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A Skellam GARCH model
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Abstract. This paper considers the modeling of nonstationary integer val-
ued time series with conditional heteroskedasticity using Skellam distribu-
tion. Two approaches of estimation of the model’s parameters are treated and
discussed. The obtained results are verified through some numerical simula-
tion. In addition, the proposed model is applied to real time series.

1 Introduction

Various models have been proposed for stationary discrete time series. Al-Osh and
Alzaid (1987) and McKenzie (1986) introduced an integer-valued autoregressive-
moving average (INARMA) models. The nonstationary integer-valued time series
are frequently encountered in real-life problems. Such problems contains valuable
data that is required to be modeled using times series One way to address this
non-stationary is to take the difference which results in integer valued time se-
ries that takes positive and negative values. Kim and Park (2008) introduced an
integer-valued autoregressive process of order p with signed binomial thinning
operator (INARS(p)). Karlis and Andersson (2009) defined the ZINAR process,
as an extension of the INAR model using the signed binomial thinning operator
and studied the case where the innovation has Skellam distribution. Alzaid and
Omair (2014) defined a Poisson difference (Skellam) integer valued autoregres-
sive model of order one (PDINAR(1)). Many time series exhibit time varying
volatility. Engle (1982) proposed the autoregressive conditional heteroskedastic
model (ARCH) that allows the conditional variance to change over time as a func-
tion of past errors by which makes the unconditional variance constant. Bollerslev
(1986) introduced a more general class of ARCH process, the generalized autore-
gressive conditional heteroskedastic (GARCH) having more flexible lag structure.
Ferland, Latour and Oraichi (2006) have introduced an integer-valued analogue of
the classical GARCH model using Poisson deviates instead of the normal deviates
abbreviated by INGARCH). The INGARCH model has been studied by many re-
searchers. Zhu and Li (2009) have studied the moment and Bayesian estimation of
parameters in the INGARCH(1, 1) model. Zhu, Li and Wang (2010) have intro-
duced a mixture integer-valued ARCH model. Heinen (2003) has defined autore-
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gressive conditional Poisson model (ACP(1, 1)). Ghahramani and Thavaneswaran
(2009) have extended Heinen’s results to higher order ACP(p, ¢). Zhu (2011) has
derived the negative binomial INGARCH model for overdispersion and extreme
observations. In many time series, there are two important phenomena that oc-
cur simultaneously. These phenomena are the nonstationarity and the time varying
variance. In literature, there are few tries that have been used to overcome those
phenomena. Here we introduce an integer-valued GARCH model based on Skel-
lam distribution to tackle those phenomena. To get more insights and understand
our model, some real-life data applications have been used.

This paper is organized as follows. The Skellam distribution is defined in Sec-
tion 2. In Section 3, the Skellam GARCH model is introduced. We study and inves-
tigate the estimation of the model using two approaches in Section 4. A numerical
simulation is carried out in Section 5. In Section 6, real life application is used
to validate our proposed model and to compare out obtained results with existed
results in literature.

2 Skellam distribution

For any pair of variables (X, Y) where X = W; 4+ W3 and Y = W, + W3 such that
W1 ~ Poisson(6) independent of W, ~ Poisson(6,) and W3 follows any distribu-
tion, the probability mass function of Z = X — Y is given by:

9 Z
P(Z=2)= 69192(9_1)212(2\/9192), t= —LO L., QD)
2

where

X\ (x4t

ro=(3) 55

2 = kl(z +k)!
and Z is said to have Skellam (Poisson difference) distribution, denoted by
Skellam(6;, 6;) with mean p = 61 — 6, and variance 02 =0, +6,. One can easily

2 2

see that 9] = £ ;“ and 6, = T4,

Equivalently, the probability mass function of the Skellam distribution can be
rewritten in terms of the mean and the variance as follows:

2 x
P(X =x) =e_‘72(02j)21x(,/04 ). x=..—10.1,... (22

or—p

3 Skellam GARCH(1, 1) model

Let {Y;} be an integer valued time series and let F; be defined as o-field gener-
ated by observations up to and including time t. We assume that conditional on
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the past observations, {Y;|F;_1} are independent and follow symmetric Skellam

(Utlt—l Otl—1

5—» —5 ) with the conditional variance satisfying,

of_1=w+ayt  + B0ty =2, (3.1)

as in GARCH(1, 1) model (Bollerslev (1986)).

In (3.1), the parameters w, o and B satisfy the following constraints: w > 0,
O<a<1,0<pB <1 and o« + B < 1 which are a necessary and sufficient
for stationarity of the process (3.1). We refer to the above model as Skellam
GARCH(1, 1). The simplest case of the model with 8 = 0 will be denoted by
Skellam ARCH(1).

Therefore, for Skellam GARCH(1, 1), we have:

2
P(Y,=y|F_)=e¢ %11 (of,_1),  yi=....—1,0,1,...,
(3.2)
E(Y;|F;—-1) =0
and
Var(Y;|Fi—1) =o,_.
Unlike, the ACP(1, 1) of Heinen (2003), we have

Var(Y,|F,—1) =0, > E(Y;|Fi_1).

4 Parameters estimation

In this section, we use the conditional maximum likelihood method and conditional
least squares method to estimate the parameters as following.

4.1 Conditional maximum likelihood method

For any t € (1,...,n) and ® = (w, a, ), the conditional likelihood function is
given by:

n _02
CL(®,y) = []le "1y, (o7, _))].
=2

Here, the conditional variances are computed recursively from formula (3.1),
using the initial value 012|0 = ﬁ to insure stationarity. There is no closed-
form solution for maximum likelihood estimators of w, o and S, but they can
be computed numerically by maximizing the conditional log likelihood func-
tion.
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The conditional log likelihood equations are:

81nCL(® y) i( n Iyr+1(012|z—1)>

2 2
Jtlt 1 Iy, (Gllt—l)

o -1
* ((11 —O{m(fjﬁ ﬁ)) 10
=0,
alnCL(® y) i( N Iyt+1(aﬁ,_1))
=2 tlt 1 Iyt(atzlt—l)
-1 -
X(/;ﬁk 13#%) (4.1b)
=0,
81nCL(® y) i( N 1y:+1(o,2|,_1)>
=2 tIt 1 Iyt(012|z—1)

= i1 2 wp' !
o 4+ — 4.1
X (1;'3 Ot klt—(k+1) 1—a- ﬂ)z) (4.1¢)

=0.

Proof of the conditional log likelihood equations are obtained in the Ap-
pendix.

4.2 Conditional least squares method

In this section, we will use the conditional least square method with the condi-
tional variance prediction error. Brinnds and Quoreshi (2010) have used the con-
ditional variance prediction error as a second step to obtain feasible generalized
least square estimator for long-lag integer valued moving average model. The same
method has been utilized in Alzaid and Omair (2014) to estimate the parameter
of Poisson difference integer-valued autoregressive model of order one. Now, the
conditional variance prediction error is defined by:

2
en = (2t — E(Zi|Zi-1))" = V(Zi| Z-).
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To estimate the parameters w, o and B, we have to minimize the following
formula:

n

n
2
SacLs = ZE%t = Z(ytz - 0t2|z—1)

=2 =2
B n ) 1— IBt—l 131—1 —1 il o 2
_t;(yt (w( —3 +1_a_ﬁ)+ak§ﬁ y?

with respect to w, @ and . Differentiating the above formula with respect to those
parameters yield:

3SLs o 1- g1 gt S k1.2
z ZG“_<”(1—ﬁ s REDW A

t= k=1

l—a—pB+4ap!
4.2
X(ﬂ—ﬁxl—a—ﬁJ (20

=O’
3SacLs  ~~f 2 1-p"! g N ikt 2
ool _t:2<y’_<w< 1—B +1—a—5>+“k§ﬂ Y

wp' ! S k1.2
=O’

3SacLs  ~—~f 2 1-p"! g N ikt 2
B 26“‘(”(1—ﬂ +1—a—ﬂ)+“2§ﬁ &

( Cl—mw“a—ﬂ—5+1—w*
X |w

(1-p)?

a—na—a—mﬁ2+ﬁ'v

* (I—a_ By

(4.2¢)

t—1
ta) (t—k-— 1)ﬁ’—k—2y,§>
k=1

=0.

Since it is hard to get explicit form for the solution of the system (4.2a)—(4.2c¢),
numerical solutions are carried out to estimate its parameters.
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5 Numerical simulation

To provide an idea about the relative merits of each of the methods of estima-
tion discussed in the previous section, a Monte Carlo study is conducted. The
selected parameters are: (w, o, ) = (0.5,0.4,0.1), (0.5,0.5,0.2), (0.5,0.6,0.2),
(0.7,0.5,0.2), (0.7,0.6,0.2), (3,0.2,0.2) and (3, 0.5,0.2). Samples of size 100,
200 and 500 with 1000 replications for each choice of parameters are adopted.
The bias and the relative mean square error (RMSE) are calculated according to
the following formulas:

BIAS(@) = %Z(&i —a), (5.1)

i=1
N | G, 2|2
RMSE(@) = —| =) (& —a)*| . (5.2)
“lLric
Algorithm steps for GARCH(1, 1):

Stepl: begin with the values of w, o and 8.
Step2: Take the initial value of 0’12|0 as (712|0 = ﬁ

2
Step3: Generate the observation X1; ~ Poisson(@).

2
Step4: Generate the observation X1 ~ Poisson(%).
StepS: Calculate the difference Y1 = X1 — X»71.
Step6: Fort=2,...,n:

(i) Calculate O’t2|t71 =w+ ay,zfl + 501{1|z—2'

.o . . [ep —
(ii) Generate the observation X; ~ Poisson( "é LY.

2
vee . . [epyPu
(iii) Generate the observation X»; ~ Poisson(-5-1).

(iv) Calculate the difference Y; = X{; — X»;.

Mathematica 8 software is used to solve the systems of equations (4.1a)-
(4.1c) and (4.2a)—(4.2¢c) to get our parameters estimates. Wolfram Language in
Mathematica program has full coverage of all standard Bessel-related functions.
The notation Bessell[n, z] calculates the modified Bessel function of the first
kind I, (z). For more information see https://reference.wolfram.com/language/ref/
Bessell.html. Tables 1 and 2 present some of the obtained results. It can be seen
that using both methods of estimation, the estimates seem to converge to the
true parameter values as the sample size increases.The bias results for Skellam
GARCH(1, 1) using CLS method are extremely higher than the bias redusing
CML method for the parameters @ and «. The bias of the simulation results re-
flect the inverse relation between w and « + B, where the biases in @ and o + B
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Table 1 Bias results for Skellam GARCH(1, 1)

BIAS(w) BIAS(«) BIAS(8)

w o B n CML CLS CML CLS CML CLS

05 04 0.1 100 —0.0196  0.0575 —0.0353 —0.1317 0.0548 0.0465
200 —0.0074  0.0486 —0.0183 —0.1066 0.0217 0.0387
500 —0.0037 0.0416 —0.0080 —0.0763 0.0081 0.0207

05 05 02 100 0.0376 ~ 0.2219 —0.0348 —0.2025 —0.0004 0.0073
200 0.0233  0.2132 —-0.0110 —0.1633 0.0083  —0.0020
500 0.0115  0.1654 —0.0039 —0.1333  —0.0063 0.0110

05 06 02 100 0.0573  0.4005 —0.0507 —0.2674 —0.0072 0.0059
200 0.0339  0.4042 —-0.0168 —0.2297 —0.0122 0.0126
500 0.0174  0.3377 —0.0062 —0.2027 —0.0087 0.0346

07 05 02 100 0.0608  0.3080 —0.0431 —0.1991 —0.0012 0.0004
200 0.0473  0.2938 —0.0123 —0.1565 —0.0150 —0.0111
500 0.0206  0.2261 —0.0072 —0.1282  —0.0075 0.0094

07 06 02 100 0.0876 ~ 0.5545 —0.0610 —0.2678 —0.0067 0.0105
200 0.0549  0.5643 —0.0195 —0.2280 —0.0146 0.0146
500 0.0219 04911 —0.0067 —0.2044 —0.0081 0.0364

3 02 02 100 —0.0536 0.0883 —0.0097 —0.0507 0.0189 0.0136
200 —0.0209  0.0981 —0.0064 —0.0289 0.0087 —0.0012
500 0.0082  0.0584 —0.0052 —0.0187 0.0000 0.0015

3 05 02 100 0.2527 1.3883  —0.0342 —-0.2025 -0.0113 —0.0010
200 0.1925 1.2470  —0.0131 —-0.1610 —0.0174 —0.0021
500 0.0914 1.0212  —0.0068 —0.1297  —0.0096 0.0052

have different signs. The maximum likelihood estimates are better than the condi-
tional least squares estimates in terms of relative mean square error and in terms
of bias, so it is recommended to use the CML for estimation of the parameters.

6 Application

In this section, we present an application of the Skellam GARCH model. The ap-
plication consists of number of drug crime along 144 months from 1990 until 2001
in one Precinct of Pittsburgh city (www.forecastingprinciples.com/). The time se-
ries plot of the data is illustrated in Figure 1. The autocorrelation function (ACF)
and partial autocorrelation function (PACF) for drug crime are given in Figures 2
and 3, respectively.

In order to get more information about the data, Table 3 displays some descrip-
tive statistics for the drug crime along with the lag one difference.
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Table 2 RMSE results for Skellam GARCH(1, 1)

RMSE(w) RMSE(a) RMSE(8)
w o B n CML CLS CML CLS CML CLS

0.5 0.4 0.1 100 0.3811 0.4525 0.4841 0.5050 2.1071 2.1541
200 0.2814 0.3863 0.3482 0.4265 1.6093 2.0000
500 0.1855 0.2871 0.2264 0.3410 1.0770 1.4967

0.5 0.5 0.2 100 0.4779 0.8567 0.4162 0.5099 0.9823 1.1587
200 0.3341 0.7451 0.3053 0.4271 0.7433 1.0392
500 0.2126 0.5692 0.1929 0.3521 0.4873 0.8732

0.5 0.6 0.2 100 0.4980 1.4687 0.3532 0.5185 0.8874 1.1325
200 0.3406 1.6993 0.2635 0.4522 0.6671 1.0464
500 0.2117 1.1515 0.1691 0.3958 0.4093 0.9474

0.7 0.5 0.2 100 0.4729 0.8414 0.4118 0.5056 0.9811 1.1651
200 0.3540 0.7127 0.3124 0.4200 0.7566 1.0308
500 0.2190 0.5568 0.1929 0.3504 0.4924 0.8902

0.7 0.6 0.2 100 0.5334 1.3758 0.3674 0.5148 0.9179 1.1511
200 0.3617 2.0027 0.2672 0.4491 0.6633 1.0724
500 0.2129 1.4191 0.1700 0.3993 0.4062 0.9618

3 0.2 0.2 100 0.4069 0.4241 0.7228 0.6595 1.2390 1.3134
200 0.3743 0.3749 0.5315 0.5500 1.1790 1.2196
500 0.2960 0.3171 0.3464 0.4062 0.9618 1.0536

3 0.5 0.2 100 0.4771 0.8435 0.4167 0.5060 0.9734 1.1705
200 0.3561 0.6994 0.3046 0.4224 0.7297 1.0223
500 0.2265 0.5564 0.1918 0.3481 0.4822 0.8775

40+

30

IR

101

Drug crime

1 14 28 4 56 70 8 98 112 126 140
Index

Figure 1 Time series of drug crime.
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Figure 3 PACF of drug crime.

Table 3 Descriptive statistics of the drug crime data with their lag one difference

No. of
Variable observation Mean Variance Minimum Median Maximum
Drug crime 144 21.396 68.423 3 19 42
Drug crime lag one difference 143 —0.042 68.984 —37 0 33

After differencing, a discrete model that allow for negative integers should be
used. The time series are illustrated in Figure 4. The autocorrelation function and
the partial autocorrelation function for the square of the difference series are shown
in Figures 5 and 6, respectively.
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Figure 4 Time series of difference of drug crime.
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Table 4 Parameters estimates of the models with their standard errors, Akaike Information crite-
rion (AIC) and Bayesian information criterion (BIC)

Model 12} o B AIC BIC
ARCH(1) negative binomial ~ 6.0512 0.2156 - 1080.684 1086.624
(r=2) (0.9170)  (0.0500)
Poisson 11.4154  0.4654 - 1042.926  1084.866
(1.6186)  (0.0760)
Skellam 47.183 0.2712 - 991.302  997.228
(8.2490)  (0.1325)
GARCH(1,1) negative binomial ~ 2.2051 0.1822 0.4299 1080.836  1089.745
r=2) (1.4504)  (0.0488) (0.1761)
Poisson 4.2151 0.3682 0.4357 1025.958 1034.867
(2.6084)  (0.0792) (0.1542)
Skellam (CML)  33.4414  0.2659 0.2173 992.168 1001.057

(13.2303) (0.1338) (0.2243)

Skellam (CLS) 385149 04217  1.0974 x 107 - -
(11.8284) (0.1846) (0.1801)

It is clear that the differenced data is stationary in the mean and exhibits con-
ditional heteroskedasticity. We fit the differenced data to Skellam GARCH and
Skellam ARCH models. We also fit the original data to the Poisson GARCH, Pois-
son ARCH, negative binomial GARCH and negative binomial ARCH models. The
parameters estimates of the models with their standard errors, Akaike Information
criterion (AIC) and Bayesian information criterion (BIC) values are shown in Ta-
ble 4. The values of AIC and BIC show that the Skellam ARCH and GARCH fit
better than the other corresponding models.

The fitted conditional variance of Skellam ARCH(1) and GARCH(1, 1) models
with the squares of the differenced drug crime data are plotted in Figures 7 and 8,
respectively. These two figures show that the ARCH and GARCH models capture
the variation on squared differences of the drug crime data.

7 Conclusions

In this article, we have discussed the analysis of integer time series model with
time varying variance and nonstationarity in the mean and a Skellam GARCH
model was proposed. For estimating the parameters of the model, the conditional
maximum likelihood and conditional least squares methods have been developed.
The numerical simulation has confirmed that the CML estimates have better per-
formance. A real application has shown the efficacy of the model.
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Figure 7 Square of the differenced drug crime data and fitted variance value of Skellam ARCH(1)
model.
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Figure 8 Square of the differenced drug crime data and fitted variance value of Skellam
GARCH(1, 1) model.

Appendix. Parameter’s estimation by using the conditional likelihood
method

The conditional log likelihood equation are:

31nCL(O, y) —Z ,|,_ Z( y;+1(0t2|,_1)) %1
dw B ol Ly(of_) o
where
oo Baﬁo

t—“ ]+13+/32+...+/3t_2+/g’_1
dw dw
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,8 -1
_Zﬁ + l—a—p
B l—oz—,B-i-a,Bt_l
1=l —-a—-p)
Therefore
3InCL(®, y) —i<—1+ B +Iy,+1(0,2|,_1))(1—oz—,B-i—Ot,Bt—])
dw t=2 Gtzlt—l Iy, (012|t—1) 1=pU-—a=p))
2
dInCL(®, y) :_Zaazn 1+i( 2)’1 Iyt-f—l(‘Ztlt—l)) % 80t|l 1’
da o o =2 %11 Iy, (o/,_y) dor
where
Bat do?
lt—1 2 2 2,2 -1°%110
e =V B B BT T T
-1
2 2 2.2 2 2 wp’
=YVi1 T B2+ B Y3+ B (1—0{—,3)2
t—1 t—1
wpP
— Y gkl 4 '
,; A py
Therefore
3InCL(®, y) —i<—1+ o Iyt+1(o,2|,_1)>
da t=2 Gtzlt—l Iy, (‘712|t—1)
-1
k=1, wp'
x (S8 ),
<Z T —a—ﬂ)z)
2
alncL((a,y)__Z ,\t | Z( yr+l(0’z|t—1)) y 90,y
p =2 =2 t|t 1 Iyt(atz\t—l) Ip
where
do2 1 - 1j0
5‘/; = t2—l|t—2+130t2—2|t—3+/320t2—3\t—4+"'+18t 2f712|0"‘:3l 1 ﬂl
-1
2 2 2 2 wp’
=0 12+ Bo o3+ B0 34+ +p7? GIIO + d—a—p)?

a),B’_l

_Npklg2 L
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Therefore,
dInCL(O,y) _ i(‘l L Iy[+1(a,2|t_1)>
p t=2 0t2|z—1 Iy, (Utz\t— 1)
t—1 t—1

k—1_2 wp
X B o, +—.
(]; t k|t (k+1) (1 —a - ﬁ)Z)
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