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RANDOM CLUSTER DYNAMICS FOR THE ISING MODEL IS
RAPIDLY MIXING

BY HENG GUO1,2,∗ AND MARK JERRUM1,†

University of Edinburgh∗ and Queen Mary, University of London†

We show that the mixing time of Glauber (single edge update) dynam-
ics for the random cluster model at q = 2 on an arbitrary n-vertex graph
is bounded by a polynomial in n. As a consequence, the Swendsen–Wang
algorithm for the ferromagnetic Ising model at any temperature also has a
polynomial mixing time bound.

1. Introduction. The Ising model is perhaps the best known model in statis-
tical physics, and it has also been widely studied from an algorithmic perspective.
An instance of the model is an undirected graph G, together with a parameter
β > 0. A configuration of the model is an assignment σ ∈ {0,1}V of “spins” to
the vertices of G. The weight w(σ) of configuration σ is βm(σ) where m(σ) is
the number of monochromatic edges [edges {i, j} with σ(i) = σ(j)] in G. It is of
importance to compute the partition function of the system, which is the sum of
weights w(σ) over all configurations σ ∈ {0,1}V .

If β < 1, then the system is antiferromagnetic, and the partition function is
computationally hard, even to approximate. However, in the ferromagnetic case
(β > 1), Jerrum and Sinclair (1993) gave a fully polynomial-time randomized ap-
proximation scheme (FPRAS) for the partition function, which is efficient and
achieves any specified relative error. A direct approach using Markov chain Monte
Carlo (MCMC) on the spin configurations described above fails, as the spin model
exhibits multiple phases for sufficiently large β on, say, a complete graph. On the
other hand, the “even subgraphs” model has the same partition function as that of
the Ising model, and it does form the basis for a successful application of MCMC,
as was shown by Jerrum and Sinclair (1993). (See Sections 2 and 3 for details of
the various models referred to in this Introduction.)

There is a third model which is equivalent to the Ising model in the sense of
having the same partition function up to an easily computable factor, namely the
random cluster model introduced by Fortuin and Kasteleyn (1972). Similar to the
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even subgraphs model, the configurations of the random cluster model are sub-
sets of the edge set of G. However, the random cluster model is more tightly re-
lated to the Ising model; in fact, a random Ising configuration can be obtained by
colouring the connected components (clusters) of a random cluster configuration
independently and uniformly at random by 0 and 1. Although we already have a
polynomial-time algorithm for estimating the partition function of the Ising model,
it is natural to wonder about the mixing time of the Gibbs sampler for random clus-
ter configurations, which makes single edge-flip moves with Metropolis rejection
probabilities. Indeed, it is conceivable that this dynamics mixes faster than the
standard dynamics for the even subgraphs model.

Another reason for focusing on the random cluster model is that it extends the
other two models in the following sense. There is a generalisation of the Ising
model to q ≥ 2 spins, known as the q-state Potts model, of which the Ising model
is the special case q = 2. Although the even subgraphs and spin formulations are
defined only for integer q , the random cluster model makes sense for arbitrary
positive real q . Thus, by studying the dynamics of the random cluster model at
q = 2, we may gain insight into the complexity of computing the partition function
of the random cluster model at other values of q , particularly (for reasons that
will be explained presently) in the range 0 ≤ q < 2. Stated in other terms, we
would hope to gain information about the complexity of approximating the Tutte
polynomial T (G;x, y) in the region 0 ≤ (x − 1)(y − 1) < 2, and x, y ≥ 1, about
which nothing is currently known except for the point x = y = 1 and the (trivial)
hyperbola (x − 1)(y − 1) = 1 [Goldberg and Jerrum (2008, 2014)].

In this paper, we prove that the Gibbs sampler (single edge-flip dynamics) for
the random cluster model on an arbitrary graph mixes in time polynomial in
n = |V (G)|, the number of vertices of G. (See Theorem 2.) One main tool is the
well-known canonical paths technique for bounding mixing times via a parameter
known as congestion, in the form presented by Sinclair (1992); see also [Diaconis
and Stroock (1991)]. Another tool is a coupling between random cluster and even
subgraph configurations discovered by Grimmett and Janson (2009). The existence
of this coupling invites us to bound the congestion of the edge-flip dynamics on
random cluster configurations in terms of the known bounds on congestion for
the edge-flip dynamics on (augmented) even subgraph configurations, established
by Jerrum and Sinclair (1993). Unfortunately, this translation between the models
cannot be handled by existing comparison techniques [Diaconis and Saloff-Coste
(1993), Dyer et al. (2006)], and an extension of comparison methods to the cur-
rent situation is a contribution of the paper, and one that may find applications
elsewhere.

Swendsen and Wang (1987) proposed a Markov chain that is widely consid-
ered to be an efficient method for sampling random cluster configurations (and
Ising spin configurations) in practice. (Refer to Section 2.2 for a description of
this Markov chain.) Prior to this work, the study of the Swendsen–Wang algorithm
and related cluster dynamics was focused on special graphs, such as the complete
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graph (the “mean-field” situation) or the two-dimensional lattice Z
2. For complete

graphs, the mixing time is very well understood for all q ≥ 1 [Blanca and Sinclair
(2015), Galanis, Štefankovič and Vigoda (2015), Long et al. (2014)]. For Z2, for
all q ≥ 1, the dynamics is fast mixing at all temperatures other than the critical
one [Blanca and Sinclair (2016), Ullrich (2013, 2014a)]. When q = 2, a polyno-
mial upper bound was known in the critical case on Z

2 [Lubetzky and Sly (2012),
Ullrich (2013, 2014a)], whereas on Z

3 this was unknown. Recently, exponential
mixing time lower bounds were established at the critical temperature on Z

2 when
q > 4, and for other q , the mixing time is at most subexponential [Duminil-Copin
et al. (2016), Gheissari and Lubetzky (2016)], improving upon previous slow mix-
ing results [Borgs et al. (1999)].

On the other hand, little is known for the Swendsen–Wang algorithm on arbi-
trary graphs. Ullrich (2014b) has shown that the relaxation time of the Swendsen–
Wang dynamics is always no more than that of the edge-flip dynamics, so our result
provides the first polynomial upper bound on the mixing time of the Swendsen–
Wang algorithm for the ferromagnetic Ising model on arbitrary graphs (see The-
orem 9). This confirms a conjecture raised by Sokal in the 1990s. However, the
exponent in the bound we derive here is likely to be well above the true answer.
Indeed, Peres has made and circulated [Peres (2017)] the following conjecture.

CONJECTURE 1 (Peres). The mixing time of the Swendsen–Wang algorithm
for the ferromagnetic Ising model is O(n1/4) on an arbitrary graph.

The conjectured bound O(n1/4) comes from the mixing time at the critical tem-
perature in a complete graph [Long et al. (2014)], which is believed to be the worst
case. In contrast, the bound we show is O(n4m3) (see Theorem 9). Hopefully, the
result presented here may be the first step on the road towards settling this conjec-
ture.

Since the random cluster model is defined for all positive real q , it is natural
to speculate on the mixing time of the Glauber dynamics when q �= 2. For q > 2,
the mixing time cannot be polynomial in general, owing to a first-order phase
transition of the model on the complete graph identified by Bollobás, Grimmett
and Janson (1996). This phase transition is a barrier to rapid mixing when q > 2,
as shown by Gore and Jerrum (1999) when q is an integer, and by Blanca and
Sinclair (2015) for general q > 2. In fact, there is no polynomial-time algorithm
of any sort for evaluating the partition function of the random cluster model on
general graphs when q > 2, unless there is an FPRAS for counting independent
sets in a bipartite graph [Goldberg and Jerrum (2012)]. In contrast, in the range
0 ≤ q ≤ 2 there is no known barrier to rapid mixing, and there is cause to be
optimistic, particularly in the range 1 < q < 2, in which the random cluster model
is monotonic.
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2. Definitions and the main results. For a graph G = (V ,E), we will use
n = |V | and m = |E| throughout the paper. The ferromagnetic Ising model on
a graph G = (V ,E) with parameter β > 1 is defined by the following: for any
σ ∈ {0,1}V , the probability of being in configuration σ is

π(σ) = βm(σ)

ZIsing(β)
,(1)

where m(σ) is the number of mono-chromatic edges in σ , and its normalizing
factor, the so-called partition function, is defined as

ZIsing(β) = ∑
σ∈{0,1}V

βm(σ).

The random cluster model with parameters (p, q) is defined on subsets of edges
S ⊆ E such that

πRC(S) ∝ p|S|(1 − p)|E\S|qκ(S),(2)

where κ(S) is the number of connected components in the subgraph (V ,S). The
partition function is

ZRC(p, q) = ∑
S⊆E

p|S|(1 − p)|E\S|qκ(S).

Denote this measure by πRC;p,q(·) or simply πRC(·) when there is no confusion.
We use � throughout this article to denote the state space of random cluster mod-
els, namely {0,1}E . It is well known that, for q = 2 and p = 1 − 1

β
, the ran-

dom cluster model is equivalent to the Ising model in the sense that their partition
functions are equal up to some easily computable factor [see (10)]. The random
cluster model was introduced by Fortuin and Kasteleyn (1972), who also showed
the equivalence between partition functions of the random cluster and the Ising
model. Edwards and Sokal (1988) further elucidated the connection: for general
integer q > 0, there is a coupling between the random cluster and the Potts model
with q spins (where Ising is the special case of q = 2).

The (lazy) single bond flip dynamics PRC is defined as follows based on the
Metropolis filter:

PRC(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2m
min

{
1,

πRC(y)

πRC(x)

}
if |x ⊕ y| = 1;

1 − 1

2m

∑
e∈E

min
{

1,
πRC(x ⊕ {e})

πRC(x)

}
if x = y;

0 otherwise,

(3)

where x, y ∈ �. It is not hard to see, for example, by checking the detailed balance
condition, that πRC(·) is the stationary distribution of PRC. Note that the Markov
chain is lazy, that is, it remains at its current state with probability at least 1

2 . This
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eliminates the possibility of the transition matrix P having negative eigenvalues,
and simplifies the analysis later.

For a Markov chain with transition matrix P and stationary distribution π , we
are interested in its mixing time, that is, how fast it converges to the stationary
distribution, defined as follows:

τε(P ) := min
{
t : max

x∈�

∥∥P t(x, ·) − π
∥∥ ≤ ε

}
,(4)

where ‖ · ‖ is the total variation distance, namely∥∥π − π ′∥∥ = 1

2

∑
x∈�

∣∣π(x) − π ′(x)
∣∣.

Our main result is a mixing time upper bound of the single bond flip dynamics
PRC that is polynomial in the number of vertices.

THEOREM 2. For the random cluster model with parameters 0 < p < 1 and
q = 2, we have that

τε(PRC) ≤ 8n4m2(
m ln(1 − p)−1 + ln ε−1)

.

2.1. Preliminaries on Markov chains. If a Markov chain is lazy, then the
second-largest eigenvalue (in absolute value) of the transition matrix P is just the
second eigenvalue, denoted by λ2. The relaxation time is defined as

Trel(P ) := 1

1 − λ2
.(5)

The relaxation time is closely related to the mixing time, as shown by the following
proposition [see, e.g., Diaconis and Stroock (1991), Proposition 3].

PROPOSITION 3. For a lazy, ergodic, reversible Markov chain P and any ini-
tial state x0 ∈ �,

τε(P ) ≤ Trel
(
lnπ(x0)

−1 + ln ε−1)
.

Our goal is to bound τε(PRC). We can choose the initial state to be the empty

set of edges, which has weight π(∅) = (1−p)|E|2|V |
ZRC

. Also for β = 1
1−p

we have

ZRC(p,2) = β−|E|ZIsing(β) ≤ 2|V | and, therefore, π(∅) ≥ (1 − p)|E|. Hence,
lnπ(x0)

−1 ≤ m ln(1 − p)−1.
Canonical paths are a useful technique to bound the relaxation time of Markov

chains, introduced by Jerrum and Sinclair (1989), Sinclair and Jerrum (1989). Let

 = {γxy : x, y ∈ �} be a collection of paths, where γxy = {z0, . . . , z�} is a “canon-
ical” path from x = z0 to y = z� of length � where each step (zi, zi+1) is a valid
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transition of the Markov chain, namely P(zi, zi+1) > 0. The congestion 
(
) as-
sociated with these paths is


(
) := max
(z,z′)∈�2,P (z,z′)>0

L

π(z)P (z, z′)
∑

x,y∈�2

γxy�(z,z′)

π(x)π(y),(6)

where L = L(
) denotes the maximum length of paths in 
.
A more general technique is provided by the flow formulation for congestion.

A (valid) flow 
 is a collection of paths, where each path γ ∈ 
 is assigned a
weight wt(γ ), such that ∑

γ is from x to y

wt(γ ) = π(x)π(y).(7)

The congestion of 
 is defined as


(
) := max
(z,z′)∈�2,P (z,z′)>0

L

π(z)P (z, z′)
∑

γ∈
,(z,z′)∈γ

wt(γ ).(8)

The canonical paths are just a flow where for each pair (x, y) there is only one path
with positive weight.

Sinclair (1992) showed that the relaxation time can be bounded by the conges-
tion of any flow 
.

PROPOSITION 4. For a lazy, ergodic, reversible Markov chain P and any
flow 
,

Trel(P ) ≤ 
(
).

The main task is to design a good flow 
RC so that 
(
RC) is bounded by a
polynomial in n.

THEOREM 5. There is a collection 
RC of paths for the random cluster dy-
namics such that its congestion 
(
RC) ≤ 8m2n4.

Theorem 5 will be proved in Section 4. In particular, it implies a bound on the
relaxation time of PRC.

COROLLARY 6. For the Markov chain, PRC, Trel(PRC) ≤ 8m2n4.

Theorem 2 follows from Proposition 3 and Corollary 6.
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2.2. The Swendsen–Wang algorithm. Swendsen and Wang (1987) proposed
the following algorithm to sample Ising configurations with parameter β . For an
Ising configuration σ = σt ∈ {0,1}V at time t :

• Let M be the set of monochromatic edges under σ , that is, (u, v) ∈ M if σ(u) =
σ(v).

• For each edge e ∈ M , delete it with probability β−1. Let M ′ denote the set of
monochromatic edges that were not deleted.

• In the subgraph (V ,M ′), for each connected component, choose uniformly at
random and independently from {0,1}, and assign the chosen spin to all vertices
in that component.

The resulting spin configuration is σt+1 at time t + 1.
Ullrich (2014b) showed that the relaxation time of the Swendsen–Wang algo-

rithm is no larger than that of the single bond flip dynamics. In fact, the result of
[Ullrich (2014b)] holds for any integer q > 0, but here we only need it for q = 2.

PROPOSITION 7 [Ullrich (2014b), Theorem 5]. Let PSW be the transition ma-
trix of the Swendsen–Wang algorithm to sample Ising configurations with a pa-
rameter β > 1. Let PRC be the transition matrix of the corresponding single bond
flip dynamics for the random cluster model with p = 1 − β−1 ∈ (0,1) and q = 2.
Then for any graph G, Trel(PSW) ≤ Trel(PRC).

Combining Corollary 6 and Proposition 7, we have the following.

COROLLARY 8. For the Swendsen–Wang algorithm, Trel(PSW) ≤ 8m2n4.

Again, we use Corollary 8 together with Proposition 3, implying a polynomial
mixing time upper bound for the Swendsen–Wang algorithm.

THEOREM 9. Let PSW be the transition matrix of the Swendsen–Wang algo-
rithm to sample Ising configurations with a parameter β > 1. We have that

τε(PSW) ≤ 8n4m2(
m lnβ + ln ε−1)

.

3. Random even subgraphs. There is yet another formalism of the Ising
model, that is, the so-called “high-temperature expansion” or even subgraphs
model. We still pick a subset of edges S ⊆ E but with the further restriction that
every vertex in the induced subgraph (V ,S) has even degree. Denote by �even(G)

the state space of all such even subgraphs of G. We usually simply write �even
when there is no confusion. In this even subgraphs model, we want to sample from
�even with parameter p ≤ 1/2, so that edges are more inclined to be “out” than
“in”. That is, for any S ∈ �even,

π(S) ∝ p|S|(1 − p)|E\S|(9)
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and

Zeven(p) = ∑
S∈�even

p|S|(1 − p)|E\S|.

Distributions (1), (2) and (9) have in fact the same partition function, up to certain
scaling factors:

ZIsing(β) = β |E|ZRC

(
1 − 1

β
,2

)
= 2|V |β |E|Zeven

(
1

2

(
1 − 1

β

))
.(10)

The first equivalence was discovered by Fortuin and Kasteleyn (1972); [see
also [Grimmett (2006)]]. The second one is also a classical result, known as early
as in [van der Waerden (1941)]. More detailed explanations can be found in Ap-
pendix A.

Grimmett and Janson (2009) discovered the following coupling between even
subgraphs and random cluster configurations.

THEOREM 10 [Grimmett and Janson (2009), Theorem 3.5]. Take a random
even subgraph S from distribution (9) with parameter p ≤ 1/2, and add each edge
e /∈ S independently with probability p

1−p
to get a random subgraph R. Then R is

a random cluster configuration, that is, it satisfies (2) with parameters (2p,2).

For completeness, we give a proof of Theorem 10.

PROOF. The number of even subgraphs of a (not necessarily simple) graph
G = (V ,E) is well known to be∣∣�even(G)

∣∣ = 2|E|−|V |+κ(G),(11)

where κ(G) is the number of connected components of G.
For each r ⊆ E,

Pr(R = r) ∝ ∑
s⊆r,s even

(
p

1 − p

)|s|( p

1 − p

)|r\s|(1 − 2p

1 − p

)|E\r|

∝ p|r|(1 − 2p)|E\r|N(r),

where N(r) is the number of even subgraphs of (V , r). By (11), N(r) =
2|r|−|V |+κ(r). Hence,

Pr(R = r) ∝ (2p)|r|(1 − 2p)|E\r|2κ(r). �

However, it is not clear how to sample from �even with edge weights directly in
an efficient way, partly because of the rigid structure of the all even requirement.
On the other hand, Jerrum and Sinclair (1993) designed a Markov chain to do so by
moving among all subgraphs, but with each odd degree vertex incurring a penalty.
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Note that the Jerrum–Sinclair Markov chain together with the Grimmett–Janson
coupling (Theorem 10) yields an efficient sampler for random cluster models and
Ising configurations. It is more straightforward and efficient than the one given
by Randall and Wilson (1999), which also uses the Jerrum–Sinclair chain.

An alternative (but similar) Markov chain is to move between even subgraphs
and near-even subgraphs, for which we allow exactly two odd degree vertices (or
“holes”). This is the so-called “worm” process, introduced by Prokof’ev and Svis-
tunov (2001).

Let �k be the collection of subgraphs where k many vertices have odd degrees.
Then �0 = �even and the state space �worm of the “worm” process is �worm :=
�0 ∪ �2. For each pair of vertices (u, v) such that u �= v, denote by �(u, v) the
set of subgraphs of G in which u and v have odd degrees and all other vertices are
even. Then

�2 = ⋃
u,v∈V

�(u, v).

For a subset of edges S ⊆ E, let wp(S) := p|S|(1 − p)|E\S|. We give a penalty of
n−2 to each near-even subgraph:

wworm(S) :=

⎧⎪⎪⎨⎪⎪⎩
wp(S) if S ∈ �0;
n−2wp(S) if S ∈ �2;
0 otherwise.

(12)

The “worm” measure is defined as the following:

πworm(S) :=
⎧⎪⎨⎪⎩

wworm(S)

Zworm(p)
if S ∈ �worm;

0 otherwise,
(13)

where Zworm(p) = ∑
S∈�worm

wworm(S).
The winding idea of [Jerrum and Sinclair (1993)] provides a way to design

canonical paths between states in �worm with low congestion. We will not need
to analyze it in full detail for the worm process. Instead, we only care about paths
from one even subgraph to another.

THEOREM 11. There is a collection of paths


worm = {γxy | x, y ∈ �0}
equipped with a weight function wt(·) such that the following hold:

1. For any path γ ∈ 
worm and any state w ∈ γ , w ∈ �worm;
2. wt(γxy) = πeven(x)πeven(y);
3. Each state w appears at most once in γ and L(
worm) ≤ m;
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4. for any transition (w,w′) where w′ = w ⊕ {e},∑
γ∈
worm and γ�(w,w′)

wt(γ ) ≤ n4πworm(w).

Moreover, in the special case w′ = w ∪ {e} for some e /∈ w, we have the additional
bound ∑

γ∈
worm and γ�(w,w′)
wt(γ ) ≤ n4πworm(w)

p

1 − p
.

Note that 
worm is not a complete collection of canonical paths for πworm(·).
The proof of Theorem 11 is an adaptation of [Jerrum and Sinclair (1993)] and is
given in Appendix B. Note that Collevecchio et al. (2016) give an analysis of a
complete set of canonical paths for the worm process, but their result does not
quite fit our situation.

Since paths in 
worm go through �worm instead of �even, we need to extend
Theorem 10 to �worm. It will no longer be exact.

Take a random subgraph S from πworm (13) with parameter p ≤ 1/2. Again we
add each edge e /∈ S independently with probability p

1−p
to get R. Denote by π̂(·)

the law of R.

LEMMA 12. For any R ⊆ E,

π̂(R)

πRC;2p,2(R)
≤ 3

2
.

PROOF. Similar to the proof of Theorem 10, it is not hard to see that

π̂(R) ∝ p|R|(1 − 2p)|E\R|(N(R) + n−2N ′(R)
)
,

where N(R), as before, is the number of even subgraphs of (V ,R), and N ′(R)

is the number of subgraphs of R that belong to �2. Note that for each near-even
subgraph there is a penalty of n−2 for its weight [see (12)]. We use (11) to count
the number of even subgraphs of R, which is 2|R|−|V |+κ(R).

Let �R(u, v) be the set of near-even subgraphs of R with holes u and v. If
u, v are in different connected components of (V ,R), then there is no possible
such subgraph and |�R(u, v)| = 0. Otherwise, u, v are in the same component of
(V ,R), and we can add an extra edge (u, v) to R to get a graph R′. Applying (11)
to R′, we get that

N
(
R′) = 2|R|+1−|V |+κ(R) = N(R) + ∣∣�R(u, v)

∣∣.
The second equality is because each even subgraph of R′ either uses the new edge
(u, v) or not. If it does not use (u, v), then it is an even subgraph of R. Otherwise,
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it is [after removing the edge (u, v)] a near-even subgraph of R with holes u and v.
Hence, ∣∣�R(u, v)

∣∣ = 2|R|−|V |+κ(R),

as N(R) = 2|R|−|V |+κ(R).
Let c(R) be the number of pairs of vertices from every component of (V ,R).

That is,

c(R) :=
κ(R)∑
i=1

(
ni

2

)
,(14)

where ni is the size of the ith component of (V ,R) with the convention that(1
2

) = 0. Then we have that

N ′(R) = 2|R|−|V |+κ(R)c(R),

and

π̂(R) ∝ (2p)|R|(1 − 2p)|E\R|2κ(R)

(
1 + c(R)

n2

)
.

The lemma follows by noticing that 0 ≤ c(R) ≤ n(n−1)
2 . �

4. Lifting canonical paths. Let p ≤ 1/2 be the parameter of the even sub-
graph and the worm measure. Let 
worm be the collection of paths as in The-
orem 11. We will use Lemma 12 to lift 
worm to a flow 
RC for PRC, the single
edge-flip Markov chain for the random cluster model with parameter 2p. This flow

RC will be the one used in the proof of Theorem 5.

We first construct a flow 
′
RC from 
worm. Let γ = {w0,w1, . . . ,w�} be a path in


worm where w0,w� ∈ �0, and � ≤ L(
worm). We lift γ to a flow (random path) as
follows. First, we add each edge e /∈ w0 with probability p′ = p

1−p
independently

as in Lemma 12, to obtain the starting state Z0 of the path. In other words, letting

δ(w, z) := (
p′)|z\w|(1 − p′)|E\z|

,

for subsets of edges w ⊆ z ⊆ E, we draw a superset Z0 of w0 such that Pr(Z0 =
z) = δ(w0, z) for any z ⊇ w0. Note that

πRC(z) = ∑
w⊆z,w∈�0

πeven(w)δ(w, z)

by Theorem 10, and

π̂ (z) = ∑
w⊆z,w∈�worm

πworm(w)δ(w, z)

by definition.
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We construct Z1, . . . ,Z� inductively. Given Zk−1 for 1 ≤ k ≤ �, we construct
Zk by mimicking the transition from wk−1 to wk while ensuring that

Prγ (Zk = z) = δ(wk, z),

for any z ⊇ wk at the same time. Here, the subscript γ emphasises that probabilities
are with respect to a fixed path γ . By the induction hypothesis, Prγ (Zk−1 = z) =
δ(wk−1, z) for any z ⊇ wk−1. For Zk , there are two cases:

• If wk = wk−1 ∪ {e} for some edge e /∈ wk−1, then let Zk = Zk−1 ∪ {e}. We have
that

Prγ (Zk = z) = Prγ (Zk−1 = z) + Prγ
(
Zk−1 = z \ {e})

= δ(wk−1, z) + δ
(
wk−1, z \ {e})

= δ(wk, z)p
′ + δ(wk, z)

(
1 − p′) = δ(wk, z),

for any z ⊇ wk .
• If wk = wk−1 \ {e} for some edge e ∈ wk−1, then let Zk = Zk−1 with probability

p′ and Zk = Zk−1 \ {e} with probability 1 − p′. For any z ⊇ wk such that e ∈ z,

Prγ (Zk = z) = Prγ (Zk−1 = z)p′ = δ(wk−1, z)p
′ = δ(wk, z),

and for any z ⊇ wk such that e /∈ z,

Prγ (Zk = z) = Prγ
(
Zk−1 = z ∪ {e})(1 − p′)

= δ
(
wk−1, z ∪ {e})(1 − p′) = δ(wk, z).

Given γ , the lifted path Z = {Z0,Z1, . . . ,Z�} is constructed as above. A partic-
ular flow path ζ = {z0, z1, . . . , z�} in the random cluster world may be lifted from
multiple paths from 
worm, and its weight is assigned to be the aggregation:

wt(ζ ) = ∑
γ∈
worm

wt(γ )Prγ (Z = ζ ).

This completes the construction of 
′
RC.

However, 
′
RC is not a valid flow for πRC(·). Recall that the valid flow should

satisfy (7). An equivalent view of (7) is that if we draw a random path according
to the weight function wt(·), the initial and final states should be independently
distributed according to πRC(·). Under this view, the problem with 
′

RC is that Z0
and Z� are correlated, even though the marginal distribution of each is πRC(·).

We resolve this issue next by constructing 
RC. Given γ ∈ 
worm with length �,
we construct Z0, . . . ,Z� the same as in 
′

RC. To repair the distribution of Z�, we
append further transitions to re-randomize edges that are not in w�. More pre-
cisely, let {e1, e2, . . . , ek} be the edges that are not in w� where k = |E \ w�|.
Given Z�+i−1 for 1 ≤ i ≤ k, let Z�+i = Z�+i−1 \ {ei} with probability 1 − p′ and
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Z�+i = Z�+i−1 ∪ {ei} with probability p′. As in 
′
RC, for a random cluster path

ζ = {z0, z1, . . . , z�+k}, its weight is defined to be

wt(ζ ) = ∑
γ∈
worm

wt(γ )Prγ (Z = ζ ).

This completes the construction of 
RC. The longest path in 
RC has length at
most L(
worm) + m, that is, L(
RC) ≤ L(
worm) + m ≤ 2m.

Fix a path γ = {w0,w1, . . . ,w�}. For any 0 ≤ i ≤ � and z ⊇ wi , we have
Prγ (Zi = z) = δ(wi, z), because of the construction of 
′

RC. Moreover, for any
1 ≤ i ≤ |E \ w�| and z ⊇ w�, we have Prγ (Z�+i = z) = δ(w�, z). This can be
shown by inductively going through the construction above. The re-randomization
does not change the marginal distribution but removes the correlation between Z0

and Z�′ , where �′ = � + |E \ w�| (conditional on γ ).

LEMMA 13. The flow 
RC is valid for πRC(·), namely it satisfies (7).

PROOF. We verify (7) as follows:∑
ζ is from x to y

wt(ζ )

= ∑
w⊆x,w′⊆y
w,w′∈�0

∑
γ is from w to w′

wt(γ )Prγ (Z0 = x,Z�′ = y)

= ∑
w⊆x,w′⊆y
w,w′∈�0

∑
γ is from w to w′

wt(γ )Prγ (Z0 = x)Prγ (Z�′ = y)

= ∑
w⊆x,w′⊆y
w,w′∈�0

∑
γ is from w to w′

wt(γ )δ(w,x)δ
(
w′, y

)

= ∑
w⊆x,w′⊆y
w,w′∈�0

πeven(w)πeven
(
w′)δ(w,x)δ

(
w′, y

)

=
( ∑

w⊆x,w∈�0

πeven(w)δ(w,x)

)( ∑
w′⊆y,w′∈�0

πeven
(
w′)δ(

w′, y
))

= πRC(x)πRC(y),

where in the last step we use Theorem 10. �

LEMMA 14. Let 2p ≤ 1 be the parameter for the random cluster model:
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1. For a transition (z, z′) where z′ = z ∪ {e} for some e /∈ z,∑
ζ∈
RC,ζ�(z,z′)

wt(ζ ) ≤ p

1 − p
· 2n4πRC(z).

2. For a transition (z, z′) where z′ = z \ {e} for some e ∈ z,

∑
ζ∈
RC,ζ�(z,z′)

wt(ζ ) ≤ 1 − 2p

1 − p
· 2n4πRC(z).

3. For a transition (z, z), ∑
ζ∈
RC,ζ�(z,z)

wt(ζ ) ≤ 2mn4πRC(z).

PROOF. Fix γ , let Z be a random path lifted from γ and � be the length of γ .
Thus the path is γ = (w0, . . . ,w�) and, in particular, the final state of the path
is w�. For a state w ∈ γ , let i(γ,w) be index of w in γ and k(w, e) be the index of
e in the set E \ w, following the enumeration mentioned previously. Any w only
appears once in γ ∈ 
worm and hence i(γ,w) is well defined.

We want to bound the traffic in 
RC that goes through (z, z′). Let p′ = p
1−p

.
Depending on z′, we have three cases:

1. First, assume that z′ = z ∪ {e} where e /∈ z. The traffic may be from 
′
RC tran-

sitions or from the part we append at the end of each 
′
RC path. Hence we have

the following bound:∑
ζ∈
RC,ζ�(z,z′)

wt(ζ )

= ∑
w⊆z

( ∑
γ�(w,w∪{e})

wt(γ )Prγ
(
Zi(γ,w) = z,Zi(γ,w)+1 = z′)

+ ∑
γ=(w1,...,w�),w�=w

wt(γ )Prγ
(
Z�+k(w,e)−1 = z,Z�+k(w,e) = z′))

= ∑
w⊆z

( ∑
γ�(w,w∪{e})

wt(γ )Prγ (Zi(γ,w) = z)

+ ∑
γ,w�=w

wt(γ )Prγ (Z�+k(w,e)−1 = z)p′
)

= ∑
w⊆z

δ(w, z)

( ∑
γ�(w,w∪{e})

wt(γ ) + ∑
γ,w�=w

wt(γ )p′
)
.
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Hence by Theorem 11,∑
ζ∈
RC,ζ�(z,z′)

wt(ζ )

= ∑
w⊆z

δ(w, z)

( ∑
γ�(w,w∪{e})

wt(γ ) + ∑
γ,w�=w

wt(γ )p′
)

≤ ∑
w⊆z

δ(w, z)

(
n4πworm(w)

p

1 − p
+ πeven(w)p′

)

= p′n4
∑
w⊆z

δ(w, z)πworm(w) + p′ ∑
w⊆z,w∈�0

δ(w, z)πeven(w)

= p′n4π̂(z) + p′πRC(z)

≤ 2p′n4πRC(z),

where we use Lemma 12 in the last line. Also note that πeven(w) = 0 if w /∈ �0.
2. Next, assume that z′ = z\{e} where e ∈ z. Similar to the previous case, we have

that ∑
ζ∈
RC,ζ�(z,z′)

wt(ζ )

= ∑
w⊆z,w�e

∑
γ�(w,w\{e})

wt(γ )Prγ
(
Zi(γ,w) = z,Zi(γ,w)+1 = z′)

+ ∑
w⊆z,w ��e

∑
γ,w�=w

wt(γ )Prγ
(
Z�+k(w,e)−1 = z,Z�+k(w,e) = z′)

= ∑
w⊆z,w�e

∑
γ�(w,w\{e})

wt(γ )Prγ (Zi(γ,w) = z)
(
1 − p′)

+ ∑
w⊆z,w ��e

∑
γ,w�=w

wt(γ )Prγ (Z�+k(w,e)−1 = z)
(
1 − p′)

= ∑
w⊆z,w�e

(
1 − p′)δ(w, z)

∑
γ�(w,w\{e})

wt(γ )

+ ∑
w⊆z,w ��e

(
1 − p′)δ(w, z)

∑
γ,w�=w

wt(γ ).

Again we use Theorem 11 and Lemma 12:∑
ζ∈
RC,ζ�(z,z′)

wt(ζ )

≤ ∑
w⊆z

δ(w, z)
(
1 − p′)(n4πworm(w) + πeven(w)

)
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≤ (
1 − p′)n4

∑
w⊆z

δ(w, z)πworm(w)

+ (
1 − p′) ∑

w⊆z,w∈�0

δ(w, z)πeven(w)

= (
1 − p′)n4π̂(z) + (

1 − p′)πRC(z)

≤ 2
(
1 − p′)n4πRC(z).

3. At last, we handle the case that z = z′. Then we have the following bound:∑
ζ∈
RC,ζ�(z,z)

wt(ζ )

= ∑
w⊆z

(∑
γ�w

wt(γ )Prγ (Zi(γ,w) = z,Zi(γ,w)+1 = z)

+ ∑
γ,w�=w

wt(γ )

|E\w|∑
i=1

Prγ (Z�(γ )+i−1 = z,Z�(γ )+i = z)

)

≤ ∑
w⊆z

(∑
γ�w

wt(γ )Prγ (Zi(γ,w) = z) + ∑
γ,w�=w

wt(γ )δ(w, z)|E \ w|
)

= ∑
w⊆z

δ(w, z)

(∑
e∈z

∑
γ�(w,w⊕{e})

wt(γ ) + |E \ w| ∑
γ,w�=w

wt(γ )

)
.

By Theorem 11 and Lemma 12,∑
ζ∈
RC,ζ�(z,z)

wt(ζ ) ≤ m
∑
w⊆z

δ(w, z)
(
n4πworm(w) + πeven(w)

)
≤ 2mn4πRC(z). �

Note that in Lemma 14 we analyzed self-loop transitions (z, z) as well. We may
remove self-loop transitions from the flow 
RC without increasing the congestion.
However, doing so would make one transition in 
RC correspond to potentially
more than one steps before the lifting, making the analysis more difficult.

Now we are ready to prove Theorem 5.

PROOF OF THEOREM 5. The flow 
RC is constructed at the beginning of this
section and is verified in Lemma 13. We analyze its congestion in the following.
There are three cases depending on the transition (z, z′). Note that the parameter
of the random cluster is 2p, where p < 1/2 is the parameter for the even subgraph
model.
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For any transition (z, z′) where z′ = z ∪ {e} for some e /∈ z,

L(
RC)

πRC(z)PRC(z, z′)
∑

ζ∈
RC,ζ�(z,z′)
wt(ζ )

≤ L(
RC)

πRC(z)PRC(z, z′)
· p

1 − p
· 2n4πRC(z)

≤ 2mn4 · p

1 − p
· 2m

min{1,
2p

2(1−2p)
}

≤ 4m2n4,

where we use Lemma 14 in the first inequality and p ≤ 1/2 in the last.
Similarly, for a transition (z, z′) where z′ = z \ {e} for some e ∈ z,

L(
RC)

πRC(z)PRC(z, z′)
∑

ζ∈
RC,ζ�(z,z′)
wt(ζ )

≤ L(
RC)

πRC(z)PRC(z, z′)
· 1 − 2p

1 − p
· 2n4πRC(z)

≤ 2mn4 · 1 − 2p

1 − p
· 2m

min{1,
1−2p

2p
}

≤ 8m2n4,

where we use Lemma 14 in the first inequality and p ≤ 1/2 in the last.
For any transition (z, z′) where z′ = z, since the chain is lazy, PRC(z, z′) ≥ 1/2

and

L(
RC)

πRC(z)PRC(z, z′)
∑

ζ∈
RC,ζ�(z,z′)
wt(ζ ) ≤ L(
RC)

πRC(z)PRC(z, z′)
· 2mn4πRC(z)

≤ 4m2n4,

where we use Lemma 14 in the first line. �

APPENDIX A: EQUIVALENCE OF THE THREE MODELS

The equivalence between the Ising model and the random cluster model with
q = 2 can be found, for example, in [Grimmett (2006)]. An alternative explanation
is as follows. In the Ising model, instead of assigning vertices 0 or 1, we assign
“equal” or “independent” to edges. Each “equal” edge has a weight of β − 1, and
the “independent” edge has weight 1. This does not change the partition function
of the Ising model, since for each edge, if the two endpoints are equal, the weight
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is β − 1 + 1 = β , whereas if the two endpoints are different, the weight is 1. For
a subset S ⊆ E of edges assigned “equal”, each component of S has two possible
assignments. Therefore, the weight of S is (β − 1)|S|2κ(S). After rescaling by β |E|,
this matches the random cluster formulation (2) with p = 1 − 1

β
and q = 2. This

gives the first equality of (10).
The equivalence between the Ising model and even subgraphs model can be ex-

plained via a holographic transformation by the Hadamard matrix H = [ 1 1
1 −1

]
.3

This view will be useful in the next section. In the Ising model, vertices have
functions EQUALITY on their adjacent d many half-edges, which after the trans-
formation becomes EVEN function, defined as follows:

EVEN(x1, . . . , xd) =
⎧⎪⎨⎪⎩

2 if
⊕

i

xi = 0;
0 otherwise.

On the edges, the function (on the two half-edges) is

ISING(x1, x2) =
{
β if x1 = x2;
1 otherwise,

whereas after the transformation it is a weighted equality function:

WEQ(x1, x2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β + 1

2
if x1 = x2 = 0;

β − 1

2
if x1 = x2 = 1;

0 otherwise.

Therefore, for a subset S of edges (both half-edges are 1), its weight is

wt(S) =
⎧⎪⎨⎪⎩2|V |

(
β − 1

2

)|S|(β + 1

2

)|E\S|
if S ∈ �even;

0 otherwise.

The requirement of S ∈ �even arises because each vertex requires even degree, and
when all degree constraints are satisfied, the vertices contribute 2|V | in total. We
may rewrite the weight of S ∈ �even:

2|V |
(

β − 1

2

)|S|(β + 1

2

)|E\S|
= 2|V |β |E|

(
1

2

(
1 − 1

β

))|S|(1

2

(
1 + 1

β

))|E\S|
.

Hence setting p = 1
2(1 − 1

β
) matches (9) and taking out an appropriate scaling

factor yields the second equality of (10).

3For a treatment of holographic transformations, see, for example, [Cai, Guo and Williams (2016)].
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APPENDIX B: CONGESTION OF THE WORM PROCESS

Throughout this section, fix p ≤ 1/2. Recall that �k is the collection of sub-
graphs where k many vertices have odd degrees. Then �0 = �even, and �0 ∪�2 =
�worm. Define

Zk := ∑
S∈�k

wp(S),

where wp(S) = p|S|(1 − p)|E\S|. Then Z0 = Zeven(p) and Zworm(p) = Z0 +
n−2Z2.

LEMMA 15. Z2 ≤ (n
2

)
Z0.

PROOF. We adopt the holographic transformation view of the even subgraphs
model. A vertex that only allows odd degrees is equivalent to the following func-
tion:

ODD(x1, . . . , xd) =
⎧⎪⎨⎪⎩

2 if
⊕

i

xi = 1;
0 otherwise.

Transforming back to the Ising model, this vertex is still an EQUALITY on all
adjacent half-edges, but with a weight of −1 when all half-edges are assigned 1.
Hence for every u, v ∈ V ,

Zu,v := ∑
S∈�(u,v)

wp(S) ≤ Z0,(15)

because the left-hand side can be transformed to the original Ising model with
u and v having weights −1. Summing over all possible pairs of vertices in (15)
yields Z2 ≤ (n

2

)
Z0. �

In particular, Lemma 15 implies that Zworm = Z0 + n−2Z2 ≤ Z0 + n−2(n
2

)
Z0 ≤

3Z0/2. Now we are ready to prove Theorem 11.

PROOF OF THEOREM 11. Let I and F be two configurations in �0, denoting
the initial and final states. Then I ⊕ F ∈ �0. The canonical path from I to F

will be identical to those in [Jerrum and Sinclair (1993)]. Fix an arbitrary ordering
of all cycles in G. For each cycle, we designate a starting vertex and a direction
around the cycle. Hence each cycle is an ordered tuple of edges. Since I ⊕ F is
an even subgraph, we can cover I ⊕ F by a collection of edge-disjoint cycles.
Let {C1, . . . ,Cr} be the first such in our ordering. Let e1, . . . , ek be the edges of
{C1, . . . ,Cr} taken in order (first order the edges according to the cycle they occur
in, and then by their position within the cycle, counting from the start vertex). The
canonical path γ from I to F is defined to be Z0 = I , Zi = Zi−1 ⊕ei , and Zk = F .
Intuitively, the canonical path unwinds Ci one by one from i = 1 to i = r . Clearly,
L = L(
worm) ≤ m as it can use every edge at most once.
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This path is always in �0 ∪ �2 because if we start to unwind a cycle, then the
current state is an even subgraph. If we are unwinding a path, then we always flip
an edge that is adjacent to an odd degree vertex.

For any transition (w,w′) where w′ = w ⊕ e for some edge e ∈ E, we use a
combinatorial encoding as in [Jerrum and Sinclair (1993)] for all paths passing
through (w,w′). For any two configurations I,F ∈ �0, let ϕ(I,F ) = I ⊕ F ⊕ w.
We claim that ϕ : �2

0 → �0 ∪ �2 is an injection. This is because given (w,w′)
and U = ϕ(I,F ), we can recover the unique (I,F ). First, since w ⊕ U = I ⊕ F ,
all edges not in w ⊕ U have the same state in both I and F , and their states
are the same as those in w. Then for edges in w ⊕ U , due to the construction
of the canonical path, there is a unique ordering among those edges, including
e = w ⊕ w′. For any edge before e, its status in w has been changed to that in F ,
and its status in U is still the same as that in I . For any edge after e (including e

itself), its status in w is still the same as that in I , and in U is the same as in F .
Recall that wp(S) = p|S|(1 − p)|E\S| for any subset of edges S ⊂ E. Since

I ⊕ F = w ⊕ U and I ∩ F = w ∩ U , we have that

wp(I)wp(F ) = wp(w)wp(U).

Therefore,∑
γ�(w,w′)

wt(γ ) = ∑
I,F∈�2

0
γIF �(w,w′)

πeven(I )πeven(F ) = ∑
I,F∈�2

0
γIF �(w,w′)

wp(I )wp(F )

Z2
0

= ∑
I,F∈�2

0
γIF �(w,w′)

wp(w)wp(ϕ(I,F ))

Z2
0

≤ wp(w)
∑

U∈�0∪�2

wp(U)

Z2
0

= Z0 + Z2

Z2
0

· wp(w).

By the definition of πworm (12) and (13), πworm(w) = wworm(w)
Zworm

≥ wp(w)

n2Zworm
. This

implies that ∑
γ�(w,w′)

wt(γ ) ≤ Z0 + Z2

Z0
· Zworm

Z0
· n2πworm(w)

≤
(

1 +
(
n

2

))(
1 +

(
n

2

)
n−2

)
n2πworm(w)(by Lemma 15)

≤ n4πworm(w).
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For the last claim of the theorem, let w′ = w ∪ {e} for some e /∈ w. We can do
the same combinatorial encoding for w′. That is, let U ′ = ϕ′(I,F ) = I ⊕ F ⊕ w′.
It is easy to verify as above that ϕ′ is an injection. Then as above,∑

γ�(w,w′)
wt(γ ) ≤ Z0 + Z2

Z2
0

· wp

(
w′)

= Z0 + Z2

Z2
0

· wp(w) · p

1 − p

≤ n4πworm(w)
p

1 − p
. �
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