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Prior Specification Is Engineering,
Not Mathematics
James G. Scott

In their thought-provoking paper, Drs. Simpson et al.
argue that “the current practice of prior specification
is not in a good shape.” I agree, and offer some rea-
sons why this is so, rooted in the culture and practice
of Bayesian statistics as it stands today.

The Bayesian collaborator on a scientific project is
often put in the position of asking, with all appropri-
ate tact, why a particular prior has been chosen and
whether something else might actually be a bit wiser.
The experience is, I imagine, like working at a tattoo
parlor: it widens your perspective about what kinds of
poor choices are even possible.

For the R package maintainer, this experience must
be magnified ten- or a hundred-fold. I suspect that Drs.
Simpson et al. never would have imagined some of
the things that people do with priors, until they un-
dertook the job of writing and supporting an R pack-
age that does Bayesian inference for a wide class of
models. I appreciate very much the authors’ effort here
to share their wisdom from the front lines of prior
specification, and to formulate some general princi-
ples arising from this hard-won practical experience.
I will organize my discussion of their article, which
is both thought-provoking and excellent, around two
broad questions that surround the practical art of prior
specification.

DOES THE AUTHORS’ PROPOSAL ADDRESS
THE PROBLEM?

There is tremendous value in the authors’ discussion
of criteria for good default priors. Here, they identify
many common mistakes, which to my eye have a com-
mon theme: choices that make the prior rather more
informative than you intended. In particular, my vo-
cabulary has been enriched by the concept of “forced
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overfitting,” in which a default prior has the unin-
tended consequence of rewarding a needlessly complex
model. This is most obvious in the case of a variance
component for random effects in a hierarchical model,
a prototypical kind of nuisance parameter.

However, while it does not diminish my appreciation
of the paper, I am not convinced about the “PC prior”
formalism itself. For multivariate parameters, in partic-
ular, I have not yet been convinced that this formalism,
or any other, is adequate to the task of answering the
questions of prior choice that I have confronted in my
recent scientific collaborations. More generally, I am
leery of transferring intuitions gleaned from the scalar
case to the high-dimensional case.

I will give a simple example. In Tansey et al. (2017),
we describe an application in which the goal is to esti-
mate the background radiation intensity across a wide
spatial area. The details are unimportant here, but the
essence is this: we have an undirected graph G = (V,E)

that describes spatial adjacencies among locations, and
a parameter {θ(s) : s ∈ V} at each node in the graph,
parametrizing the background radiation at that loca-
tion. To estimate θ , we used a prior that penalizes first-
differences across edges in the graph:

p(θ) ∝ ∏

(r,s)∈E
p

(
θ(r) − θ(s) | τ )

,

where τ is a precision parameter. If p(·) is a Gaus-
sian distribution, then this is a traditional Gaussian
Markov random field (specifically, an intrinsic CAR
prior). This fits in the class of random-effects mod-
els described in the authors’ Section 3.3, and we could
therefore have used equation (3.3) as a prior for τ in a
Gaussian CAR model.

But instead, we chose a Laplace prior for these
first differences. Why? For several reasons. First, the
Laplace prior leads to a nonlinear spatial smoother that
adapts to different degrees of smoothness in different
regions of the graph, which our situation called for.
The Gaussian CAR prior, on the other hand, leads to
linear shrinkage, which has important consequences
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for estimation accuracy, both theoretically and practi-
cally; see, for example, Sadhanala, Wang and Tibshi-
rani (2016) and Donoho and Johnstone (1998). Sec-
ond, the Laplace prior was better at handling disconti-
nuities in our spatial field, due to the presence of line-
of-sight occlusions that scattered radiation even from
nearby sources. Finally, even in situations where the
Gaussian prior had better average performance across
the graph, the Laplace prior nearly always had better
worst-case performance, that is, better accuracy for the
nodes that were the hardest to estimate. For our appli-
cation, this mattered a lot, because the performance of
the whole radiation-monitoring system was limited by
its weakest spatial link.

The authors, of course, explicitly endorse this kind
of reasoning, when they write: “As always, if the user
knows of a better prior for their case, then they should
use it.” By relating this example, I do not mean to imply
that the authors would disagree with the particulars of
our model. I merely wish to draw out two points.

The first point is that formal prior-specification rules
may encourage us to focus on the wrong question, be-
cause doing so allows a mental shortcut. For our prob-
lem, the PC formalism provides an immediately avail-
able answer to the question: what should the prior be
for the precision in a Gaussian CAR model? We are
therefore nudged in the direction of asking this ques-
tion, even in a situation like ours, where the relevant
question is: should the prior be Gaussian in the first
place? (No, it should not, and not because of the cri-
teria that motivate PC priors.) To be sure, the expert
statistician will probably have the wisdom to ask the
second question, and the design language to answer it.
But most statistical analyses are done by nonexperts.

In my experience, these first-order questions about
functional form are much more important than ques-
tions about scalar hyperparameters, to which the PC
prior admittedly provides an appealing answer. I do ap-
preciate that the multivariate extension of the PC con-
struction can provide an answer to the question of func-
tional form. But is it a good answer? The crux of the
matter seems to be the condition of constant rate penal-
ization; this seems just as reasonable a priori as many
other reasonable conditions leading to very different
formalisms, which I mean as a criticism. There is also
the matter of the user’s choice of a “sensible” scale pa-
rameter arising from Principle 4. In Sections 6 and 7 of
the paper, I see many examples of how we could use
the PC formalism for a multivariate parameter. I do not
see any convincing evidence, however, that we should,
or that users are any better at specifying this scale than

they are at specifying the scale of the original parame-
ter.

The second point is that good prior specification is
more like engineering than like math. (I expect that the
authors would agree, although I hope they will correct
me if not.) To be sure, there are many principles that
cut across different areas of engineering, whether of
airplanes, circuit boards or software. For example:

• Clear integration with a given context. A well-
engineered product fits into its environment with
no confusion. (A bridge is for cars, and has a
clearly posted height and weight limit; Twitter’s API
streams tweets, and has a documented interface for
accessing it.)

• Testability. There are clear and repeatable tests that
can be performed to continuously validate whether
a product behaves as intended. (Airplanes are put in
wind tunnels; software, through unit tests.)

• Maintainability. The product is designed to last, but
also has room to grow or change as the future may
require. (Televisions come with external ports; mod-
ern cars have software updates.)

But it does not follow that these general principles will
be embodied in precisely the same way in all engineer-
ing contexts. Electrical engineers use different math
and a different design language than aerospace engi-
neers, because they are responding to different prob-
lems.

To my mind, statistical models for analyzing fMRI
data are at least as different from those for financial
time series as circuit boards are from airplanes. The
same general design principles apply, but the hard part
is how these principles interact with the specifics of a
problem. Drs. Simpson et al. have done us a great ser-
vice in collecting many general design principles for
priors in one place, and I have no doubt that I will refer
to this list many times over the ensuing years. But the
PC formalism seems too tidy to match my own experi-
ence, which has left me skeptical that these principles
can ever be codified in some universally applicable for-
mal rule.

WHY DO WE HAVE THIS PROBLEM IN
THE FIRST PLACE?

The authors end their paper with the observation that
“the current practice of prior specification is not in a
good shape.” I agree, and offer a simple reason for this:
Bayesians do not write software. Of course, there are
notable exceptions, including the authors; I speak gen-
erally.
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To quantify this, I visited the “Advance publica-
tion” page of the Bayesian Analysis journal website
in early September 2016. I clicked through to all 36
articles that were available ahead of their formal pub-
lication. I searched for the words “code,” “software,”
“library” and “package” in the full text of every arti-
cle, in an attempt to discern whether it was accompa-
nied by publicly available software. This informal sur-
vey captured only a moment in time of Bayesian re-
search, but a broad cross-section of topics, from vari-
able selection to approximate Bayesian computation,
and from phylogenetics to climate modeling. Here is
what I found:

• 3 papers with public software, including documen-
tation and a web page.

• 2 papers with undocumented R scripts and no data,
or simulated data only.

• 31 papers with no code provided in any form.

Of the three software packages I did find, one was
an R package that was available only through a link
on an author’s website, and not through any of the
usual venues that are a proxy for quality control, like
CRAN, BioConductor or even GitHub. A second was
in Java and the third in Julia, neither of which are
in widespread use by the statistics community. Thus
the final tally stands: 36 papers, 0 R packages avail-
able through the usual channels and 0 Python mod-
ules.

I grant that my convenience sample may contain the
odd theory paper, for which software could be irrele-
vant. Nonetheless, this is a lamentable record for a field
that purports to invent useful methodology for data
analysis. It seems that most Bayesians would rather be
star architects than engineers, producing pretty draw-
ings of buildings and leaving others to figure out how
to actually build them so that the roof does not leak.1

Let me be the first to say that I am guilty, too: I have
written two papers that appeared in Bayesian Analy-
sis, neither of which had software. One had theorems,
at least; the other, in retrospect, has had no lasting
value, which is at least partially due to the lack of soft-
ware.

What does this have to do with priors? Everything.
In my experience, if you write software for some sta-
tistical approach you have proposed, you are forced
to think carefully about how someone will use it, in

1See: “M.I.T. Sues Frank Gehry, Citing Flaws in Center He
Designed,” by Robin Pogrebin and Katie Zezima. The New York
Times, November 7, 2007, page A20.

the same way that an aerospace engineer must build a
plane with the idea that someone will fly it. But if you
do not write software for public use, you can get by
with sloppy, narrow thinking—about priors, and about
many other things besides, like how efficient and read-
able your code is, how robust your overall approach
is, whether your experiments can be reproduced and
whether there is even a nail out there for the fancy ham-
mer you have made.

Some methodological fields, like natural language
processing, operate under the mantra: no software, no
paper. We do not. Most editors and referees do not ex-
pect that papers have software, or reward those that do.
Most departments do not hire or promote people based
on the software they have written. Therefore, because
writing good software is hard, people tend to not do it.
These cultural tendencies excuse Bayesians from en-
gaging seriously with prior specification as an act of
engineering, rather than an act of mathematics. They
also prevent us from playing a meaningful role in the
vast majority of all scientific data analyses, which in-
volve complicated “pipelines” of different statistical
models joined together, and which require software
that is robust, efficient, and stable (as well as priors
that will not mess anything up).

Nothing but our collective inertia prevents this cul-
ture from changing overnight. Imagine if we took some
basic and obvious steps as a field—as editors, as ref-
erees, as members of hiring committees, as teachers,
and as scholars—to make this happen. My conjecture is
that mastery of the practical art of prior specification—
in other words, the wisdom and experience to engineer
priors that are fit for purpose, scientifically speaking—
would become much more widespread, and this whole
conversation would seem quaint.

In closing, I embrace the tradition of what the au-
thors call “risk-averse” priors, anchored in scientific
consensus. (After all, conservatism is an engineering
design principle, too.) I simply believe that we should
work to nudge whatever consensus may exist in some
field toward a better, more informed place. Thus my
solution to this problem sounds a lot simpler than
the authors’, but is actually harder. Talk to scientists.
Publish in their journals. Write software, so that oth-
ers can reproduce your work and use your method
in their scientific data-analysis pipelines. In short, do
what the authors of this paper do. The priors will
take care of themselves—not by magic, and not be-
cause of a formal rule, but because of what you will
learn.
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