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Abstract. A representation of the degrees of freedom akin to Stein’s lemma is given for a class of estimators of a mean value
parameter in R

n. Contrary to previous results our representation holds for a range of discontinues estimators. It shows that even
though the discontinuities form a Lebesgue null set, they cannot be ignored when computing degrees of freedom. Estimators
with discontinuities arise naturally in regression if data driven variable selection is used. Two such examples, namely best subset
selection and lasso-OLS, are considered in detail in this paper. For lasso-OLS the general representation leads to an estimate
of the degrees of freedom based on the lasso solution path, which in turn can be used for estimating the risk of lasso-OLS.
A similar estimate is proposed for best subset selection. The usefulness of the risk estimates for selecting the number of variables
is demonstrated via simulations with a particular focus on lasso-OLS.

Résumé. Une représentation des degrés de liberté comparable au lemme de Stein est donnée pour une classe d’estimateurs du
paramètre de la moyenne dans R

n. Contrairement aux résultats précédents, notre représentation est valable pour une famille
d’estimateurs discontinus. Cela montre que même si les discontinuités sont de mesure de Lebesgue zéro, elles ne peuvent pas
être ignorées lors du calcul des degrés de liberté. Les estimateurs avec discontinuités apparaissent naturellement dans les modèles
de régression si de la sélection de variables par les données est utilisée. Deux tels exemples, la sélection du meilleur sous-ensemble
et le lasso-OLS, sont considérés en détail dans l’article. Pour le Lasso-OLS, la représentation générale mène à une estimation des
degrés de liberté basée sur le chemin de la solution Lasso, qui à son tour peut être utilisée pour estimer le risque du lasso-OLS.
Une estimation similaire est proposée pour la sélection du meilleur sous-ensemble. L’utilité des estimées de risque pour le choix
du nombre de variables est démontrée par des simulations qui se concentrent en particulier sur lasso-OLS.
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1. Introduction

Representations of the effective dimension of a statistical model have been studied extensively in many different
frameworks. For classical model selection criteria such as AIC and Mallows’s Cp the dimension of the parameter space
is used to adjust the empirical risk for its optimism so as to provide a fair model score across different dimensions.
A number of extensions to models or methods without a well defined dimension exist, such as the trace of the smoother
matrix for scatter plot smoothers, see e.g. [13], and the use of the divergence of a sufficiently differentiable estimator
based on Stein’s lemma as described in [5]. Stein’s lemma was used by Zou et al. [28] and Tibshirani and Taylor [25]
to demonstrate that for the lasso estimator in a linear regression model with Gaussian errors, the number of estimated
non-zero parameters is an appropriate estimate of the effective dimension.

It is well known that neither Mallows’s Cp nor AIC or related information criteria correctly adjust for the optimism
that results from selecting one model among a number of models of equal dimension. The usage of such methods for
model selection without adequate adjustments was called “a quiet scandal in the statistical community” by Breiman
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[1], who proposed a bootstrap based method for risk estimation as an alternative. Ye [27] defined the notion of gener-
alized degrees of freedom for an estimator of the mean in a Gaussian model and showed how to use this number for
risk estimation. The results by Ye apply to discontinuous estimators that involve model selection, but his proposal for
computing the degrees of freedom was similarly to Breiman’s based on refitting models to perturbed data.

If the estimator satisfies the differentiability requirements for Stein’s lemma, Lemma 2 in [21], the divergence of
the estimator w.r.t. the data is an unbiased estimate of the degrees of freedom in the generalized sense of [27]. This
was used by Donoho and Johnstone [4], Meyer and Woodroofe [18], Zou et al. [28], Kato [14] and Tibshirani and
Taylor [25] among others to derive formulas for the degrees of freedom of estimators that are Lipschitz continuous.

For estimators with discontinuities Stein’s lemma generally breaks down and the divergence will not be an un-
biased estimate of the degrees of freedom. Note that an estimator can be continuous or even differentiable almost
everywhere – it can be a projection locally – and still be defined globally in such a way that it has non-ignorable
discontinuities. This is, in particular, the case in regression when data adaptive variable selection is used to select
among a number of projection estimators. Best subset selection is one central example, but variable selection proce-
dures lead in general to non-ignorable discontinuities. A variable selection procedure effectively divides the sample
space into a finite number of disjoint regions, with the estimator being a projection, say, on each region. The resulting
estimator consisting of a selection step and a projection step will generally be discontinuous on the boundary between
two regions.

Tibshirani [24] recently made headway with the computation of the degrees of freedom for some discontinuous es-
timators. Specifically, he considered a linear regression model with an orthogonal design and showed how to compute
the degrees of freedom for hard thresholding, which for orthogonal designs is equivalent to the Lagrangian formula-
tion of best subset selection. He also gave an extension of Stein’s lemma to some discontinuous estimators, though
it was not shown if this extension applies to subset selection estimators. Hansen and Sokol [12] gave a different
generalization of Stein’s lemma for all estimators that are metric projections onto a closed set. This generalization
applies to subset selection and other estimators with non-convex constraints, but did not lead to a readily computable
representation of the contribution to the degrees of freedom that are due to the discontinuities of the metric projection.

The first main contribution of this paper is the general Theorem 2.4, which is a version of Stein’s lemma for
estimators that are locally Lipschitz continuous on each of a finite number of open sets, whose union makes up
Lebesgue almost all of R

n. This is a broad class of estimators containing a number of regression estimators that
include variable selection. Compared to existing results, Theorem 2.4 holds under verifiable conditions without putting
restrictions on the design matrix such as orthogonality.

As a main example the lasso-OLS estimator in a linear regression setup is investigated in detail in Section 3. The
lasso-OLS estimator consists of two steps: variable selection using lasso followed by ordinary least squares estimation
using the selected variables. This estimator was referred to as the LARS-OLS hybrid in [6], and it is a limit case of
the relaxed lasso as considered in [17]. We follow the terminology of [2], p. 34, and call it the lasso-OLS estimator.

The second main contribution of this paper is a derivation of a computable estimate of the degrees of freedom – and
thus the risk – for lasso-OLS, which only involves the computation of a single lasso solution path and corresponding
OLS estimators along the path. Simulation studies reported in Section 4 demonstrated that the resulting risk estimate
leads to reliable model selection across a range of different designs and parameter settings, and that the risk estimate
itself has smaller mean squared error than the computationally more demanding cross-validation estimate.

For the Lagrangian formulation of best subset selection it is also demonstrated that Theorem 2.4 holds, but the
situation is more complicated than for lasso-OLS. However, it is possible to derive an approximation, which is exact
for orthogonal designs, as shown in Section 5.

The proof of Theorem 2.4 and some auxiliary technical results are in the appendix.

2. A general representation of degrees of freedom

Throughout the paper we consider the multivariate Gaussian model N (μ,σ 2I ) on R
n with μ the unknown parameter,

and we let μ̂ : Rn → R
n denote an estimator of μ. A typical application is to linear regression estimators of the

form Xβ̂ where X denotes an n × p matrix and β̂ denotes an estimator of the parameters in the linear regression
model. When the estimator β̂ sets some of the parameters to exactly zero we say that the estimator does variable
selection. The lasso, [22], is an example of a globally Lipschitz continuous estimator that does variable selection,
while best subset selection is a discontinuous estimator that does variable selection. The lasso-OLS – as studied
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intensively in Section 3 – is another example of a discontinuous regression estimator that does variable selection.
Though discontinuous regression estimators that do variable selection constitute the main motivation for the present
paper, the general results are more conveniently formulated in terms of estimators of the mean μ without reference to
the regression setup.

Letting Y ∼N (μ,σ 2I ) the risk of the estimator is defined as

Risk(μ̂) := E
∥∥μ − μ̂(Y )

∥∥2
2,

provided that μ̂(Y ) has finite second moment, which will thus be assumed throughout. The risk is a quantification of
the error of μ̂, and tuning parameters are often chosen by minimising an estimate of the risk. Our main interest is to
estimate the risk under the Gaussian model. The following definition introduces two notions of degrees of freedom
that are useful when we want to estimate the risk. In the definition, ψ(y;μ,σ 2) denotes the density for the N (μ,σ 2I )

distribution and 〈·, ·〉 denotes the standard inner product on R
n. The divergence operator is also needed. It is the

differential operator defined as

div(f ) =
n∑

i=1

∂ifi

for f : Rn → R
n Lebesgue almost everywhere differentiable and with ∂i denoting the partial derivative w.r.t. the ith

coordinate.

Definition 2.1. For a measurable map μ̂ :Rn → R
n such that μ̂(Y ) has finite second moment the degrees of freedom

of μ̂ is

df(μ̂) :=
n∑

i=1

cov(Yi, μ̂(Y )i)

σ 2
=

∫ 〈y − μ, μ̂(y)〉
σ 2

ψ
(
y;μ,σ 2)dy. (1)

If μ̂ is differentiable in Lebesgue almost all points and div(μ̂) has finite first moment Stein’s degrees of freedom of μ̂

is

dfS(μ̂) := E
(
div(μ̂)(Y )

)
. (2)

A simple expansion of the risk yields

Risk = E
∥∥Y − μ̂(Y )

∥∥2
2 − nσ 2 + 2σ 2 df(μ̂). (3)

Hence ‖Y − μ̂(Y )‖2
2 −nσ 2 + 2σ 2d̂f is an unbiased risk estimate if d̂f is an unbiased estimate of df(μ̂). In practice, σ 2

must be estimated as well and a bias of d̂f can also be preferable if it reduces the variance. Hence exact unbiasedness
of a risk estimate based on (3) is of secondary interest, but it is of interest to find adequate corrections of the squared
error ‖Y − μ̂(Y )‖2

2 that can be used for model assessment and comparison.
If μ̂ is almost differentiable then df(μ̂) = dfS(μ̂) due to Stein’s lemma (Lemma 2 in [21]), in which case div(μ̂)(Y )

is an unbiased estimate of df(μ̂). However, most estimators with discontinuities are not almost differentiable, and for
such estimators it is not clear if div(μ̂)(Y ) is a useful estimate of the degrees of freedom. Indeed, our main result,
Theorem 2.4, provides a representation of df(μ̂) − dfS(μ̂), which is nonzero for a range of estimators. The result
provides the theoretical basis for establishing more adequate estimates of the degrees of freedom and thus the risk.
Furthermore, Theorem 3.2 provides a quite remarkable connection between df(μ̂) and dfS(μ̂) for the lasso-OLS
estimator, which can be used to derive an estimate of df(μ̂). This result is directly applicable in practice and provides
fast and accurate risk estimation without the need for cross-validation, say.

Our main result is derived under the assumptions on the estimator as stated below. To fix notation we let B(x, r)

denote the closed ball in R
n of radius r and center x. Additionally, we let Hn−1 denote the n−1 dimensional Hausdorff

measure – a generalisation of the surface measure of n − 1 dimensional hypersurfaces in R
n (see e.g. [7] for details).
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Assumption 2.2. The estimator μ̂ can be written as μ̂ = ∑N
i=1 1Ui

μ̂i for a collection of open and disjoint sets {Ui}Ni=1
with

⋃N
i=1 Ui =R

n. Additionally, for each i = 1, . . . ,N :

(a) The map μ̂i : Ui →R
n is locally Lipschitz.

(b) The random variable 1Ui
div(μ̂i)(Y ) has finite first moment and ‖μ̂i‖ is polynomially bounded on Ui .

(c) The function r �→Hn−1(∂Ui ∩ B(0, r)) is polynomially bounded.

Remark 2.3. The following points are worth noting:

(a) Boundary values of the estimator. Assumption 2.2(c) implies that the boundaries of the sets Ui are Lebesgue null
sets, and thus that Rn \ ⋃

i Ui has Lebesgue measure zero. The estimator μ̂ is here defined to be zero on this null
set, but with Y having an absolutely continuous distribution its value on a null set is irrelevant. Note, however,
that Assumption 2.2(a) ensures that μ̂i is uniquely defined on ∂Ui . In a concrete case there may be a natural way
to define μ̂ on the common boundary between Ui and Uj , say, but we make no abstract attempt to select between
μi and μj on the boundary.

(b) Degrees of freedom. Assumption 2.2(a) implies by Rademacher’s theorem (Theorems 3.1.6 and 3.1.7 in [9]) that
div(μ̂i) is defined Lebesgue a.e. Combining this with Assumption 2.2(b) we conclude that under Assumption 2.2
both df(μ̂) and dfS(μ̂) are well defined.

(c) Existence of normal vectors. Assumption 2.2(c) implies that the sets Ui have locally finite perimeter (see The-
orem 5.11.1 in [7]), thus a measure theoretic outer unit normal ηi is defined on a subset of ∂Ui . In fact, by
Lemma A.2 Assumption 2.2(c) only needs to hold for the reduced boundary ∂∗Ui (see Definition 5.7 and
Lemma 5.8.1 in [7]). Whenever ∂Ui is smooth the measure theoretic unit normal coincides with the usual point-
wise unit normal.

Estimators that involve data driven variable selection will generally fulfil Assumption 2.2 with each Ui correspond-
ing to a set of selected variables. Example 2.5 provides a thorough characterization of Ui in the lasso-OLS setup.
Moreover, a similar characterization of Ui is given in Example 3.4 for a class of estimators defined via minimization
of a penalized loss function.

The conditions in Assumption 2.2 are typically easy to verify, except perhaps the third condition, as it involves
bounding Hausdorff measures. Section A.1 provides some results that can be helpful for verifying the third condition.
For estimators satisfying Assumption 2.2 we have the following representation of the degrees of freedom.

Theorem 2.4. If μ̂ satisfies Assumption 2.2 then

df(μ̂) = dfS(μ̂) + 1

2

∑
i 
=j

∫
Ui∩Uj

〈μ̂j − μ̂i , ηi〉ψ
(·;μ,σ 2)dHn−1, (4)

where ηi denotes the measure theoretic outer unit normal to ∂Ui .

The proof is in Section A.2. The essential part is an application of a generalized version of Gauss–Green’s formula
combined with a dominated convergence argument. Note that though Ui ∩ Uj is a Lebesgue null set – on which μ̂ is
defined to be zero – μ̂j and μ̂i are uniquely defined by Assumption 2.2(a) and generally non-zero and different, cf.
also Remark 2.3(a).

If μ̂ satisfies Assumption 2.2 and is continuous then (4) reduces to df(μ̂) = dfS(μ̂), which is Stein’s lemma for a
class of locally Lipschitz continuous estimators. The boundary integrals therefore account for potential jumps of μ̂

across the boundary of any two adjacent regions Ui and Uj . For two-step procedures consisting of a model selection
step followed by a parameter estimation step, dfS generally only accounts for the contribution to the degrees of
freedom by the estimation step, and the boundary integrals account for the contribution from the selection step.

The following example illustrates how to verify Assumption 2.2 for the lasso-OLS estimator, which is the estimator
that will also be the main focus of the subsequent section.

Example 2.5 (The lasso-OLS estimator). Let X be an n×p-matrix. For any subset A ⊆ {1, . . . , p}, XA denotes the
matrix whose columns are those of X indexed by A, and similarly, βA ∈ R

|A| denotes (βi)i∈A for β ∈ R
p . We let

S := {
S = col(XA) | A ⊆ {1, . . . , p}}
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denote the set of subspaces spanned by columns of X. The orthogonal projection onto a subspace S ∈ S is denoted
by �S .

A lasso estimator μ̂λ
lasso(y) with tuning parameter λ > 0 is defined as μ̂λ

lasso(y) = Xβ̂λ where

β̂λ ∈ arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖1.

We do not make any assumptions on X, and therefore it may happen that multiple β̂λ-solutions exist. For a solution
β̂λ, the support, supp(β̂λ) ⊆ {1, . . . , p}, is called an active set. The lasso estimator μ̂λ

lasso(y) = Xβ̂λ belongs to the
space col(XA) for A = supp(β̂λ), and it follows by Lemma 7 in [25] that there exists a Lebesgue null set N , such
that col(XA) is invariant with respect to the choice of the active set of solutions for y /∈ N . The map Ŝλ :Rn \ N → S
returning col(XA) when there is a solution β̂λ with active set A = supp(βλ) is therefore well defined. The lasso-OLS
estimator μ̂λ

l-OLS := �Ŝλ is defined as the projection onto the space selected by the lasso, and is thus well-defined
Lebesgue almost everywhere.

By defining the disjoint selection events

Uλ
S := (

Ŝλ = S
)

for each S ∈ S , we immediately see from Lemma 6 in [25] that each selection event is open and that Rn = ⋃
S∈S U

λ

S .
We can safely ignore any empty Uλ

S . From the proof of Lemma 6 in [25] we see that ∂Uλ
S ⊆ (

⋃
T ∈S Uλ

T )c is a finite
union of affine subspaces of dimensions ≤ n − 1, and r �→ Hn−1(∂Uλ

S ∩ B(0, r)) is thus polynomially bounded. This
follows by elementary considerations, but it is also a consequence of Lemma A.1. Consequently,

μ̂λ
l-OLS =

∑
S∈S

1Uλ
S
�S almost everywhere,

and it satisfies all conditions in Assumption 2.2. Figure 1 provides an illustration of the partition of Rn for n = p = 2
for different choices of angles between the columns in X.

Note that since μ̂λ
l-OLS = �S on the open set Uλ

S , its divergence equals dim(S), hence Stein’s degrees of freedom
is

dfS
(
μ̂λ

l-OLS

) = E
(
dim

(
Ŝλ

))
.

From Lemma 3 in [23] it follows that dim(Ŝλ) = | supp(β̂λ)| whenever the columns of X are in general position,
which is useful for practical computations.

The arguments above are based on results in [25], but see also [15] for related characterizations of the selection
events for lasso.

3. Risk estimation for lasso-OLS

It is not obvious how the general formula in Theorem 2.4 for df(μ̂) can be used for computing or estimating the degrees
of freedom. The first term of (4), dfS(μ̂), may be estimated by div(μ̂)(Y ), but the second term is more difficult. In this
section we show how this second term can be related to the derivative of λ �→ dfS(μ̂λ

l-OLS) for lasso-OLS. First we
recapitulate the computations in [24] of the degrees of freedom for lasso-OLS with X orthogonal, which will reveal
the general formula shown below.

Example 3.1 (Continuation of Example 2.5). Assume that n = p and X = I . In this case it is well known that the
lasso and the lasso-OLS estimators become the soft and hard thresholding estimators, respectively. That is,

μ̂λ
lasso,i =

{
Yi − λ sign(Yi) if |Yi | > λ,

0 otherwise,
and μ̂λ

l-OLS,i =
{

Yi if |Yi | > λ,

0 otherwise.
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Fig. 1. Illustrations of the decomposition of R2 into the four sets U1
∅

, U1{1} , U1{2} and U1{1,2} according to the lasso estimator with λ = 1. The set

U1
∅

consists of the points shrunk to zero, the sets U1{1} and U1{2} to the points where either the second or the first coordinate, respectively, is shrunk
to zero and U1{1,2} to the set where none of the coordinates are shrunk to zero. The decomposition depends on the angle between the two columns
in X.

We can write up closed form expressions for df(μ̂λ
l-OLS) and dfS(μ̂λ

l-OLS):

dfS
(
μ̂λ

l-OLS

) =
∫

ψ
(
y;μ,σ 2)∑

i

1(|yi |>λ) dy =
∑

i

∫
(|yi |>λ)

ψ
(
yi;μi,σ

2)dyi

=
∑

i

	

(−λ − μi

σ

)
+

(
1 − 	

(
λ − μi

σ

))
,

and as in [24]

df
(
μ̂λ

l-OLS

) =
∑

i

∫ ∞

λ

ψ
(
yi;μi,σ

2)yi(yi − μi)

σ 2
dyi +

∫ −λ

−∞
ψ

(
yi;μi,σ

2)yi(yi − μi)

σ 2
dyi

=
∑

i

[−ψ
(
yi;μi,σ

2)yi

]∞
λ

+
∫ ∞

λ

ψ
(
yi;μi,σ

2)dyi

+ [−ψ
(
yi;μi,σ

2)yi

]−λ

−∞ +
∫ −λ

−∞
ψ

(
yi;μi,σ

2)dyi

= λ
∑

i

(
ψ

(
λ;μi,σ

2) + ψ
(−λ;μi,σ

2)) + dfS
(
μ̂λ

l-OLS

)
.
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Letting ∂λ denote the differential operator with respect to λ we observe that

df
(
μ̂λ

l-OLS

) = dfS
(
μ̂λ

l-OLS

) − λ∂λ dfS
(
μ̂λ

l-OLS

)
, (5)

which is a striking identity. This is because the formula for df(μ̂λ
l-OLS), though explicit, involves the unknown param-

eter μ and is not readily estimable. But we have the divergence estimator,
∑

i 1(|yi |>λ), of dfS(μ̂λ
l-OLS), and if we from

this can estimate its derivative as well, the formula above suggests how to estimate df(μ̂λ
l-OLS).

The remarkable fact that we will show is that (5) holds without the orthogonality assumption on X.

Theorem 3.2. For the lasso-OLS estimator defined in Example 2.5 it holds that

df
(
μ̂λ

l-OLS

) = dfS
(
μ̂λ

l-OLS

) − λ∂λ dfS
(
μ̂λ

l-OLS

)
, (6)

where ∂λ denotes differentiation w.r.t. λ.

Theorem 3.2 suggests that df(μ̂λ
l-OLS) can be estimated by differentiation of an estimate of dfS(μ̂λ

l-OLS). The di-
vergence estimate of Stein’s degrees of freedom is, however, not differentiable as a function of λ, and we need to
somehow smooth it. To this end it is convenient to reparametrize the penalization in terms of δ = log(λ), so that with

h(δ) := dfS
(
μ̂

exp(δ)

l-OLS

)
,

then

df
(
μ̂

exp(δ)

l-OLS

) = h(δ) − h′(δ).

In simulations h was found to be monotonically decreasing, and thus h′ to be negative, but we cannot prove that this is
generally the case. The integral representation of h′ from Theorem 2.4 is not particularly helpful as the integrand can,
in fact, be negative. Based on our computational observations – and to reduce variance of the resulting estimate – our
proposal is based on the assumption that h′ is negative. It is effectively a kernel smoother that estimates the intensity
of jumps for a monotone jump process.

We note that dim(Ŝexp(δ)) is an unbiased estimate of h(δ) and that the function δ �→ dim(Ŝexp(δ)) is a step function.
The problem of estimating the derivative, h′, of its mean is thus analogous to estimating the intensity for a jump
process with one main difference; the step function can have jumps of negative as well as positive sign, though most
jumps will be negative. Our proposed estimate ignores the positive excursions of the step function and is computed as
follows:

• Compute the jump points, λi and jump sizes, �i := infλ<λi
dim(Ŝλ) − dim(Ŝλ+), of the decreasing function λ �→

infλ′<λ dim(Ŝλ′
) for i = 1, . . . ,M .

• Apply a kernel density smoother to the points δi = log(λi) for i = 1, . . . ,M counted with the multiplicities �i . In
the simulations presented in this paper an adaptive Gaussian kernel density smoother was used (see Section 10.4.3.2
in [11]).

• Rescale the density estimate by the total number of jumps, that is, by
∑M

i=1 �i .

As mentioned above, we can think of the proposed estimate of h′ as a non-parametric estimate of the intensity of
the jumps for a monotonically decreasing jump process. Alternatively, we can think of it as smoothing the jumps by a
sigmoidal function (the anti-derivative of the kernel) to obtain a smooth estimate of Stein’s degrees of freedom, which
can then be differentiated. Note that even if �i may always be 1 in theory, the jumps are in practice computed on
a grid and may thus be larger than 1, which the procedure accounts for. The estimate of −λ∂λ dfS(μ̂λ

l-OLS) resulting
from the procedure above is denoted by ∂̂ .

Using dim(Ŝλ) + ∂̂ as an estimate of degrees of freedom leads to the risk estimate

R̂iskdf := ∥∥Y − μ̂λ
l-OLS

∥∥2
2 − nσ 2 + 2σ 2(dim

(
Ŝλ

) + ∂̂
)
. (7)
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Fig. 2. Left: Realization of the estimates of degrees of freedom d̂fS = dim(Ŝλ) and d̂f = dim(Ŝλ)+ ∂̂ as well as the correction term ∂̂ as a function
of log(λ) (top) and corresponding estimates of the risk (bottom). Right: Similar to the left but mean values of the estimates obtained by averaging
over 1000 samples along with the degrees of freedom df = df(μ̂λ

l-OLS) obtained from the 1000 samples using the covariance definition (1). The
design parameters were: σ = 0.5, n = p = 100, γ = 1, α = 0.1 and the design type was (S) with constant correlation of ρ = 0.1 (see Section 4).

For an example of the above estimate see Figure 2, where ∂̂ and R̂iskdf are applied to a single realization of Y along
with an average over 1000 replications.

To prove Theorem 3.2 we prove a more general intermediate result for estimators that are parametrized in a similar
way by a tuning parameter. We use in the following D to denote the differential operator w.r.t. y.

Proposition 3.3. Let q > 0 and suppose that μ̂λ = ∑
i 1Uλ

i
μ̂i where

Uλ
i = λqU1

i , for all i = 1, . . . ,N. (8)

Assume that div(μ̂i) is locally Lipschitz and both div(μ̂i) and D(div(μ̂i)) are polynomially bounded for each i =
1, . . . ,N . If μ̂1 satisfies Assumption 2.2 then

−λ

q
∂λ dfS

(
μ̂λ

) = 1

2

∑
i 
=j

∫
U

λ
i ∩U

λ
j

(
div(μ̂j )(y) − div(μ̂i)(y)

)〈y,ηi〉ψ
(
y;μ,σ 2)dHn−1(y). (9)

Proof. First observe that ∂Uλ
i ∩ B(0, r) = λq(∂U1

i ∩ B(0, r/λq)), hence if μ̂1 satisfies Assumption 2.2 so does μ̂λ

for all λ. Next, the change of variable formula yields

dfS
(
μ̂λ

) =
∫

ψ(y)div
(
μ̂λ

)
(y) dy =

∑
i

∫
Uλ

i

ψ(y)div(μ̂i)(y) dy

=
∑

i

∫
U1

i

λqn
(
ψ div(μ̂i)

)(
λqz

)
dz.

Here ψ = ψ(·;μ,σ 2) to ease notation.
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The last integrand is differentiable w.r.t. λ (for Lebesgue a.a. z) and its derivative is

qnλqn−1(ψ div(μ̂i)
)(

λqz
) + λqn

〈
D

(
ψ div(μ̂i)

)(
λqz

)
, qλq−1z

〉
= q

λ
λqn

(
n
(
ψ div(μ̂i)

)(
λqz

) + 〈
D

(
ψ div(μ̂i)

)(
λqz

)
, λqz

〉)
,

which is dominated in a neighbourhood of λ by an integrable function due to the polynomial bounds. Hence, by the
change of variable formula

λ

q
∂λ dfS

(
μ̂λ

) =
∑

i

∫
U1

i

λqn
(
n
(
ψ div(μ̂i)

)(
λqz

) + 〈
D

(
ψ div(μ̂i)

)(
λqz

)
, λqz

〉)
dz

=
∑

i

∫
Uλ

i

n
(
ψ div(μ̂i)

)
(y) + 〈

D
(
ψ div(μ̂i)

)
(y), y

〉
dy

=
∑

i

∫
Uλ

i

n
(
ψ div(μ̂i)

)
(y) + 〈(

ψD div(μ̂i) + div(μ̂i)Dψ
)
(y), y

〉
dy

=
∑

i

∫
Uλ

i

ψ(y)div
(
y div(μ̂i)(y)

) + 〈
Dψ(y), y div(μ̂i)(y)

〉
dy.

The last line is identified as dfS(μ̃λ) − df(μ̃λ), where

μ̃λ(y) :=
∑

i

1Uλ
i
(y)y div(μ̂i)(y).

Finally (9) follows by applying Theorem 2.4 to μ̃λ (which also satisfies Assumption 2.2). �

Example 3.4. There are naturally occurring examples besides the lasso selection sets that satisfy (8). Consider still a
linear regression setup with X an n × p-matrix. Let � denote the penalized loss function

�(y,β,λ) = 1

2
‖y − Xβ‖2

2 + λPen(β),

for some penalty function Pen :Rp →R and define the sets

Uλ
A = int

{
y ∈R

n
∣∣ inf

β:supp(β)=A
�(y,β,λ) = inf

β
�(y,β,λ)

}
, (10)

for each A ⊆ {1, . . . , p}. Hence any y ∈ Uλ
A has A as an active set. If Pen is positive homogeneous of degree k ∈ [0,2)

then

�
(
λ

1
2−k y, λ

1
2−k β, λ

) = λ
2

2−k �(y,β,1).

Hence Uλ
A = λ

1
2−k U1

A holds for all A ⊆ {1, . . . , p} and λ > 0. The (quasi) norms, Pen(β) = ‖β‖k
k for k ∈ (0,2), and

Pen(β) = ‖β‖0 = | supp(β)| are examples of positive homogeneous penalties. For these penalties only k ∈ [0,1] will
result in variable selection. With Pen(·) = ‖ · ‖1 we see that for lasso the sets Uλ

S in 2.5 satisfy (8) with q = 1.

Proof of Theorem 3.2. Let (Uλ
S )S∈S be defined as in Example 2.5, where it was also shown that Assumption 2.2

holds for the lasso-OLS estimator. Moreover, from Example 3.4 we see that Uλ
S = λU1

S for all λ > 0 and S ∈ S . By
Theorem 2.4 we know that the left hand side of (6) is

df
(
μ̂λ

l-OLS

) − dfS
(
μ̂λ

l-OLS

)
= 1

2

∑
S1 
=S2

∫
U

λ
S1

∩U
λ
S2

〈
(�S2 − �S1)y, ηS1(y)

〉
ψ(y)dHn−1(y). (11)
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It will first be established that U
λ

S1
∩ U

λ

S2
for S1 
= S2 is a Hn−1 null set unless S1 and S2 are nested and their

dimensions differ by one.
By definition μ̂λ

lasso ∈ S on Uλ
S , and by continuity of μ̂λ

lasso (a consequence of Lemma 3 in [25]) we conclude that

the same is true on U
λ

S . Hence for S1, S2 ∈ S

μ̂λ
lasso ∈ S1 ∩ S2 on U

λ

S1
∩ U

λ

S2
. (12)

For A ⊆ {1, . . . , p} and s ∈ {−1,1}|A| we define the set

LA,s := {
u ∈R

n | XT
Au = λs

}
.

It now follows from the first order subgradient conditions for lasso that

y − μ̂λ
lasso ∈

⋃
A⊆{1,...,p}:
col(XA)=S

⋃
s∈{−1,1}|A|

LA,s (13)

for all y ∈ Uλ
S . Note that the dimension of the above set is n− dim(S). Since the set is closed and μ̂λ

lasso is continuous,

(13) holds for y ∈ U
λ

S as well. We therefore conclude that

y − μ̂λ
lasso ∈

( ⋃
A⊆{1,...,p}:
col(XA)=S1

⋃
s∈{−1,1}|A|

LA,s

)
∩

( ⋃
A⊆{1,...,p}:
col(XA)=S2

⋃
s∈{−1,1}|A|

LA,s

)

⊆
⋃

A⊆{1,...,p}:
col(XA)=S1+S2

⋃
s∈{−1,1}|A|

LA,s (14)

for all y ∈ U
λ

S1
∩ U

λ

S2
and S1, S2 ∈ S .

From (12) and (14) we deduce that

U
λ

S1
∩ U

λ

S2
⊆ S1 ∩ S2 +

⋃
A⊆{1,...,p}:

col(XA)=S1+S2

⋃
s∈{−1,1}|A|

LA,s (15)

for S1, S2 ∈ S . Consequently, if S1 
= S2 then Hn−1(U
λ

S1
∩U

λ

S2
) = 0, unless S1 and S2 are nested and their dimensions

differ by 1.
We can therefore assume S1 ⊆ S2 and dim(S2) = dim(S1) + 1. Furthermore, S2 � S1 = (S1 + S2) � (S1 ∩ S2)

is orthogonal to any of the faces S1 ∩ S2 + LA,s in (15) and thus also orthogonal to U
λ

S1
∩ U

λ

S2
. This implies that

ηS1 = (�S2 − �S1)ηS1 and hence (11) becomes

df
(
μ̂λ

l-OLS

) − dfS
(
μ̂λ

l-OLS

)
=

∑
S1⊆S2,

dim(S2)=dim(S1)+1

∫
U

λ
S1

∩U
λ
S2

〈
y,ηS1(y)

〉
ψ(y)dHn−1(y)

=
∑

S1⊆S2,
dim(S2)=dim(S1)+1

∫
U

λ
S1

∩U
λ
S2

[
div(�S2) − div(�S1)

]︸ ︷︷ ︸
=dim(S2)−dim(S1)=1

〈
y,ηS1(y)

〉
ψ(y)dHn−1(y)

= −λ∂λ dfS
(
μ̂λ

l-OLS

)
by Proposition 3.3. �
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4. Simulation study

We report in this section the results from an extensive simulation study, whose purpose was to quantify how R̂iskdf
given by (7) performs as an estimate of the risk and in terms of selecting the penalty parameter λ. Its performance was
compared to alternatives for risk estimation and tuning, and the resulting lasso-OLS estimator was compared to the
lasso estimator. Throughout, the R package glmnet, [10], was used to compute the lasso solution path. This section is
divided into subsections describing estimators and risk estimates, the design of the simulation study, and the results
of the simulation study.

4.1. Estimators and risk estimates

The first alternative risk estimate for lasso-OLS is

R̂iskdfS = ∥∥Y − μ̂λ
l-OLS

∥∥2
2 − nσ 2 + 2σ 2 dim

(
Ŝλ

)
, (16)

which does not adjust for the variable selection performed by lasso-OLS. The second alternative is K-fold cross-
validation (denoted R̂iskCV-K) with K = 5,10. This risk estimate is given by

R̂iskCV-K :=
K∑

k=1

∥∥Yk − Xkβ̂
λ
l-OLS(Y−k,X−k)

∥∥2
2 − nσ 2, (17)

where Yk and Xk denote the entries of Y and rows of X, respectively, corresponding to the kth fold, and similarly,
Y−k and X−k denote the entries and rows not in the kth fold.

The lasso estimator was tuned by minimising the risk estimate

R̂isklasso = ∥∥Y − μ̂λ
lasso

∥∥2
2 − nσ 2 + 2σ 2 dim

(
Ŝλ

)
. (18)

For tuning ∈ {df,dfS,CV-5,CV-10, lasso} we let λ̂tuning denote the value of λ that minimises R̂isktuning. The risk
of the resulting estimator is denoted

Risk(tuning) := E
∥∥μ − μ̂

λ̂tuning
l-OLS

∥∥2
2

for all but the lasso-tuning, whose risk instead is

Risk(lasso) := E
∥∥μ − μ̂

λ̂lasso
lasso

∥∥2
2.

When the true mean is μ = Xβ with supp(β) = A we refer to �A as the oracle-OLS estimator. This usage of the
oracle terminology is in accordance with e.g. [8]. Its risk is

E‖μ − �AY‖2
2 = σ 2 rank(XA).

The results from the simulation study are reported in terms of Risk(tuning)/(σ 2n) for each tuning method, which can
then be compared to rank(XA)/n – the fraction of nonzero parameters.

All simulations were carried out assuming either that σ 2 was known or using the following estimator of σ 2: first the
lasso path λ �→ μ̂lasso(λ) was calculated, then λ̂ was selected by minimising the generalized cross-validation criterion

gcv(λ) = ‖Y − μ̂λ
lasso‖2

2

(1 − dim(Ŝλ)
n

)2
,

and σ 2 was finally estimated as

σ̂ 2 = ‖Y − μ̂λ̂
lasso‖2

2

n − dim(Ŝλ̂)
.
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The main reason for choosing this estimator was computational efficiency, as the lasso path must be calculated for
lasso-OLS anyway. Thus this variance estimate has virtually no extra computational costs. See also [20] for a com-
prehensive comparison of variance estimators.

4.2. Simulation study design

In the simulation study the mean was given as Xβ with

βi =
{

γ i−1 if i ≤ �nα�,
0 otherwise,

for different choices of the dimension n, the n × p design matrix X and the parameters γ and α.
Two simulation designs were implemented with parameters as follows:

Parameter

σ

α

n

p

γ

X

ρ

Values for simulation study I

0.5
0.1
50 100 200 400 800

200 2000 20,000
1
S

0.1

Values for simulation study II

0.1 0.2 0.5 1 2
0 0.05 0.1 0.3 0.5

100 200
n

1 0.9
O S E
0 0.1 0.4 0.7

The parameter ρ and the values of the design require some explanation. The three different design types are:

• Orthogonal (O), where X = I .
• Simulated (S), where the columns of X are standard normally distributed with one of the following correlation

structures:
– Autoregressive setup: corr(Xi,Xj ) = ρ|i−j | for all i 
= j .
– Constant correlation setup: corr(Xi,Xj ) = ρ for all i 
= j .

• Empirical (E), where the rows and columns are randomly selected from the 240 × 377 matrix of microRNA expres-
sion values as used in the earlier study by [26].

The columns of the simulated and empirical designs were standardized to have norm one to obtain a comparable
signal-to-noise ratio across the three designs.

The risk estimates were based on 1000 samples for each combination of the parameters, which were generated
as follows. For each of the 1000 samples a design matrix X was created/simulated and a single realization of Y ∼
N (Xβ,σ 2In) was drawn. For each sample the losses ‖μ − μ̂

λ̂lasso
lasso ‖2

2 and ‖μ − μ̂
λ̂tuning
l-OLS‖2

2 for the different tuning
methods were computed. The risks were estimated as the average of the losses over the 1000 samples.

In order to assess robustness to deviations from the Gaussian noise assumption, we replicated the second study de-
sign with two types of non-Gaussian noise: a t -distribution with 3 degrees of freedom, and a skew normal distribution
with shape parameter 3. Location and scale parameters were set so that the noise distribution had mean 0 and variance
σ 2.

4.3. Results from study I

We first report on the accuracy of the risk estimates. Figure 3 shows the risk estimates as a function of λ for 50 samples
along with a Monte Carlo estimate of the true risk. Cross-validation appears to give more variable estimates of the risk
than R̂iskdf across the entire range of λ-values. This is true even when the variance is estimated, though estimation
of the variance does appear to degrade the performance of the risk estimates. We note that R̂iskdf does not appear to
be much more variable than R̂isklasso, though the former relies on the additional smoothed term for the estimation of
degrees of freedom.
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Fig. 3. Risk estimates R̂iskdf, R̂iskCV-5, R̂iskCV-10 and R̂isklasso (gray lines) for 50 samples as a function of λ. The black lines are Monte Carlo
estimates of the true risks. The design parameters were: n = 200, p = 2000, σ = 0.5, γ = 1, α = 0.1, and the design type was (S) with a constant
correlation of ρ = 0.1 (see Section 4.2).

Figure 4 shows mean squared errors (MSEs) for the risk estimates. The figure shows the integrated mean sequared
error as well as the mean squared error in the optimal λ (the λ that minimizes risk as estimated from the Monte Carlo
estimate of the risk based on 1000 replications). The cross-validation risk estimates generally have the largest MSEs,
while R̂iskdf has considerably smaller MSEs. This is true even when the variance is estimated except for n = 50 and
p = 2000,20,000. From this figure we see that R̂iskdf does have a larger MSE than R̂isklasso. Moreover, for n/p large
the estimation of σ does not affect the MSE of the risk estimates much.
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Fig. 4. Integrated mean squared error (top) and mean squared error at the optimal value of λ, λ̂ (bottom) of the risk estimates R̂iskdf, R̂iskCV-5,
R̂iskCV-10 and R̂isklasso. The integrated mean squared error was computed over the interval [λ̂/10,10λ̂] of log(λ)-values. The design parameters
were: σ = 0.5, γ = 1, α = 0.1, and the design type was (S) with a constant correlation of ρ = 0.1 (see Section 4.2).

For this simulation study we also recorded the number of selected predictors as well as the computational time
for evaluating and tuning the different estimators. The results can be found as Figure 1 in the supplementary material
[19]. The lasso-OLS estimator selects fewer predictors than lasso, but when the variance is estimated, the number of
selected predictors is increased – this is particularly so when n/p is small. The lasso estimator using (18) for tuning
is fastest, which is unsurprising as the computation of the lasso path is part of all estimators. Moreover, the lasso-OLS
estimator using (7) for tuning is about a factor 4 faster than using 5-fold cross-validation for tuning and about a factor
8 faster than 10-fold cross-validation. Thus the added computation of the smoothed term to the estimate of degrees of
freedom in (7) has an insignificant effect on the computation time.

4.4. Results from study II

Firstly, we discuss the comparison of the two tuning methods df and dfS for the lasso-OLS estimator. The purpose of
this comparison is to highlight the effect of correctly adjusting for the variable selection in the estimation of degrees
of freedom via the term ∂̂ . Secondly, we discuss the comparison of df to CV-5, CV-10 and lasso. The purpose of this



Degrees of freedom for piecewise Lipschitz estimators 833

Fig. 5. Risk relative to σ 2n for the estimators μ̂
λ̂dfS
l-OLS and μ̂

λ̂df
l-OLS for orthogonal and empirical designs with n = 100 and γ = 1. The dashed line

is �nα�/n � α, the relative risk for the oracle-OLS estimator.

second comparison is two-fold. It provides a comparison of our proposed tuning method, df, to cross-validation based
tuning, and it provides a comparison of lasso-OLS to lasso in terms of predictive performance.

Figure 5 shows the results for the two tuning methods df and dfS in the orthogonal and empirical designs with γ = 1
and n = 100. The results for all the other design parameters can be found in [19]. Tuning λ by using dim(Ŝλ)+ ∂̂ as an
estimate of degrees of freedom is generally superior to using dim(Ŝλ) and in the worst cases at least comparable. The
differences are largest for the lowest signal-to-noise ratios. The benefit of using dim(Ŝλ) + ∂̂ generally increases with
the dimension n, and it increases with decreasing signal-to-noise ratio. Furthermore, when the number of non-zero

parameters is large and the signal-to-noise ratio is low (specifically, γ = 0.9, α large and σ large), μ̂
λ̂df
l-OLS clearly
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Fig. 6. Risk relative to σ 2n for the estimators μ̂
λ̂df
l-OLS, μ̂

λ̂CV-5
l-OLS , μ̂

λ̂CV-10
l-OLS and μ̂

λ̂lasso
lasso for orthogonal and empirical designs with n = 100 and γ = 1.

The dashed line is �nα�/n � α, the relative risk for the oracle-OLS estimator.

outperforms the oracle-OLS estimator, while μ̂
λ̂dfS
l-OLS is comparable or worse than the oracle-OLS estimator. Neither

of the estimators performs well for small variances and large signal-to-noise ratios. For the orthogonal design the
estimation of the variance incurs a clear performance loss, which is not the case for the other designs. We ascribe this
to the variance estimator being particularly poor for the orthogonal design.

Figure 6 shows the results for df, CV-5, CV-10 and lasso for the orthogonal and empirical designs with γ = 1 and
n = 100. The results for the remaining design parameters are found in [19]. For the orthogonal design cross-validation
is not an appropriate tuning method, since R̂iskCV-K is constant in λ. This relates to the fact that the folds cannot be
considered replications of the same distribution. Consequently, for the orthogonal design, the tuning methods based
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on degrees of freedom have clear advantages. On the other hand, the estimation of σ has a quite large negative effect
for precisely the orthogonal design.

When restricting attention to the non-orthogonal designs we observe that the tuning methods are quite comparable
(see [19]). None of the tuning methods are generally superior or inferior to the others and their performance depends
on both design type, signal-to-noise ratio and the signal decay parameter γ . The lasso estimator deviates most from
the others, which is mainly due to this being a different estimator. It performs best at low signal-to-noise ratios, while
lasso-OLS using either cross-validation of df tuning performs better at high signal-to-noise ratios (α large, σ small
and γ = 1). Cross-validation appears to perform best for highly correlated designs (ρ large).

The results for the non-Gaussian error distributions are included in [19] as well. There are no major differences
when compared to the Gaussian error distribution, with the most notable change being that lasso losses some of its
performance for the t -distributed noise. The tuning based on df seems to be less affected. Still, all the tuning methods
are generally comparable except for orthogonal designs. Since cross-validation does not rely on a Gaussian noise
assumption, these results suggest that our proposed tuning method based on df is appropriate even in non-Gaussian
settings.

5. Best subset selection

Example 3.4 demonstrates that (8) holds for other estimators than lasso-OLS, and Theorem 3.3 holds, in particular, for
best subset selection in the Lagrangian formulation, which corresponds to Pen(·) = ‖·‖0 in Example 3.4. Theorem 3.2
does, however, only partly extend to best subset selection. In this section we demonstrate that this may still provide a
practically useful estimate of degrees of freedom.

The best subset selection estimator of μ with tuning parameter λ > 0, denoted by μ̂λ
bs, is

μ̂λ
bs = Xβ̂λ where β̂λ = arg min

β

1

2
‖Y − Xβ‖2

2 + λ‖β‖0.

It can be written on the form μ̂λ
bs = ∑

A⊆{1,...,p} 1Uλ
A
�A (Lebesgue a.e.), where

Uλ
A :=

{
y ∈ R

n
∣∣∣ λ|A| − 1

2
‖�Ay‖2

2 < min
B⊆{1,...,p}\Aλ|B| − 1

2
‖�By‖2

2

}
, A ⊆ {1, . . . , p}. (19)

It is straightforward to verify that μ̂λ
bs fulfils Assumption 2.2 except 2.2(c), which follows by Lemma A.1 in the

appendix. Hence Theorem 2.4 applies to μ̂λ
bs.

From (19) we note that the outer unit normal to ∂Uλ
A1

on U
λ

A1
∩ U

λ

A2
equals (�A2 − �A1)y normalized to have

norm 1. Theorem 2.4 yields

df
(
μ̂λ

bs

) − dfS
(
μ̂λ

bs

) = 1

2

∑
A1 
=A2

∫
U

λ
A1

∩U
λ
A2

〈(�A2 − �A1)y, (�A2 − �A1)y〉
‖(�A2 − �A1)y‖2

ψ(y)dHn−1(y)

= 1

2

∑
A1 
=A2

∫
U

λ
A1

∩U
λ
A2

∥∥(�A2 − �A1)y
∥∥

2ψ(y)dHn−1(y),

which proves that df > dfS for best subsection selection. Moreover, Proposition 3.3 and Example 3.4 yields

−2λ∂λ dfS
(
μ̂λ

bs

) = 1

2

∑
A1 
=A2

∫
U

λ
A1

∩U
λ
A2

ψ(y)
〈y, (�A2 − �A1)y〉
‖(�A2 − �A1)y‖2

(|A2| − |A1|
)
dHn−1(y).

For col(XA1) ⊆ col(XA2) and rank(XA2) = rank(XA1) + 1, we see that the integrands in the two identities above
coincide. Hence, if we define

A1 := {
A1,A2 ⊆ {1, . . . , p} | col(XA1) ⊆ col(XA2) and rank(XA2) = rank(XA1) + 1

}
and

A2 := {
A1,A2 ⊆ {1, . . . , p} | col(XA1) 
= col(XA2) and (A1,A2) /∈ A1, (A2,A1) /∈ A1

}
,
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Fig. 7. Illustrations of the decomposition of R2 into the four sets U1
∅

, U1{1} , U1{2} and U1{1,2} according to the best subset selection estimator in

the Lagrangian formulation with λ = 1. The set U1
∅

consists of the points projected onto the 0-dimensional space {0}, the sets U1{1} , U1{2} to the

projections onto one of the two 1-dimensional subspaces and U1{1,2} to the identity map. The decomposition depends on the angle between the two
columns in X.

then

df
(
μ̂λ

bs

) − dfS
(
μ̂λ

bs

) = −2λ∂λ dfS
(
μ̂λ

bs

) + R,

where

R = 1

2

∑
(A1,A2)∈A2

∫
U

λ
A1

∩U
λ
A2

〈(�A2 − �A1)y, (�A2 − �A1 − (|A2| − |A1|)In)y〉
‖(�A2 − �A1)y‖2

ψ(y)dHn−1(y).

The usefulness of this hinges on R being small. For X orthogonal we have already demonstrated that R = 0 as
μ̂λ

bs then coincides with lasso-OLS, and in this case U
λ

A1
∩ U

λ

A2
has Hausdorff measure zero for all (A1,A2) ∈ A2.

For non-orthogonal X this is no longer true, see Figure 7. For best subset selection there will generally be boundaries

of non-zero Hausdorff measure between many more of the sets U
λ

A – boundaries that correspond to including or
excluding more than one predictor at the time or replacing predictors. Compare this with lasso-OLS and Figure 1.
However, by continuity in X we have R → 0 for X tending to an orthogonal matrix, and we can expect R to be small
for matrices that are not too far from orthogonal matrices. Thus we expect

dfS
(
μ̂λ

bs

) − 2λ∂λ dfS
(
μ̂λ

bs

)
(20)

to be a useful approximation for df(μ̂λ
bs) also for non-orthogonal X.

Using the same procedure for estimating the correction −2λ∂λ dfS(μ̂λ
bs) as outlined in Section 3 – using 2̂∂ instead

of ∂̂ – we used simulations to investigate if (20) was actually a good approximation of df(μ̂λ
bs). Figure 8 shows the
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Fig. 8. Left: Realization of the estimates of degrees of freedom d̂fS = dim(Ŝλ) and d̂f = dim(Ŝλ)+ 2̂∂ as well as the correction term ∂̂ as a function
of log(λ) for best subset selection (top) and corresponding estimates of the risk (bottom). Right: Similar to the left but mean values of the estimates
obtained by averaging over 1000 samples along with the degrees of freedom df = df(μ̂λ

bs) obtained from the 1000 samples using the covariance
definition (1). The design parameters were: σ = 0.5, n = p = 30, γ = 1, α = 0.1 and the design type was (S) with constant correlation of ρ = 0.1
(see Section 4).

results using the same configurations as in Figure 2, except that n was lowered to 30 due to computational constraints.
The conclusion from this and other similar simulations (not shown) is that even with non-orthogonal designs, (20) is
a practically useful approximation. That is, −2λ∂λ dfS(μ̂λ

bs) accounts for the majority of the increase in the degrees of
freedom due to variable selection.

6. Discussion

We have provided a new representation of degrees of freedom for a broad class of discontinuous, piecewise Lipschitz
estimators. This representation provides us with a deeper insight into the effect of variable selection, among other
things, on the effective dimension of the statistical model and the estimator used. We have demonstrated that for
lasso-OLS it was, moreover, possible to derive a practically useful estimator of the degrees of freedom based on
the general representation, and we also suggest that a similar estimator can be useful for best subset selection. The
estimator was based on relating the derivative of λ �→ dfS(μ̂λ) to the discontinuities of the estimator μ̂λ as expressed
via the integral representation of df(μ̂λ)− dfS(μ̂λ). This does, indeed, make some intuitive sense as the first expresses
the mean jump of degrees of freedom per unit change of λ and the other (in some sense) the mean discontinuity of
degrees of freedom per unit change of y. Changing λ for fixed y or changing y for fixed λ are dual operations, and it
is not surprising that we can relate the numbers.

A simulation study demonstrated that the risk of the lasso-OLS estimator can be estimated effectively by using
our proposed estimate of degrees of freedom. Our proposal did not incur any substantial computational penalty, nor
did it incur a substantial increase in the variance of the risk estimate. The simulation study also showed that lasso-
OLS can be effectively tuned by minimising our proposed risk estimate, and that the resulting computations are faster
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than using cross-validation. The resulting lasso-OLS estimator selects fewer predictors than lasso with a comparable
predictive performance, but it is computationally more expensive.

If we were to generalize our results to other estimators that include a tuning parameter, we expect that it is only
the derivative of the part of dfS(μ̂λ) that corresponds to jumps that can be related to df(μ̂λ) − dfS(μ̂λ). That is, in
general, λ �→ div(μ̂λ) will have jumps as well as smooth but non-constant pieces, and it is only the expectation of the
jump part that we expect can be related to df(μ̂λ) − dfS(μ̂λ). We believe that our suggested estimator of degrees of
freedom may actually be generalizable to a number of discontinuous estimators involving variable selection as well
as shrinkage. The requirement will be that the estimator has one or more tuning parameters and that it is computed on
a grid or along a path of these. Then we can potentially estimate the derivative of the divergence of the estimator as a
function of the tuning parameter(s). It is an ongoing research project to investigate this in detail.

For best subset selection we did not provide any bounds on the residual R in the approximation of df(μ̂λ) −
dfS(μ̂λ). It would, indeed, be very interesting to investigate this approximation in more detail. It would, in particular,
be interesting to understand if it in any way can be seen as a “first order approximation” and whether there are higher
order terms worth including in some cases.

Finally, we have restricted attention to Gaussian noise in the theoretical derivations. Like Stein’s classical lemma,
Theorem 2.4 crucially relies on this assumption. Our simulation study demonstrated some robustness towards de-
viations from this assumption. However, extensions of Stein’s lemma to non-Gaussian distributions do exist (see,
e.g., [3]), but further investigations are required to determine if similar extensions can be made in the more general
framework presented in this paper.

7. Supplementary material

The results from the entire simulation study as well as the R-code are available online http://doi.org/10.5281/zenodo.
321847, [19].

Appendix: Additional results and proofs

A.1. Semialgebraic sets

Observe that for A and B subsets of Rn it holds that

∂A = ∂
(
Ac

)
,

∂(A ∪ B) ⊆ ∂A ∪ ∂B,

∂(A ∩ B) ⊆ ∂A ∪ ∂B.

(21)

Especially, the family of sets{
E ∈ B

(
R

n
) | r �→Hn−1(∂E ∩ B(0, r)

)
is polynomially bounded

}
(22)

is stable under complement, finite union and finite intersection. This is a useful observation when we want to verify
Assumption 2.2(c).

The following Lemma shows that semialgebraic sets belong to the family given by (22). A semialgebraic set is
a finite union of finite intersections of sets of the form (P = 0) and (Q > 0), where P and Q are polynomials.
A multivariate polynomial is of the form (using multi-index notation)

P(x) =
∑
α∈A

aαxα, aα ∈R for each α ∈ A,

with A ⊆N
n finite.

Lemma A.1. If E is semialgebraic then r �→ Hn−1(∂E ∩ B(0, r)) is polynomially bounded.

http://doi.org/10.5281/zenodo.321847
http://doi.org/10.5281/zenodo.321847
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Proof. By the stability under finite set operations of the family given by (22) it suffices to show that r �→ Hn−1((P =
0)∩B(0, r)) is polynomially bounded for any nonzero polynomial P . But this follows from Corollary 1 in [16], which
implies that

Hn−1((P = 0) ∩ B(0, r)
) ≤ deg(P )π

n+1
2

�(n
2 )

rn−1

for any nonzero polynomial P with deg(P ) = maxaα 
=0 |α| denoting the degree of P . �

A.2. Proof of Theorem 2.4

The following Lemma characterizes the outer unit normal vectors ηi for i = 1, . . . ,N .

Lemma A.2. Under Assumption 2.2 the following holds:

(a) ηi = 0 Hn−1 a.e. on ∂Ui \ ⋃
j 
=i Uj for each i = 1, . . . ,N .

(b) ηi = −ηj Hn−1 a.e. on ∂Ui ∩ ∂Uj with i 
= j .
(c) ηi = 0 Hn−1 a.e. on ∂Ui ∩ ∂Uj ∩ ∂Uk with i, j, k distinct.

Proof. Firstly, note that the unit outer normal ηi on ∂Ui vanishes outside the measure theoretic boundary ∂∗Ui , see
Definition 5.8 in [7]. Moreover, these two types of boundaries relates to the reduced boundary ∂∗Ui (see Definition 5.7
in [7]) by the inclusions:

∂∗Ui ⊆ ∂∗Ui ⊆ ∂Ui.

Furthermore, Hn−1(∂∗Ui \ ∂∗Ui) = 0 (see Lemma 5.8.1 in [7]). All in all, we see that the lemma holds if we can show
the following claims:

∂∗Ui ⊆
⋃
l 
=i

U l,

ηi = −ηj on ∂∗Ui ∩ ∂∗Uj ,

∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk =∅

(23)

holds for all i, j, k distinct.
To prove the claims, define for each i and r > 0 the sets

Ur
i (x) = {

y | r(y − x) + x ∈ Ui

}
,

Hi(x) = {
y | 〈ηi, y − x〉 ≤ 0

}
.

Note that {Ur
i (x)}i are still disjoint. By Theorem 5.7.1 in [7]

1Ur
i (x)

r→0−−→ 1Hi(x) in L1
loc

(
R

n
)

for all x ∈ ∂∗Ui.

Therefore, if there existed x ∈ ∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk for i, j, k distinct, then

1Ur
i (x)∪Ur

j (x)∪Ur
k (x)

r→0−−→ 1Hi(x) + 1Hj (x) + 1Hk(x) in L1
loc

(
R

n
)
, (24)

which is impossible as the right hand side is not Lebesgue a.e. an indicator. By the same argument one can deduce
that ηi = −ηj must hold for x ∈ ∂∗Ui ∩ ∂∗Uj and that any x ∈ ∂∗Ui cannot belong to the open set (

⋃
l 
=i U l)

c . �
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Proof of Theorem 2.4. For i = 1, . . . ,N Gauss–Green’s formula (see Theorem 5.8.1 in [7] and Theorem 4.5.6 in [9])
gives that∫

Ui

div(f ) dm =
∫

∂Ui

〈f,ηi〉dHn−1 (25)

for all Lipschitz continuous vector fields f with compact support. Here ηi denotes the outer unit normal of ∂Ui , which
is well defined and nonzero on a subset of ∂Ui and zero everywhere else by definition.

Let (gr)r be a sequence of smooth functions with

gr(x) =
{

1 if x ∈ B(0, r),

0 if x /∈ B(0, r + 1),

and (gr)r and (Dgr)r uniformly bounded. Since μ̂i is Lipschitz continuous on Ui ∩ B(0, r + 1) Kirzbraun’s theorem
ensures that μ̂i has a Lipschitz extension, μ̂r

i : Rn → R
n. Then fr = grψμ̂r

i is Lipschitz continuous with compact
support and grμ̂

r
i = grμ̂ on Ui . Then (25) applied to fr yields∫

∂Ui

grψ〈μ̂i , ηi〉dHn−1 =
∫

Ui

grψ div(μ̂i) dm +
∫

Ui

〈grDψ + ψDgr, μ̂i〉dm.

Due to Assumption 2.2 all integrands above are dominated by integrable functions, and by letting r → ∞ Lebesgue’s
Dominated Convergence Theorem yields∫

∂Ui

ψ〈μ̂i , ηi〉dHn−1 =
∫

Ui

ψ div(μ̂i) dm +
∫

Ui

〈Dψ, μ̂i〉dm.

By summing over i we get

df(μ̂) = dfS(μ̂) −
∑

i

∫
∂Ui

ψ〈μ̂i , ηi〉dHn−1. (26)

By Lemma A.2 we see that

df(μ̂) = dfS(μ̂) −
∑
j 
=i

∫
∂Ui∩∂Uj

ψ〈μ̂i , ηi〉dHn−1

= dfS(μ̂) + 1

2

∑
j 
=i

∫
∂Ui∩∂Uj

〈μ̂j − μ̂i , ηi〉ψ dHn−1.

Since ηi vanishes on ∂Ui ∩ ∂Uj \ (Ui ∩ Uj ) for i 
= j we have proven (4). �
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