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Hölderian weak invariance principle under the Maxwell and
Woodroofe condition
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Normandie Université, Université de Rouen

Abstract. We investigate the weak invariance principle in Hölder spaces un-
der some reinforcement of the Maxwell and Woodroofe condition. Optimality
of the obtained condition is established.

1 Introduction and main results

Let (�,F,μ) be a probability space and let T : � → � be a measure-preserving
bijective and bi-measurable map. Let M be a sub-σ -algebra of F such that TM ⊂
M. If f : � → R a measurable function, we denote Sn(T ,f ) := ∑n−1

j=0 f ◦T j and

W(n,f,T , t) := S[nt](T , f ) + (
nt − [nt])f ◦ T [nt]. (1.1)

We shall write Sn(f ) and W(n,f, t) for simplicity, except when T is replaced
by T 2.

An important problem in probability theory is the understanding of the asymp-
totic behavior of the process (n−1/2W(n,f, t), t ∈ [0,1])n≥1. Conditions on the
quantities E[Sn(f )|TM] and Sn(f ) − E[Sn(f )|T −nM] have been investigated.
The first result in this direction was obtained by Maxwell and Woodroofe (2000):
if f is M-measurable and

+∞∑
n=1

‖E[Sn(f )|M]‖2

n3/2 < +∞, (1.2)

then (n−1/2Sn(f ))n≥1 converges in distribution to η2N , where N is normally dis-
tributed and independent of η. Then Volný (2006) proposed a method to treat the
nonadapted case. Peligrad and Utev (2005) proved the weak invariance princi-
ple under condition (1.2). The nonadapted case was addressed in Volný (2007).
Peligrad and Utev also showed that condition (1.2) is optimal among conditions
on the growth of the sequence (‖E[Sn(f )|M]‖2)n≥1: if

+∞∑
n=1

an

‖E[Sn(f )|M]‖2

n3/2 < ∞ (1.3)
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for some sequence (an)n≥1 converging to 0, the sequence (n−1/2Sn(f ))n≥1 is not
necessarily stochastically bounded (Theorem 1.2. of Peligrad and Utev (2005)).
Volný constructed Volný (2010) an example satisfying (1.3) and such that the se-
quence (‖Sn(f )‖−1

2 Sn(f ))n≥1 admits two subsequences which converge weakly
to two different distributions.

Let us denote by Hα the space of Hölder continuous functions, that is, the func-
tions x : [0,1] → R such that ‖x‖Hα := sup0≤s<t≤1 |x(t)−x(s)|/(t − s)α +|x(0)|
is finite. Since the paths of Brownian motion belong almost surely to Hα for
each α ∈ (0,1/2) as well as W(n,f, ·), we can investigate the weak conver-
gence of the sequence (n−1/2W(n,f, ·))n≥1 in the the space Hα , for 0 < α <

1/2. The case of i.i.d. sequences and stationary martingale difference sequences
have been addressed respectively, by Račkauskas and Suquet (Theorem 1 of
Račkauskas and Suquet (2003)) and Giraudo (Theorem 2.2 of Giraudo (2016b)).
In this note, we focus on conditions on the sequences (E[Sn(f )|M])n≥1 and
(Sn(f ) − E[Sn(f )|T −nM])n≥1.

Theorem 1.1. Let p > 2 and f ∈ Lp . If

+∞∑
k=1

‖E[Sk(f )|M]‖p

k3/2 < +∞,

(1.4)+∞∑
k=1

‖Sk(f ) − E[Sk(f )|T −kM]‖p

k3/2 < +∞,

then the sequence (n−1/2W(n,f ))n≥1 converges weakly to the process
√

ηW in
H1/2−1/p , where W is the Brownian motion and the random variable η is indepen-
dent of W and is given by η = limn→+∞ E[Sn(f )2|I]/n (where I is the σ -algebra
of invariant sets and the limit is in the L1 sense).

Of course, if f is M-measurable, all the terms of the second series vanish and
we only have to check the convergence of the first series.

Remark 1.2. If the sequence (f ◦ T j )j≥0 is a martingale difference sequence
with respect to the filtration (T −iM), then condition (1.4) is satisfied if and only
if the function f belongs to Lp , hence we recover the result of Giraudo (2016b).
However, if the sequence (f ◦ T j )j≥0 is independent, (1.4) is stronger than the
sufficient condition tpμ{|f | > t} → 0. This can be explained by the fact that the
key maximal inequality (2.9) does not include the quadratic variance term which
appears in the martingale inequality. In Remark 1 (after the proof of Theorem 1)
in Peligrad, Utev and Wu (2007), a version of (2.9) with this term is obtained. In
our context it seems that it does not follow from an adaptation of the proof.
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Remark 1.3. In Giraudo (2016b), the conclusion of Theorem 1.1 was obtained
for an M-measurable f under the condition

∞∑
i=1

∥∥E
[
f |T iM

] − E
[
f |T i+1M

]∥∥
p < ∞, (1.5)

which holds as soon as
+∞∑
k=1

‖E[f ◦ T k|M]‖p

k1/p
< +∞, (1.6)

while (1.4) holds as soon as

+∞∑
k=1

‖E[f ◦ T k|M]‖p√
k

< +∞. (1.7)

Therefore, (1.7) gives a better sufficient condition than (1.6) if we seek for condi-
tions relying only on (‖E[f ◦ T k|M]‖p)k≥1.

However, (1.5) gives the existence of a martingale approximation in the follow-
ing sense: there exists a martingale difference m ∈ Lp(M) such that∥∥∥∥W(n,f ) − W(n,m)

∥∥
H1/2−1/p

∥∥
p,∞ = o(

√
n). (1.8)

Indeed, define for an integrable function h and a non-negative integer i, Pi(h) :=
E[h|T iM] − E[h|T i+1M]. If f satisfies (1.5), then we set m := ∑

i≥0 P0(U
if ).

Then for any K ≥ 1, the equality f − m = ∑K
i=0(Pi(f ) − P0(U

if )) +∑+∞
i=K+1(Pi(f ) − P0(U

if )) holds. Since
∑K

i=0(Pi(f ) − P0(U
if )) may be writ-

ten as (I − U)gK , where gK is such that tpμ{|gK | > t} → 0 as t goes to infinity,
we get, by inequalities (2.4) and (2.5) of Giraudo (2016b) that

lim sup
n→+∞

1√
n

∥∥∥∥W(n,f ) − W(n,m)
∥∥
H1/2−1/p

∥∥
p,∞

≤ ∑
i≥K+1

lim sup
n→+∞

1√
n

(∥∥∥∥W (
n,Pi(f )

))∥∥
H1/2−1/p

∥∥
p,∞

+ ∥∥∥∥W (
n,P0

(
Ui(f )

))∥∥
H1/2−1/p

∥∥
p,∞

)
.

We conclude by Proposition 2.3 of Giraudo (2016b).
The following condition (in the spirit of Maxwell and Woodroofe’s one) is suf-

ficient for a martingale approximation in the sense of (1.8):

+∞∑
k=1

‖E[Sk(f )|M]‖p

k1+1/p
< +∞. (1.9)

Indeed, Theorem 2.3 of Cuny and Merlevède (2014) gives a martingale differences
sequence (m◦T i)i≥0 such that limn→+∞ n−1/p‖Sn(f −m)‖p = 0. Using Serfling



Hölderian invariance principle under the Maxwell and Woodroofe condition 175

arguments (see Serfling (1970)), we get that (1.9) implies

lim
n→+∞n−1/p

∥∥∥ max
1≤i≤n

∣∣Si(f − m)
∣∣∥∥∥

p
= 0. (1.10)

Note that for a function h, by Lemma A.2 of Markevičiūtė, Suquet and
Račkauskas (2012),

n−1/2∥∥∥∥W(n,h)
∥∥
H1/2−1/p

∥∥
p,∞ ≤ 2n−1/p

∥∥∥ max
1≤j≤n

∣∣Sj (f )
∣∣∥∥∥

p,∞,

hence by (1.10), the martingale approximation (1.8) holds.
Furthermore, using the construction given in Durieu and Volný (2008), Durieu

(2009), in any ergodic dynamical system of positive entropy one can construct a
function satisfying condition (1.4) but not (1.5) and vice versa.

Remark 1.4. For the ρ-mixing coefficient defined by

ρ(n) = sup
{
Cov(X,Y )/

(‖X‖2‖Y‖2
)
,X ∈ L2(σ

(
f ◦ T i, i ≤ 0

)
,

Y ∈ L2(
σ

(
f ◦ T i, i ≥ n

))}
,

Lemma 1 of Peligrad, Utev and Wu (2007) shows that for an adapted process,
condition (1.4) is satisfied if the series

∑∞
n=1 ρ2/p(2n) converges. However, the

conclusion of Theorem 1.1 holds if tpμ{|f | > t} → 0 and
∑∞

n=1 ρ(2n) converges
(see Theorem 2.3, Giraudo (2016a)), which is less restrictive.

It turns out that even in the adapted case, condition (1.4) is sharp among condi-
tions on ‖E[Sk(f )|M]‖p in the following sense.

Theorem 1.5. For each sequence (an)n≥1 converging to 0 and each real number
p > 2, there exists a strictly stationary sequence (f ◦T j )j≥0 and a sub-σ -algebra
M such that TM ⊂ M,

∞∑
n=1

an

n3/2

∥∥E
[
Sn(f )|M]∥∥

p < ∞, (1.11)

but the sequence (n−1/2W(n,f, t))n≥1 is not tight in H1/2−1/p .

Remark 1.6. Using the inequalities in Peligrad, Utev and Wu (2007) in order
to bound ‖E[Sn(f )|TM]‖2, we can see that the constructed f in the proof of
Theorem 1.5 satisfies the classical Maxwell and Woodroofe condition (1.2) (the
fact that p is strictly greater than 2 is crucial), hence the weak invariance principle
in the space of continuous functions takes place.

However, it remains an open question whether condition (1.11) implies the cen-
tral limit theorem or the weak invariance principle (in the space of continuous
functions).
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2 Proofs

We may observe that condition (1.4) implies by Theorem 1 of Peligrad, Utev and
Wu (2007) that the sequence (Sn(f )/

√
n)n≥1 is bounded in Lp; nevertheless the

counter-example given in Theorem 2.6 of Giraudo (2016a) shows that we cannot
deduce the weak invariance principle from this.

We shall rather work with a tightness criterion. The analogue of the continuity
modulus in C[0,1] is ωα , defined by

ωα(x, δ) = sup
0<|t−s|<δ

|x(t) − x(s)|
|t − s|α , x : [0,1] → R, δ ∈ (0, ].

Define Ho
α[0,1] := {x ∈ Hα[0,1], limδ→0 ωα(x, δ) = 0}. We shall essentially

work with the space Ho
α[0,1] which, endowed with ‖·‖α : x �→ ωα(x,1) + |x(0)|,

is a separable Banach space (while Hα[0,1] is not). Since the canonical embed-
ding ι : Ho

α[0,1] → Hα[0,1] is continuous, each convergence in distribution in
Ho

α[0,1] also takes place in Hα[0,1].
Let us state the tightness criterion we shall use (Theorem 13 of Suquet (1999)).

Proposition 2.1. Let α ∈ (0,1). A sequence of processes (ξn)n≥1 with paths in
Ho

α[0,1] and such that ξn(0) = 0 for each n is tight in Ho
α[0,1] if and only if

∀ε > 0, lim
δ→0

sup
n→+∞

μ
{
ωα(ξn, δ) > ε

} = 0. (2.1)

In order to prove the weak convergence in Ho
α[0,1], it suffices to prove the

convergence of the finite dimensional distributions and establish tightness in this
space.

2.1 A maximal inequality

For p > 2, we define

‖h‖p,∞ := sup
A∈F

μ(A)>0

1

μ(A)1−1/p
E

[|h|1A

]
. (2.2)

This norm is linked to the tail function of h by the following inequalities (see
Exercise 1.1.12, p. 13 in Grafakos (2014)):(

sup
t>0

tpμ
{|h| > t

})1/p ≤ ‖h‖p,∞ ≤ p

p − 1

(
sup
t>0

tpμ
{|h| > t

})1/p
. (2.3)

As a consequence, if N is an integer and h1, . . . , hn are functions, then∥∥∥ max
1≤j≤N

|hj |
∥∥∥
p,∞ ≤ p

p − 1
N1/p max

1≤j≤N

∥∥|hj |
∥∥
p,∞. (2.4)
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For a positive n ≥ 1, a function f : � → R and a measure-preserving map T ,
we define

M(n,f,T ) := max
0≤i<j≤n

|Sj (T , f ) − Si(T , f )|
(j − i)1/2−1/p

. (2.5)

By Lemma A.2 of Markevičiūtė, Suquet and Račkauskas (2012), the Hölderian
norm of a polygonal line is reached at two vertices, hence

M(n,f,T ) = n1/2−1/p
∥∥W(n,f,T , ·)∥∥H1/2−1/p

. (2.6)

Applying Proposition 2.3 of Giraudo (2016b), we can find for each p > 2 a
constant Cp depending only on p such that if (m◦T i)i≥1 is a martingale difference
sequence, then for each n,

1√
n

∥∥∥∥W(n,m,T , ·)∥∥H1/2−1/p

∥∥
p,∞ ≤ Cp‖m‖p. (2.7)

In the sequel, fix such a constant Cp that we shall choose greater than 6 ·
21/pp/(p − 1). We denote by U the Koopman operator associated with T , that
is, for each f : � → R and each ω ∈ �, (Uf )(ω) = f (T ω).

Definition 2.2. Let H be a closed subspace of Lp . Let P be a linear operator from
H to itself. We say that (H,P ) satisfies condition (C) if:

1. the inclusion U−1H ⊂ H holds (respectively, the inclusion UH ⊂ H holds);
2. P is power bounded on H , that is, for each h ∈ H ,

K(P ) := sup
n≥1

sup
h∈H\{0}

‖P nh‖p

‖h‖p

< +∞ ; (2.8)

3. if h ∈ H is such that Ph = 0, then the sequence (h ◦ T i)i≥0 is a martingale
difference sequence with respect to the filtration (T −iM)i≥0 (respectively,
(T −i−1M)i≥0);

4. PU−1f = f for each f ∈ H (respectively, PUf = f for each f ∈ H ).

Let us give two examples of subspace H and operator P satisfying condi-
tion (C).

1. Let H be the subspace of Lp which consists of M-measurable functions and
Ph := E[Uh|M]. Then (H,P ) satisfies condition (C).

2. Let H be the subspace of Lp which consists of functions h such that E[h|M] =
0 and Ph := U−1h − E[U−1h|M]. Then (H,P ) satisfies condition (C).

The goal of this subsection is to establish the following maximal inequality.

Proposition 2.3. Let T : � → � be a bijective and bi-measurable measure-
preserving map. Let H be a closed subspace of Lp . Let r be a positive integer.



178 D. Giraudo

For each, operator P from H to itself such that (H,P ) satisfies condition (C),
each f ∈ H and each integer n satisfying 2r−1 ≤ n < 2r ,∥∥M(n,f,T )

∥∥
p,∞

(2.9)

≤ Cpn1/p

((
1 + K(P )

)‖f ‖p + Kp

r−1∑
j=0

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P if

∥∥∥∥∥
p

)
,

where Kp = 21/p−1/2 + 21/2(1 + K(P )).

If H is a closed subspace of Lp and P : H → H an operator such that (H,P )

satisfies condition (C), we define for f ∈ H the quantity

‖f ‖MW(p,P ) :=
+∞∑
j=0

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P if

∥∥∥∥∥
p

(2.10)

and the vector space

MW(p,P ) := {
f ∈ H |‖f ‖MW(p,P ) < +∞}

. (2.11)

Note that MW(p,P ) endowed with ‖·‖MW(p,P ) is a Banach space.
Combining Proposition 2.3 and (2.6), we derive the following bound for the

Hölderian norm of the partial sum process.

Corollary 2.4. Let H be a closed subspace of Lp and let P be an operator from
H to itself such that (H,P ) satisfies the condition (C). Then there exists a constant
C = C(p,P ) such that for each n, and each h ∈ H ,∥∥∥∥∥∥∥∥ 1√

n
W(n,h)

∥∥∥∥
H1/2−1/p

∥∥∥∥
p,∞

≤ C‖h‖MW(p,P ). (2.12)

The proof of Proposition 2.3 is in the same spirit as the proof of Theorem 1 of
Peligrad, Utev and Wu (2007), which is done by dyadic induction. To do so, we
start from the following lemma.

Lemma 2.5. For each positive integer n, each function h : � → R and each
measure-preserving map T : � → �, the following inequality holds:

M(n,h,T ) ≤ 6 max
0≤k≤n

∣∣h ◦ T k
∣∣ + 1

21/2−1/p
M

([
n

2

]
, h + h ◦ T ,T 2

)
. (2.13)

Proof. First, notice that if 1 ≤ j ≤ n, then j = 2[ j
2 ] or j = 2[ j

2 ] + 1, hence∣∣Sj (h) − S2[ j
2 ](h)

∣∣ ≤ max
0≤k≤n

∣∣h ◦ T k
∣∣. (2.14)
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Similarly, we have ∣∣Si(h) − S2[ i+2
2 ](h)

∣∣ ≤ 2 max
0≤k≤n

∣∣h ◦ T k
∣∣. (2.15)

It thus follows that

M(n,h,T ) ≤ 4 max
0≤k≤n

∣∣h ◦ T k
∣∣ + max

0≤i<j≤n

|S2[ j
2 ](h) − S2[ i+2

2 ](h)|
(j − i)1/2−1/p

. (2.16)

Notice that if j ≥ i + 4, then

1 ≤
[
j

2

]
−

[
i + 2

2

]
≤ j − i

2
, (2.17)

and we derive the bound

max
0≤i<j≤n

|S2[ j
2 ](h) − S2[ i+2

2 ](h)|
(j − i)1/2−1/p

≤ 1

21/2−1/p
max

0≤u<v≤[ n
2 ]

|Sv(T
2, h + h ◦ T ) − Su(T

2, h + h ◦ T )|
(v − u)1/2−1/p

+ max
0≤i<j≤n
j≤i+4

∣∣S2[ j
2 ](h) − S2[ i+2

2 ](h)
∣∣.

Since for j ≤ i + 4, the number of terms of the form h ◦T q involved in S2[ j
2 ](h)−

S2[ i+2
2 ](h) is at most 2, we conclude that

max
0≤i<j≤n

|S2[ j
2 ](h) − S2[ i+2

2 ](h)|
(j − i)1/2−1/p

≤ 1

21/2−1/p
M

([
n

2

]
, h + h ◦ T ,T 2

)
+ 2 max

0≤k≤n

∣∣h ◦ T k
∣∣.

Combining this inequality with (2.16), we obtain (2.13), which concludes the proof
of Lemma 2.5. �

Now, we establish inequality (2.9) by induction on r .

Proof of Proposition 2.3. We first assume that PU−1 = Id and U−1H ⊂ H . We
check the case r = 1. Then necessarily n = 1 and the expression M(n,f, t) reduces
to f . Since Cp and Kp are greater than 1, the result is a simple consequence of the
triangle inequality applied to f − U−1Pf and U−1Pf .

Now, assume that Proposition 2.3 holds for some r and let us show that it takes
place for r + 1. We thus consider an integer n such that 2r ≤ n < 2r+1, a function
f ∈ H , a measure-preserving map T : � → � bijective and bi-measurable, and
a sub-σ -algebra M satisfying TM ⊂ M, a closed subspace H of L2 such that
U−1H ⊂ H and an operator P : H → H such that (H,P ) satisfies condition (C)
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with PU−1 = Id and we have to show that (2.9) holds with r +1 instead of r . First,
using inequality M(n,f ) ≤ M(n,f − U−1Pf ) + M(n,U−1Pf ) and Lemma 2.5
with h := U−1Pf , we derive

M(n,f,T ) ≤ M
(
n,f − U−1Pf,T

) + 6 max
0≤k≤n

∣∣U−1Pf ◦ T k
∣∣

(2.18)

+ 1

21/2−1/p
M

([
n

2

]
, (I + U)U−1Pf,T 2

)
,

hence taking the norm ‖·‖p,∞, we obtain by (2.4) that∥∥M(n,f,T )
∥∥
p,∞ ≤ ∥∥M(

n,f − U−1Pf,T
)∥∥

p,∞

+ 6(n + 1)1/p p

p − 1

∥∥U−1Pf
∥∥
p (2.19)

+ 1

21/2−1/p

∥∥∥∥M([
n

2

]
, (I + U)U−1Pf,T 2

)∥∥∥∥
p,∞

.

By inequality (2.7) and accounting the fact that 6 · (n+ 1)1/pp/(p − 1) ≤ Cpn1/p ,
we obtain∥∥M(n,f,T )

∥∥
p,∞ ≤ Cpn1/p

∥∥f − U−1Pf
∥∥
p + Cpn1/p‖Pf ‖p

(2.20)

+ 1

21/2−1/p

∥∥∥∥M([
n

2

]
, (I + U)U−1Pf,T 2

)∥∥∥∥
p,∞

.

Since 2r−1 ≤ [n/2] < 2r , we may apply the induction hypothesis to the integer
[n/2], the function h := (I + U−1)Pf , T 2 instead of T and P 2 instead of P . This
gives [

n

2

]−1/p∥∥∥∥M([
n

2

]
, h, T 2

)∥∥∥∥
p,∞

(2.21)
≤ Cp

(
1 + K

(
P 2))‖h‖p

+ CpK̃p

r−1∑
j=0

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P 2i(I + U−1)
Pf

∥∥∥∥∥
p

, (2.22)

where K̃p = 21/p−1/2 + 21/2(1 + K(P 2)). Notice that ‖h‖p ≤ 2‖Pf ‖p , and by
item 4 of Definition 2.2, it follows that

2j−1∑
i=0

P 2i(I + U−1)
Pf =

2j−1∑
i=0

(
P 2i+1f + P 2if

) =
2j+1−1∑

i=0

P if. (2.23)
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Accounting the inequality K(P 2) ≤ K(P ) and K̃p ≤ Kp , we have[
n

2

]−1/p∥∥∥∥M([
n

2

]
, h, T 2

)∥∥∥∥
p,∞

≤ 2
(
1 + K(P )

)
Cp‖Pf ‖p + CpKp

r−1∑
j=0

2−j/2

∥∥∥∥∥
2j+1−1∑

i=0

P if

∥∥∥∥∥
p

= 2
(
1 + K(P )

)
Cp‖Pf ‖p + 21/2CpKp

r∑
j=1

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P if

∥∥∥∥∥
p

and we infer∥∥∥∥M([
n

2

]
, h, T 2

)∥∥∥∥
p,∞

≤
(

n

2

)1/p(
2
(
1 + K(P )

) − Kp

√
2
))

Cp‖Pf ‖p

(2.24)

+ n1/p21/2−1/pCpKp

r∑
j=0

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P if

∥∥∥∥∥
p

.

Plugging this into (2.20), we derive∥∥M(n,f,T )
∥∥
p,∞

≤ Cpn1/p(
1 + K(P )

)‖f ‖p + n1/pCpKp

r∑
j=0

2−j/2

∥∥∥∥∥
2j−1∑
i=0

P if

∥∥∥∥∥
p

(2.25)

+ Cpn1/p(
1 + 21−1/p(

1 + K(P )
) − 21/2−1/pKp

)‖Pf ‖p.

The definition of Kp implies that 21/p−1/2 −√
2(1+K(P ))−Kp = 0, hence (2.9)

is established. This concludes the proof of Proposition 2.3 in the case PU−1 = Id.
When PU = Id and UH ⊂ H we do the same proof, but replacing each occur-

rence of U−1 by U . This ends the proof of Proposition 2.3. �

2.2 Proof of Theorem 1.1

Since the convergence of the finite dimensional distributions is contained in the
main result of Volný (2007), the only difficulty in proving Theorem 1.1 is to es-
tablish tightness. To this aim, we shall proceed as in the proof of Theorem 5.3 in
Cuny (2014).

Proposition 2.6. Let T be a measure preserving map, H a closed subspace of
Lp (p > 2) and let P be an operator from H to itself such that (H,P ) satisfies
condition (C). Assume that h is an element of H such that ‖h‖MW(p,P ) < +∞.

Then the sequence (n−1/2W(n,h))n≥1 is tight in H1/2−1/p .
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Proof. Let us define Vn := ∑n−1
i=0 P i . Using ‖VnVk‖p ≤ K(P )min{k‖Vn‖p,

n‖Vk‖p}, we derive that for each f ∈ MW(p,P ),

‖V2nf ‖MW(p,P )

2n
≤ K(P )

(‖V2nf ‖p

2n/2 + ∑
k≥n+1

‖V 2k
f ‖p

2k/2

)
(2.26)

which goes to 0 as n goes to infinity. If m ≥ 1 is an integer and if n is such that
2n ≤ m < 2n+1, then

‖Vmf ‖MW(p,P )

m
≤ K(P )

m

n∑
k=0

‖V2kf ‖MW(p,P ) ≤ K(P )

m

n∑
k=0

2kεk, (2.27)

where (εk)k≥1 is a sequence converging to 0. This entails that the operator P is
mean-ergodic on MW(p,P ). Furthermore, since P has no non trivial fixed points
on the Banach space (MW(p,P ),‖·‖MW(p,P )), we derive by Theorem 1.3, p. 73
of Krengel (1985) that the subspace (I − P)MW(p,P ) is dense in MW(p,P ) for
the topology induced by the norm ‖·‖MW(p,P ).

Let h ∈ H be such that ‖h‖MW(p,P ) < +∞ and x > 0. We can find f ∈ (I −
P)MW(p,P ) such that ‖h − f ‖MW(p,P ) < x. Consequently, using Corollary 2.4,
we derive that for each positive ε and δ,

μ

{
ω1/2−1/p

(
1√
n
W(n,h), δ

)
> 2ε

}
(2.28)

≤ ε−px + μ

{
ω1/2−1/p

(
1√
n
W(n,f ), δ

)
> ε

}
.

Now, since the function f belongs to (I − P)MW(p,P ), we can find f ′ ∈
MW(p,P ) such that f = f ′ − Pf ′. If PU−1 = Id, then we write f = f ′ −
U−1Pf ′ + (U−1 − I )f ′ and if PU = Id, then f = f ′ − UPf ′ + (U − I )f ′.
In other words, f admits a martingale-coboundary decomposition in Lp (since f ′
belongs to Lp). Consequently, by Corollary 2.5 of Giraudo (2016b), the sequence
(n−1/2W(n,f ))n≥1 is tight in H1/2−1/p . By Proposition 2.1 and (2.28), we derive
that for each positive ε and x,

lim
δ→0

lim sup
n→+∞

μ

{
ω1/2−1/p

(
1√
n
W(n,h), δ

)
> 2ε

}
≤ ε−px. (2.29)

Since x is arbitrary we conclude the proof of (2.6) by using again Proposi-
tion 2.1. �

Proof of Theorem 1.1. Writing f = E[f |M] + f − E[f |M], the proof re-
duces (as mentioned in the beginning of the section) to establish tightness
in Ho

1/2−1/p[0,1] of the sequences (Wn)n≥1 := (n−1/2W(n,E[f |M]))n≥1 and

(W ′
n)n≥1 := (n−1/2W(n,f − E[f |M]))n≥1.
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• Tightness of (Wn)n≥1. We define

P(f ) := E[Uf |M] and (2.30)

H := {
f ∈ Lp, f is M-measurable

}
. (2.31)

Then (H,P ) satisfies condition (C). Since

n−1∑
i=0

P i(E[f |M]) = E
[
Sn(f )|M]

, (2.32)

the convergence of the first series in (1.4) is equivalent to f ∈ MW(p,P ) (by
Lemma 2.7 of Peligrad and Utev (2005)). By Proposition 2.6, we derive that the
sequence (Wn)n≥1 is tight in Ho

1/2−1/p[0,1].
• Tightness of (W ′

n)n≥1. We define

P(f ) := U−1f − E
[
U−1f |M]

and (2.33)

H := {
f ∈ Lp,E[f |M] = 0

}
. (2.34)

Since for each f ∈ H and each k ≥ 1, ‖P kf ‖p ≤ 2‖f ‖p , (H,P ) satisfies con-
dition (C) (see the proof of Proposition 2 in Volný (2007) for the other condi-
tions). Since P(E[f |M]) = 0, we have

n∑
i=1

P i(f − E[f |M]) =
n∑

i=1

P if (2.35)

= U−n(
Sn(f ) − E

[
Sn(f )|T −nM

])
, (2.36)

hence the convergence of the second series in (1.4) implies that f belongs to
MW(p,P ) (by Lemma 37 of Merlevède and Peligrad (2013)). By Proposi-
tion 2.6, we derive that the sequence (W ′

n)n≥1 is tight in Ho
1/2−1/p[0,1].

This ends the proof of Theorem 1.1. �

2.3 Proof of Theorem 1.5

We take a similar construction as in the proof of Proposition 1 of Peligrad, Utev and
Wu (2007). We consider a nonnegative sequence (an)n≥1, and a sequence (uk)k≥1
of real numbers such that

u1 = 1, u2 = 2, u
p/2+1
k + 1 < uk+1 for k ≥ 3 and

(2.37)
at ≤ k−2 for t ≥ uk.

Notice that since p > 2, the conditions (2.37) are more restrictive than that of the
proof of Proposition 1 of Peligrad, Utev and Wu (2007). If i = uj for some j ≥ 1,

then we define pi := cj/u
1+p/2
j and pi = 0 otherwise. Let (Yk)k≥0 be a discrete

time Markov chain with the state space Z+ and transition matrix given by pk,k−1 =
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1 for k ≥ 1 and p0,j−1 := pj , j ≥ 1. We shall also consider a random variable τ

which takes its values among nonnegative integers, and whose distribution is given
by μ(τ = j) = pj . Then the stationary distribution exists and is given by

πj = π0

∞∑
i=j+1

pi, j ≥ 1, where π0 = 1/E[τ ]. (2.38)

We start from the stationary distribution (πj )j≥0 and we take g(x) := 1x=0 − π0,
where π0 = μ{Y0 = 0}. We then define f ◦ T j = Xj := g(Yj ).

It is already checked in Peligrad, Utev and Wu (2007) that the sequence (Xj )j≥0
satisfies (1.11), where M = σ(Xk, k ≤ j) and Sn = ∑n

j=1 Xj . To conclude the

proof, it remains to check that the sequence (n−1/2W(n,f,T ))n≥1 is not tight in
Ho

1/2−1/p , which will be done by disproving (2.1) for a particular choice of ε. To
this aim, we define

T0 = 0, Tk = min{t > Tk−1|Yt = 0}, τk = Tk − Tk−1, k ≥ 1. (2.39)

Then (τk)k≥1 is an independent sequence and each τk is distributed as τ and

STk
=

k∑
j=1

(1 − π0τj ) = k − π0Tk. (2.40)

Let us fix some integer K greater than E[τ ]. Let δ ∈ (0,1) be fixed and n an
integer such that 1/n < δ. Then the inequality

1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

≥ 1

(nK)1/p
1{Tn ≤ Kn} (2.41)

× max
1≤k≤n

|STk
− STk−1 |

(Tk − Tk−1)1/2−1/p
1
{|Tk − Tk−1| ≤ nδ

}
takes place. By (2.39) and (2.40), this can be rewritten as

1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

(2.42)

≥ 1

(nK)1/p
1{Tn ≤ Kn} max

1≤k≤n

|1 − π0τk|
τ

1/2−1/p
k

1{τk ≤ nδ}.

Defining for a fixed C the event

An(C) :=
{ |1 − π0τ |

τ 1/2−1/p
≥ C(Kn)1/p

}
∩ {τ ≤ nδ}, (2.43)
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we obtain by independence of (τk)k≥1

μ

{
1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

≥ C

}
(2.44)

≥ 1 − (
1 − μ

(
An(C)

))n − μ{Tn > Kn}.
By the law of large numbers, we obtain, accounting K > E[τ ], that

lim sup
n→∞

μ

{
1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

≥ C

}
(2.45)

≥ lim sup
n→∞

1 − (
1 − μ

(
An(C)

))n
.

We choose C := π0/(2K1/p). Considering the integers n of the form [u(p+2)/2
j ],

we obtain in view of (2.45):

lim sup
n→∞

μ

{
1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

≥ π0

2K1/p

}
(2.46)

≥ lim sup
j→∞

1 −
(

1 − μ

(
A[u(p+2)/2

j ]
(

π0

2K1/p

)))[u(p+2)/2
j ]

.

Since τ ≥ 1 almost surely, the following inclusions take place for n > (2/π0)
p:

An

(
π0/

(
2K1/p)) ⊃ {

π0τ
1/2+1/p − τ−1/2+1/p ≥ π0/

(
2K1/p)

(Kn)1/p} ∩ {τ ≤ nδ}

⊃
{
τ 1/2+1/p ≥ 1 + π0n

1/p/2

π0

}
∩ {τ ≤ nδ}

⊃ {
τ 1/2+1/p ≥ n1/p} ∩ {τ ≤ nδ}

= {
n2/(p+2) ≤ τ ≤ nδ

}
.

Consequently, for j large enough,

μ

(
A[u(p+2)/2

j ]
(

π0

2K1/p

))
≥ μ

{[
u

(p+2)/2
j

]2/(p+2) ≤ τ ≤ [
u

(p+2)/2
j

]
δ
}
. (2.47)

Since τ takes only integer values among ul’s and [u(p+2)/2
j ]δ < uj+1 (by (2.37)

and the fact that δ < 1), we obtain in view of (2.46), that

lim sup
n→∞

μ

{
1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

≥ π0

2K1/p

}

≥ lim sup
j→∞

1 − (
1 − μ{τ = uj })[u(p+2)/2

j ] (2.48)

= 1 − lim inf
j→∞

(
1 − cju

−1−p/2
j

)[u(p+2)/2
j ]

.
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Noticing that for a fixed J ,

lim inf
j→∞

(
1 − cju

−1−p/2
j

)[u(p+2)/2
j ]

(2.49)
≤ lim sup

j→∞
(
1 − cJu

−1−p/2
j

)[u(p+2)/2
j ] = e−cJ ,

we deduce that the last term of (2.48) is equal to 1. Since

1

(nK)1/p
max

0≤i<j≤nK
j−i≤nδ

|Sj − Si |
(j − i)1/2−1/p

(2.50)

≤ ω1/2−1/p

(
1√
nK

W(nK,f ), δ

)
,

we derive that (2.1) does not hold with ε = π0/(2K1/p). This finishes the proof of
Theorem 1.5.
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