dy

= 1

4π2

¨ ∣∣∣∣f (x)− f (x + z)

z

∣∣∣∣2 cos(2πzw)dx dz(B.7)

= 1

π2

ˆ ∣∣f̂ (u)∣∣2(ˆ sin2(πuz)

z2 cos(2πzw)dz
)
du.

Moreover, by Residue calculus, one can show that for any w > 0 and u ∈R,

(B.8)
ˆ

sin2(πuz)

z2 cos(2πwz)dz= π2[|u| −w
]+
.

Hence, the lemma follows by combining equations (B.7) and (B.8). �

Lemma B.3 implies that

1

4π2

¨
R2

¨
t<s

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2�(t)�(s) cos
[
2πτ(t − s)(x − y)

]
dx dy ds dt

= 2
ˆ ∞

0

∣∣f̂ (u)∣∣2¨
t<s

�(t)�(s)
[
u− τ(s − t)

]+
duds dt.
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Then, if we take w = τ(s − t) in formula (B.2), by symmetry we obtain

1

4π2

¨
R2

∣∣∣∣f (x)− f (y)

x − y

∣∣∣∣2∣∣�̂(
τ(x − y)

)∣∣2 dx dy
= 4

ˆ ∞

0

∣∣f̂ (u)∣∣2¨
t<s

�(t)�(s)
[
u− τ(s − t)

]+
duds dt.

Hence, if we add up the Poisson contribution 2τ‖f ‖2
L2 , we conclude that the

RHS of formulae (B.3) and (B.4) are also equals. As an example, let us see
what these formulae look like for the MNS ensemble. The MNS shape is ψ(t)=
(1+ et )−1 and an elementary integration gives for any u ∈R,ˆ

R

ψ(t + u)
(
1−ψ(t)

)
dt = eu

ˆ ∞

0

1

(1+ s)(s + eu)
ds = u

1− e−u
.

Then, by formula (B.6), we get

Var[�ψ,τf ] =
ˆ
R

∣∣f̂ (u)∣∣2 u

tanh( u
2τ )

du.

We can deduce the dual of this formula using equation (B.3). We have

φ(t)= 4

cosh[t/2]2 and φ̂(u)= 2π2u

sinh[2π2u] ,

so that

Var[�ψ,τf ] = 2τ
ˆ

f (x)2 dx

+
¨ ∣∣f (x)− f (y)

∣∣2( πτ

sinh[2π2τ(x − y)]
)2

dx dy.

APPENDIX C: THE THIRD AND FOURTH CUMULANTS

To prove Lemmas 4.18 and C.1 below, the strategy is to exploit the symmetries
of formula (4.31) in order to simplify as much as possible the cumulants of the
random variable ��f . To this end, we will use the following convention. Given
two functions, we write f ≡ g if there exists a permutation σ ∈ S(n) such that
f (u) = g(σu) or if f (u) = g(−u) for all u ∈ Rn. For any vector (ui)ni=1 of real
numbers, we also denote

+
max{u1, . . . , un} =max{0, u1, . . . , un}.

Unfortunately, the combinatorial structure behind the cumulants of the modified
ensembles seems to be rather involved, and consequently the following computa-
tions are rather technical.
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PROOF OF LEMMA 4.18. According to definition (1.18), we have M(2+ 1)=
−3

2 , M(13)= 2, and by formula (4.31),

G3
�[f ] =

ˆ
R3

0

d2u�
{

n∏
i=1

f̂ (ui)

}ˆ
R3
<

d3x

n∏
i=1

�(xi)

(C.1)
× ∑
|m|=n

{
3G2+1(u, x)+ 3G1+2(u, x)− 4G13

(u, x)
}
.

Hence, to prove formula (4.68), we need only to compute the kernels G1+2 and
G13

. By definition (1.26), for any u ∈Rn
0,

�2+1(u)=
(

0 −u3
u3 0

)
≡

(
0 −u1
u1 0

)
=−�1+2(u).

Then, by definition (1.28),

G2+1(u, x)≡ G1+2(u, x)

≡ [u1 − x2 + x1]+ + [u1 − x3 + x1]+ + [−u1 − x2 + x1]+
(C.2)

+ [−u1 − x3 + x1]+ + [u1 − x3 + x2]+ + [−u1 − x3 + x2]+
≡ 2

([u1 − x2 + x1]+ + [u1 + u2 − x3 + x1]+ + [u2 − x3 + x2]+).
One can check that each term of the first line corresponds to a permutation in S(3)
in the following order 123,132,213,312,231,321. At the second step, we used
the symmetries and the condition u1 + u2 + u3 = 0. By a similar argument, the
contribution of the composition 13 = (1,1,1) is given by

�13
(u)=

⎛⎝ 0 −u2 −u2 − u3
u2 0 −u3

u2 + u3 u3 0

⎞⎠
and

G13
(u, x)= +

max{u2 − x2 + x1, u2 + u3 − x3 + x1}
+ +

max{u2 − x3 + x1, u2 + u3 − x2 + x1}
+ +

max{−u2 − x2 + x1, u3 − x3 + x1}
+ +

max{−u2 − x3 + x1, u3 − x2 + x1}
+ +

max{−u2 − u3 − x2 + x1,−u3 − x3 + x1}
+ +

max{−u2 − u3 − x3 + x1,−u3 − x2 + x1}.
It is straightforward to see that the previous formula implies that

(C.3) G13
(u, x)≡ 6

+
max{u1 − x2 + x1, u1 + u2 − x3 + x1}.
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Then, if we combine formulae (C.2) and (C.3), we get

3G2+1(u, x)+ 3G1+2(u, x)− 4G13
(u, x)

(C.4)
≡ 12�(u1 − x2 + x1, u2 − x3 + x2).

Finally, if we make the change of variables x1 = x, z1 = x2 − x1 and z2 = x3 − x2
in (C.1), formula (C.4) implies that

C3[��f ] = 12
ˆ
R2
d2u�

{∏
i

f̂ (ui)

}ˆ
R

dx�(x)

×
¨

(0,∞)2
�(x + z1)�(x + z1 + z2)�(u1 − z1, u2 − z2) d

2z,

where it is understood that u3 =−u1 − u2 in the first integral. �

LEMMA C.1. For any z ∈R3+, up to the permutation of z1 and z3, we have∑
v1+···+v4=0
vi∈{−1,1}

∑
|m|=4

M(m)G̃m(v, z)

= 24
(

4[1− z2]+ + 2[1− z1 − z2]+

+ [2− z2]+
2

+ [2− z1 − z2 − z3]+
2

+ [2− z1 − z2]+ − [2− z1]+

− 2 max{0,1− z1,2− z1 − z2} − 2 max{0,1− z1,2− z1 − z2 − z3}
)
.

PROOF. We fix z ∈R3+. We will proceed exactly as in the proof of Lemma 4.18
except that we will not give all the details. We will denote ±=+1 or −1 and we
let

ζ1 = +
max{1− z1,2− z1 − z2} + +

max{1− z1,2− z1 − z2 − z3}
+ +

max{1− z1 − z2,2− z1 − z2 − z3} + 2[2− z1]+ + [2− z1 − z2]+,
ζ2 = 2

([1− z1]+ + [1− z1 − z2]+ + [1− z1 − z2 − z3]+),
ζ3 = +

max{1− z2,2− z2 − z3} + [2− z2]+ + [1− z2]+ + [1− z2 − z3]+,
ζ4 = 4[1− z1]+ + 2[1− z1 − z2]+,
ζ5 = 4[1− z2]+ + 2[1− z2 − z3]+.

We will compute the values of G̃m(v, z) for all compositions m of 4 and all points
v = (±,±,±,±) such that

∑
vi = 0. The computations are not difficult but there
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are many cases to check. By definition (1.26),

(C.5) �2+2(u)=
(

0 −u3 − u4
u3 + u4 0

)
≡

(
0 −u1 − u2

u1 + u2 0

)
.

Then, by definition (1.28), we can check that

G̃2+2(++−−)≡ G̃2+2(−−++)
≡ 2

([2− z1]+ + [2− z2]+ + [2− z3]+
+ [2− z1 − z2]+ + [2− z2 − z3]+ + [2− z1 − z2 − z3]+).

We used that v1 + v2 = 0 or 2 and that zi ≥ 0 to check which terms are a priori
nonzero. Moreover, for similar reasons,

G̃2+2(+−+−)= G̃2+2(+−−+)= G̃2+2(−++−)= G̃2+2(−+−+)= 0.

If we use the symmetry of the function � [see (4.73)], under the change of variable
z1 ↔ z3 and that M(2+ 2)=−3, we can conclude that

M(2+ 2)
∑

v1+···+v4=0
vi∈{−1,1}

G̃2+2(v, z)

(C.6)

←−24
(
[2− z1]+ + [2− z2]+

2
+ [2− z1 − z2]+ + [2− z1 − z2 − z3]+

2

)
in the sense that if we replace the LHS of equation (C.6) by its RHS in formula
(4.72), it does not change of the value of the integral. Let us continue with the
compositions 3+ 1 and 1+ 3. We have

�3+1(u)=
(

0 −u4
u4 0

)
≡

(
0 −u1
u1 0

)
=−�1+3(u).

This expression depends on a single variable (say u1) and collecting the nonzero
terms yields

G̃3+1(±,±,±,±)≡G1+3(±,±,±,±)
≡ 2

([1− z1]+ + [1− z2]+ + [1− z3]+
+ [1− z1 − z2]+ + [1− z2 − z3]+ + [1− z1 − z2 − z3]+).

We can again use the symmetry of formula (4.72) and, since M(3+ 1)=−2, we
get

M(3+ 1)
∑

v1+···+v4=0
vi∈{−1,1}

G̃3+1(v, z)+ G̃1+3(v, z)

←−48
(
2[1− z1]+ + [1− z2]+

(C.7)
+ 2[1− z1 − z2]+ + [1− z1 − z2 − z3]+)

=−24
(
ζ2 + 2[1− z1]+ + 2[1− z2]+ + 2[1− z1 − z2]+).
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Consider now the composition 14 = 1+ 1+ 1+ 1. By definition (1.26),

�14 =

⎛⎜⎜⎜⎝
0 −u2 −u2 − u3 −u2 − u3 − u4

u2 0 −u3 −u3 − u4

u2 + u3 u3 0 −u4

u2 + u3 + u4 u3 + u4 u4 0

⎞⎟⎟⎟⎠ .

If we look at all permutations in S(4) and use the symmetry under permutations of
the ui ’s, we get

G̃14
(u, z)

≡ 4
( +
max{u1 − z1, u1 + u2 − z1 − z2, u1 + u2 + u3 − z1 − z2 − z3}

+ +
max{u1 − z1 − z2 − z3, u1 + u2 − z1 − z2, u1 + u2 + u3 − z1}

+ +
max{u1 − z1 − z2, u1 + u2 − z1, u1 + u2 + u3 − z1 − z2 − z3}

+ +
max{u1 − z1 − z2 − z3, u1 + u2 − z1, u1 + u2 + u3 − z1 − z2}

+ +
max{u1 − z1 − z2, u1 + u2 − z1 − z2 − z3, u1 + u2 + u3 − z1}

+ +
max{u1 − z1, u1 + u2 − z1 − z2 − z3, u1 + u2 + u3 − z1 − z2}

)
.

So we can assume that G̃14
is given by the RHS of this expression, then it is

straightforward to check that

G̃14
(++−−)= 8

( +
max{1− z1,2− z1 − z2}

+ +
max{1− z1,2− z1 − z2 − z3} + [2− z1]+

)
,

G̃14
(−++−)= G̃14

(+−−+)= 4ζ2,

G̃14
(+−+−)= 4ζ4,

G̃14
(−−++)= G̃14

(−+−+)= 0

so that, since M(14)=−6,

M
(
14) ∑

v1+···+v4=0
vi∈{−1,1}

G̃14
(v, z)

=−24
{
2ζ2 + ζ4 + 2

+
max{1− z1,2− z1 − z2}(C.8)

+ 2
+

max{1− z1,2− z1 − z2 − z3} + 2[2− z1]+
}
.
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If we combine formulae (C.6), (C.7) and (C.8), we obtain∑
v1+···+v4=0
vi∈{−1,1}

∑
|m|=4
�(m) �=3

M(m)G̃m(v, z)

←−24
{

3ζ2 + ζ4 + 2
+

max{1− z1,2− z1 − z2}

+ 2
+

max{1− z1,2− z1 − z2 − z3} + 2[1− z1]+(C.9)

+ 2[1− z2]+ + 2[1− z1 − z2]+

+ 3[2− z1]+ + [2− z2]+
2

+ [2− z1 − z2]+ + [2− z1 − z2 − z3]+
2

}
.

Finally, we look at the composition 2+ 1+ 1,

�2+1+1(u)=
⎛⎝ 0 −u3 −u3 − u4

u3 0 −u4
u3 + u4 u4 0

⎞⎠≡
⎛⎝ 0 −u1 −u1 − u2

u1 0 −u2
u1 + u2 u2 0

⎞⎠ ,

and if we follow the same procedure, we can prove that

G̃2+1+1(++−−)=G2+1+1(−−++)= ζ1 + ζ2 + ζ3,

G̃2+1+1(+−+−)+ G̃2+1+1(−+−+)
= G̃2+1+1(+−−+)+ G̃2+1+1(−++−)= 2ζ2 + ζ4 + ζ5.

On the other hand,

�1+2+1 =
⎛⎝ 0 −u2 − u3 −u2 − u3 − u4

u2 + u3 0 −u4
u2 + u3 + u4 u4 0

⎞⎠

≡
⎛⎝ 0 u1 + u2 u2
−u1 − u2 0 −u1
−u2 u1 0

⎞⎠ .

It is not difficult to see that, up to conjugation by a permutation matrix, we have
�1+2+1 ≡�2+1+1. This implies that G̃1+2+1 ≡ G̃2+1+1 because such conjugation
only changes the order of the sum over S(4) in the definition (1.28). Similarly,
we can check that the matrix �1+1+2 is also conjugated to �2+1+1 by a permu-
tation matrix, so that they give the same contribution to the 4th cumulant. Since
M(2+ 1+ 1)= 4, putting all terms together, we conclude that∑

v1+···+v4=0
vi∈{−1,1}

∑
|m|=4
�(m)=3

M(m)G̃m(v, z)= 24{ζ1 + 3ζ2 + ζ3 + ζ4 + ζ5}.
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Observe that using the symmetry between z1 and z3 and the DHK formula (4.69),
we can show that

ζ1 + ζ3 ← 2
(
[1− z1]+ + [1− z2]+ + [1− z1 − z2]+ + [2− z1]+

+ [2− z2]+
2

+ [2− z1 − z2]+ + [2− z1 − z2 − z3]+
2

)
,

and we get ∑
v1+···+v4=0
vi∈{−1,1}

∑
|m|=4
�(m)=3

M(m)G̃m(v, z)

← 24
{
3ζ2 + ζ4 + ζ5 + 2[1− z1]+ + 2[1− z2]+

(C.10)
+ 2[1− z1 − z2]+ + 2[2− z1]+ + [2− z2]+
+ 2[2− z1 − z2]+ + [2− z1 − z2 − z3]+}.

Finally, if we combine formulae (C.9) and (C.10), many terms cancel but not all
of them and we are left with∑

v1+···+v4=0
vi∈{−1,1}

∑
|m|=4

M(m)G̃m(v, z)

← 24
(
ζ5 − [2− z1]+ + [2− z2]+

2
+ [2− z1 − z2 − z3]+

2

+ [2− z1 − z2]+ − 2
+

max{1− z1,2− z1 − z2}
− 2

+
max{1− z1,2− z1 − z2 − z3}

)
.

Finally, if we make the change of variable z1 ↔ z3,

ζ5 ← 4[1− z2]+ + 2[1− z1 − z2]+,
and we have proved the formula of Lemma C.1. �
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[17] ERDŐS, L. and KNOWLES, A. (2015). The Altshuler–Shklovskii formulas for random band
matrices II: The general case. Ann. Henri Poincaré 16 709–799. MR3311888
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