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Abstract. We prove that a uniformly chosen proper 3-coloring of the d-dimensional discrete torus has a very rigid structure when
the dimension d is sufficiently high. We show that with high probability the coloring takes just one color on almost all of either the
even or the odd sub-torus. In particular, one color appears on nearly half of the torus sites. This model is the zero temperature case
of the 3-state anti-ferromagnetic Potts model from statistical physics.

Our work extends previously obtained results for the discrete torus with specific boundary conditions. The main challenge in
this extension is to overcome certain topological obstructions which appear when no boundary conditions are imposed on the
model. Locally, a proper 3-coloring defines the discrete gradient of an integer-valued height function which changes by exactly
one between adjacent sites. However, these locally-defined functions do not always yield a height function on the entire torus, as
the gradients may accumulate to a non-zero quantity when winding around the torus. Our main result is that in high dimensions, a
global height function is well defined with high probability, allowing to deduce the rigid structure of the coloring from previously
known results. Moreover, the probability that the gradients accumulate to a vector m, corresponding to the winding in each of the
d directions, is at most exponentially small in the product of ‖m‖∞ and the area of a cross-section of the torus.

In the course of the proof we develop discrete analogues of notions from algebraic topology. This theory is developed in some
generality and may be of use in the study of other models.

Résumé. Nous montrons qu’un 3-coloriage aléatoire du tore d-dimensionnel a une structure rigide quand la dimension d est
suffisamment grande. Nous montrons qu’avec grande probabilité, le coloriage prend au plus une couleur sur, soit presque tout le
sous-tore pair, soit presque tout le sous-tore impair. En particulier, une couleur apparaît sur presque la moitié des sites du tore. Ce
modèle correspond au cas de température 0 du modèle de Potts anti-ferromagnétique à trois états, en physique statistique.

Notre travail étend les résultats obtenus pour le tore discret avec des conditions frontière spécifiques. La difficulté principale dans
cette extension est de surmonter les obstructions topologiques qui apparaissent quand aucune condition frontière n’est imposée.
Localement, un 3-coloriage propre définit le gradient discret d’une fonction de hauteur à valeurs entières qui diffère exactement
d’un entre deux points voisins. Néanmoins, ces fonctions locales ne définissent pas forcément une fonction de hauteur sur le tore
entier, car les gradients peuvent s’accumuler en une quantité non-nulle en s’enroulant autour du tore. Notre résultat principal est
qu’en grande dimension, une fonction de hauteur est bien définie sur le tore entier avec grande probabilité, ce qui permet de déduire
la structure rigide du coloriage en utilisant des résultats précédents. De plus, la probabilité que le gradient s’accumule en un vecteur
m correspondant à l’enroulement le long de chacune des d directions est exponentiellement petit en le produit de ‖m‖∞ et de l’aire
de la section du tore dans cette direction.

Au long de la preuve, nous introduisons des analogues discrets de notions de topologie algébrique. Cette théorie est développée
dans une généralité qui peut permettre une utilisation pour d’autres modèles.
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1. Introduction

We study proper 3-colorings of Td
n , the d-dimensional discrete torus (Z/nZ)d , whose side length n is even. Our main

theorem is that in high dimensions, a uniformly chosen proper 3-coloring of Td
n is nearly constant on one of the two

bipartition classes of Td
n . Precisely, denote the partite classes of Td

n by V 0 and V 1. A proper 3-coloring of Td
n is a

function f : Td
n → {0,1,2} satisfying f (v) �= f (w) whenever v and w are adjacent in Td

n . Denote by CPi,k(f ) the
proportion of color k on V i , that is,

CPi,k(f ) := |{v ∈ V i : f (v) = k}|
|V i | .

Theorem 1.1. There exist d0, c > 0 such that for every integer d ≥ d0 and every even integer n, a uniformly chosen
proper 3-coloring f : Td

n → {0,1,2} satisfies

E
(

min
i∈{0,1} CPi,k(f )

)
≤ exp

(
− cd

log2 d

)
for all k ∈ {0,1,2}.

Thus, the theorem asserts that typically in high dimensions, for each color there is a partite class on which the color
hardly appears. Equivalently, one of the partite classes is dominated by a single color.

The next section describes the main idea of the proof. More precise definitions are given in Section 2.

1.1. Relation with height functions

Our proof of Theorem 1.1 exploits a connection between proper 3-colorings and height functions, which we now
describe. It is convenient to introduce the required notions on a general graph. Suppose G is a connected, bipartite
graph with a fixed vertex v0 ∈ V (G). Let Col(G,v0) be the set of all proper 3-colorings of G taking the value 0 at v0.
That is,

Col(G,v0) := {
f : V (G) → {0,1,2} : f (v0) = 0, f (v) �= f (w) when (v,w) ∈ E(G)

}
. (1.1)

An integer-valued function on V (G) is called a homomorphism height function on G, or simply height function or
HHF, if it differs by exactly one between adjacent vertices of G. Let Hom(G,v0) be the set of all homomorphism
height functions on G which take the value 0 at v0. Precisely,

Hom(G,v0) := {
f : V (G) → Z : f (v0) = 0,

∣∣f (v) − f (w)
∣∣ = 1 when (v,w) ∈ E(G)

}
. (1.2)

In this paper, we always take G to be either Td
n or Zd for some n and d . We consider both Td

n and Zd to come
with a fixed coordinate system and denote by 0 the vector (0,0, . . . ,0) in that system. For these graphs, we abbreviate
Col(G,0) to Col(G) and Hom(G,0) to Hom(G).

The connection we need between proper colorings and height functions is summarized by the following two facts:

1. For any graph G, v0 ∈ V (G) and h ∈ Hom(G,v0), the function g : V (G) → {0,1,2} defined by

g(v) := h(v) mod 3

belongs to Col(G,v0).
2. When G = Zd , the above correspondence defines a bijection between Hom(Zd) and Col(Zd).

The first fact is straightforward and the second fact appears to be folklore in the field (see Proposition 2.1).
Our goal in this work is to use the above correspondence to transfer known results on height functions, proved in

[18], to results on colorings, thereby obtaining Theorem 1.1. Our task is, however, made complicated by the following



954 O. N. Feldheim and R. Peled

obstruction. The above correspondence is not a bijection when G = Td
n . In other words, there exist colorings in

Col(Td
n) which are not the modulo 3 of any height function in Hom(Td

n). For instance, the coloring 012012 of T1
6

provides one such example. The source of this problem is of a topological nature, stemming from the fact that the
torus has non-contractible cycles. This poses a major difficulty, preventing a direct use of the known results on height
functions. The following theorem, whose proof occupies most of this paper, provides a way around this difficulty. It
shows that the above correspondence is, nonetheless, close to being bijective when the dimension d is sufficiently
high.

Theorem 1.2. There exist d0 and c > 0 such that for every integer d ≥ d0 and every even integer n, a uniformly
chosen proper 3-coloring of Td

n satisfies

P
(
f is not the modulo 3 of some HHF on Td

n

) ≤ exp
(−cdnd−1),

with cd = c

d log2 d
.

In the next section we explain how Theorem 1.1 follows from the above theorem and a result on height functions
proved in [18]. In Section 1.3 we present some background. The rest of the paper is devoted to the proof of The-
orem 1.2. Section 2 contains the first part of the proof and a proof overview. The proof is inspired by ideas from
algebraic topology but the necessary tools are developed completely in the discrete setting. We believe that some of
these tools could prove useful in other models as well, especially the trichotomy theorems of Section 3, Theorem 3.2
and Theorem 3.4, which deal with discrete counterparts of manifolds of codimension one. The connection between our
work and algebraic topology is expounded upon in Section 2.4. Section 8 is dedicated to remarks and open problems.

1.2. Remarks and extensions

We point out that the bound presented in Theorem 1.1 is near optimal. Perhaps surprisingly, Theorem 1.1 itself implies
the following claim.

Proposition 1.3. There exist d0, c > 0 such that for every integer d ≥ d0 and every even integer n, a uniformly chosen
proper 3-coloring f : Td

n → {0,1,2} satisfies

E
(

min
i∈{0,1} CPi,k(f )

)
≥ exp(−cd) for all k ∈ {0,1,2}.

This proposition is proved in Section 7.
We also emphasize that Theorem 1.2 serves as a bridge between results on uniformly sampled homomorphism

height functions on Td
n and uniformly sampled proper 3-colorings. Thus, results on the former may be transferred

easily to the latter, as is illustrated by the deduction of Theorem 1.1 in Section 1.4. One expects it to be possible to
upgrade Theorem 1.1 by showing that the quantity mini∈{0,1} CPi,k(f ) is not only small on average, but also small
with high probability as n tends to infinity. To use Theorem 1.2 to this end would require extending the corresponding
results on height functions. While we believe such extensions are possible, we do not delve further in this direction as
our main concern in this paper is to establish the relation between the models.

As explained in Section 2 below, we approach Theorem 1.2 by identifying the set of proper 3-colorings with a set
of quasi-periodic height functions. Each such height function has a well-defined slope, a vector which measures the
amount by which it changes when going around the torus in each direction. Homomorphism height functions on Td

n

can be identified with quasi-periodic height functions with zero slope. The proof of Theorem 1.2 proceeds by finding
a one-to-one map between quasi-periodic functions of a given non-zero slope, and a tiny subset of the quasi-periodic
functions with zero slope, see Theorem 2.3 below. In fact, more can be deduced from our techniques. As we show
in Theorem 2.4, the size of the set of quasi-periodic functions with a given slope may be estimated in terms of this
slope, yielding stronger bounds for steeper slopes. For instance, the chance of sampling a proper 3-coloring whose
corresponding height function changes by a linear amount when going around the torus, is exponentially small in nd

rather than the nd−1 appearing in Theorem 1.2.
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While Theorem 1.2 is proved in high dimensions, the main ingredient in its proof, the above-mentioned one-to-one
mapping of quasi-periodic height functions with a given slope to quasi-periodic height functions with zero slope, is
developed in all dimensions. The part which is missing in low dimensions is a counterpart of [18, Theorem 2.8], which
would show that the probability that a low-dimensional HHF on Td

n has a long level line is exponentially small in this
length. This result is not expected in two dimensions (see discussion in Section 1.3 below), but may be valid already
in dimensions d ≥ 3. Theorem 1.2 would immediately extend to any dimension in which this result is established.
Appropriate analogs of Theorem 1.1 in dimensions d ≥ 3 may also be valid, as the proof of Theorem 1.1 relies on
Theorem 1.2 and input on the fluctuations of homomorphism height functions provided in [18] in high dimensions
(see Section 1.4 below).

1.3. Background and related works

Our work is not the first to establish rigidity of proper 3-colorings in high dimensions. Previously, a result analogous
to Theorem 1.1 in which the proper 3-coloring is sampled from the set of colorings with ‘zero boundary conditions’
was established in [18], and also by Galvin, Kahn, Randall and Sorkin in [7]. The restriction to such ‘zero boundary
conditions’ makes the problem simpler from a topological point of view since it essentially removes the non-trivial
cycles of Td

n , rendering the correspondence described in Section 1.1 into a bijection of height functions and proper
3-colorings with these boundary conditions. The results of [18] and [7] imply Roman Kotecký’s conjecture (see [14]
for context and [7] for additional details), that the proper 3-coloring model admits at least 6 different Gibbs states in
high dimensions.

Galvin and Randall [8, Theorem 2.1] established a related result in the same setting as Theorem 1.1. They showed
that for each color k, with probability at least 1 − exp(−cdnd−1/ log2 n), the proportions of the color on the two
bipartite classes differ by at least ρ, where ρ ≈ 0.22. In terms of the quantities CPi,k(f ) used in Theorem 1.1, this
means that |CP0,k(f ) − CP1,k(f )| ≥ ρ with high probability. Taking into account that each color may appear on
at most half of the vertices of the torus, this implies that mini∈{0,1} CPi,k(f ) ≤ 1−ρ

2 ≈ 0.39 with high probability.
In contrast, Theorem 1.1 shows that E(mini∈{0,1} CPi,k(f )) ≤ exp(−cd/ log2(d)), a bound which is near optimal by
Proposition 1.3. As discussed in Section 1.2, we believe this bound may be shown to hold not only on average but with
high probability as n tends to infinity by extending the corresponding results on height functions. The techniques of
[8] are rather different from ours. While we proceed by developing the topological theory of discrete height functions,
the work [8] stays fully in the realm of 3-colorings.

Other related results include torpid mixing of the Glauber dynamics for proper 3-colorings of Td
n [8] and the fact

that homomorphism height functions have bounded range on the hypercube graph {0,1}d , as proved by Kahn [11] and
Galvin [5].

In statistical physics terminology, the proper 3-coloring model is the same as the zero temperature case of the
antiferromagnetic 3-state Potts model. It is expected that the analog of our result continues to hold for small, positive
temperature, but this remains unproven. In two dimensions, the model is equivalent to the uniform six-vertex, or
square ice, model (this was pointed out by Andrew Lenard, see [16]). It is expected that the analog of Theorem 1.1
fails in two dimensions, as the square ice model is conjectured to be in a disordered phase, in the sense that the model
should have a unique Gibbs state when d = 2. However, it may well be that multiple Gibbs states exist already for
any d ≥ 3. Investigating other graphs, Kotecký, Sokal and Swart [15] have shown that the model has multiple Gibbs
states on certain planar lattices. This result was extended by Huang et al. [10] who have shown that for every q ≥ 3,
there are planar lattices on which the proper q-coloring model has multiple Gibbs states.

The fact that a uniformly chosen 3-coloring on the torus is the modulo 3 of a height function with high probability
(Theorem 1.2) is also expected to fail in two dimensions. Some evidence for this phenomenon is provided by the
study of the dimer model. In the dimer model, one samples uniformly a perfect matching of an underlying graph.
On suitable graphs, the perfect matching defines locally the gradient of an integer-valued height function and one
may study similar questions to those studied here. Boutillier and de Tilière [1] (see also Kenyon [13, Section 4.17])
considered the dimer model on a piece of the hexagonal lattice wrapped around a torus. They showed that the random
height differences accumulated when winding around the torus tend to a non-degenerate limit distribution (a discrete
Gaussian-type distribution) as the side length of the torus increases.

It is conjectured that the rigidity phenomenon described by Theorem 1.1 has an analog for proper colorings with
more than 3 colors. Specifically, that for any q ≥ 4 there exists a d0(q) such that a uniformly sampled proper q-
coloring of Td

n , d ≥ d0(q), has the following structure with high probability. The colors split into two sets of sizes
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q/2� and �q/2
, with the even sublattice colored predominantly by colors from one set and the odd sublattice colored
predominantly by colors from the other set. While this conjecture remains open, several related results have appeared.
Galvin and Tetali [9], following work of Kahn [12], gave approximate counts for the number of graph homomorphisms
from d-regular graphs to arbitrary finite graphs. Specializing to proper q-colorings of Td

n , their results support the
above conjecture. Meyerovitch and Pavlov [17] analyzed, so called, axial products of shifts of finite type, a more
general model than graph homomorphisms on Zd , and found explicit expressions for the limiting topological entropy
of such models as d tends to infinity. Their results are also in agreement with the above conjecture. Galvin and Engbers
[4] established the analog of the conjecture, and more general rigidity results for graph homomorphisms, in the limit
when n is fixed and d tends to infinity. Similar rigidity results on expander and tree graphs are established in [20,21].

Of related interest is the hard-core model in Td
n . In this model, one samples an independent set I of Td

n with
probability proportional to λ|I |. It is expected that there exists some λc = λc(d) satisfying that, with high probability,
if λ > λc the sampled independent set resides predominantly in one of the two sublattices, whereas if λ < λc no
such structure appears. While the existence of λc is still open (and there are examples of graphs for which it does
not exist, see [2]) one may still define λ′

c = λ′
c(d) as the infimum over λ for which the model admits multiple Gibbs

states. Dobrushin [3] proved that λ′
c < ∞ in every dimension d ≥ 2, with an upper bound growing to infinity with

d . Galvin and Kahn [6] significantly improved this result by showing that λ′
c tends to zero with d . The quantitative

bound obtained in [6] was further improved in [19]. The main technical ingredient in both [6,19], as well as the
aforementioned [7,18], is a careful analysis of the structure of certain special cutsets in Td

n , when the dimension d is
sufficiently high. This is in contrast to this work, in which discrete analogs of topological considerations constitute
the bulk of the argument.

1.4. Proof of Theorem 1.1

We end the introduction by explaining how to deduce Theorem 1.1 from Theorem 1.2 and a result of [18] on the
fluctuations of typical homomorphism height functions on Td

n .
We start with the following lemma, which states the required result on the typical behavior of height functions.

Lemma 1.4. There exist c > 0 and d0 such that in all dimensions d ≥ d0, if h is uniformly sampled from Hom(Td
n)

then

P
(∣∣h(u) − h(v)

∣∣ ≥ 3
) ≤ exp

(
− cd

log2 d

)
∀u,v ∈ Td

n.

Proof. Theorem 2.1 in [18] gives, in particular, that there exist c > 0 and d0 such that in all dimensions d ≥ d0 and
for every u,v ∈ Td

n , if h is uniformly sampled from Hom(Td
n, u), then

P
(∣∣h(v)

∣∣ ≥ 3
) ≤ exp

(
− cd

log2 d

)
.

The lemma follows from this by using the fact that the mapping Tu : Hom(Td
n) → Hom(Td

n, u) defined by Tu(h)(v) :=
h(v) − h(u) is a bijection. �

We are now ready to prove Theorem 1.1. First, observe that by symmetry, it suffices to prove the theorem for a
uniformly chosen coloring in Col(Td

n), i.e., a coloring normalized at 0.
Let f be uniformly chosen from Col(Td

n). Recall that

CPi,k(f ) = |{v ∈ V i : f (v) = k}|
|V i | ,

where V 0 and V 1 are the partite classes of Td
n . Fix k ∈ {0,1,2} and let

X := min
i∈{0,1} CPi,k .

We need to show that E(X) ≤ exp(−cd/ log2 d) for some c > 0 and all sufficiently high d .
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Fix d sufficiently high and c > 0 sufficiently small for the following arguments. Define the event

A := {
f is the modulo 3 of some HHF in Hom

(
Td

n

)}
.

By symmetry again, Theorem 1.2 implies that

P
(
Ac

) ≤ exp

(
− c

d log2 d
nd−1

)
.

Hence,

E(X) = E(X1A) +E(X1Ac) ≤ E(X|A) + exp

(
− c

d log2 d
nd−1

)
. (1.3)

Thus we focus on estimating E(X|A). Conditioning on A, there exists some h ∈ Hom(Td
n) for which f ≡ h (mod 3).

Moreover, since distinct functions in Hom(Td
n) give rise to distinct colorings in Col(Td

n) under the modulo 3 operation,
it follows that, conditioned on A, h is uniformly distributed in Hom(Td

n).
Now note that if u,v ∈ Td

n are vertices in different partite classes of Td
n then h(u) and h(v) have different parity.

Thus, for such vertices, we have the following containment of events,{
f (u) = f (v)

} = {
h(u) ≡ h(v) (mod 3)

} ⊆ {∣∣h(u) − h(v)
∣∣ ≥ 3

}
.

We conclude that X satisfies the following relation.

X2 = 1

|V 0|2 min
i∈{0,1}

∣∣{v ∈ V i : f (v) = k
}∣∣2 ≤ 1

|V 0|2
∣∣{v ∈ V 0 : f (v) = k

}∣∣ · ∣∣{v ∈ V 1 : f (v) = k
}∣∣

≤ 1

|V 0|2
∑

u∈V 0,v∈V 1

1(f (u)=f (v)) ≤ 1

|V 0|2
∑

u∈V 0,v∈V 1

1(|h(u)−h(v)|≥3).

Hence, we may use Lemma 1.4 to deduce that

E(X|A) ≤
√
E

(
X2|A) ≤ 1

|V 0|
√ ∑

u∈V 0,v∈V 1

P
(∣∣h(u) − h(v)

∣∣ ≥ 3
) ≤ exp

(
− cd

log2 d

)
. (1.4)

Together with (1.3), this establishes Theorem 1.1.

2. Preliminaries and overview

This section is divided into an introduction to the objects and notation of the paper, and to a reduction of Theorem 1.2
to a statement concerning quasi-periodic functions on the integer lattice. At the end of the section we give a glimpse
into the ideas of the proof, and discuss the relation between our work and algebraic topology.

2.1. Preliminary definitions

Lattice and torus
We write Zd for the nearest-neighbor graph of the standard d-dimensional integer lattice, and Td

n = (Z/nZ)d for the
graph of the d-dimensional discrete torus with side length n. We assume n is an even integer greater or equal than 4,
fixing it throughout the paper. We also assume both graphs come with a fixed coordinate system, letting ei ∈ Zd be
the ith standard basis vector for 1 ≤ i ≤ d . In both graphs, two vertices are adjacent if they differ by one in exactly
one coordinate. As n is even, both graphs are bipartite. In both we thus refer to the vertices in the bipartition class of
0 = (0, . . . ,0) as even, and to the rest of the vertices as odd. For a vector v ∈ Zd , and a set U ∈ Zd we write U + v to
denote {u + v : u ∈ U}.
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Distance and boundary
Let G be a connected graph. We write u ∼ v to denote that a pair of vertices u,v ∈ V (G) are adjacent. For a set of
vertices U ⊆ V (G) we define the boundary of U to be the set of edges

∂U := {
e ∈ E(G) : e ∩ U �=∅ and e ∩ Uc �=∅

}
.

We use dist(u, v) for the shortest-path distance between u and v, and extend this notion to non-empty sets U,V ⊆
V (G), defining

dist(U,V ) := min
{
dist(u, v) : u ∈ U,v ∈ V

}
.

If one of the sets U,V is empty, we write dist(U,V ) = ∞. For a set of vertices U , we denote

U+ := {
u ∈ V (G) : dist

({u},U) ≤ 1
}
,

U− := {
u ∈ V (G) : dist

({u},Uc
)
> 1

}
.

Note that U− = ((Uc)+)c . We also abbreviate U++ := (U+)+ and U−− := (U−)−. The following simple relations
hold for any two sets U,V ⊆ V (G):

U+ ⊆ V ⇐⇒ U ⊆ V and ∂U ∩ ∂V =∅, (2.1)

dist
(
U+,V

) = max
(
dist(U,V ) − 1,0

)
, (2.2)

U ⊆ V ⇐⇒ ∀W ⊂ V (G), dist(U,W) ≥ dist(V ,W). (2.3)

For a set of vertices U , we define the internal vertex boundary of U to be

∂•U := U \ U−.

Similarly we define the external vertex boundary of U to be

∂◦U := U+ \ U.

In both Zd and Td
n , we call a set of vertices U odd if all the vertices of ∂•U have the same parity (in [18] a different

convention is used, calling a set U odd if all vertices of ∂•U are odd). The internal and external vertex boundaries of
an odd set of vertices U � T 2

10, as well as U+ and U−, are depicted in Figure 1.

Homomorphism height functions, 3-colorings and quasi-periodic functions
A proper 3-coloring of a graph G is a function f : V (G) → {0,1,2} satisfying f (v) �= f (w) when (v,w) ∈ E(G).
An integer-valued function on V (G) is called a homomorphism height function on G, or simply height function or
HHF, if it differs by exactly one between adjacent vertices of G. We usually work with Col(G,v0) and Hom(G,v0),
the sets of colorings and height functions normalized to take the value 0 at the vertex v0, as defined in (1.1) and (1.2).
When G = Td

n or Zd we abbreviate Col(G,0) to Col(G) and Hom(G,0) to Hom(G).
Let V be either Z or {0,1,2}. We say that a function

f : Zd → V is periodic if f (v) = f (w) whenever v − w = nei for some i.

We denote by PC the set of periodic proper 3-colorings in Col(Zd). Similarly, for an integer vector m =
(m1, . . . ,md) ∈ Zd , we say that a function

h : Zd → Z is quasi-periodic with slope m if f (v) = f (w) + mi whenever v − w = nei for some i.

We write QPm for the set of quasi-periodic HHFs with slope m in Hom(Zd). Note that for an HHF, being periodic is
equivalent to being quasi-periodic with slope 0. We remark that our definition of slope is not completely standard and
it may be equally natural to say that a quasi-periodic function with slope m, according to our definition, has, in fact,
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Fig. 1. Boundary operations on some odd set U in T 2
10.

slope 1
n

· m. Our definition is chosen as it is convenient to work with integer vectors, keeping in mind that n is fixed
throughout the paper.

Observe that, in fact,

QPm =∅ if m /∈ 2Zd or if |mi | > n for some i. (2.4)

To see this, note that any h ∈ Hom(Zd) must take even values on even vertices, and satisfy |h(v)| ≤ dist(v,0), since
h changes by one between adjacent vertices. Thus, we must have that mi = h(nei) is even and |h(nei)| ≤ n for all i.
The quasi-periodic functions whose slope is not a multiple of 6 will not play a role in our work, as we show in
Proposition 2.2. Thus we define

QP :=
⋃

m∈6Zd∩[−n,n]d
QPm . (2.5)

Denote by π : Zd → Td
n the natural projection from the integer lattice to the torus, defined by

π
(
(v1, . . . , vd)

) = (v1 mod n, . . . , vd mod n)

(where we identify the coordinate system of the torus with {0, . . . , n − 1}d ). Observe that π extends naturally to a
bijection between periodic proper 3-colorings (of Zd ) and proper 3-colorings of Td

n , as well as to a bijection between
periodic HHFs (on Zd ) and HHFs on Td

n . With a slight abuse of notation we also denote these extensions by π .

Relations between HHFs and 3-colorings
It is not difficult to see that the mapping Mod3, which takes an HHF h to the function defined by

Mod3(h)(v) := h(v) mod 3,

maps every HHF to a proper 3-coloring. As mentioned in the introduction, it is a known fact that Mod3 defines
a bijection between Hom(Zd) and Col(Zd), that is between the set of HHFs on Zd normalized at 0 and the set of
proper 3-colorings of Zd normalized at 0. As we could not locate a reference for this fact, we provide a short proof
now.
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Proposition 2.1. The map Mod3 defines a bijection between Hom(Zd) and Col(Zd).

Proof. We first check that Mod3 is an injective map. Suppose h1, h2 ∈ Hom(Zd) are two distinct height functions with
Mod3(h1) = Mod3(h2). As h1(0) = h2(0) = 0, it follows that there exist two adjacent vertices v,w ∈ Zd satisfying
that h1(v) = h2(v) but h1(w) �= h2(w). However, as |h1(v) − h1(w)| = |h2(v) − h2(w)| = 1, this contradicts our
assumption that Mod3(h1)(w) = Mod3(h2)(w).

We proceed to show that Mod3 is onto. Let f ∈ Col(Zd). Our goal is to define an h ∈ Hom(Zd) satisfying that
Mod3(h) = f . First, define a spanning tree T of Zd , rooted at 0, as follows: Given v = (v1, . . . , vd) ∈ Zd \ {0} let k(v)

equal the minimal k for which vk �= 0. Define the parent v∗ of v in T by setting v∗
j = vj for all j �= k(v) and setting

v∗
k(v) = vk(v) − 1 if vk(v) > 0 or v∗

k(v) = vk(v) + 1 if vk(v) < 0, noting that v∗ ∼ v and dist(v∗,0) = dist(v,0) − 1. Now

define h(v) by induction on dist(v,0). Set h(0) := 0 and, for v ∈ Zd \ {0},
set h(v) to be the unique integer satisfying

∣∣h(v) − h
(
v∗)∣∣ = 1 and h(v) ≡ f (v) (mod 3). (2.6)

As we clearly have Mod3(h) = f , it remains to verify that h ∈ Hom(Zd).
Let v,w ∈ Zd be adjacent vertices. We need to show that∣∣h(v) − h(w)

∣∣ = 1. (2.7)

Assume without loss of generality that dist(v,0) = dist(w,0) + 1. We proceed again by induction on dist(v,0).
If w = 0 or vj �= wj for some j ≤ k(w) then necessarily v∗ = w, whence (2.7) follows from (2.6). Otherwise,
observe that v∗ ∼ w∗. By the induction assumption, |h(v∗) − h(w∗)| = 1. Using also the fact that |h(v) − h(v∗)| =
|h(w) − h(w∗)| = 1 and h(v) �≡ h(w) (mod 3) by (2.6), it follows that (2.7) holds, as required. �

This bijection does not extend to Td
n , as there are colorings in Col(Td

n) which are not the image of any HHF
through Mod3. Nonetheless, Col(Td

n) is still in bijection with a subclass of quasi-periodic functions, as the following
proposition states.

Proposition 2.2. The mapping π ◦ Mod3 : QP → Col(Td
n) is a bijection.

Proof. We first show that the mapping is well-defined. Let h ∈ QPm for some m ∈ 6Zd . By quasi-periodicity, h(v) ≡
h(v + nei) (mod 3), for all 1 ≤ i ≤ d and v ∈ Zd . Consequently Mod3(h) ∈ PC and hence π may be applied to
Mod3(h) to produce an element of Col(Td

n).
Since Mod3 is a bijection between Hom(Zd) and Col(Zd) and π is a bijection between PC and Col(Td

n), we deduce
that π ◦ Mod3 is one-to-one on QP. All that remains in order to show that this mapping is a bijection, is to prove that
it is onto.

Let f ∈ Col(Td
n). Define g := π−1(f ) ∈ PC and an HHF h by h := Mod−1

3 (g). We need to show that h ∈ QPm for
some m ∈ 6Zd ∩ [−n,n]d . We first show that for any v,w ∈ Zd and 1 ≤ i ≤ d ,

h(v + nei) − h(v) = h(w + nei) − h(w).

For this it suffices to show that for any v ∈ Zd and 1 ≤ i, j ≤ d ,

h(v + nei) − h(v) = h(v + ej + nei) − h(v + ej ). (2.8)

Since h(v + ej ) − h(v) and h(v + ej + nei) − h(v + nei) are both in {−1,1} by the definition of homomorphism
height function, the equality (2.8) follows upon recalling that g = Mod3(h) and noting that

g(v + ej ) − g(v) = g(v + ej + nei) − g(v + nei),

since g is periodic. Thus h ∈ QPm for some m ∈ Zd .
It remains to show that m ∈ 6Zd ∩ [−n,n]d . By (2.4) it suffices to show that m ∈ 3Zd . This follows from the fact

that

mi = h(nei) ≡ g(nei) = g(0) = 0 (mod 3). �
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Fig. 2. The relations between Col(Td
n) and Hom(Td

n) through periodic colorings and quasi-periodic HHFs on Zd . Notice that for PC and QP only
a small region of the infinite lattice is illustrated. All functions are normalized at 0, at the lower left corner of the displayed region. The illustrations
depict the case n = 6, d = 2.

Proposition 2.2 enables us to define the following partition of Col(Td
n),

Colm
(
Td

n

) := (π ◦ Mod3)(QPm). (2.9)

It also implies the important fact that Col0(Td
n) and Hom(Td

n) are in bijection via π ◦ Mod−1
3 ◦ π−1. In other words,

Col0
(
Td

n

) = {
f ∈ Col

(
Td

n

) : f is the modulo 3 of some h ∈ Hom
(
Td

n

)}
. (2.10)

The relations between Col(Td
n),Hom(Td

n),QP and PC are summarized in Figure 2.

2.2. Most elements of QP are in QP0

The following theorem states that most elements of QP have slope 0. This is equivalent to stating that most elements
of Col(Td

n) are in Col0(Td
n).

Theorem 2.3. There exist d0 and c > 0 such that in all dimensions d ≥ d0, for every m ∈ 6Zd \ {0} we have

|QPm |
|QP0 | ≤ exp

(−cdnd−1), (2.11)

with cd = c

d log2 d
.
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Our techniques also allow us to obtain a stronger version of Theorem 2.3. This version is not required for the proof
of Theorem 1.2, but is of independent interest as it significantly improves the bound on the size of QPm when m

has a large coordinate. For clarity of presentation, most of the paper is devoted to the proof of Theorem 2.3 and the
necessary modifications required to obtain Theorem 2.4 are then detailed in Section 6.

Theorem 2.4. There exist d0 and c > 0 such that in all dimensions d ≥ d0, for every m ∈ 6Zd \ {0} we have

|QPm |
|QP0 | ≤ exp

(
−cdnd−1 · max

1≤i≤d
|mi |

)
, (2.12)

with cd = c

d log2 d
.

In thermodynamic terms, a consequence of this theorem is that the surface tension is non-differentiable at 0 as a
function of the normalized slope s = 1

n
· m. More precisely, for each s ∈ Rd , the theorem implies that

lim sup
n→∞

1

|Td
n| log

( |Col
s·n�(Td
n)|

|Col(Td
n)|

)
= lim sup

n→∞
1

|Td
n| log

( |QP
s·n� |
|QP |

)
≤ −cd max

1≤i≤d
|si |

while

lim
n→∞

1

|Td
n| log

( |Col0(Td
n)|

|Col(Td
n)|

)
= lim

n→∞
1

|Td
n| log

( |QP0 |
|QP |

)
= 0.

Given (2.5), we observe that Theorem 2.3 and Theorem 2.4 are trivial for n ≤ 4, as in those cases QPm is empty
for m �= 0. Thus, we shall assume n ≥ 6 in the proofs of these theorems.

Theorem 1.2 is an immediate consequence of (and is, in fact, equivalent to) Theorem 2.3.

Proof of Theorem 1.2 from Theorem 2.3. By symmetry, it is enough to prove Theorem 1.2 for colorings normalized
at 0. That is, to establish that for sufficiently large d , if f is uniformly sampled from Col(Td

n) then

P
(
f is not the modulo 3 of some h ∈ Hom

(
Td

n

)) ≤ exp

(
− c

d log2 d
nd−1

)
. (2.13)

Suppose then that f is uniformly sampled from Col(Td
n). By Proposition 2.2, (2.5), (2.9) and (2.10),

P
(
f is not the modulo 3 of some h ∈ Hom

(
Td

n

)) = |⋃m∈(6Zd∩[−n,n]d )\{0} Colm(Td
n)|

|Col(Td
n)|

= |⋃m∈(6Zd∩[−n,n]d )\{0} QPm |
|QP | ≤ (2n + 1)d max

m∈6Zd\{0}
|QPm |
|QP0 | .

Thus (2.13) follows from Theorem 2.3. �

2.3. Proof overview

Most of the remainder of the paper is dedicated to proving Theorem 2.3. Our proof can be divided into two parts. First
we construct a set of one-to-one mappings, �m : QPm → QP0 for m ∈ 6Zd \ {0}. We then apply results from [18] to
show that the image of QPm under �m is relatively small. Theorem 2.3 follows. In this section we present for the
reader a rough sketch of the idea behind the construction of �m.

Let us first explain (a minor variant of) the construction of �m in dimension d = 1, where it is rather simple.
Suppose that h is a 1-dimensional quasi-periodic HHF with slope 6 · � > 0 (the case that the slope is negative is
treated analogously). One can look for the minimal w ≥ 0 such that h(w) = 2 and for the maximal u ≤ 0 such that
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Fig. 3. On the left – an example of a one-dimensional quasi periodic HHF with n = 8 and slope 6. The gray regions are the regions where �6
reverses the gradient of the function. On the right – the image of the same HHF through �6.

h(u) = −3� + 2. Since h has slope 6� it follows that w − u < n. Thus, we may partition Z to segments of the form
(u + in,w + in] and (w + in,u + (i + 1)n], i ∈ Z. We may then define, for v ∈ Z,

�6�(h)(v) =
{

h(v) − 6i�, u + in ≤ v ≤ w + in for some i ∈ Z,

4 − h(v) − 6i�, w + in ≤ v ≤ u + (i + 1)n for some i ∈ Z.

An example is shown in Figure 3.
It is not difficult to check that �6�(h) is still an HHF, noting that the action of �6� can be seen as reversing the

gradient of h between w and u + n and each of their translations by multiples of n. Moreover, the resulting HHF will
be periodic in the sense that �6�(h)(v + n) = �6�(h)(v) for all v ∈ Z. To see that �6� is one-to-one, one may check
that w is the minimal in Z+ satisfying �6�(h)(w) = 2 and u is the maximal in Z− satisfying �6�(h)(u) = −3� + 2.
Given �, one can thereby recover u and w from �6�(h) and use them to recover h.

Generalizing this technique to higher dimensions is not immediate. The general idea is to use the given HHF h to
carefully define two sets U,W ⊆ Zd and a vector � ∈ nZd suitable for our purposes. The set U is the analog of the
interval (−∞, u] and the set W is the analog of the interval (−∞,w]. Among the properties which these sets satisfy is
the fact that if we define Ui := U + i� and Wi := W + i� then the sets (Wi \ Ui) and (Ui+1 \ Wi) form a partition of
Zd . We then define �m, analogously to the above one-dimensional case, by reversing the gradient of h in the regions
(Ui+1 \ Wi), see (5.11). The main difficulty is to find such sets W,U , and vector �, for which this operation yields a
periodic HHF, and is moreover invertible given m.

To show that that the size of the image of �m is small compared to |QP0 |, we find an additional set V , sandwiched
between U and W such that ∂V is a level set of both h and �m(h). We recall that π defines a bijection between
periodic HHFs on Zd and HHFs on Td

n , and show that π ◦ �m(h) has a level set which contains π(∂V ) (π extends
naturally to a mapping of the edges of Zd to the edges of Td

n). After proving that |π(∂V )| ≥ nd−1, we use a result
from [18] to show that the probability that an HHF on Td

n contains such a long level set is exponentially small in nd−1.
It follows that |QPm |/|QP0 | is tiny for all m �= 0.

The sets U,V,W which we define are closely related to the level sets of the function h in the sense that h is constant
on ∂•U,∂•V,∂•W,∂◦U,∂◦V and ∂◦W . In addition, they satisfy special topological properties. The boundaries ∂U ,
∂V and ∂W , regarded as a collection of plaquettes in Rd , are analogs of continuous hypersurfaces. Furthermore, the
projection of these boundaries to the torus are analogs of hypersurfaces whose removal does not disconnect the torus.

The existence of sets U,V,W satisfying all the required properties is far from obvious. The intuition for it comes
from algebraic topology, specifically de Rham cohomology theory, and some of the connections are explained in
the next section. However, our proof proceeds by developing the theory fully in the discrete setup. This is achieved
in Sections 3 and 4. This theory is then applied in Section 5 to define �m and prove that it satisfies the required
properties.

To get a feeling of why the sets U and W exist, it may help to think first of continuous linear functions on Rd .
A multidimensional linear function is always simply a projection on its gradient vector. Such a linear function could be
made periodic by periodically reversing its gradient between two hyperplanes which are perpendicular to the gradient
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vector. These hyperplanes are the analogs of ∂W and ∂U . This case is therefore very similar to the one-dimensional
case. Algebraic topology tells us that every continuous function is a deformation of a linear function. Thus, a guiding
intuition may be that for more general functions, the above hyperplanes are deformed into some hypersurfaces, and
hence should still exist.

2.4. Relation with topology

The proof of Theorem 2.3 is motivated by ideas from algebraic topology. One element of the proof that might puzzle
a reader who lacks topological background is our ability to find a domain, bounded by two hypersurfaces, such that
reversing the gradient in translated copies of this domain suffices to make our HHF periodic. We dedicate this short
section to highlight some of the analogies between concepts of the proof and their continuous topological counterparts
and shed some light on this particular point.

We begin with a brief review of concepts from de Rham cohomology theory. A 0-form on a manifold is simply a
smooth function. A 1-form is a differential form which can be integrated against paths. On Riemannian manifolds a
1-form can be identified with a vector field through the Riemannian metric. A 1-form is called closed if it satisfies that
its integral over contractible loops is 0. The gradient of a 0-form is always a closed 1-form, and, locally, the converse
is also true. Globally, however, on non-contractible manifolds such as the torus, there are many closed 1-forms which
are not the gradient of any 0-form. The group of closed 1-forms modulo the gradients of the 0-forms is called the first
de Rham cohomology group of the manifold.

In the context of our work, 0-forms correspond to HHFs on the torus. Closed 1-forms correspond to proper 3-
colorings of the torus, in the sense that, locally, they describe the discrete gradient of an HHF. In the continuous torus
every closed 1-form is locally the gradient of a 0-form. Similarly, in the discrete torus, every 3-coloring is locally the
gradient of an HHF. However, the local information does not always add up to form the global structure of an HHF.

Algebraic topology tells us that the first de Rham cohomology measures this global obstruction, in the sense that a
1-form corresponds to the zero class of the cohomology group if and only if it is globally the gradient of a 0-form. The
first de Rham cohomology of the d-dimensional torus is Rd . The class of any given 1-form can be identified by the
integral of the form over a loop in each of the standard basis directions. In the terminology of this paper, this vector
of integrals is called the slope of the form. Another way to represent the slope of a 1-form is to look at its pullback to
what is called the universal cover of our space. In the case of the torus we look at quasi-periodic functions over Rd .
Taking this point of view, the slope is the vector of differences between the quasi-periodic function at standard basis
points and at 0.

Poincaré duality identifies H 1, the first cohomology group of the torus, with Hd−1, the (d − 1)th homology group
of the torus, which corresponds, if the slope consists of integers, to a class of hypersurfaces of codimension 1. The
duality further tells us that for every nice enough 1-form in a class of H 1, there exist hypersurfaces in the dual class
in Hd−1, orthogonal to the gradient of the form and with the following property. Cutting the torus along such a
hypersurface leaves the torus connected, but nullifies the cohomology class, i.e., on the cut torus the 1-form becomes
the gradient of a 0-form.

Much of the above description carries over to the discrete case. Here too, we match proper 3-colorings with quasi-
periodic HHFs, and classify them according to their slope. We find “level sets”, corresponding to the above hypersur-
faces, along which one may cut the torus, that is, remove the corresponding edges, to make the coloring the gradient
of an HHF. We consider two such level sets with a specific height difference. Deleting the edges of these level sets
splits the torus into two connected components such that on each component, the coloring is the gradient of an HHF.
Since the height of the HHF is constant along each boundary of the cut torus (as we have cut along level sets), we
may reverse the gradient of the coloring on one of the connected components of the cut torus to obtain a coloring
which is globally the gradient of an HHF (here, our specific choice of the height difference of the level sets enters).
This illustrates the operation of �m. In practice, we transfer most of the topological part of the proof to statements
involving HHFs on Zd , the universal cover of the torus. This gives us more direct access to the level sets.

The main difficulties in our task are to define the level sets in the discrete setup and to do so in such a way that would
allow their recovery after applying the gradient-reversal operation. As mentioned above, the topological arguments
are applicable to nice functions, with nice level sets. In the discrete setting the level sets are made out of plaquettes
that can have complicated intersections, of various dimensions. Proving that discrete level sets still possess a nice
structure requires the theory developed in Sections 3 and 4.
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It remains unclear whether it is possible to avoid any combinatorial argument in our proof, and use only topology.
One can hope to achieve this either by defining a clever discrete variant of the de Rham cohomology, or by mapping
the discrete problem to an analogous question in Rd with the hope of tackling it there. This, however, is a path we did
not pursue.

3. Closed hypersurfaces in Zd

In this section we introduce a class of subsets of Zd and discuss the topological properties of its members. The
definitions and results are inspired by continuous topological analogs in Rd but are given directly in the discrete
setting without requiring knowledge of the continuous notions (see Section 2.4 for more on the connection). We
make no mention of neither colorings nor height functions here and thus the section may be read using only the
definitions regarding set operations in Section 2. The tools developed here are applied to the study of colorings and
height functions in the following section, but we believe that they are also of independent interest and may be of use
for other purposes.

The ultimate conclusion of the discussion here, Theorem 3.4 below, is a certain trichotomy for systems of translates
in Zd . This trichotomy is later applied to level sets of quasi-periodic HHFs.

We remind the reader that in the beginning of Section 2 we fixed an even integer n for the remainder of the paper.
This integer plays the role of the side length of the torus Td

n in later sections. In this section n will also play a role,
though the torus Td

n will not be explicitly mentioned. We point out that, unlike the rest of the paper, the results and
proofs presented in this section remain valid regardless of whether n is even or odd.

The structure of the section is as follows. In Section 3.1 we present the fundamental properties of the sets that we
investigate and state our two main results, in the form of certain trichotomies. Section 3.2 describes corollaries of the
main results, which will be of use in our application. The proofs of the main results are given in Sections 3.3 and 3.4.

3.1. Topology of Zd

We begin by defining three properties of sets in Zd : co-connectedness, boundary disjointness, and translation respect-
ing. These are repeatedly used throughout the paper.

Co-connectedness
A set U ⊆ Zd is called co-connected if U �=∅, U �= Zd and U and Uc are connected.

A useful property of co-connected sets is that their boundaries are, in a sense, connected. Namely,

Proposition 3.1. If A is a co-connected set in Zd then ∂•A ∪ ∂◦A, A++ \ A and A \ A−− are all connected sets.

We delay the proof of this proposition to Section 3.3, as it requires the tools developed there.
In order to get a more intuitive grasp of the theorems and definitions of this section the reader might find it useful

to regard Zd as a lattice of d-dimensional cubes where the edges between adjacent vertices represent plaquettes of
codimension 1. Taking this continuous view, co-connected sets are analogous to continuous sets whose boundary
is a connected, oriented, closed hypersurface. A set and its complement should be thought of as defining opposite
orientations on the same surface.

Boundary disjointness
Two sets U1,U2 ⊆ Zd are called boundary disjoint if

1. ∂U1 ∩ ∂U2 =∅,
2. there is no 4-cycle in Zd whose vertices, in order, are (v00, v01, v11, v10) such that v00 ∈ Uc

1 ∩ Uc
2 , v01 ∈ Uc

1 ∩ U2,
v11 ∈ U1 ∩ U2 and v10 ∈ U1 ∩ Uc

2 .

Here and below, by a cycle in Zd we mean a finite set {(u1, v1), . . . , (uk, vk)} of distinct edges of Zd satisfying
that ui+1 = vi , 1 ≤ i ≤ k − 1, and u1 = vk . A 4-cycle is a cycle with k = 4, and by its vertices, in order, we mean
(u1, u2, u3, u4).
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Continuing the analogy with hypersurfaces, two sets are boundary disjoint if their boundaries neither overlap nor
intersect transversally.

When both U1 and U2 are odd, as will always be the case from Section 4 and on, the second condition for boundary
disjointness is trivially fulfilled, yielding the simpler relation:

odd U1,U2 are boundary disjoint iff ∂U1 ∩ ∂U2 =∅. (3.1)

Observe that, by definition, boundary disjointness is preserved under taking complements, i.e., if U1,U2 are bound-
ary disjoint sets, then each of the pairs {Uc

1 ,U2}, {U1,U
c
2 } and {Uc

1 ,Uc
2 } are also boundary disjoint.

The containment relations between two co-connected boundary disjoint sets are restricted by the following theorem.

Theorem 3.2 (Pair trichotomy). If U1,U2 ⊆ Zd are co-connected and boundary disjoint sets, then exactly one of
the following alternatives holds:

• U1 ∩ U2 =∅,
• Uc

1 ∩ Uc
2 =∅,

• U1 � U2 or U2 � U1.

The proof of this theorem is postponed to Section 3.3.
The following proposition relates containment of boundary disjoint sets and their distance from a third set.

Proposition 3.3. If U1,U2 ⊆ Zd are non-empty, boundary disjoint sets satisfying U1 ⊂ U2 then for every non-empty
set V satisfying V ∩ U2 =∅ we have dist(U1,V ) > dist(U2,V ).

Proof. Using boundary disjointness and (2.1), we have U+
1 ⊆ U2. By (2.2) and (2.3) we thus have dist(U1,V ) >

dist(U2,V ) as required. �

Translation respecting sets
For a set U ⊆ Zd , we define TU = T n

U , the set of translates of U by multiples of n in each of the coordinate directions,
as

TU := {
U + x : x ∈ nZd

}
,

recalling that U + v := {u + v : u ∈ U}. We note that it may well be the case that different translations of U yield the
same set.

A set U ⊆ Zd is called translation respecting if U is co-connected and every distinct U1,U2 ∈ TU are boundary
disjoint. Observe that, by definition, if U is translation respecting, then so is Uc.

Continuing the analogy with hypersurfaces, a translation respecting set is analogous to a hypersurface in Rd , which
satisfies that the projection of Rd to the continuous torus maps its boundary to a closed hypersurface.

The main result of this section is that the trichotomy of Theorem 3.2 extends to translation respecting sets in the
following strong sense.

Theorem 3.4 (Translation trichotomy). If U ⊆ Zd is translation respecting and |TU | > 1, then exactly one of the
following alternatives holds:

• [Type 1] If U1,U2 ∈ TU and U1 �= U2 then U1 ∩ U2 =∅.
• [Type −1] If U1,U2 ∈ TU and U1 �= U2 then Uc

1 ∩ Uc
2 =∅.

• [Type 0] If U1,U2 ∈ TU then U1 ⊆ U2 or U2 ⊆ U1.

Moreover, if U satisfies the Type 0 alternative of the theorem, then there exists a unique order-preserving bijection
o : TU → Z such that o(U) = 0. Here, order preserving means that o(U1) < o(U2) if and only if U1 � U2. Further-
more, there exists a � ∈ nZd such that o−1(i +1) = o−1(i)+� for all i ∈ Z. We call any such � a minimal translation
of U .
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Fig. 4. Examples of translation respecting sets of the three types. In each image a portion of the plane is depicted, on which a set U and its
translation U + ne1 are emphasized in light gray and in dark gray respectively. Vertices contained in both sets are striped. In each image a different
alternative of Theorem 3.4 holds: At the top type 0, at the bottom-left type −1 and at the bottom-right type 1.

The proof of this theorem is postponed to Section 3.4.
We remark regarding the assumption that |TU | > 1 that while in dimension d = 2 any co-connected set U has

|TU | > 1 (recalling that a co-connected set is assumed to be different from ∅ and Zd ), there do exist co-connected sets
U in dimensions d ≥ 3 having |TU | = 1 (for instance, the set of vertices in Zd having at most one coordinate which is
not a multiple of n).

Theorem 3.4 allows us to assign a type to every translation respecting set U satisfying |TU | > 1. For i ∈ {−1,0,1},
we write Type(U) = i if U satisfies the Type i alternative of the theorem. The case |TU | = 1 has little bearing on our
application. However, for completeness, we say in this case, with a slight abuse of notation, that both Type(U) = 1,
Type(U) = −1 and Type(U) �= 0 hold. An illustration of sets of the various types is given in Figure 4.

3.2. Corollaries of the trichotomy

In this section we state several useful corollaries of Theorem 3.4. The next proposition discusses how the type of
translation respecting sets is affected by taking complements.

Proposition 3.5. If U is translation respecting of type i then:

• Uc is translation respecting of type −i.
• If U is of type 0 with minimal translation �, then −� is a minimal translation of Uc .

The proof of this proposition is straightforward from Theorem 3.4.
The following proposition investigates the possible containment relations between translation respecting sets.

Proposition 3.6. Let U,V be two translation respecting sets satisfying that |TU |, |TV | > 1 and U ⊆ V . Then
Type(U) ≥ Type(V ).

Proof. Our goal is to show that (Type(U),Type(V )) /∈ {(−1,0), (−1,1), (0,1)}. Equivalently, we need to show that

if Type(V ) = 1 then Type(U) = 1, (3.2)

if Type(U) = −1 then Type(V ) = −1. (3.3)
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Suppose first that Type(V ) = 1. Let � ∈ nZd be such that V +� �= V (which exists as |TV | > 1). As Type(V ) = 1,
V ∩ (V + �) =∅. Thus, as U ⊆ V and U + � ⊆ V + � we deduce that

U ∩ (U + �) =∅. (3.4)

In particular, U �= U + � whence U and U + � are boundary disjoint (as U is translation respecting) and the pair
trichotomy, Theorem 3.2, implies that

Uc ∩ (U + �)c �=∅. (3.5)

The translation trichotomy, Theorem 3.4, and the relations (3.4) and (3.5) imply that Type(U) = 1, establishing (3.2).
Now observe that Uc,V c are also translation respecting and satisfy V c ⊆ Uc. Thus, we may apply (3.2) with

(U,V ) replaced by (V c,Uc) and deduce from Proposition 3.5 that (3.3) holds. �

Translation respecting sets of type 0
These have a unique structure, as the following proposition indicates.

Proposition 3.7. If U is translation respecting of type 0 then:

• ⋃
V ∈TU

V = Zd .
• There exists 1 ≤ i ≤ d such that for every v ∈ Zd , {v + kei : k ∈ Z} intersects both U and Uc.
• If U + ne1 �= U then for every v ∈ Zd , {v + ke1 : k ∈ Z} intersects both U and Uc.

Proof. Let v ∈ Zd and let � be a minimal translation of U . Observe that by definition, U � U +�, and U,U +� are
co-connected and boundary disjoint. Applying Proposition 3.3 we get dist(U + �, {v}) ≤ max(dist(U, {v}) − 1,0).
Iterating, we obtain that there exists some k such that v ∈ U + k�. We deduce the first item of the proposition.

The second item follows from the third by symmetry, as the fact that U + � �= U (using that U is of type 0)
implies that there exists some 1 ≤ i ≤ d for which U + nei �= U . We proceed to prove the third item. Observe that
by the last part of Theorem 3.4, there exists some � ∈ Z \ {0} such that U + ne1 = U + ��. It follows also that
Uc + ne1 = Uc + ��. Notice that both U and Uc are translation respecting of type 0 with −� being a minimal
translation for Uc (by Proposition 3.5). Thus, the first item of the proposition and the last part of Theorem 3.4 show
that for every v ∈ Zd there exist k1, k2 ∈ Z such that

v ∈ (U + k1��) ∩ (
Uc + k2��

)
.

Equivalently v − k1ne1 ∈ U while v − k2ne1 /∈ U , as required. �

Recall that π is the projection of Zd onto Td
n . It naturally extends to a mapping of the edges of Zd to the edges of

Td
n . The projection of the boundary of translation respecting sets of type 0 through π is very long, as the following

lemma shows.

Lemma 3.8. If V is a translation respecting set of type 0 with minimal translation � satisfying V + �� = V + ne1
then ∣∣{(w0,w1) ∈ π(∂V ) : w0 − w1 = e1

}∣∣ ≥ �nd−1.

Proof. The lemma holds trivially if � = 0. Assume without loss of generality that � > 0. We write

X := {
x ∈ Zd : ∀j ∈ {2, . . . , d} 0 ≤ xj < n

}
.

Observe that π(∂V ) = π(∂V + k�) for all k ∈ Z. Thus, to obtain the lemma it would suffice to show the following
two claims:{

π
(
X ∩ (∂•V + k�)

)}
k∈{0,...,�−1} are disjoint. (3.6)

For each k ∈ {0, . . . , � − 1} we have
∣∣π(

E1(X) ∩ (∂V + k�)
)∣∣ ≥ nd−1, (3.7)

where E1(X) := {(x, x + e1) : x ∈ X}.



Rigidity of 3-colorings of the discrete torus 969

We begin by showing (3.6). Since V is translation respecting, {X ∩ (∂•V + k�)}k∈{0,...,�−1} are disjoint. Thus, to
obtain (3.6), all that remains is to show that for all pairs of distinct k1, k2 ∈ {0, . . . , � − 1}, there are no two elements
x1 ∈ ∂•V + k1�, x2 ∈ ∂•V + k2�, such that x1 + ane1 = x2 for some a ∈ N. Indeed, in such a case, we would
have x2 = x1 + ane1 ∈ ∂•V + k1� + ane1 = ∂•V + (k1 + a�)�, which would imply, by boundary disjointness, that
V + k2� = V + (k1 + a�)�, and hence k2 = k1 + a� which contradicts our assumption. (3.6) follows.

To see (3.7), observe that by the third item of Proposition 3.7, for every x ∈ Zd , k ∈ {0,1, . . . , � − 1}, there exists
a q ∈ Z such that(

x + qe1, x + (q + 1)e1
) ∈ ∂V + k�. (3.8)

Using (3.8) for all x ∈ X satisfying that x1 = 0, we obtain (3.7). �

3.3. Proof of the pair trichotomy

In this section we prove Proposition 3.1 and Theorem 3.2 using the approach of Timár in [22]. To do so, we make use
of the well-known fact that 4-cycles span the cycles of Zd , i.e., every cycle σ in Zd can be written as

σ =
∑
c∈C

c, (3.9)

where C is a set of 4-cycles, and we interpret the sum as meaning that an edge is in σ if it appears in an odd number
of cycles in C.

To aid our proof we introduce the following family of graphs.

Definition 3.9. Given U ⊆ Zd , a set of vertices, we define a graph GU as follows. The vertices of GU are the vertices
of Zd . Two vertices u,v are adjacent in GU if there exist eu, ev ∈ ∂U and a 4-cycle c, such that u ∈ eu, v ∈ ev , and
eu, ev ∈ c.

The following lemma connects this definition with co-connected sets.

Lemma 3.10. If U ⊂ Zd is a co-connected set of vertices, then ∂•U is connected in GU .

Proof. The proof is heavily based on ideas developed in [22]. It suffices to show that for any non-trivial partition
S1, S2 of ∂•U there exists an edge of GU connecting S1 and S2. Here, a non-trivial partition means that S1, S2 �= ∅,
S1 ∩ S2 =∅ and S1 ∪ S2 = ∂•U . Let S1, S2 be such a partition. We set

E1 := {e ∈ ∂U : e ∩ S1 �=∅},
E2 := {e ∈ ∂U : e ∩ S2 �=∅}.

By the connectedness of U and Uc in Zd , there exists some cycle σ in Zd which contains exactly one edge of E1 and
one edge of E2 (in fact, we can even pick those boundary edges arbitrarily). As 4-cycles span the cycles of Zd , we
write σ as a sum of such cycles

σ =
∑
c∈C

c, (3.10)

as in (3.9). We notice that as σ contains an odd number of E1 edges (in fact, just one), there must also be a 4-cycle
c0 ∈ C containing an odd number of E1 edges. However as every cycle contains an even number of edges from the
boundary ∂U = E1 � E2, c0 must contain an edge of E2 as well. Thus S1 and S2 are connected by an edge of GU ,
concluding the proof. �

Lemma 3.10 allows us to prove Proposition 3.1 and Theorem 3.2. In this proof we will make use of [22, Theorem 4].
For convenience, we state a special case of this theorem in the context of our work.
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Fig. 5. Illustration accompanying the proof of Theorem 3.2. On the left – the roles of u00, u10, u11 and u01 are illustrated, as well as those of u0,
u1, v01 and v11. On the right – all the possible configurations of the 4-cycle c, up to rotation and reflection, are illustrated. Observe that c must
contain a dark vertex v01 and a striped vertex v11 and that each of these must be adjacent to a vertex in c which is neither dark nor striped. In the
top four configurations v01 and v11 are next to each other while in the bottom two they are in opposite corners of the cycle. When the boundary
disjointness is ruled out due to the existence of an edge violating ∂U1 ∩ ∂U2 = ∅, this edge is marked. When no edge is marked, the alternative is
ruled out due to the existence of a “forbidden cycle” (as in the definition of boundary disjointness).

Theorem (Timár). For any co-connected A�Zd , the set{
y ∈ Ac : y differs from some point in A by ±1 in each of exactly one or two coordinates

}
is connected in Zd .

To see that this is a special case of [22, Theorem 4], take G = Zd , and let G+ be G with an edge between every two
vertices who differ by ±1 on each of exactly one or two coordinates. Also, take C = A, and let x be some arbitrary
point in Ac.

Proof of Proposition 3.1. Let A be a co-connected set in Zd . The first part of the proposition is an immediate result
of Lemma 3.10, as connectivity of ∂•A∪∂◦A in Zd is weaker than connectivity of ∂•A in GA. The proof of the second
part uses the above stated version of [22, Theorem 4]. By the theorem,

B := {
y ∈ Ac : y differs from some point in A by ±1 in each of exactly one or two coordinates

}
is connected in Zd . In addition B satisfies that B ⊂ A++ \A and that every vertex in A++ \A has a neighbor in B (as
A+ \ A ⊂ B). We therefore have that A++ \ A is connected in Zd as required. To get the third part of the proposition,
we recall that if A is co-connected, then so is Ac , and that A \ A−− = (Ac)++ \ Ac . We can therefore derive the third
part of the proposition by applying the second part to Ac . �

Proof of Theorem 3.2. We accompany the proof with Figure 5. Assume to the contrary all the alternatives in the
theorem do not hold. We can therefore pick u11 ∈ U1 ∩ U2, u10 ∈ U1 ∩ Uc

2 , u01 ∈ Uc
1 ∩ U2 and u00 ∈ Uc

1 ∩ Uc
2 . As

U1 is connected, there exists a path inside U1 between u10 and u11. This path must contain a vertex u1 ∈ U1 ∩ ∂•U2.
Similarly there exists a path outside U1 between u00 and u01 which contains a vertex u0 ∈ Uc

1 ∩ ∂•U2.
By Lemma 3.10, ∂•U2 is connected in GU2 . In particular, if we partition ∂•U2 into U1 ∩ ∂•U2 and Uc

1 ∩ ∂•U2, we
must have an edge in GU2 crossing this partition. In other words, there exists a 4-cycle c which contains two edges
e0, e1 ∈ ∂U2, and two vertices v01 ∈ e0 and v11 ∈ e1 such that v01 ∈ Uc

1 ∩ ∂•U2 and v11 ∈ U1 ∩ ∂•U2. A careful case
study of all the possible configurations of such a cycle (see Figure 5) yields that its existence must contradict the
boundary disjointness for U1 and U2. We conclude that at least one of the alternatives in the theorem must hold.
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Next we show that exactly one of the alternatives holds. The third alternative cannot co-exist with either of the first
two alternatives as a co-connected set is non-empty and has non-empty complement. For the first two alternatives to
hold together it must be the case that U1 = Uc

2 , contradicting the boundary disjointness of U1 and U2. The theorem
follows. �

3.4. Proof of the translation trichotomy

This section is dedicated to the proof of Theorem 3.4.
We begin by showing the trichotomy itself. The pair intersection trichotomy, Theorem 3.2, guarantees that every

two sets U1,U2 ∈ TU satisfy one of the three alternatives of the theorem. Thus it is sufficient to show that for any three
distinct sets U1,U2,U3 ∈ TU , the same alternative holds for both pairs U1,U2 and U1,U3. In particular, the theorem
is immediate if |TU | = 2. Fix distinct U1,U2,U3 ∈ TU . We shall rule out three cases.

1. Alternatives 0 and 1 cannot coexist. Let δ,� ∈ nZd be such that U2 = U1 + δ and U3 = U1 +�. Assume, WLOG,
that U1 ∩U3 =∅ and U1 � U2. As U1 and U2 are boundary disjoint, by Proposition 3.3 we get that dist(U1,U3) >

dist(U2,U3). We note that, U1 + � ⊆ U1 + � + δ, as U1 ⊆ U1 + δ. We deduce, using (2.3), that dist(U1 + δ,U1 +
�) ≥ dist(U1 + δ,U1 + � + δ). Putting all of this together, we get:

dist(U1,U1 + �) > dist(U1 + δ,U1 + �) ≥ dist(U1 + δ,U1 + � + δ) = dist(U1,U1 + �),

which is a contradiction.
2. Alternatives 0 and −1 cannot coexist. The argument follows similarly to the previous part by passing from

U1,U2,U3 to Uc
1 ,Uc

2 ,Uc
3 .

3. Alternatives 1 and −1 cannot coexist. To see this, assume, WLOG, that U1 ∩ U2 =∅ and Uc
1 ∩ Uc

3 =∅. It follows
that U1 ∪ U3 = Zd and hence U2 ⊆ U3. A contradiction follows since alternatives 0 and 1 cannot coexist.

Next, we show the second part of the theorem, i.e., that if Type(U) = 0, then there exists a translation � ∈ nZd and an
order-preserving bijection o : TU → Z, such that o−1(i + 1) = o−1(i)+� for all i ∈ Z. Assume Type(U) = 0. Define
o(U) := 0 and for any V ∈ TU let

o(V ) :=
{

|{W ∈ TU : U � W ⊆ V }|, U ⊆ V,

−|{W ∈ TU : V ⊆ W � U}|, V ⊆ U.

To see that this is well defined, let us explain why {W ∈ TU : U � W ⊆ V } is finite. A similar argument will show
that {W ∈ TU : V ⊆ W � U} is finite. Since TU is ordered by inclusion, applying Proposition 3.3 to the complements
of two distinct sets in {W ∈ TU : U � W ⊆ V }, taking the V of the proposition to be our U , shows that each set W

in {W ∈ TU : V ⊆ W � U} is uniquely characterized by dist(Wc,U). Since dist(Wc,U) ≤ dist(V c,U) we conclude
that {W ∈ TU : U � W ⊆ V } is finite, as we wanted to show.

To show that o is one-to-one, suppose V1,V2 ∈ TU satisfy o(V1) = o(V2). Assume WLOG that o(V1) ≥ 0 and
V1 ⊆ V2. This implies that

{W ∈ TU : U � W ⊆ V1} ⊆ {W ∈ TU : U � W ⊆ V2}.
However, as o(V1) = o(V2), we get

{W ∈ TU : U � W ⊆ V1} = {W ∈ TU : U � W ⊆ V2}
and, in particular, V2 ⊆ V1. Thus V1 = V2.

Finally, we show that there is a � ∈ nZd such that o−1(i + 1) = o−1(i) + � for all i ∈ Z. We begin by observing
that o−1(1) is nonempty. To see this recall that |TU | > 1 and therefore U �U + z for some z ∈ nZd . This implies that
o(U + z) ≥ 1 and therefore there must exist some � ∈ nZd such that o(U +�) = 1. Equivalently, there is no W ∈ TU

for which U � W � U + �. Since this situation is preserved under translations it follows that o−1(i) = U + i� for
all i ∈ Z.
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Fig. 6. An illustration of sublevel components for a certain periodic h ∈ Hom(Zd ), with respect to the two vertices u,v ∈ Zd . On the left – a portion
of LC1+

h
(u) is highlighted. On the right – a portion of LC1+

h
(u, v). Observe that LC1+

h
(u, v) is co-connected while LC1+

h
(u) is not.

4. Sublevel sets of HHFs

In this section we establish the theoretical basis for dealing with quasi-periodic HHFs. Much of the intuition behind
the theorems of this section stems from algebraic topology, viewing quasi-periodic HHFs as a discrete analogue of
co-cycles on the torus, and periodic HHFs as a discrete analogue of co-boundaries. Nonetheless, we avoid making
any direct reference to topology, and restrict ourselves to purely combinatorial proofs. The results of this section are
central to our construction in Section 5 of the one-to-one mapping �m : QPm → QP0 and the analysis of its properties.

We begin by introducing the notions of sublevel sets and sublevel components of HHFs. Sublevel sets are discrete
counterparts to sublevel sets of continuous functions. A sublevel component augments a sublevel set to a co-connected
set.

Let G be either Zd or Td
n . Let k ∈ Z, h ∈ Hom(G) and let u,v ∈ V (G) satisfy

h(u) ≤ k < h(v). (4.1)

We define the k-sublevel set of u,

LCk+
h (u) is the connected component of u in G \ {

w ∈ V (G) : h(w) = k + 1
}
.

While the sublevel set is itself connected, by definition, its complement may be disconnected. We wish to isolate a
single connected component of the complement and do this by enlarging the sublevel set. Precisely, we define the
k-sublevel component from u to v,

LCk+
h (u, v) is the complement of the connected component of v in G \ LCk+

h (u).

Figure 6 illustrates a sublevel component and a sublevel set in Zd . In our applications sublevel sets are mostly used
as a part of the definition of sublevel components, without a significant role of their own. To simplify our notation we
write LC+

h (u) for LCh(u)+
h (u) and LC+

h (u, v) for LCh(u)+
h (u, v).

In the rest of the section we prove structure theorems for sublevel components of HHFs, mainly on Zd . In Sec-
tion 4.1 we establish several basic properties of sublevel components. In Section 4.2 we show that sublevel components
on Zd are co-connected and boundary disjoint so that they satisfy the conditions of the pair-trichotomy (Theorem 3.2).
In Section 4.3, we give a formula for computing the height difference between two vertices in terms of the sublevel
components separating them. In Section 4.4 we show that sublevel components of quasi-periodic HHFs are translation
respecting and hence satisfy the conditions of Theorem 3.4 and can be assigned a type. We conclude there that when
m �= 0, any HHF in QPm has type-0 sublevel components. In Section 4.5 we introduce superlevel components and
discuss their relationships with sublevel components. Finally, Section 4.6 gives a condition for two HHFs to share the
same sublevel component.
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4.1. Basic properties of sublevel components

Let G be either Zd or Td
n . Let h ∈ Hom(G) and suppose u,v ∈ G satisfy (4.1). Let

U := LCk+
h (u, v).

The next proposition collects several basic properties of sublevel components of h.

Proposition 4.1. The sublevel component U satisfies:

1. u ∈ U and v /∈ U .
2. h(x) = k for all x ∈ ∂•U , and h(x) = k + 1 for all x ∈ ∂◦U . In particular, U is odd.
3. U is co-connected.
4. ∂•U ⊆ LCk+

h (u) ⊆ U .

All of these properties are straightforward from the definition and we omit their proof.
In view of the second item of the proposition, we write, with a slight abuse of notation, h(∂•U) and h(∂◦U) for the

common height of all vertices in ∂•U and ∂◦U , respectively.
In the next corollary, we give useful criteria for containment relations between a connected set in G and a sublevel

component.

Corollary 4.2. The sublevel component U satisfies:

• If V ⊆ V (G) is connected and satisfies v ∈ V , u /∈ V and h(w) > k for all w ∈ ∂•V , then V ⊆ Uc.
• If V ⊆ V (G) is connected and satisfies V ∩ U �=∅, ∂◦U ⊆ V c , then V ⊆ U .

Proof. To get the first item, observe that, by definition of the k-sublevel set LCk+
h (u) and the fact that an HHF changes

by one between neighbors, ∂•V ⊂ LCk+
h (u)c . As ∂•V separates V from u, we have V ⊂ LCk+

h (u)c . Together with the
fact that V is a connected set containing v, the first item follows. The second item is straightforward and we omit its
proof. �

4.2. Sublevel components on Zd

Until the end of Section 4 we discuss the structure of the set of sublevel components of a single HHF on Zd . Through-
out the rest of Section 4, we denote by h an arbitrary function in Hom(Zd). In the beginning of Section 4.4 we shall
impose additional restrictions on h. Note that dependence on h will often be implicit in our notation.

Boundary disjointness
The following proposition implies that sublevel components on Zd satisfy the conditions of the pair trichotomy,
Theorem 3.2.

Proposition 4.3. Distinct sublevel components of a function h ∈ Hom(Zd) are boundary disjoint.

Proof. Consider U := LCk+
h (u, v) and V := LC�+

h (x, y), where k, � ∈ Z and u,v, x, y ∈ Zd satisfy h(u) ≤ k < h(v)

and h(x) ≤ � < h(y). Observe that if k �= �, the proposition holds trivially, by the second item of Proposition 4.1 and
(3.1). We thus assume k = �. Suppose U and V are not boundary disjoint and let us show that this implies them being
equal. From the second item of Proposition 4.1, and using (3.1), we get that there exists e = (w1,w2) ∈ ∂U ∩∂V , such
that w1 ∈ ∂•U ∩ ∂•V . By the fourth item of Proposition 4.1 we have w1 ∈ LCk+

h (u) ∩ LCk+
h (x) and thus LCk+

h (u) =
LCk+

h (x), by the definition of sublevel sets. Since w2 is in the connected component of both v and y in Zd \ LCk+
h (u),

then these connected components are equal and we get LCk+
h (u, v) = LCk+

h (x, y), as required. �

From Proposition 4.3 we derive the following corollary.
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Fig. 7. Left: an HHF on Zd and a path between two vertices u and v with height difference 3. Right: the same HHF with the boundaries of all
sublevel components intersecting the path. The arrow coming out of each boundary line points towards its sublevel component. The two non-dashed
boundaries whose arrows points right are those of sublevel components containing v and not containing u. The five non-dashed boundaries whose
arrows points left are those of sublevel components containing u and not containing v. The remaining dashed boundaries are those of sublevel
components which contain either both u and v or neither. Proposition 4.6 shows that the height difference between u and v equals the difference
between the number of non-dashed boundaries whose arrows point right and the number of those whose arrows point left.

Corollary 4.4. Every edge (u, v) ∈ Zd is contained in the boundary of a unique sublevel component.

Proof. Assume WLOG that h(v) = h(u) + 1. By definition, (u, v) ∈ ∂ LC+
h (u, v). By Proposition 4.3 no other sub-

level component has (u, v) in its edge boundary. �

The next proposition shows that in Zd , the fact that A is a sublevel component of h depends only on a certain
neighborhood of the boundary of A.

Proposition 4.5. Let h1, h2 ∈ Hom(Zd) be two HHFs. Let A be a sublevel component of h1 and let u ∈ ∂•A. Suppose
there exists S ⊇ ∂•A∪ ∂◦A satisfying that h1(w) = h2(w) for all w ∈ S and that LC+

h1
(u)∩S is a connected set. Then

A is also a sublevel component of h2.

Proof. By our assumption h1(w) = h2(w) for all w ∈ S, and by definition h1(w) ≤ h1(u) for all w ∈ LC+
h1

(u). We

get that h2(w) ≤ h2(u) for all w ∈ LC+
h1

(u)∩ S. Putting this together with our assumptions that u ∈ ∂•A ⊆ S, and that

LC+
h1

(u) ∩ S is connected, we get that

LC+
h1

(u) ∩ S ⊆ LC+
h2

(u), (4.2)

by the definition of sublevel sets.
Next, let v ∈ ∂◦A be such that u ∼ v. Observe that by Corollary 4.4, we have A = LC+

h1
(u, v). Let U := LC+

h2
(u, v).

We shall show that A = U , establishing the proposition. By the fourth item of Proposition 4.1 we have that ∂•A ⊆
LC+

h1
(u) so that, using (4.2) and our assumption that ∂•A ⊆ S, we get that ∂•A ⊆ LC+

h2
(u). Thus, using the fourth

item of Proposition 4.1 again yields that

∂•A ⊆ U. (4.3)

By our assumptions and Proposition 4.1, Ac is connected and satisfies v ∈ Ac, u /∈ Ac and h2(∂◦A) = h1(∂◦A) =
h2(u) + 1. Thus, the first item of Corollary 4.2 implies that Ac ⊆ Uc. Thus, using (4.3) and the fact that Uc is
connected by Proposition 4.1, shows that Ac = Uc. Hence U = A as we wanted to show. �

4.3. Expressing height differences in terms of sublevel components

In this section we develop a formula expressing the difference between the height assigned to a pair of vertices u and v

in terms of sublevel components. The formula is similar to the Newton–Leibniz formula in that it expresses the global
height difference in terms of local increments. A visual depiction of this similarity is given in Figure 7.

Let u,v ∈ Zd . We define the set of sublevel components separating u from v by

L(u,v) := {
A : ∃u′, v′, k s.t. h

(
u′) ≤ k < h

(
v′) and A = LCk+

h

(
u′, v′) satisfies u ∈ A,v /∈ A

}
. (4.4)
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Proposition 4.6. Let u,v ∈ Zd . L(u,v) is finite and ordered by inclusion. Furthermore, the following formula holds:

h(v) − h(u) = |L(u,v)| − |L(v,u)|.

Proof. Let U,V be distinct elements of L(u,v). We begin by showing that L(u,v) is ordered by inclusion. By Propo-
sition 4.1, U and V are co-connected and by Proposition 4.3 they are boundary disjoint. Thus, U and V satisfy the
conditions of Theorem 3.2. By the definition of L(u,v), we have u ∈ U ∩ V and v ∈ Uc ∩ V c . We deduce that either
U ⊆ V or V ⊆ U . As containment relations are transitive we deduce that L(u,v) is ordered by inclusion.

To prove the remaining claims we use induction on the distance between u and v. Indeed, the case u = v is
trivial. Assume that the proposition holds for every pair of vertices exactly at distance ρ and suppose u,v satisfy
dist(u, v) = ρ + 1. Next, let w be a vertex satisfying w ∼ u and dist(w,v) = ρ. By our assumption

h(v) − h(w) = |L(w,v)| − |L(v,w)|,
and thus

h(v) − h(u) = |L(w,v)| − |L(v,w)| + h(w) − h(u). (4.5)

Suppose that h(w) = h(u) + 1. Thus U = LC+
h (u,w) is well defined. By Corollary 4.4, it is the only sublevel

component containing u and not containing w, and there is no sublevel component which contains w and does not
contain u. If v ∈ U , we get that L(u,v) = L(w,v) and that L(v,w) = L(v,u) � {U}. If v /∈ U , we get that L(u,v) =
L(w,v) � {U} and that L(v,u) = L(v,w). In either case, by (4.5),

h(v) − h(u) = |L(u,v)| − |L(v,u)|.
The case h(u) = h(w) + 1 follows similar lines. �

4.4. Sublevel components of quasi-periodic HHFs on Zd

In this subsection we impose the further requirement that h is quasi-periodic, that is, that h ∈ QPm for some m ∈ Zd .
We show that sublevel components of such functions are translation respecting and are thus classified into types
according to the translation trichotomy, Theorem 3.4. We conclude that when m �= 0, any such function has a type-0
sublevel component.

The first property we observe is that the set of sublevel components of h is invariant under translations in nZd .

Proposition 4.7. Let k ∈ Z and u,v ∈ Zd be such that h(u) ≤ k < h(v). For any x ∈ nZd we have LC(k+δx)+
h (u +

x, v + x) = LCk+
h (u, v) + x where δx := h(x) − h(0).

The proposition follows directly from the definition of sublevel component and quasi-periodic function and we
omit its proof. A consequence of this proposition is the following.

Corollary 4.8. Every sublevel component of h is translation respecting.

To see this recall that sublevel components are co-connected by the third item of Proposition 4.1, and apply Propo-
sition 4.3 together with Proposition 4.7.

Corollary 4.8 tells us that sublevel components of quasi-periodic HHFs may be assigned a type, as in Section 3.1.
We remark that it is possible that a sublevel component A will be invariant under all translations in nZd , in which case
we follow the convention of Section 3 by assigning to it both type −1 and type 1. However, we note that this cannot
happen when the slope m of the quasi-periodic function h is non-zero, the case of most interest to us, as follows from
Proposition 4.7 and the second item of Proposition 4.1.

The following corollary provides a formula for the height difference between translates of a type 0 sublevel com-
ponent.
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Corollary 4.9. Let U be a type 0 sublevel component of h with minimal translation � and write δ := h(∂•U + �) −
h(∂•U). Then for any z ∈ nZd we have

h
(
∂•(U + z)

) − h(∂•U) = δ · oU(U + z),

where oU is the order function on translates of U , given by Theorem 3.4.

This is an immediate consequence of Theorem 3.4 and the fact that h is quasi-periodic.
The next proposition establishes a duality between L(u,v) and L(v,u) when u − v ∈ nZd .

Proposition 4.10. Let u, z ∈ Zd with z �= 0. If A ∈ L(u,u+nz) has Type(A) �= 0 then the type of A is uniquely defined
and

A + Type(A) · nz ∈ L(u+nz,u).

Proof. Let A ∈ L(u,u+nz) for u, z ∈ Zd , and observe that since u ∈ A but u + nz /∈ A we have that A is not invariant
under translations in nZd and hence Type(A) is uniquely defined. Suppose that Type(A) �= 0, i.e., Type(A) ∈ {−1,1}.
Recall that by definition, u ∈ A and u+nz /∈ A. Since A is a sublevel component then, by Proposition 4.7, A±nz are
also sublevel components. Both are distinct from A since u+nz ∈ A+nz and u /∈ A−nz. If Type(A) = 1, then by the
trichotomy of Theorem 3.4, u ∈ A implies that u /∈ A + nz. Similarly if Type(A) = −1, then by the same trichotomy
u + nz /∈ A implies u + nz ∈ A − nz. In either case the proposition holds. �

An important corollary of the above proposition is the following:

Corollary 4.11. If h ∈ QPm for m = (m1, . . . ,md) satisfying m1 > 0, then there exists a sublevel component of type 0
which contains 0 and does not contain ne1.

Proof. Suppose to the contrary that every sublevel component in L(0,ne1) is either of type 1 or of type −1. By
Proposition 4.10 we get that |L(0,ne1)| ≤ |L(ne1,0)|. By Proposition 4.6 this implies h(ne1) ≤ h(0), in contradiction to
our premise. Here, we have also used the fact that the type of a sublevel component is preserved under translation,
thus distinct sublevel components A ∈ L(0,ne1) are mapped to distinct sublevel components in L(ne1,0) by the mapping
A �→ A + Type(A) · ne1. �

4.5. Superlevel components and sublevel components of type 0

In the construction of our embedding (in Section 5) we make use of superlevel components. These are counterparts
of sublevel components, in which the role of the sublevel set is replaced by a superlevel set. The main reason that
superlevel components are necessary for our construction is that in order to guarantee invertibility of the mapping �m,
we wish to define it through an exploration process in a region which is left unchanged by the mapping. Exploration
in one direction is done by finding sublevel components while exploration in the other direction is done through
superlevel components.

While superlevel components could be defined in an analogous way to that of sublevel components, as given at the
beginning of Section 4, we rather define them through a duality.

Definition 4.12. For any u,v ∈ Zd and k ∈ Z satisfying h(v) < k ≤ h(u), we define

LCk−
h (u, v) := LC(−k)+

−h (u, v).

This definition allows us to apply propositions dealing with sublevel components to superlevel components. For
instance, combining the definition with Corollary 4.8 and Theorem 3.4 we can assign a type to every superlevel
component. In addition, by Proposition 4.1, a superlevel component U = LCk−

h (u, v) satisfies h(x) = k for all x ∈
∂•U , and h(x) = k − 1 for all x ∈ ∂◦U . However, to avoid confusion, we remark that the complement of a superlevel
component is not necessarily a sublevel component.
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The next lemma shows that certain sublevel and superlevel components which are “sandwiched” between two
type 0 sublevel components must also be of type 0.

Lemma 4.13. Let U � W be a pair of type 0 sublevel components, such that h(∂◦U) < h(∂◦W) and let u ∈ ∂•U ,
w ∈ ∂•W and k ∈ Z. Then:

• If h(u) ≤ k < h(w) then V+ := LCk+
h (u,w) is a sublevel component of type 0, satisfying U ⊆ V+ � W .

• If h(u) < k ≤ h(w) then V− := (LCk−
h (w,u))c satisfies that (V−)c is a superlevel component of type 0 and U ⊆

V− � W .

Proof. We start by proving the first item and let V+ be as in the lemma. We first show that

U = LC+
h (u,w). (4.6)

By our assumptions, U = LCh(u)+
h (u′, v′) for some u′, v′. By the fourth item of Proposition 4.1 we have LC+

h (u) =
LCh(u)+

h (u′). Next, w /∈ U since U �W and U and W are boundary disjoint by Proposition 4.3. Hence (4.6) follows.
Now observe that by applying (4.6), Proposition 4.1 and the first item of Corollary 4.2 to U and (V+)c , we get that

(V+)c ⊆ Uc , i.e., U ⊆ V+. Similarly, by Proposition 3.1,

∂•W ∪ ∂◦W is a connected set containing w, whose vertices are of height greater than k, (4.7)

and hence u /∈ ∂•W ∪∂◦W . Thus, applying (4.7) and the first item of Corollary 4.2, we deduce that (∂•W ∪∂◦W) ⊆ V c+.
We can now use the second item of Corollary 4.2 to deduce that V+ ⊆ W . Consequently, U ⊆ V+ �W , where we have
used also that w ∈ W \ V+. It remains to show that V+ is of type 0. All that we need in order to draw this conclusion
from Proposition 3.6 is to show that |TW |, |TV+|, |TU | > 1. To see this first observe that since Type(U) = Type(W) =
0, we have by definition |TW |, |TU | > 1. By Proposition 3.7 there exists some � ∈ nZd satisfying (U + �) ∩ (V+)c �=
∅ while U + � ⊆ V+ + �. We deduce that |TV+| > 1, so that V+ is of type 0.

The second item is proved similarly. Let V− be as in the lemma. By the definition of superlevel components and
Proposition 4.1, we have that (V−)c is connected, u /∈ (V−)c , w ∈ (V−)c and h(∂◦V−) > h(u). Applying (4.6) and the
first item of Corollary 4.2 to (V−)c we deduce that (V−)c ⊆ Uc, i.e., U ⊆ V−.

Applying (4.7), the definition of a superlevel component, and the fourth item of Proposition 4.1 we get that ∂•W ∪
∂◦W ⊆ (V−)c , as it is contained in the corresponding superlevel set. We deduce that V− is a connected set satisfying
u ∈ V− and ∂◦W ⊆ (V−)c. Therefore by the second item of Corollary 4.2, we have V− ⊆ W . Consequently, U ⊆ V− �

W , where we have used also that w ∈ W \ V−. It remains to show that V− is of type 0. All that we need in order to
draw this conclusion from Proposition 3.6 is to show that |TV−| > 1. This is done in exactly the same way as in the
proof of the first part of the lemma. �

4.6. Locality property of sublevel components

We conclude Section 4 with a useful criterion for applying Proposition 4.5, to show that two HHFs in Hom(Zd) share
the same sublevel component.

Proposition 4.14. Let h1, h2 ∈ Hom(Zd) be two HHFs and let A be a sublevel component of h1. Suppose that

h1(w) = h2(w) for all w ∈ A+ \ B−, (4.8)

for some B � A which is either a sublevel component of h1 or the complement of a superlevel component of h1. Then
A is also a sublevel component of h2.

Proof. Let u ∈ ∂•A. Let v ∈ ∂◦A be such that u ∼ v. By Corollary 4.4,

A = LC+
h1

(u, v). (4.9)



978 O. N. Feldheim and R. Peled

Let us show that u /∈ B . Suppose to the contrary that u ∈ B . Hence u ∈ ∂•B by our assumption that B � A. Then,
by Proposition 4.1 and the definition of superlevel component, Bc is a connected set satisfying v ∈ Bc and satisfying
h1(∂◦B) = h1(u) + 1 > h1(∂•A). Thus, by the first item of Corollary 4.2, we have that Bc ⊆ Ac . However, this
contradicts the fact that B � A.

We continue by considering separately two cases. First, assume that

either h1(∂•B) > h1(u) or h1(∂◦B) > h1(u). (4.10)

Since u /∈ B , the definition of LC+
h1

(u) and the assumption (4.10) imply that LC+
h1

(u) ∩ B = ∅. Now, Proposition 4.1

and (4.9) imply that LC+
h1

(u) ⊆ A. Thus, by (4.8), h1(w) = h2(w) for all w ∈ (LC+
h1

(u))+. Hence the definition of

sublevel set yields that LC+
h1

(u) = LC+
h2

(u), which, in turn, implies that LC+
h1

(u, v) = LC+
h2

(u, v). Thus, recalling
(4.9), A is also a sublevel component of h2.

Second, let us assume that (4.10) does not hold. That is, that

h1(∂•B) ≤ h1(u) and h1(∂◦B) ≤ h1(u). (4.11)

Denote S := A+ \ B−. Recalling (4.8) and observing that

A+ \ A− = ∂•A ∪ ∂◦A ⊆ S,

all that we need to show in order to apply Proposition 4.5 and derive the proposition, is that

LC+
h1

(u) ∩ S is connected. (4.12)

Observe that, as LC+
h1

(u) ⊆ LC+
h1

(u, v) = A by Proposition 4.1, we have

LC+
h1

(u) ∩ S = LC+
h1

(u) \ B−.

Let H0 � H1 be a non-trivial partition of LC+
h1

(u) \ B−. Assume for the sake of obtaining a contradiction that there

is no edge in Zd connecting H0 and H1 (that is an edge between a vertex in H0 and a vertex in H1). Since H0 �
H1 � (LC+

h1
(u) ∩ B−) = LC+

h1
(u), and LC+

h1
(u) is a connected set, there must be an edge of Zd connecting H0 and

LC+
h1

(u) ∩ B−, and an edge of Zd connecting H1 and LC+
h1

(u) ∩ B−. The existence of these edges implies that

(
B+ \ B−) ∩ H0 �=∅ and(
B+ \ B−) ∩ H1 �=∅.

(4.13)

In particular,

(
B+ \ B−) ∩ (

LC+
h1

(u) \ B−) �=∅. (4.14)

By Proposition 3.1, we have that

B+ \ B− is a connected set. (4.15)

Observe that LC+
h1

(u) is a connected component of {w : h1(w) ≤ h1(u)}, and, by (4.11), B+ \ B− ⊆ {w : h1(w) ≤
h1(u)}. Thus, using (4.14) and (4.15) we may deduce that

(
B+ \ B−) ⊆ LC+

h1
(u) \ B− = H0 ∪ H1. (4.16)

Putting together (4.16) and (4.13) we get that H0 � H1 induces a non-trivial partition on B+ \ B− that is not crossed
by any edge. Since this contradicts (4.15), we deduce that (4.12) holds. �
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5. Proof of the embedding theorem

In this section we use the theory developed in the previous sections to prove Theorem 2.3. In Section 5.1 we present
a one-to-one mapping from QPm, the set of quasi-periodic HHFs with slope m, to QP0, the set of periodic HHFs. In
Section 5.2 we prove Theorem 2.3 using a probabilistic bound taken from [18] and an auxiliary lemma. This lemma,
which relates the boundaries of sublevel components in QP0 with the boundaries of sublevel components of HHFs in
Hom(Td

n), is then proved in Section 5.3.

5.1. Mapping quasi-periodic to periodic

Throughout this section we fix some m = (m1, . . . ,md) ∈ 6Zd such that

m1 > 0 and QPm �=∅.

We also fix h ∈ QPm. With the structural results of Sections 3 and 4 in our toolkit, we are ready to construct �m, our
one-to-one mapping from QPm into QP0. We start by defining three sets, U0,V0 and W0. The definition relies on the
fact that by Corollary 4.8, sublevel and superlevel components of h are translation respecting and can therefore be
assigned a type by Theorem 3.4. The first and the third sets will be used to construct �m. The second set will be used
in Section 5.2 to show that the image of �m is small. Proposition 5.1 below shows that the three sets are well defined.

In the following definition, and throughout the entire section, we say that a set S ⊂ Zd is the minimal set with a
given property, if S is contained in every other set with that property.

• W0 = W0(h) is the minimal type 0 sublevel component satisfying

0 ∈ W0 and ne1 /∈ W0. (5.1)

We let � be a minimal translation of W0 as in Theorem 3.4. We choose � in some prescribed manner, e.g., as the
minimal translation which is first in lexicographic order among the minimal translations with smallest �1 norm.
Write

δ := h(�) − h(0) = h(�).

• V0 = V0(h) is the maximal type 0 sublevel component satisfying

h(∂•V0) = h(∂•W0) − 1, W0 − � ⊆ V0 ⊆ W0, 0 /∈ V0 and −ne1 ∈ V0. (5.2)

• U0 = U0(h) is defined by the property that its complement Uc
0 is the minimal type 0 superlevel component such

that

h(∂•U0) = h(∂◦W0) − δ/2, W0 − � ⊆ U0 ⊆ W0, 0 /∈ U0 and −ne1 ∈ U0. (5.3)

We remark that the third and fourth properties in (5.2) and (5.3) in fact follow from the first two properties.
Nonetheless, to simplify our arguments we include them as part of the definition. The sets U0, V0 and W0 of a certain
h ∈ QP(6,0) are illustrated in Figure 8.

Proposition 5.1. W0, V0 and U0 are well-defined, and satisfy

W0 − �� U0 � V0 � W0. (5.4)

Proof. For brevity we write U , V and W , for U0, V0 and W0 respectively. We begin by showing that W is well
defined. Write W for the set of type 0 sublevel components which contain 0 and do not contain ne1. Recalling (4.4)
we observe that W ⊆ L(0,ne1). Thus, by Proposition 4.6, W is ordered by inclusion and finite. By Corollary 4.11,
W �=∅, and thus W , the minimal element of W , is well defined.

Next, towards showing that V is well defined, we write V for the set of type 0 sublevel components V ′ satisfying
h(∂•V ′) = h(∂•W) − 1, W − � � V ′ � W , 0 /∈ V ′ and −ne1 ∈ V ′. We observe that V ⊆ L(−ne1,0), and thus by
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Fig. 8. The boundaries of U0, V0, W0 and W−1 = W0 − � for � = ne1 and δ = 6. The sets themselves are in all cases to the left of the boundary.
0 is marked in white.

Proposition 4.6, V is ordered by inclusion and finite. To derive the existence of V , all that remains is to show that
V �=∅.

To see that V �= ∅, we make some observations about � and δ. Since h ∈ QPm, m ∈ 6Zd and � ∈ nZd , it follows
that

δ ≡ 0 (mod 6). (5.5)

Since W is of type 0, 0 ∈ W and ne1 /∈ W we get that W �W + ne1 and therefore, by Theorem 3.4,

W + ne1 = W + k� for some positive k. (5.6)

We deduce, using Proposition 4.7, that h(∂•W +ne1) = h(∂•W)+h(ne1) = h(∂•W)+m1, and therefore that m1 = kδ.
In particular, since m1 > 0, we see that

δ ≥ 6. (5.7)

By subtracting ne1 and k� from both sides of (5.6) we have that W − ne1 = W − k�. Thus, recalling that 0 ∈ W and
W − k� ⊆ W − �, we obtain that

−ne1 ∈ W − �. (5.8)

By Proposition 4.7 and (5.7) we get that W −� is a sublevel component satisfying h(∂◦(W −�)) = h(∂◦W)− δ ≤
h(∂◦W)−6. Thus, the first item of Lemma 4.13 guarantees the existence of a type 0 sublevel component V ′ satisfying
h(∂•V ′) = h(∂•W) − 1, W − � � V ′ � W . Since −ne1 ∈ W − � by (5.8) we get that −ne1 ∈ V ′. By the minimality
of W , we get that 0 /∈ V ′ implying that V ′ ∈ V so that V �=∅.

To show that U is well defined, we write U for the set containing all U ′ such that (U ′)c is a type 0 superlevel
component such that h(∂•U ′) = h(∂◦W) − δ/2, W − � ⊆ U ′ ⊆ W , 0 /∈ U ′ and −ne1 ∈ U ′. Recalling Definition 4.12
of superlevel sets we use Proposition 4.6 to deduce that the set of superlevel sets containing 0 and not containing −ne1
is finite and ordered by inclusion, and therefore U is also finite and ordered by inclusion. All that remains in order to
deduce the existence of U is to show that U �=∅.

This time we apply (5.7) and the second item of Lemma 4.13, to h, V and W − �, to show the existence of U ′
satisfying that (U ′)c is a superlevel component of type 0, W − � ⊆ U ′ � V and h(∂•U ′) = h(∂◦W) − δ/2. Since
0 /∈ V by definition and −ne1 ∈ W − � by (5.8) we get that 0 /∈ U ′ and −ne1 ∈ U ′. Thus U ′ ∈ U , U �=∅ so that U is
well defined.

To conclude the proof we must show that U � V as with the definitions of U and V this will imply (5.4). Let u ∈
∂•U , w ∈ ∂◦W and write V ′ = LC(h(∂•W)−1)+

h (u,w). Our goal is to show that V ′ ∈ V . By the first item of Corollary 4.2
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applied to V ′ and Wc we have V ′ ⊆ W . Since U is co-connected, by Proposition 3.1 we have that ∂•U ∪ ∂◦U is a
connected set of vertices. Moreover, h(∂•U),h(∂◦U) ≤ h(∂◦W) − δ/2 + 1 ≤ h(∂•W) − 1. Therefore ∂•U ∪ ∂◦U ⊆
LC(h(∂•W)−1)+

h (u) and since w /∈ U we have U ⊆ V ′ and hence that −ne1 ∈ V ′. Since W −�� V ′ � W and since W

is of type 0, we have by Proposition 3.6 that V ′ is of type 0. By the minimality of W we get that 0 /∈ V ′. Thus V ′ ∈ V .
Since U � V ′, and since V ′ ⊆ V by the maximality of V , we obtain (5.4) as required. �

For i ∈ Z, we write

Ui := U0 + i�, Vi := V0 + i� and Wi := W0 + i�. (5.9)

Proposition 5.2. For every z ∈ nZd and i ∈ Z the following are equivalent:

• U0 + z = Ui ,
• V0 + z = Vi ,
• W0 + z = Wi .

Proof. We begin by showing that U0,V0 and W0 all have � as a minimal translation. For W0, this is the case by the
definition of �. We now show this for V0. The proof for U0 is similar. Let �V be a minimal translation of V0. Since

V0 − �� W0 − � � V0 � W0

by (5.4), we have V0 − k�V = V0 − � for some integer k ≥ 1. We need to show that k = 1. By Proposition 3.3, we
have

dist
(
V0 − �V ,Wc

0

)
> dist

(
V0,W

c
0

) = dist
(
V0 − �V ,Wc

0 − �V

)
.

We deduce that W0 − �V � W0, and thus W0 − �V ⊆ W0 − � (by the minimality of �). Suppose to the contrary that
W0 − �V � W0 − �. Since � is a minimal translation of W0, we get that

V0 − �V � W0 − �V ⊆ W0 − 2�� V0 − �,

contradicting the minimality of �V . We conclude that W0 −� = W0 −�V . From this, using (5.4) again, we have that

V0 − 2�V � W0 − 2�V = W0 − 2�� V0 − � = V0 − k�V ,

so that k ≤ 1, implying that k = 1 as we wanted to show.
Fix z ∈ nZd . Since U0,V0 and W0 are of type 0 with � as a minimal translation, there exist i, j, k for which

U0 + z = Ui , V0 + z = Vj , W0 + z = Wk . Translating (5.4) by z, we have

Wk−1 �Ui � Vj � Wk. (5.10)

However, (5.4) and (5.9) imply that

W−1 �U0 � V0 � W0 �U1 � V1.

Hence we conclude from (5.10) and the fact that (Ui), (Vi) and (Wi) are ordered by inclusion that

k − 1 < i ≤ j ≤ k

and therefore that i = j = k. �

We define the mapping �m : QPm → QP0 by

�m(h)(v) :=
{

h(v − i�) = h(v) − iδ, v ∈ Wi \ Ui for some i ∈ Z,

2h(∂◦W0) − h(v − i�) = 2h(∂◦W0) − h(v) + iδ, v ∈ Ui+1 \ Wi for some i ∈ Z.
(5.11)
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Fig. 9. The image through � of the HHF illustrated in Figure 8. The boundaries of U0, W0 and W−1 are highlighted to allow the reader to follow
the behavior of � in different regions. 0 is marked in white.

The remainder of the section is dedicated to showing that �m is well defined and has the required properties.
By Theorem 3.4, for every i ∈ Z we have Wi � Wi+1. Thus, applying Proposition 3.7 to W0, we have that every

v ∈ Zd belongs to exactly one set of the form Wi+1 \ Wi . Hence �m(h)(v) is defined for every v ∈ Zd . The image
through � of the HHF illustrated in Figure 8 is depicted in Figure 9.

By definition, �m(h) is �-periodic, i.e., it satisfies �m(h)(v) = �m(h)(v + �) for every v ∈ Zd . Thus to un-
derstand �m(h) it suffices to understand its values on v ∈ W0 \ W−1. As a first step to this end we point out that
on the region W0 \ U0, �m is the identity while on the region U0 \ W−1 it is a reflection with respect to height
h(∂◦W0) − δ/2 = h(∂•U0).

Proposition 5.3. �m is a one-to-one mapping from QPm to QP0.

Proof. Write t := �m(h). We need to show that t is periodic in nei for every 1 ≤ i ≤ d , that it is a height function,
and that �m is one-to-one.

t is periodic
First we show that for every �′ ∈ nZd, a ∈ Z such that W0 + �′ = Wa , we have

h(v) = h
(
v + �′ − a�

)
for all v ∈ Zd . (5.12)

By quasi-periodicity, for all v ∈ Zd , we have h(v + �′ − a�) = h(v) + (h(�′ − a�) − h(0)). Hence it suffices to
prove (5.12) for a single v ∈ Zd . Next, note that since W0 = Wa − �′ = W0 + a� − �′ we have that if v ∈ ∂•W0,
then v + �′ − a� is also a member of ∂•W0, implying, by the definition of W0 that h(v) = h(v + �′ − a�). This
establishes (5.12).

Now, let 1 ≤ j ≤ d , and suppose that oW0(W0 + nej ) = a ∈ Z where oW0 is the order function of W0 given by
Theorem 3.4. Observe that W0 +nej = Wa . Note that if v ∈ Wi \Ui then, by Proposition 5.2, v +nej ∈ Wi+a \Ui+a .
Thus, using (5.12), if v ∈ Wi \ Ui then

t (v) = h(v − i�) = h
(
v + nej − (i + a)�

) = t (v + nej ).

Similarly, if v ∈ Ui+1 \ Wi then, using Proposition 5.2, we have

t (v) = 2h(∂◦W0) − h(v − i�) = 2h(∂◦W0) − h
(
v + nej − (i + a)�

) = t (v + nej ).

t is an HHF
We claim that t ∈ Hom(Zd), i.e., that the values which t assigns to adjacent vertices differ by exactly 1. Let u,v be
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adjacent vertices in Zd . We need to show that∣∣t (u) − t (v)
∣∣ = 1. (5.13)

Since t is �-periodic, for every vertex w ∈ Zd there exists j ∈ Z such that w + j� ∈ U1 \ U0 and t (w) = t (w + j�).
We may therefore assume WLOG u ∈ U1 \ U0, and v ∈ U1. We consider three cases separately.

First, if both u,v ∈ U1 \ W0 or both u,v ∈ W0 \ U0 then (5.13) follows directly from the definition of �m.
Second, note that

t (∂◦W0) − t (∂•W0) = 2h(∂◦W0) − h(∂◦W0) − h(∂•W0) = h(∂◦W0) − h(∂•W0) = 1.

Hence (5.13) holds if either u ∈ ∂◦W0 and v ∈ ∂•W0 or vice versa.
Third,

t (∂◦U0) − t (∂•U0) = h(∂◦U0) − (
2h(∂◦W0) − h(∂•U0) − δ

)
,

and plugging the relation h(∂◦W0) = h(∂•U0) + δ/2 from (5.3) yields

t (∂◦U0) − t (∂•U0) = h(∂◦U0) − h(∂•U0) = 1.

Thus (5.13) holds if u ∈ ∂◦U0 and v ∈ ∂•U0.

�m is one-to-one
To show that �m is one-to-one, we explain how to construct an inverse for it. Suppose that we are able to recover
U0,W0,� and δ from t and m. Then we may define Ui = U0 + i�, Wi = W0 + i� and the mapping

�−1
m (t)(v) :=

{
t (v) + iδ, v ∈ Wi \ Ui for some i ∈ Z,

2t (∂◦W0) − t (v) + iδ, v ∈ Ui+1 \ Wi for some i ∈ Z.

It is simple to check that this �−1
m is indeed an inverse to �m. It is therefore sufficient to show that U0,W0,� and δ

may be recovered from t and m.
We begin by recovering W0. To do this we follow the lines of the proof of proposition 5.1. Write Wt for the set

of type 0 sublevel components of t which contain 0 and do not contain ne1. Again we recall (4.4) and observe that
Wt ⊆ L(0,ne1), where L is defined with respect to t . Thus, by Proposition 4.6, Wt is ordered by inclusion and finite.
We now argue that Wt is a non-empty set whose minimal element is W0.

The definition (5.11) of �m and the relation h(∂◦W0) = h(∂•U0) + δ/2 from (5.3) imply that

t (x) = h(x) for x ∈ W+
0 \ U−

0 . (5.14)

We can therefore apply Proposition 4.14 with h1 = h, h2 = t , A = W0 and B = U0 to get that

W0 ∈ Wt . (5.15)

Applying the same proposition with A = V0 yields that

V0 is a sublevel component of t . (5.16)

Let us write Wt for the minimal element of Wt . Since W0 ∈Wt we conclude that

Wt ⊆ W0. (5.17)

To obtain the opposite inclusion we now show that Wt is also a sublevel component of h. Observe that since Wt is
of type 0, and since 0 ∈ Wt and ne1 /∈ Wt we have by Theorem 3.4 that Wt − ne1 � Wt . We deduce that −ne1 ∈
Wt ∩ V0. In addition, our definitions imply that ne1 ∈ (Wt )

c ∩ (V0)
c and 0 ∈ (Wt \ V0). By Theorem 3.2, using
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that distinct sublevel components of t are boundary disjoint by Proposition 4.3, we deduce that V0 � Wt . Applying
Proposition 4.14 with h1 = t , h2 = h, A = Wt and B = V0, using (5.14) and (5.17) to check the condition (4.8), we
get that Wt is a sublevel component of h. Together with (5.17), the minimality of W0 now implies that Wt = W0,
allowing the recovery of W0 from t . After recovering W0, we can recover � and δ using the fact that � is a minimal
translation of W0 chosen in a prescribed manner and the fact that by Corollary 4.9 we have δ · oW0(W0 + ne1) = m1,
where oW0 is the order function on translations of W0, given by Theorem 3.4.

All that remains is to recover U0. Following again the lines of the proof of Proposition 5.1, we write Ut for the set
containing all U ′ such that (U ′)c is a type 0 superlevel component of t and t (∂•U ′) = t (∂◦W0)− δ/2, W0 −� ⊆ U ′ ⊆
W0, 0 /∈ U ′ and −ne1 ∈ U ′. Recalling Definition 4.12 of superlevel sets we again use Proposition 4.6 to deduce that
the set of superlevel components containing 0 and not containing −ne1 is finite and ordered by inclusion, implying
that Ut is also finite and ordered by inclusion. We now use (5.14) and Proposition 4.14, with h1 = −h, h2 = −t ,
A = (U0)

c and B = (W0)
c , to get that Uc

0 is a superlevel component of t (again, using Definition 4.12 of superlevel
components). It follows from (5.14) that U0 ∈ Ut . Write Ut for the maximal element of Ut , i.e., the complement of the
minimal element amongst complements of elements in Ut . Since U0 ∈ Ut we conclude that

Uc
t ⊆ Uc

0 . (5.18)

Recall that, by the definition of Ut , we have (W0)
c � (Ut )

c and that, by (5.15), W0 is also a sublevel component of t .
Applying Proposition 4.14 to h1 = −t , h2 = −h, A = (Ut )

c and B = (W0)
c , using (5.14) and (5.18) to check the

condition (4.8), we get that Uc
t is also a superlevel component of h. We also have h(∂•Ut) = h(∂◦W0)− δ/2 by (5.14).

Thus, together with (5.18), the minimality of Uc
0 now implies that U0 = Ut . As W0,U0,� and δ can be recovered

from t and m, we deduce that �m is one-to-one. �

5.2. Proof of Theorem 2.3

In this section we prove Theorem 2.3 using a bound on the probability for a uniformly chosen HHF on the torus to
have a sublevel component with long boundary. Here, for the first time, we use sublevel components on Td

n (defined
in Section 4). To clarify our proof we will always denote HHFs in Hom(Td

n) by r , HHFs in QP0 by t and HHFs in
QPm, for arbitrary m = (m1, . . . ,md) with m1 > 0, by h.

Recall that for u ∈ Td
n we denoted by Hom(Td

n, u) the set of all homomorphism height functions on Td
n which are

zero at u. We use the following theorem of [18] to derive the estimates of Theorem 2.3.

Theorem 5.4 ([18, special case of Theorem 2.8]). There exist c > 0 and d0 such that in all dimensions d ≥ d0, for
all even n, all u,v ∈ Td

n and all L ≥ 1, if h is uniformly sampled from Hom(Td
n, u) then

P
(∣∣∂ LC0+

h (u, v)
∣∣ ≥ L

) ≤ d exp

(
− cL

d log2 d

)
,

where we mean that LC0+
h (u, v) =∅ if h(v) ≤ 0.

We adapt Theorem 5.4 to our setting through the following corollary.

Corollary 5.5. There exist c > 0 and d0 such that in all dimensions d ≥ d0, for all even n and all L ≥ 1, denoting

A := {
r ∈ Hom

(
Td

n

) : there exists a sublevel component A such that |∂A| ≥ L
}
,

the following holds,

|A|
|Hom(Td

n)| ≤ 2d2nd exp

(
− cL

d log2 d

)
.
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Proof. Fix L ≥ 1 and let B := {r ∈ Hom(Td
n) : ∃v ∈ Td

n, v ∼ 0, s.t. |∂ LC+
r (0, v)| ≥ L}. By Theorem 5.4 with u = 0,

and using a union bound on all v ∼ 0, we have

|B| ≤ 2d · d exp

(
− cL

d log2 d

)∣∣Hom
(
Td

n

)∣∣ for all d greater then some fixed d0.

Now, for every w ∈ Td
n define the mapping ηw : Hom(Td

n) → Hom(Td
n) by

ηw(r)(v) := r(v + w) − r(w).

It is not difficult to check that this mapping is well defined and is a bijection. Moreover, for every r ∈ A there exists a
w ∈ Td

n such that ηw(r) ∈ B . The corollary follows. �

In order to apply Corollary 5.5, we must show that HHFs in the image of �m, when projected to the torus, contain a
sublevel component with a long boundary. We proceed in two steps. First, we claim that the projection of the boundary
of the set V0 from Proposition 5.1 is contained in the boundary of a sublevel component of the projection of �m(h).
Then we claim that this boundary is long. Recall that π was defined in Section 2.1 to be the natural projection from
Zd to Td

n . Here we use also the natural extension of π to edges of Zd .

Lemma 5.6. Let h ∈ QPm for m ∈ 6Zd satisfying m1 > 0. Let r = π ◦ �m(h) and V0 be as in Proposition 5.1. There
exists a sublevel component R of r such that π(∂V0) ⊆ ∂R.

We delay the proof of this lemma to Section 5.3.
At last we are ready to prove the theorem.

Proof of Theorem 2.3. Let m ∈ 6Zd \ {0}. Using an appropriate rotation we may assume without loss of general-
ity that m1 > 0. Fixing h ∈ QPm and applying Lemma 5.6 and Lemma 3.8, we obtain the existence of a sublevel
component R of π ◦ �m(h) such that |∂R| ≥ nd−1. Thus

π
(
�m(QPm)

) ⊂ {
r ∈ Hom

(
Td

n

) : there exists a sublevel component A of r such that |∂A| ≥ nd−1 }
.

Recall that π is a bijection from QP0 to Hom(Td
n). Thus, applying Corollary 5.5, we get that for large enough d ,

∣∣�m(QPm)
∣∣ ≤ 2d2nd exp

(
− cnd−1

d log2 d

)∣∣Hom
(
Td

n

)∣∣ ≤ exp

(
− c′nd−1

d log2 d

)
|QP0 |

for some c, c′ > 0. Thus, since �m is one-to-one, the theorem follows. �

5.3. Projecting type 0 sublevel components to the torus

In this section we prove Lemma 5.6 connecting sublevel components on QP0 with those on Hom(Td
n). While the

relation between sublevel components of HHFs on the integer lattice and those of HHFs on the torus is non-trivial, the
relation between sublevel sets of the two spaces is much simpler. In particular,

π
(
LC+

t (u)
) = LC+

π(t)

(
π(u)

)
for all t ∈ QP0 and u ∈ Zd . (5.19)

This can be easily verified from the definition of sublevel sets.
Next, we prove a proposition relating the boundaries of sublevel components on Zd to those of sublevel components

on Td
n . We then show that this proposition applies to the set V0 from Proposition 5.1, and use this fact to prove

Lemma 5.6. We remind the reader that A+ and A++ were introduced in Section 2.1.

Proposition 5.7. Let t ∈ QP0 and r = π(t) ∈ Hom(Td
n). Suppose V := LC+

t (u, v) for adjacent vertices u,v ∈ Zd

satisfying t (v) = t (u) + 1. If

π
(
V ++ \ V

) ∩ π
(
LC+

t (u)
) =∅ (5.20)
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then

π(∂V ) ⊆ ∂ LC+
r

(
π(u),π(v)

)
. (5.21)

Proof. Let R := LC+
r (π(u),π(v)). We first note that (5.21) follows from the following two claims,

π(∂•V ) ⊆ R, (5.22)

π(∂◦V ) ⊆ Rc. (5.23)

We begin by showing (5.22). Indeed, we have:

π(∂•V ) ⊆ π
(
LC+

t (u)
) = LC+

r

(
π(u)

) ⊆ R,

where the equality follows from (5.19), and the two containment relations follow from Proposition 4.1.
Next we show (5.23). By Proposition 3.1, using the fact that V is co-connected by Proposition 4.1, we get that

π(V ++ \ V ) is a connected set which contains π(v) (recall that u ∼ v). By (5.19) and (5.20), π(V ++ \ V ) is disjoint
from LC+

r (π(u)). By the definition of sublevel component this implies that π(V ++ \ V ) ⊆ Rc . Since π(∂◦V ) ⊆
π(V ++ \ V ), we deduce (5.23). �

At last, we prove Lemma 5.6. Let h ∈ QPm for m ∈ 6Zd satisfying m1 > 0. Let U = U0, V = V0, W = W0 and
� be as in Proposition 5.1. Let also t := �m(h) and r := π(t). Our goal is to show that V satisfies the conditions of
Proposition 5.7, from which Lemma 5.6 will follow.

Write T for the set of type 0 sublevel components T ′ satisfying h(∂•T ′) = h(∂◦W) − δ + 1 and W − �� T ′ � V .
Recall that W − � � V by (5.4), h(∂•(W − �)) = h(∂•W) − δ, h(∂•V ) = h(∂•W) − 1 by (5.2) and that δ ≥ 6 by
(5.7). Hence, by Lemma 4.13, we conclude that T is non-empty. Write T for the minimal element of T .

Let us show that T ⊆ U . By Lemma 4.13 applied to T � V , using that h(∂•T ) = h(∂◦W) − δ + 1 and h(∂•V ) =
h(∂•W)−1, there exists a U ′ satisfying that (U ′)c is a type 0 superlevel component such that h(∂•U ′) = h(∂◦W)−δ/2
and T ⊆ U ′ � V . Next, observe that 0 /∈ U ′, since 0 /∈ V by (5.2), and that −ne1 ∈ U ′, since −ne1 ∈ W − � � T by
(5.8). Thus, (5.4) and the definition of U (in particular, the fact that Uc is minimal), imply that U ′ ⊆ U . We conclude
that

W − �� T ⊆ U. (5.24)

Next, the definition (5.11) of �m, (5.24) and the definition of T imply that

t (∂•T ) = 2h(∂◦W) − h(∂•T ) − δ = h(∂◦W) − 1.

Now, since U � V � W by (5.4), the definition of �m implies that

h(∂◦V ) = t (∂◦V ).

Thus, by (5.2),

t (∂•T ) = t (∂◦V ). (5.25)

We now check that V satisfies the conditions of Proposition 5.7. Recall that by (5.16), V is a sublevel component
of t . Let u ∈ ∂•V , v ∈ ∂◦V be two adjacent vertices. By Corollary 4.4 we have V = LC+

t (u, v). Observe that the
condition (5.20) is equivalent to((

V ++ \ V
) + z

) ∩ LC+
t (u) =∅ for all z ∈ nZd .

Since (V ++ \ V ) + z = (V ++ + z) \ (V + z) and since V is of type 0 having, by Proposition 5.2, � as a minimal
translation, this is equivalent to((

V ++ + k�
) \ (V + k�)

) ∩ LC+
t (u) =∅ for all k ∈ Z. (5.26)
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We note that T � V by the definition of T . It follows from (5.25) that the set S := V \ T satisfies t (s) = t (∂◦V ) for
all s ∈ ∂◦S. As u /∈ T , this implies that LC+

t (u) ⊆ S. Thus, to check condition (5.26) it suffices to show that((
V ++ + k�

) \ (V + k�)
) ∩ S =∅ for all k ∈ Z,

which, since S = V \ T , is itself implied by

V ++ + k� ⊆ T for all k ≤ −1,

V + k� ⊇ V for all k ≥ 0.
(5.27)

Since � is a minimal translation for V , the second part of (5.27) follows trivially and it suffices to check the first part
for k = −1. Finally, the condition that (V ++ − �) ⊆ T follows from the fact that V − �,W − � and T are boundary
disjoint and satisfy V − � � W − � � T . This is a consequence of (5.4), Proposition 4.3 and the definition of T .
Thus the condition of Proposition 5.7 is satisfied. Lemma 5.6 follows from (5.21).

6. Steep slopes are extremely unlikely

In this section we detail how to modify the proof of Theorem 2.3 to prove Theorem 2.4.
A main ingredient in the proof of the theorem is the following proposition which is a consequence of the results

of [18].

Proposition 6.1 (Enhanced version of Corollary 5.5). There exist c > 0 and d0 such that in all dimensions d ≥ d0,
for all even n, all integer k ≥ 1 and L ≥ nd−1, denoting

A :=
{

r ∈ Hom
(
Td

n

) : ∃u,v ∈ Td
n s.t. r(v) ≥ r(u) + k and

k−1∑
j=0

∣∣∂ LC(r(u)+j)+
r (u, v)

∣∣ ≥ L

}
,

the following holds,

|A|
|Hom(Td

n)| ≤ exp

(
− cL

d log2 d

)
.

We make the assumption that L ≥ nd−1 in order to simplify the proof of the proposition and as it suffices for
our purposes in this section but we remark that similar estimates may be established for all L ≥ 1 using additional
arguments (e.g., the isoperimetric estimates of [18, Theorem 5.1]).

Proof of Proposition 6.1. Define

B :=
{

r ∈ Hom
(
Td

n

) : ∃v ∈ Td
n s.t. r(v) ≥ k and

k−1∑
j=0

∣∣∂ LCj+
r (0, v)

∣∣ ≥ L

}
.

Using a similar argument as in the proof of Corollary 5.5 (defining the mapping ηw) it suffices to show that

|B|
|Hom(Td

n)| ≤ n−d exp

(
− cL

d log2 d

)
.

Equation (72) in [18, Proof of Proposition 5.15] implies that for each (Lj ), 0 ≤ j < k, with Lj ≥ 1 we have

|{r ∈ Hom(Td
n) : ∃v ∈ Td

n s.t. |∂ LCj+
r (0, v)| = Lj for all 0 ≤ j < k}|

|Hom(Td
n)| ≤ nddk exp

(
−c′ ∑k−1

j=0 Lj

d log2 d

)
,
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for some c′ > 0. We deduce that

|B|
|Hom(Td

n)| ≤
∞∑

L̄=L

nddk exp

(
− c′L̄

d log2 d

)∣∣{(L0, . . . ,Lk−1) : Lj ≥ 1,L0 + · · · + Lk−1 = L̄
}∣∣

= nddk
∞∑

L̄=L

(
L̄ − 1

k − 1

)
exp

(
− c′L̄

d log2 d

)
≤ nddk

∞∑
L̄=L

L̄k exp

(
− c′L̄

d log2 d

)
.

Next observe that if B is non-empty then k is at most the diameter of Td
n . Thus we assume without loss of generality

that k ≤ dn. Recalling also our assumption that L ≥ nd−1, we see that the ratio of consecutive terms in the last sum
equals(

1 + 1

L̄

)k

exp

(
− c′

d log2 d

)
≤ exp

(
− c′

d log2 d
+ k

L̄

)
≤ exp

(
− c′

d log2 d
+ d

nd−2

)
≤ exp

(
− c′

2d log2 d

)

for large enough d . Thus we conclude that

|B|
|Hom(Td

n)| ≤ nd(dL)k exp

(
− c′L

d log2 d

) ∞∑
L̄=L

exp

(
−c′(L̄ − L)

2d log2 d

)

≤ nd(dL)kd2 exp

(
− c′L

d log2 d

)
≤ n−d exp

(
− c′L

2d log2 d

)

for large enough d , where in the last step we used again that k ≤ dn and L ≥ nd−1. �

We begin by formulating various properties of functions in QPm which are needed for the proof of Theorem 2.4.
Fix m ∈ 6Zd \ {0}. Assume that QPm �=∅ as the theorem is trivial otherwise. Assume also, without loss of generality,
that the first coordinate of m is positive and is the largest in absolute value among all coordinates, and write

σ := m1

6
= h(ne1)

6
.

Fix h ∈ QPm and recall our definition of W0, �, δ and �m from Section 5.1. We write

p := δ

6
and � := σ

p
= h(ne1)

δ
. (6.1)

We remark that it is possible to show that δ,p and � depend only on m, but since this fact will not be of use to us, we
do not prove it. Observe that σ is a positive integer as m ∈ 6Zd and m1 > 0. In addition, by (5.5), (5.6), (5.7) and the
argument in the paragraph there, we have that p and � are also positive integers and that

W0 + ne1 = W0 + ��. (6.2)

We wish to find a single pair of vertices separated by p sublevel components of π ◦ �m(h), each with boundary
size at least �nd−1. We remark that more components may be found, at least as many as δ

2 − 2, but this is not required
for our results. We proceed by defining additional type 0 sublevel components of h, whose roles are similar to the role
of V0 in the proof of Theorem 2.3 (Section 5).

Define V
p−1
0 , as the maximal type 0 sublevel component of h satisfying

h
(
∂•V p−1

0

) = h(∂•W0) − 3p + 2, W0 − � ⊆ V
p−1
0 ⊆ W0, 0 /∈ V

p−1
0 and −ne1 ∈ V

p−1
0 .

Further define V i
0 , 0 ≤ i < p − 1, as the minimal type 0 sublevel component of h satisfying

h
(
∂•V i

0

) = h(∂•W0) − 3i − 1, V
p−1
0 ⊆ V i

0 ⊆ W0.
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We recall the set U0 defined in Section 5.1. The following proposition is a generalization of the part of Proposi-
tion 5.1 which pertains to V0.

Proposition 6.2. {V i
0 }p−1

i=0 are well defined, and satisfy

U0 � V
p−1
0 � · · ·� V 0

0 � W0. (6.3)

Proof. Following the proof of Proposition 5.1 we write Vp−1 for the set of type 0 sublevel components V ′ satisfying
h(∂•V ′) = h(∂•W0) − 3p + 2, W0 − � � V ′ � W0, 0 /∈ V ′ and −ne1 ∈ V ′. We observe that Vp−1 ⊆ L(−ne1,0), and
thus, by Proposition 4.6, Vp−1 is ordered by inclusion and finite. Moreover, applying the first part of Lemma 4.13
with h, W0 − � and W0 we obtain the existence of a type 0 sublevel component V ′

p−1 which satisfies h(∂•V ′
p−1) =

h(∂•W0) − 3p − 2 and W0 − � � V ′
p−1 � W0. By the minimality of W0 we have 0 /∈ V ′

p−1. As −ne1 ∈ W0 − � by

(5.8), we have −ne1 ∈ V ′
p−1 and hence V ′

p−1 ∈ Vp−1 and Vp−1 is not empty. We deduce that V
p−1
0 is well defined.

For 0 ≤ i < p − 1 we now define V i as the set of type 0 sublevel components V ′ satisfying h(∂•V ′) = h(∂•W0) −
3i − 1, V

p−1
0 � V ′ � W0. Using the same arguments as above we observe that V i is ordered by inclusion and finite.

Applying once again the first part of Lemma 4.13, now with h, V
p−1
0 and W0 we obtain the existence of a a type 0

sublevel component V ′
i which satisfies h(∂•V ′

i ) = h(∂•W0) − 3i − 1 and V
p−1
0 � V ′

i � W0. Thus V i is not empty and
V i

0 is well defined.

We proceed to show the inclusion relations (6.3). We have V 0
0 � W0 and V

p−1
0 � V

p−2
0 (when p > 1) by the

definition of V 0
0 and V

p−2
0 . Next, for each 0 < i < p − 1 the first part of Lemma 4.13 applied with h, V

p−1
0 and V i−1

0

shows that there exists an element V ′′
i ∈ V i satisfying V

p−1
0 � V ′′

i � V i−1
0 , whence the inclusion V i

0 � V i−1
0 follows

from the minimality of V i
0 . It remains to show that U0 � V

p−1
0 and this is done next by exhibiting an element of Vp−1

which strictly contains U0.
To do so we repeat the arguments in the proof of Proposition 5.1 concerning the fact that U0 � V0. Let u ∈ ∂•U0,

w ∈ ∂◦W0 and write V ′′
p−1 = LC(h(∂•W0)−3p+2)+

h (u,w). Our goal is to show that V ′′
p−1 ∈ Vp−1. By the first item of

Corollary 4.2 applied to V ′′
p−1 and Wc

0 we have V ′′
p−1 ⊆ W0. Since U0 is co-connected, by Proposition 3.1 we have

that ∂•U0 ∪ ∂◦U0 is a connected set of vertices of height less or equal to h(∂◦W) − δ/2 + 1 = h(∂•W0) − 3p + 2.
Therefore ∂•U0 ∪ ∂◦U0 ⊆ LC(h(∂•W0)−3p+2)+

h (u) and since w /∈ U0 we have U0 ⊆ V ′′
p−1 and hence −ne1 ∈ V ′′

p−1.
Since W0 − � � U0 � V ′′

p−1 � W0 and since W0 is of type 0, we get from Proposition 3.6 that V ′′
p−1 is of type 0.

By the minimality of W0 we get that 0 /∈ V ′′
p−1. Thus V ′′

p−1 ∈ Vp−1, and by the maximality of V
p−1
0 we get that

U0 � V ′′
p−1 ⊆ V

p−1
0 as required. �

For each 0 ≤ i ≤ p − 1, repeating the proof of Proposition 5.2 with V i
0 + j� in the role of Vj we get that � is a

minimal translation of V i
0 , and that, moreover, for every z ∈ nZd and integer k,

V i
0 + z = V i

0 + k� if and only if W0 + z = W0 + k�. (6.4)

In particular, (6.2) implies that

V i
0 + ne1 = V i

0 + �� for all 0 ≤ i ≤ p − 1.

Consequently, by Lemma 3.8,∣∣π(
∂V i

0

)∣∣ ≥ �nd−1 for all 0 ≤ i ≤ p − 1.

In particular, by the definition (6.1) of p and �,

p−1∑
i=0

∣∣π(
∂V i

0

)∣∣ ≥ p · �nd−1 = σnd−1. (6.5)
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Aiming to use Proposition 6.1, we proceed to find two vertices on the torus such that the sublevel components of
π ◦ �m(h) between these vertices contain the sets π(∂V i

0 ) in their boundaries.

Proposition 6.3. Let u ∈ ∂•V p−1
0 and v ∈ ∂◦V 0

0 . Then, for each 0 ≤ i ≤ p − 1,

V i
0 = LC(h(u)+3(p−1−i))+

h (u, v) (6.6)

and

π
(
∂V i

0

) ⊆ ∂ LC(h(u)+3(p−1−i))+
π◦�m(h)

(
π(u),π(v)

)
. (6.7)

Proof. As u ∈ ∂•V p−1
0 , we have h(u) = h(∂•W0) − 3p + 2 and as v ∈ ∂◦V 0

0 we have h(v) = h(∂•W0). Denote

Ai := LC(h(∂•W0)−3i−1)+
h (u, v) = LC(h(u)+3(p−1−i))+

h (u, v), 0 ≤ i ≤ p − 1.

We show that V i
0 = Ai for all i, proving (6.6). First, as u ∈ ∂•V p−1

0 and h(v) > h(u), we immediately have

that Ap−1 = V
p−1
0 by Corollary 4.4. Now fix 0 ≤ i < p − 1. It follows also that Ai ⊇ V

p−1
0 . Moreover, as

h(∂•V i
0 ) = h(∂•Ai) and, by (6.3), u ∈ V i

0 , it follows that LCh(∂•Ai)+
h (u) ⊆ V i

0 . From this, as v /∈ V i
0 by (6.3) and

(V i
0 )c is connected, we conclude that Ai ⊆ V i

0 . Since Ai both contains and is contained in sublevel components of
type 0, we conclude from Proposition 3.6 that Ai is of type 0. The minimality of V i

0 now implies that V i
0 ⊆ Ai , leading

to the equality V i
0 = Ai that we wanted to prove.

We now proceed to prove (6.7). Fix 0 ≤ i ≤ p − 1. Let us prove first that

π
(
∂•V i

0

) ⊆ LC
h(∂•V i

0 )+
π◦�m(h)

(
π(u)

)
. (6.8)

To this end, it suffices to show that

∂•V i
0 ⊆ LC

h(∂•V i
0 )+

�m(h) (u). (6.9)

Denote Bi := LC
h(∂•V i

0 )+
h (u). By the definition (5.11) of �m we have (as in (5.14))

�m(h)(w) = h(w) for all w ∈ W+
0 \ U−

0 . (6.10)

Therefore, as ∂•V i
0 ⊆ Bi by (6.6) and part 4 of Proposition 4.1, as ∂•V i

0 ⊆ W+
0 \ U−

0 by (6.3) and as u ∈ Bi ∩ (W+
0 \

U−
0 ), the containment (6.9) will follow once we show that Bi ∩ (W+

0 \ U−
0 ) is connected. To see this, note that as

h(∂•W0) > h(∂•V i
0 ) and u ∈ W0, it follows from the definition of Bi that Bi ⊆ W0. Moreover, as ∂•U0 ∪ ∂◦U0 is

connected by Proposition 3.1 and as h(∂•V i
0 ) > h(∂•U0), it follows from the definition of Bi that if Bi ∩ U0 �=∅ then

∂•U0 ∪ ∂◦U0 ⊆ Bi . Since Bi is connected by its definition, we conclude that Bi \U−
0 is also connected. It follows that

Bi ∩ (W+
0 \ U−

0 ) is connected, as we wanted to show, implying (6.9) and (6.8).
To prove (6.7), it remains to show that

π
(
∂◦V i

0

) ⊆ LC
h(∂•V i

0 )+
π◦�m(h)

(
π(u),π(v)

)c
. (6.11)

Write Ci := LC
h(∂•V i

0 )+
π◦�m(h) (π(u)). As both v ∈ W+

0 \ V i
0 and ∂◦V i

0 ⊆ W+
0 \ V i

0 by (6.3), the containment (6.11) is a
consequence of

π
(
W+

0 \ V i
0

)
is connected, (6.12)

Ci ∩ π
(
W+

0 \ V i
0

) =∅. (6.13)
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Let us show that W+
0 \ V i

0 is connected, which will imply (6.12). Indeed, the facts that V i
0 ⊆ W0 by (6.3) and

h(∂◦W0) ≥ h(∂•V i
0 ) + 2 imply that (V i

0 )++ \ V i
0 ⊆ W+

0 \ V i
0 . Proposition 3.1 shows that (V i

0 )++ \ V i
0 is connected.

Thus, as W+
0 is connected we obtain that W+

0 \ V i
0 remains connected.

Let us now prove (6.13). Since, by (6.10) and (6.3), we have the inequalities �m(h)(∂◦W0) > h(∂•V i
0 ) and

�m(h)(∂◦V i
0 ) > h(∂•V i

0 ), it suffices to show that

π(u) /∈ π
(
W+

0 \ V i
0

)
.

Suppose, in order to obtain a contradiction, that u + z ∈ W+
0 \ V i

0 for some z ∈ nZd . Recalling (6.4), let k be the
integer satisfying V i

0 + z = V i
0 + k� and W0 + z = W0 + k�. Necessarily k �= 0 as otherwise, since u ∈ V i

0 by (6.3),
also u + z ∈ V i

0 + z = V i
0 and hence u + z /∈ W+

0 \ V i
0 . For k �= 0, as u ∈ W0 \ ((W0 − �)+) by (6.3), Proposition 5.1

and the fact that h(u) = h(∂•W0) − δ
2 + 2 > h(∂•(W0 − �)) = h(∂•W0) − δ, it follows that u + z ∈ (W0 + k�) \

((W0 − (k − 1)�)+). This contradicts our assumption that u + z ∈ W+
0 \ V i

0 as (W0 + k�) \ ((W0 − (k − 1)�)+) is
disjoint from W+

0 \ (W0 − �) and (W0 − �) ⊆ V i
0 by (6.3) and Proposition 5.1. This finishes the proof of (6.13) and

hence the proof of the proposition. �

We may now deduce Theorem 2.4 in a straightforward manner.

Proof of Theorem 2.4. Let m ∈ 6Zd \ {0}. Assume, without loss of generality (as |QPm | does not change when
permuting the coordinates of m and replacing m with −m), that the first coordinate of m is positive and is the largest
in absolute value among all coordinates. Recall from (6.1) that for each h ∈ QPm we may define p = p(h) and
� = �(h). As both p(h) and �(h) are positive integers it follows from (6.1) that 1 ≤ p(h) ≤ m1

6 . Denote QPm,p := {h ∈
QPm : p(h) = p}.

Proposition 6.3 together with (6.5) show that for each h ∈ QPm,p , denoting r := π ◦ �m(h), there exist u,v ∈ Td
n

satisfying r(v) = r(u) + 3p − 2 and
∑3p−3

j=0 |∂ LC(r(u)+j)+
r (r(u), r(v))| ≥ m1

6 nd−1. This allows us to apply Proposi-

tion 6.1, using also that π ◦ �m is one-to-one and that |Hom(Td
n)| = |QP0 |, to deduce that in high dimensions,

|QPm |
|QP0 | = |(π ◦ �m)(QPm)|

|Hom(Td
n)| =

∑m1/6
p=1 |(π ◦ �m)(QPm,p)|

|Hom(Td
n)|

≤ m1

6
exp

(
−cm1n

d−1

d log2 d

)
≤ exp

(
−c′m1n

d−1

d log2 d

)

for some c, c′ > 0, as we wanted to show.
�

7. Near optimality of the bound

In this section we prove Proposition 1.3.
Assume that the dimension d is sufficiently large for the following calculations and fix an even integer n. Let f be

a uniformly chosen proper 3-coloring of Td
n . Define the events

Ax := {
f (y) = 0 for all y ∈ Td

n with dist(x, y) = 2
}
, x ∈ Td

n.

The following claim is a consequence of our main theorem, Theorem 1.1.

Lemma 7.1. For each x ∈ Td
n we have

P(Ax) ≥ 1

7
.
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Proof. Observe that Theorem 1.1 and Markov’s inequality imply that there exists a constant c > 0 for which

P

(
min

i∈{0,1} CPi,k(f ) ≥ exp

(
− cd

log2 d

))
≤ exp

(
− cd

log2 d

)
, k ∈ {0,1,2}.

By the union bound,

P(E) ≤ 3 exp

(
− cd

log2 d

)
, (7.1)

where

E :=
{
∃k ∈ {0,1,2}, min

i∈{0,1} CPi,k(f ) ≥ exp

(
− cd

log2 d

)}
.

As the coloring f is proper, on the event Ec we necessarily have some random k0 ∈ {0,1,2} and i0 ∈ {0,1} such that

CPi0,k0(f ) ≥ 1 − 2 exp

(
− cd

log2 d

)
.

By the homogeneity of the torus, it follows that for each y ∈ V i0 ,

P
(
f (y) �= k0|Ec, i0

) ≤ 2 exp

(
− cd

log2 d

)
.

We conclude that for each x ∈ V i0 ,

P
(
f (y) = k0 for all y ∈ Td

n with dist(x, y) = 2|Ec, i0
) ≥ 1 − 8d2 exp

(
− cd

log2 d

)
.

Using the homogeneity of the torus again and symmetry between the 3 colors, for each x ∈ Td
n ,

P
(
Ax |Ec

) ≥ 1

6

(
1 − 8d2 exp

(
− cd

log2 d

))
,

from which the lemma follows for sufficiently large d using (7.1). �

We note for later use that for each x ∈ Td
n , by the domain Markov property,

P
(
f (x) = 1|Ax

) = 1

22d + 2
and P

(
f (x + e) = 1|Ax

) = 1

2
, (7.2)

where e is a standard basis vector.
Let T ⊂ V 0 be such that for any two distinct x1, x2 ∈ T we have dist(x1, x2) ≥ 4 and |T | ≥ |V 0|

5d2 . Such a set may be

constructed greedily as for any x ∈ V 0, |{y ∈ V 0 : dist(x, y) ≤ 3}| ≤ 5d2. Let T0 ⊂ T be the collection of x ∈ T for
which the event Ax occurs and write S = |T0|. We have E(S) ≥ 1

7 |T | by Lemma 7.1, whence by Markov’s inequality
for |T | − S we obtain

P

(
S >

1

8
|T |

)
= 1 − P

(
|T | − S ≥ 7

8
|T |

)
≥ 1 − 8

7

|T | −E(S)

|T | ≥ 1

49
. (7.3)

For each x ∈ Td
n define the 1-ball around x by

Bx := {
y ∈ Td

n : dist(x, y) ≤ 1
}
.
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Let FT be the sigma algebra generated by the values f (y), where y ranges over all vertices in Td
n satisfying that

dist(x, y) = 2 for some x ∈ T . Observe that T0 is measurable with respect to FT . Observe further that conditioned on
FT , by the domain Markov property, the values that f takes on each Bx , x ∈ T0, are uniformly sampled 3-colorings
of Bx with zero boundary conditions on ∂◦Bx , and these colorings are independent between the different x ∈ T0. Fix
an arbitrary (measurable with respect to FT ) partition T 0

0 � T 1
0 = T0 with |T 0

0 | = 
S
2 � and |T 1

0 | = �S
2 
. We then have

that, conditioned on FT ,

min
i∈{0,1} CPi,1(f ) ≥ min(|{x ∈ T 0

0 : f (x) = 1}|, |{x ∈ T 1
0 : f (x + e1) = 1}|)

|V 0| = min(X,Y )

|V 0| ,

where X,Y are independent binomial random variables satisfying, by (7.2), X ∼ Bin(
S
2 �, 1

22d+2
) and Y ∼

Bin(�S
2 
, 1

2 ). The fact that S is measurable with respect to FT , together with (7.3), now allows to conclude that

E
(

min
i∈{0,1} CPi,1(f )

)
≥ c′

d2
2−2d,

for some c′ > 0. As the color k = 1 is arbitrary, this concludes the proof of the proposition.

8. Remarks and open problems

In this section we discuss a few open problems and make a remark.

1. (Tori with odd side length) In this work we consider a uniformly sampled proper 3-coloring of a high-dimensional
discrete torus with even side length. Our main result is that for such a coloring, with high probability, one of the
two bipartition classes is dominated by a single color. How will this result change if we take n, the side length of
the torus, to be odd? since tori with odd side length are no longer bipartite, some change must occur. We expect
that in this situation, we will find in a typical coloring three ‘pure phase’ regions. Each of these regions will have a
distinct dominant color coloring one of its bipartition classes while the two remaining colors equally dominate the
other bipartition class. Every two regions will be separated by a single long odd interface (of size roughly nd−1),
and the vertices on each side of the interface will be colored by the dominant color of their region.

2. (Positive temperature) In physical terminology, a uniformly chosen proper 3-coloring is the zero-temperature case
of the antiferromagnetic 3-state Potts model. The positive temperature version of this model is defined as fol-
lows. A 3-coloring f , not necessarily proper, of the underlying graph is sampled with probability proportional
to exp(−βH(f )), where β > 0 is a parameter proportional to the inverse temperature and H(f ) is the number
of edges (u, v) for which f (u) = f (v). We expect that the analog of Theorem 1.1 continues to hold when the
temperature is small, but positive (that is, when β is sufficiently large). Proving this is complicated by the fact that
non-proper 3-colorings are no longer related to height functions.

3. (Larger number of colors) As explained in Section 1.3, it is expected that Theorem 1.1 has a natural extension to
proper colorings of the torus with more than 3 colors. Specifically, that for each q there is some d0(q) such that if
d ≥ d0(q) then a typical proper q-coloring of Td

n has the property that the q colors split into two sets of sizes 
q/2�
and �q/2
 with each bipartition class dominated by colors from one of the two sets. Proving this is wide open even
for the case q = 4. A result of Vigoda [23] implies that d0(q) ≥ 3

11q . In [4, Conjecture 5.3] it is conjectured that
d0(q) = q/2, at least in the sense that certain “long range influences” exist if and only if d ≥ q/2. However, any
result showing that d0(q) < ∞ will constitute a major advance.

We end with the following remark. Our work extends certain results from [18]. The results in [18] were proven in
greater generality than simply for the torus Td

n . There, also tori with non-equal side lengths were considered, of the
form T1

n1
× T1

n2
× · · · × T1

nd
. These include, in particular, “two-dimensional” tori of the form T2

n × Td
2 for d a fixed

large constant. In our work, for simplicity, we considered only the case of the torus Td
n . However, it seems that our

arguments can be adapted with no difficulty to the more general tori for which results were obtained in [18].
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