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Abstract. This paper presents a modification and, at the same time, a gen-
eralization of the linear first order nonnegative integer-valued autoregressive
processes, well-known as INAR(1) processes. By using the so-called Noise-
Indicator, a nonlinear model with the threshold regime and with more com-
plex structure than the appropriate linear models was obtained. The new
model, named NIINAR(1) process, has been investigated in terms of the most
general, the power series distribution of its innovations. Basic stochastic prop-
erties of the NIINAR(1) model (e.g., correlation structure, over-dispersion
conditions and distributional properties) are given. Also, besides of some
standard parameters estimators, a novel estimation techniques, together with
the asymptotic properties of the obtained estimates is described. At last, a
Monte Carlo study of this process is also given, as well as its application in
the analysis of dynamics of two empirical dataset.

1 Introduction & motivation

The discrete-valued time series attracted a lot of attention over the last few decades.
Starting from the pioneer work of Al-Osh and Alzaid (1987), where the so-called
first order INteger-AutoRegressive (INAR(1)) process was introduced, many re-
sults related to this (and some similar) models are obtained nowadays. We point
out only the most recently works of Bakouch and Ristić (2010), Jazi, Jones and Lai
(2012) and Schweer and Weiß (2014) where INAR(1) models with various innova-
tions distributions were investigated, as well as Ristić, Nastić and Bakouch (2012),
Ristić, Nastić and Djordjević (2016) where INAR-type models with a some speci-
fied marginal distributions were introduced. On the other hand, Weiß (2008, 2009),
Weiß and Pollet (2014) and Ristić, Nastić and Miletić (2013) studied the general
properties of the INAR(1) models, with emphasis on the binomial thinning op-
erator, while Ristić, Bakouch and Nastić (2009) and Nastić, Ristić and Bakouch
(2012) considered INAR models with negative binomial thinning. At last, some
extensions, in the terms of increasing the models’ order, as well as estimation of
their parameters, can be found in Drost, Akken and Werker (2008), Silva and Silva
(2009), Nastić (2014) or Martin, Tremayne and Jung (2014). In this paper, starting
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point is the work of Bourguignon and Vasconcellos (2015), where authors define
the PSINAR(1) model, with a very general form of the so-called power series (PS)
innovations. Usage of these kind of innovations has a many advantages. First of
all, they have the following two basic properties:

1. The PS-innovations contain, as their special cases, the most of the other well-
known non-negative integer valued distributions. For example, the indepen-
dent identically distributed (i.i.d.) time series with binomial, geometric, Pois-
son, negative binomial or logarithmic distribution can be interpreted as the PS-
innovations (see Table 1 in Bourguignon and Vasconcellos (2015)).

2. They allow modeling an empirical nonnegative discrete time series where has
been observed an over-(equi- or under-)dispersion, truncated or zero-inflated
distributions, etc.

The main aim of this paper is to propose a new INAR(1)-type model, based
on the PS-innovations, but which will be more flexible and more applicable to
explain the dynamics of some real-life data series (see Section 5, bellow). For
instance, it can be situations when the innovations of some time series can be
modelled with an equal-dispersed distribution (such as Poisson’s), but observa-
tions have a pronounced over-dispersion, or highly frequented values in zero, the
property known as the zero-inflated distribution. The main goal of our model is to
explain these behaviours, that is, to generate marginal distribution which, in the
sense of the over-dispersion or the zero-inflated conditions, can be (potentially)
different from the appropriate innovations. For this purpose, we set so-called the
Noise-Indicator, similarly as it was done in modification of the Stochastic Perma-
nent Breaking (STOPBREAK) processes, described in Stojanović, Popović and
Popović (2011, 2014, 2015), Stojanović, Milovanović and Jelić (2016), as well as
the Stochastic Volatility (SV) models, described in Stojanović, Popović and Milo-
vanović (2016). The basic idea is to allow that innovations sequence has a prop-
erty of optionality and, according to this, the observations will be have a thresh-
olds, non-linear dynamics. For these reasons, a stochastic structure of our model
is somewhat more complex than the standard INAR-processes. At the same time,
it differs from the other related models introduced, for instance, in Pavlopulos and
Dimitris (2008) or Li, Wang and Zhang (2015).

This paper is organized as follows. The definition of the Noise-Indicator
INAR(1) model, in short NIINAR(1) model, as its basic stochastic properties, are
described in the following, Section 2. Some parameters estimation procedures of
this process, especially a novel, the probability generating function (PGF) tech-
nique, is considered in Section 3. Monte Carlo simulations of the PGF estimates
are described in Section 4. Finally, Section 5 is devoted to an application of the
previous estimation procedure in fitting some empirical data series.
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2 Definition & properties of the model

In this section, we first define the general form of the Power Series (PS) distribu-
tions, as well as the principle of introducing the Noise-Indicators. In the second
part, we describe the NIINAR(1) model itself, and its basic stochastic properties.

2.1 Power series & noise-indicator’s distributions

Let (εt ), t ∈ Z be a sequence of independent identically distributed (i.i.d.) ran-
dom variables. We say that this series has a Power Series (PS) distribution if its
probability mass function (p.m.f.) is given by the following expression:

pε(x; θ) := P {εt = x} = a(x)θx

f (θ)
, x ∈ S, (2.1)

where S ⊆ Z+ = {0,1,2, . . . , } is the discrete support of the r.v.s εt . In the same
manner as in Bourguignon and Vasconcellos (2015), here we denote:

(i) a(x) ≥ 0 is the function which depends (only) of x;
(ii) θ > 0 is the (unknown) parameter;

(iii) f (θ) := ∑∞
x=0 a(x)θx is the function of θ , such that 0 < f (θ) < +∞, where

θ ∈ (0,R), R > 0.

Note that the expression (2.1) represents a very general form of the non-negative,
integer-valued p.m.f. It enables that, for some particular choices of functions a(x),
f (θ) and the parameter θ , can be obtained a most of the well-known distributions
(see Table 1, below). In addition, according to assumption (iii), it is obvious that
power series f (θ) converges, in fact, on the interval (−R,R). Nevertheless, we
introduced an usual assumption that the parameter θ is positive, that is, that the
power series f (θ) converges on interval (0,R). According to these, the function
f (θ) is positive and increasing at this interval. Moreover, for all n ∈ N it has a
positive derivatives

f (n)(θ) := dnf (θ)

dθn
=

∞∑
x=n

x(x − 1) · · · (x − n + 1)a(x)θx−n. (2.2)

Equality (2.2) can be useful for determining the recurrence relations between the
moments of series (εt ), as it described, for instance, in Noack (1950). In order
to obtain an explicit expression for the moments μ

(ε)
n := E[εn

t ], we have used
a different approach, based on the moment-generating function (MGF) M(u) =
E[exp(uεt )] = f (θeu)/f (θ). Using the well-known properties of MGFs, after
some computations, it follows

μ
(ε)
1 = E[εt ] = d

du
M(0) = θ

f ′(θ)

f (θ)
,
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μ
(ε)
2 = E

[
ε2
t

] = d2

du2 M(0) = θ
f ′(θ)

f (θ)
+ θ2 f ′′(θ)

f (θ)
,

...

μ(ε)
n = E

[
εn
t

] = dn

dun
M(0) = 1

f (θ)

n∑
k=1

bn;kθkf (k)(θ),

where the coefficients bn;k , for each n ∈ N, can be calculated recursively:

bn;1 = 1, bn;k+1 = (k + 1)n−1

k! −
k∑

j=1

bn;j
(k − j + 1)! , k = 1,2, . . . , n − 1.

According the first two moments, mean and variance of the r.v.s εt are

με := E[εt ] = μ
(ε)
1 = θg′(θ), (2.3)

σ 2
ε := Var[εt ] = μ

(ε)
2 − (

μ
(ε)
1

)2 = με + θ2g′′(θ), (2.4)

where we set g(θ) = logf (θ). Notice that over-dispersion of εt depends (only) on
convexity of the function g(θ). More precisely, the series (εt ) is over-dispersed,
i.e., the condition Dε(θ) := σ 2

ε − με > 0 holds if and only if g′′(θ) > 0, ∀θ ∈
(0,R). Naturally, many of the well-known, nonnegative integer-valued distribu-
tions do not satisfy this condition (see Table 1).

In order to improve the over-dispersion conditions, as well as the properties
of zero-inflated distribution, we modify the PS-distributions in the following way.
We introduce the series ηt = qt−1εt , t ∈ Z, where qt = qt (c) is so-called the Noise-
Indicator, defined as

qt (c) := I (εt ≥ c) =
{

1, εt ≥ c,

0, εt < c.

The indicators (qt ) impose an involvement of the value of (εt ) when it is enough
statistically significant. If the value of εt−1 is relatively small, then qt−1 = 0, and,
thereby, the realization of ηt at time t equals zero. On the other hand, in the case
of pronounced fluctuation caused by the previous realization εt−1, the indicator
value is qt−1 = 1, and the value ηt matches to the value εt . Level of significance
in realizations of the sequence (εt ) determines the critical value of reaction c > 0,
for which we can write

mc := E
[
I (εt ≥ c)

] = P {εt ≥ c} = 1 − Fε(c),

where Fε(·) is the cumulative distribution function (c.d.f.) of εt . Therefore, for
a given value c > 0, it can be determined the constant mc, and vice versa. On
the other hand, indicators qt (c) generalize the PS-distributed series (εt ), which
could be obtained from the series (ηt ), when c → 0. Nevertheless, we will assume
that the nontrivial condition 0 < Fε(c) < 1 is always fulfilled. Then, the basic
properties of the series (ηt ) can be formulated by the following proposition.
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Table 1 Comparison of some known distributions, through the PS and NIPS over-dispersion con-
ditions

Distributions S a(x) θ f (θ) Dε(θ) Dη(θ)

1. Bernoulli {0,1} 1 (0,∞) 1 + θ − θ2

(1+θ)2 − m2
cθ

2

(1+θ)2

2. Binomial {0, . . . , n} (n
x

)
(0,∞) (1 + θ)n − nθ2

(1+θ)2
mcnθ2(nFε(c)−1)

(1+θ)2

3. Poisson {0, . . . ,∞} 1
x! (0,∞) exp(θ) 0 mcθ

2Fε(c)

4. Geometric {0, . . . ,∞} 1 (0,1) 1
1−θ

θ2

(1−θ)2
θ2[1−(Fε(c))

2]
(1−θ)2

5. Neg. Binomial {0, . . . ,∞} �(x+r)
x!�(r)

(0,1) 1
(1−θ)r

rθ2

(1−θ)2
mcrθ

2(rFε(c)+1)

(1−θ)2

6. Pascal {r, . . . ,∞} (x−1
r−1

)
(0,1) θr

(1−θ)r
r(2θ−1)

(1−θ)2
mcr(Fε(c)+2θ−1)

(1−θ)2

7. Logarithmic {1, . . . ,∞} x−1 (0,1) log(1 − θ)−1 −θ2[1+log(1−θ)]
(1−θ)2 log2(1−θ)

mcθ
2[Fε(c)−1−log(1−θ)]
(1−θ)2 log2(1−θ)
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Theorem 2.1. The series (ηt ), t ∈ Z is the sequence of the uncorrelated r.v.s with
the p.m.f.

pη(x; θ) =
{

1 + mc

(
pε(x; θ) − 1

)
, x = 0,

mcpε(x; θ), x = 1,2, . . . ,
(2.5)

where pη(x; θ) := P {ηt = x}. In addition, the moments of the r.v.s ηt are μ
(η)
n :=

E[ηn
t ] = mcμ

(ε)
n , and these r.v.s are over-dispersed if and only if the condition

g′′(θ) ≥ 0 ∨ Fε(c) > − g′′(θ)

(g′(θ))2 (2.6)

is fulfilled.

Proof. See the Appendix. �

Remark 2.1. According to the previous theorem, the main goals of introducing
the Noise-Indicators Power-Series (NIPS) distribution can be seen. First of all,
the NIPS-distributed r.v.s (ηt ) are uncorrelated, so then they can be used as an
innovations of some theoretical INAR-type model. Moreover, the equation (2.5)
and the condition 0 < mc < 1 gives, for εt 
= I0,

pη(0; θ) − pε(0; θ) = (1 − mc)
[
1 − pε(0; θ)

]
> 0,

that is, r.v.s (ηt ) have a more pronounced zero-inflated distribution than (εt ). For
this reason, they are most adequate in the fitting some empirical datasets which
have a pronounced zero-values (see Section 5). At last, over-dispersion condi-
tion (2.6) is more “weak” than the appropriate condition of the PS-distributed
series (εt ).

Table 1 presents the functions a(x) and f (θ), as well as the differences Dε(θ)

and Dη(θ), for the most of well-known nonnegative integer-valued distributions.
Let us remark that the under-dispersion conditions for both the series (εt ) and
(ηt ) holds only for the most simplest, Bernoulli’s distribution. In the case of bi-
nomial distribution, where the PS-distributed r.v.s (εt ) are under-dispersed, the
NIPS-distributed r.v.s (ηt ) can be over-dispersed for sufficiently large n ∈ N, that
is, if and only if nFε(c) > 1. On the other hand, the series (εt ) with equal-dispersed
Poisson distribution always generate the over-dispersed NIPS-distributed sequence
(ηt ). An interesting fact is that the series with negative binomial, over-dispersed
distribution (as well as geometric distribution as its special case), gives the NIPS-
series with somewhat smaller over-dispersion. Finally, over-dispersion properties
of the Pascal and logarithmic distribution can vary for the both series, although
they are more pronounced in the case of NIPS-series (ηt ).
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2.2 The NIINAR(1) model

According to previously assumptions, let (Xt), t ∈ Z be a series defined by the
recurrence relation

Xt = α ◦ Xt−1 + ηt =
{
α ◦ Xt−1 + εt , εt−1 ≥ c,

α ◦ Xt−1, εt−1 < c.
(2.7)

Here, α ∈ (0,1) and α◦X := ∑X
j=1 Bj(α) is the binomial thinning operator, where

X is a nonnegative integer-valued r.v., and for any t ∈ Z the r.v.s Bj = Bj(α)

are mutually independent, also independent of X, with Bernoulli’s distribution
P {Bj = 1} = 1 − P {Bj = 0} = α. Then, we say that the sequence (Xt) represents
the Noise-Indicator INAR(1) process, or in short, the NIINAR(1) process.

As we can see from the equality (2.7), the series (Xt) can be interpreted as
the INAR(1) model with an “optional” PS-innovations (εt ). Namely, if the value
of εt−1 is less than the critical value c, it follows that ηt = 0. Then, the realiza-
tion of Xt at time t depends only on Xt−1. On the other hand, in the case when
εt−1 is enough statistically significant, that is, greater than or equal c, the value
Xt is realized as a standard INAR(1) model. This feature allows that our model
has a specific threshold, non-linear structure, which depends, in fact, on its NIPS-
innovations (ηt ). Based on the above-mentioned properties of this series, it can be
shown, as we shall see in the following, some particular properties of our model
which are different compared with standard INAR-type models.

First, note that k-step conditional measures of Xt+k on Xt depend not only of
Xt , but also of the Noise-Indicator qt (i.e., of the level of significance the PS-
innovation εt ). According to some well-known properties of the binomial thinning
operator (see, for instance, Silva and Oliveira (2004)), it can be easily obtained the
first-step conditional mean

E[Xt+1|Xt ] = αXt + μεqt =
{
αXt + θg′(θ), εt ≥ c,

αXt , εt < c,

as well as conditional variance

Var[Xt+1|Xt ] = α(1 − α)Xt + σ 2
ε qt

=
{
α(1 − α)Xt + θg′(θ) + θ2g′′(θ), εt ≥ c,

α(1 − α)Xt , εt < c.

In the general case, using the induction method and after some computations, k-
step conditional measures can be calculated for each k ∈ N. In this way, it follows

Theorem 2.2. Let (Xt) be a NIINAR(1) model, that is, the sequence of r.v.s defined
by equation (2.7). Then, the k-step conditional mean and variance of Xt+k on Xt
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are, respectively,

E[Xt+k|Xt ] = αkXt + αk−1μεqt + 1 − αk−1

1 − α
mcμε, (2.8)

Var[Xt+k|Xt ] = αk(1 − αk)Xt + αk−1(
1 − αk−1)

μεqt + α2(k−1)σ 2
ε qt

(2.9)

+ (α − αk−1)(1 − αk−1)μη + (1 − α2(k−1))σ 2
η

1 − α2 ,

and the autocorrelation function (a.c.f.) at lag k is ρ(k) = αk .

If we put that k → ∞, equalities (2.8) and (2.9) give the unconditional mean and
variance of Xt , respectively,

μX := E[Xt ] = lim
k→∞ E[Xt+k|Xt ] = mcμε

1 − α
= mcθg′(θ)

1 − α
, (2.10)

σ 2
X := Var[Xt ] = lim

k→∞ Var[Xt+k|Xt ] = αμη + σ 2
η

1 − α2
(2.11)

= μX + mcθ
2

1 − α2

[
g′′(θ) + Fε(c)

(
g′(θ)

)2]
.

Notice that differences DX(θ) := σ 2
X − μX and Dη(θ) = σ 2

η − μη satisfy relation
DX(θ) = Dη(θ)/(1 − α2). According to this, the following statement is valid.

Corollary 2.1. The over-dispersion conditions of the series (Xt) and (ηt ) are
equivalent, that is, (Xt) is over-(equal- or under-)dispersed if and only if the same
properties has the series (ηt ).

Thus, the series (Xt) will be over-dispersed if and only if the series (ηt ) is
over-dispersed, that is, if and only if the condition (2.6) is fulfilled. Moreover,
above-mentioned over-dispersion properties of the NIPS-series (ηt ) represent, at
the same time, the over-dispersion properties of the series (Xt). In this way, the
over-dispersion of the NIINAR(1) model can be investigated (only) based on the
over-dispersion of its NIPS-innovations.

In the following, we prove some of the distributional properties of the NI-
INAR(1) model. First of all, we have investigated, so-called, infinite-order INteger
Moving Average (INMA) representation of the series (Xt). After that, we give an
explicit expression of its probability generating function (PGF), for an arbitrary
order r ∈ N. At last, we consider its Markovian properties, as well as a marginal
distribution of our model.

Theorem 2.3. Let suppose that PS-series (εt ) has a finite moments of the first
two order, which are uniformly bounded on θ ∈ (0,R). Then, for an arbitrary α ∈
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(0,1), series (Xt) has an INMA(∞) representation

Xt
d=

∞∑
k=0

αk ◦ ηt−k, (2.12)

where the sum above converges in mean-square and almost surely.

Proof. See the Appendix. �

Remark 2.2. Using the p.m.f of ηt , given by the equation (2.5), their PGF is as
one

	η(u) = [
(1 − mc)	I0 + mc	ε

]
(u) = 1 + mc

(
f (uθ)

f (θ)
− 1

)
,

where 	I0(u) ≡ 1 and 	ε(u) = f (uθ)(f (θ))−1 are the PGFs of I0
a.s.= 0 and εt ,

respectively. Substituting the last expression in the equation (A.4), the PGF of Xt

can be rewritten as

	X(u) =
∞∏

k=0

[
1 + mc

(
f ((1 + αk(u − 1))θ)

f (θ)
− 1

)]
.

Moreover, let u = (u1, . . . , ur)
′ ∈ Rr , r ≥ 2 and X(r)

t := (Xt , . . . ,Xt+r−1)
′, t ∈ Z

be the so-called overlapping blocks of the process (Xt). Then, we can introduce
the r-dimensional PGF of the random vector X(r)

t as

	
(r)
X (u;
) := E

[
u

Xt

1 · · ·uXt+r−1
r

]
, (2.13)

where 
 = (θ,α,mc)
′ is a vector of unknown parameters of NIINAR(1) process.

Substituting k = 1, . . . , r −1 in equation (A.5), and after some computation similar
as above, it can be obtain an explicit expression of this PGF:

	
(r)
X (u;
) = 	X

(
r−1∏
k=0

(
1 + αk(uk+1 − 1)

)) r∏
�=2

	η

(
r−�∏
k=0

(
1 + αk(uk+� − 1)

))
.

The function 	
(r)
X (u;
) will be used later in the estimation procedure of the pa-

rameters of our model (see Section 3, below).

Theorem 2.4. The NIINAR(1) series (Xt) is a homogeneous Markovian process.
The first-step transition probabilities pjk := P {Xt = k|Xt−1 = j} can be written
as

pjk = (1 − mc)

(
j

k

)
αk(1 − α)j−kI (N2 ≥ k)

(2.14)

+ mc

N2∑
i=N1

(
j

i

)
αi(1 − α)j−ipε(k − i),
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where pε(x; θ) is the p.m.f. of the series (εt ), and

(N1,N2) =
{(

0,min{j, k − s}), if S = {s, s + 1, . . .},(
max{0, k − s},min{j, k}), if S = {0,1, . . . , s}

for some fixed s ∈ Z+.

Proof. See the Appendix. �

Remark 2.3. In the following, we suppose that the condition 0 ∈ S (which is
the usual in zero-inflated distributions) is always fulfilled. Notice that in this case
I (k ≤ N2) = I (k ≤ j). It means that the first, singular part in equality (2.14) is
greater than zero if and only if the process (Xt) exceeds from state Xt−1 = j to
“non-increasing” state Xt = k ≤ j , and vice versa.

At the end of this section, notice that above-mentioned theorems, first of all the
equalities (2.12) and (2.14), imply the following important properties of the NI-
INAR(1) model.

Corollary 2.2. Series (Xt) is strictly stationary and ergodic process, and its
marginal p.m.f pX(x; θ) := P {Xt = x} is

pX(x; θ) = (1 − mc)

∞∑
j=x

pX(j ; θ)pj (x;α)

(2.15)

+ mc

∞∑
j=0

pX(j ; θ)

N2∑
i=N1

pj (i;α)pε(x − i).

3 Estimation of the model’s parameters

Procedure of the parameters estimation of NIINAR(1) model, because of its spe-
cific structure, is much more complex than with the most of the similar linear
INAR models. For example, according to the equation (2.8), conditional mean
E[Xt+k|Xt ] depends on (not observable) realizations of the indicator qt (c). Con-
sequently, one of the typical estimation methods, such as conditional last squares
(CLS) method, cannot be used here. On the other hand, according to Theorem 2.2
and the equations (2.10)–(2.11), the Yule–Walker (YW) estimators θ̃ , α̃, m̃c of the
unknown parameters θ , α, mc, respectively, can be obtain as it follows:

α̃ = γ̂ (1)/γ̂ (0),

m̃cθ̃g′(θ̃) = (1 − α̃)X̄T , (3.1)

γ̂ (0) = m̃cθ̃g′(θ̃)

1 − α̃
+ m̃cθ̃

2g′′(θ̃)

1 − α̃2

[
g′′(θ̃) + (1 − m̃c)

(
g′(θ̃)

)2]
,
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where X̄T := 1
T

∑T
t=1 Xt , γ̂ (k) := 1

T

∑T −k
t=1 (Xt − X̄T )(Xt+k − X̄T ), k = 0,1 and

{X1, . . . ,XT } is some realization of the series (Xt). Using some well-known facts
about the asymptotic distribution of the INAR(p) processes (cf. Silva and Silva,
2006), as well as continuity of the stochastic convergences (cf. Serfling, 1980,
pp. 24, 118), the strong consistency and asymptotic normality of the YW estimates
can be proved.

In order to get the more efficient estimators of the parameters of the NIINAR(1)
model, we use a novel estimation technique, which we called the probability gen-
erating functions (PGF) method. The main aim of this method is to minimize “the
distance” between the theoretical PGF, defined with equation (2.13), and the ap-
propriate Empirical PGF (of order r ∈ N):

	̃T (u) := 1

T − r + 1

T −r+1∑
t=1

u
Xt

1 · · ·uXt+r−1
r ,

where u = (u1, . . . , ur)
′ ∈ Rr . It this well known that theoretical PGF 	

(r)
X (u; θ)

converges at least for all u ∈ [−1,1]r . Thus, the objective function can be defined
as

S
(r)
T (
) :=

∫ 1

−1
· · ·

∫ 1

−1
g(u)

∣∣	(r)
X (u; θ) − 	̃

(r)
T (u)

∣∣2 du, (3.2)

where 
 = (θ,α,mc)
′ is a vector of unknown parameters, du := du1 · · ·dur and

g : Rr → R+ is a some weight function, integrable on [−1,1]r . Estimates based on
the PGF method will be obtained by the minimization the objective function (3.2)
with respect to 
. More accurate, they represent the solutions of the minimization
equation


̂
(r)
T = arg min


∈K
S

(r)
T (
), (3.3)

where K := (0,R)× (0,1)2 is the parameter space of the nontrivial and stationary
NIINAR(1) process. We point out that the basic idea of the PGF estimation method
is a similar as in the so-called Empirical characteristic function (ECF) method
(see, for instance, Yu, 2004). It is based on the fact that PGF of the series (Xt), as
its CF, has the same information about its distribution. Similarly like that, we shall
investigate, under some conditions, strong consistency and asymptotic normality
(AN) of the PGF estimators of NIINAR(1) model’s parameters.

Theorem 3.1. Let 
0 be the true value of the parameters set K , and for an ar-
bitrary T = 1,2, . . . , let 
̂

(r)
T be solutions of the equation (3.3). Additionally, let

suppose that the following regularity conditions are fulfilled:

(i) 
0 ∈ K and 
̂
(r)
T ∈ K , for T large enough;
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Figure 1 Graphs of the two-dimensional PGF (panel left) and the appropriate EPGF (panel right)

of the series X(2)
t = (Xt ,Xt+1). Innovations are Poisson distributed r.v.s with θ = 1.

(ii) Function

S
(r)
0 (
) :=

∫ 1

−1
· · ·

∫ 1

−1
g(u)

∣∣	(r)
X (u;
) − 	

(r)
X (u;
0)

∣∣2 du

has an unique minima at 
 = 
0;

(iii)
∂2S

(r)
T (
0)

∂
∂
′ is a regular matrix.

Then, 
̂
(r)
T is strictly consistent and asymptotically normal estimator for 
.

Proof. See the Appendix. �

Remark 3.1. In order to obtain the PGF estimators of true values of the parameter

 = 
0, and using the same deliberation as in the ECF estimates of the AR(1)-
processes (see, for instance, Knight and Yu, 2002), in the further we will use the
PGF of order r = 2 (Figure 1). Therefore, the PGF procedure will be based on real-
izations of the two-dimensional random vector X(2)

t := (Xt ,Xt+1)
′, and the objec-

tive function S
(2)
T represents a double integral with respect to the weight function

g : R2 → R+. Consequently, as we shall see in the following, it can be numerically
approximated by using some cubature formulas.

4 Numerical simulations

In this section, we consider the practical application of the above-mentioned proce-
dures of estimation of the unknown parameters 
 = (θ,α,mc)

′ of the NIINAR(1)
process:

Xt = α ◦ Xt−1 + qt−1εt , t = 1, . . . , T . (4.1)
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For this purpose, we have taken two different types of distribution of the innova-
tions (εt ). We firstly assumed that it was the i.i.d. sequence with Poisson distri-
bution, and then that (εt ) has a geometric distribution. For the both of them, as
for each of the sample size T ∈ {100,500,2500}, we generated 500 independent
Monte Carlo simulations of the series (εt ) and (qt−1εt ). Thereafter, according to
equation (4.1), we have obtained the appropriate realizations {X0,X1, . . . ,XT } of
the series (Xt), where we set X0

a.s.= 0.
For the parameters’ estimators of our model, we have first used the YW esti-

mates, as solutions of the equations (3.1). In the case of Poisson innovations (εt ),
the appropriate estimators are:

α̃ = γ̂ (1)/γ̂ (0),

θ̃ = (1 + α̃)
[
γ̂ (0)/X̄T − 1

] + (1 − α̃)X̄T ,

m̃c = (1 − α̃)X̄T /θ̃ ,

and for geometric distributed innovations (εt ), the YW estimates are:

α̃ = γ̂ (1)/γ̂ (0),

θ̃ = 1 − 2
[
(1 − α̃)(1 + X̄T ) + (1 + α̃)γ̂ (0)/X̄T

]−1
,

m̃c = θ̃−1(1 − θ̃ )(1 − α̃)X̄T .

The numerical results obtained by YW estimates, that is, their means (Mean), min-
ima (Min.), maxima (Max.) and the standard estimating errors (SEE), are presented
in the left parts of Table 2 and Table 3, respectively. In both cases, the YW esti-
mates of NIINAR(1) model are convergent, and the standard estimating errors are
decreasing as sample size is increasing.

In following, we apply the PGF method, with the initial values that were ob-
tained in the previous estimation procedure. In this way, the PGF estimates θ̂ , α̂,
m̂c are computed according to the minimization of the (double) integral

S
(2)
T (θ) =

∫∫
[−1,1]2

g(u1, u2)
∣∣	(2)

X (u1, u2; θ) − 	̃T (u1, u2)
∣∣2 du1 du2, (4.2)

with respect to the weight function g : [−1,1]2 → R+. Integral in (4.2) can be
numerically approximated by using some N -point cubature formula

I (f ;g) :=
∫∫

[−1,1]2
g(u1, u2)f (u1, u2)du1 du2 ≈ CN(f ) :=

N∑
j=1

ωjf (u1j , u2j ),

where (u1j , u2j ) are the cubature nodes, and ωj are the corresponding weight co-
efficients. In our simulations study, we used Gauss–Legendre cubature formulas
with g(u1;u2) ≡ 1 and N = 36 nodes. The numerical construction of these formu-
las was done by the MATHEMATICA package “Orthogonal Polynomials”
(cf. Cvetković and Milovanović, 2004). After that, the objective function (4.2) is
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Table 2 Estimated values of the parameters of NIINAR(1) model with Poisson innovations. (True
values of the parameters are: θ = 1, α = 0.5, mc = 0.2642 . . .)

YW estimates PGF estimates

Sample θ̃ α̃ m̃c S
(2)
T θ̂ α̂ m̂c S

(2)
T

T = 100 Min. 0.5551 0.1470 0.1284 0.0020 0.6187 0.2339 0.1387 0.0010
Mean 1.0646 0.4285 0.2552 0.1550 1.0461 0.4674 0.2579 0.0104
Max. 1.8780 0.6865 0.4170 0.7552 1.4354 0.6754 0.3999 0.0394
SEE 0.2504 0.0997 0.2400 0.1615 0.2054 0.0856 0.1612 0.0075

T = 500 Min. 0.7371 0.2695 0.1781 0.0010 0.7723 0.3397 0.1582 0.0006
Mean 1.0585 0.4441 0.2698 0.1536 1.0381 0.4689 0.2613 0.0074
Max. 1.3840 0.5637 0.3025 0.7050 1.2980 0.6581 0.3667 0.0353
SEE 0.1195 0.0476 0.0929 0.0773 0.1045 0.0636 0.0925 0.0072

T = 2500 Min. 0.8988 0.3936 0.2289 0.0004 0.9122 0.4492 0.2463 7.30E-5
Mean 1.0317 0.4945 0.2653 0.0523 0.9894 0.5019 0.2646 1.16E-4
Max. 1.1930 0.5354 0.3082 0.3502 1.1061 0.5425 0.2828 1.69E-3
SEE 0.0378 0.0153 0.0144 0.0074 0.0345 0.0061 0.0447 1.51E-5

minimized by a Nelder–Mead method, and the estimation procedure is realized by
the original authors’ codes written in statistical programming language “R”.

Summary statistics of the PGF estimates, computed via this estimation proce-
dure are presented in the right parts of Tables 2 and 3. For both types of estimates,
the values of the objective function S

(2)
T , as the reference estimation error, were

also shown. In comparison to initial estimates, it is obvious that means of the PGF
estimates are somewhat closer to the true values of parameters, as well as they
have a smaller estimation errors.

5 Application of the model

We describe here a practical application of the NIINAR(1) process in modeling
the dynamics of some actual time series. For this purpose, we analyze two real-
life datasets. The first one, supplied by the Statistical Office of the Republic of
Serbia, contains the number of daily mortality in Niš, the second largest city in
Republic of Serbia, in the period from 1992 to 2009. The empirical distribution
of this time series is shown in the Figure 2 (panel left), and at first glance it has a
typical (equal-dispersed) Poisson distribution. The second time series contains the
daily number of casualties in road traffic crashes on the territory of Belgrade, the
Serbian capital, from 2004 to 2013, according to a statistics collected by Ministry
of Interior of the Republic of Serbia. The right panel in Figure 2 represents the
empirical distribution of this series, and it is obvious pronounced adapting with
the (over-dispersed) negative binomial distribution (i.e., geometric, in a special
case).
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Table 3 Estimated values of the parameters of NIINAR(1) model with geometric innovations. (True
values of the parameters are: θ = α = 0.5, mc = 0.25)

YW estimates PGF estimates

Sample θ̃ α̃ m̃c S
(2)
T θ̂ α̂ m̂c S

(2)
T

T = 100 Min. 0.2161 0.3151 0.0595 0.1321 0.2887 0.3249 0.1430 0.0014
Mean 0.4314 0.4058 0.2741 0.3686 0.5254 0.5481 0.2511 0.0048
Max. 0.6796 0.6671 0.6363 0.9747 0.6609 0.6379 0.4773 0.0091
SEE 0.0986 0.1334 0.0890 0.2081 0.0853 0.1160 0.0447 0.0015

T = 500 Min. 0.3233 0.3642 0.0649 0.0912 0.4131 0.4317 0.2075 0.0032
Mean 0.4452 0.4414 0.2573 0.3437 0.5024 0.5031 0.2494 0.0048
Max. 0.6033 0.6056 0.5336 0.5649 0.5703 0.5763 0.3186 0.0073
SEE 0.0378 0.0596 0.0786 0.1107 0.0304 0.0554 0.0186 0.0006

T = 2500 Min. 0.4401 0.4128 0.1386 0.0355 0.4597 0.4232 0.2268 0.0028
Mean 0.5050 0.4953 0.2485 0.1218 0.5010 0.5016 0.2497 0.0039
Max. 0.5633 0.5787 0.3897 0.2020 0.5408 0.5789 0.2765 0.0059
SEE 0.0191 0.0253 0.0370 0.0968 0.0141 0.0262 0.0080 0.0003

Figure 2 Empirical distributions of the two real data series, fitted by the Poisson distribution (panel
left), and the negative binomial distribution (panel right).

A simple descriptive statistical analysis of both series, denoted as Series A and
Series B, respectively, is shown in Table 4. It can be recognized that in both of
them there exists an over-dispersion. On the other hand, Series B has a highly
frequented values in zero (more than half of its realizations), i.e., the zero-inflated
distribution. Finally, the both series have a positive autocorrelation, which is a
typical characteristic of INAR-models.

For the both of time series, we analyze the modeling with the the NIINAR(1)
model, in comparison to the standard INAR(1) process. For the Series A, according
to the aforementioned facts, the Poisson innovations are considered, as for the
Series B, we assumed the geometric distributed innovations.

Estimated values of the parameters for both series (and for both INAR-type
models) are shown in the top half of Tables 5 and 6. As in previous simulations
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Table 4 Summary statistics of the real data series

Statistics Series A Series B

Sample size 6,575 10,959
Min. 0.000 0.000
1st Qu. 5.000 0.000
Median 7.000 0.000
3rd Qu. 9.000 1.000
Max. 20.000 14.000

Mean 7.476 0.908
Variance 8.801 2.189

ACF(1) 0.165 0.477
ACF(2) 0.136 0.435
ACF(3) 0.150 0.441
· · · · · · · · ·
ACF(10) 0.119 0.429

study, for the initial values of parameters 
 = (θ,α,mc)
′ we have used the YW

estimates and, therefore, we have computed the PGF estimates. At last, solving the
equations P {εt ≥ c} = m̃c and P {εt ≥ c} = m̂c with respect to c, we obtain the
estimate of the critical value, that is,

c̃ := inf
x∈N0

P {εt < x} ≥ 1 − m̃c, ĉ := inf
x∈N0

P {εt < x} ≥ 1 − m̂c.

It can be easily seen that, for both empirical data series, YW and PGF estimates of
parameter mc give the nontrivial estimated values c > 0. At first glance, it is some
confirmation and justification for the NIINAR model introducing. It is also notice-
able that estimated values of the parameter α of the Series B are relatively “small”
(α < 0.05), which is expected as a consequence of the zero-inflated distribution of
this series.

Furthermore, we analyze the efficiency of fitting for both empirical data series
(and for both of INAR-type models), when the PGF method, as well as the Yule–
Walker method of moments were applied. For this purpose, we generated 500 inde-
pendent simulations of INAR(1) and NIINAR(1) models, for all estimated values
of their parameters. In order to check the efficiency of proposed models, we com-
puted two typical goodness-of-fit statistics: the root mean squares of differences
of observations and predicted values (RMS), as well as the Akaike Information
Criterion (AIC). The average values of the all of these statistics are shown in the
lower part of Tables 5 and 6. Notice that, in the case of Series A, the standard
INAR(1) model and the NIINAR(1) model have similar efficiency, because of the
RMS and AIC statistics of both models are relatively close, for the both of esti-
mation methods which were used here. However, there is somewhat better fitting
with the NIINAR(1) model. On the other hand, it is evident that in the case of the
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Table 5 Estimated values of parameters and error statistics of the empirical data (Series A)

YW estimates PGF estimates

Parameters INAR(1) NIINAR(1) INAR(1) NIINAR(1)

θ 6.2430 6.4494 5.4170 5.7204
α 0.1649 0.1649 0.2701 0.2370
mc 1.0000 0.9680 1.0000 0.9930
c 0.0000 2.0000 0.0000 1.0000

S
(2)
T 1.96E-5 4.84E-7 7.79E-6 1.03E-7

RMS 0.4012 0.3970 0.3978 0.3944
AIC 329.57 329.50 329.57 329.47

DM 0.5066 0.8146
(p-value) (0.3027) (0.2077)

Table 6 Estimated values of parameters and error statistics of the empirical data (Series B)

YW estimates PGF estimates

Parameters INAR(1) NIINAR(1) INAR(1) NIINAR(1)

θ 0.3219 0.3561 0.5888 0.5882
α 0.0477 0.0477 0.0493 0.0434
mc 1.0000 0.3712 1.0000 0.2582
c 0.0000 1.0000 0.0000 3.0000

S
(2)
T 0.2544 0.0137 0.1990 2.62E-4

RMS 0.2190 0.1762 0.2184 0.1716
AIC 396.86 288.82 396.78 288.35

DM 4.1602 8.9784
(p-value) (1.78E-5) (<2.20E-16)

Series B, estimated values of the fitting statistics are generally less when the NI-
INAR(1) model has been applied, as an appropriate fitting model, than when the
standard INAR(1) model has been applied.

Similar conclusions can be reached on the basis of analysis of the forecast accu-
racy between the INAR(1) and NIINAR(1) model. In this sense, we have compared
the accuracy of these two models by using the well-known, one-sided Diebold–
Mariano test for predictive accuracy: the null hypothesis is that these two models
have the same forecast accuracy, as the alternative is that NIINAR(1) is more accu-
rate model. Test statistics (labeled as DM), as well as the corresponding p-values,
were computed by using the R-package “forecast” (Hyndman, 2016). In the case
of Series A, dataset from 2010 to 2013 was used as the forecast horizon. Realized
values of the DM statistics, shown in Table 5, indicate that the both of models have
the similar accuracy (i.e., the null hypothesis is valid). On the other hand, in the
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Figure 3 Empirical and fitted p.m.f.s of the INAR(1) and NIINAR(1) processes: Series A (graphs
above) and Series B (graphs below).

case of Series B, where the forecast horizon from 2014 to 2015 was used, there is a
significantly greater accuracy in prediction when the NIINAR(1) model was used
(Table 6).

Some of these, aforementioned facts can be also seen in Figure 3, where the em-
pirical p.m.f.s of the both of actual time series, along with the appropriate p.m.f.s
of INAR(1) and NIINAR(1) processes, are shown. It can be easily seen that in the
case of Series A the similar efficiency has been achieved by using the both of mod-
els. In the case of Series B, it is obvious that the NIINAR(1) model provide better
match to the empirical p.m.f. in comparison with the standard INAR(1) model.

Appendix

Proof of Theorem 2.1. According the definition of the series (ηt ), and using the
conditional probability, we have

pη(x; θ) = P {I0 = x}P {qt−1 = 0} + P {εt = x}P {qt−1 = 1}
= (1 − mc)p0(x) + mcpε(x; θ),
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where x = 0,1,2, . . . , and p0(x) is the p.m.f. of the r.v. I0
a.s.= 0. From here, it

is easily to show that equality (2.5) holds. Also, it is obviously that qn
t

d= qt , for

each n ∈ N, which implies the equalities μ
(η)
n = mcμ

(ε)
n . From this, as well as the

expressions (2.3) and (2.4) for the mean and the variance of r.v.s εt , we obtain the
mean and the variance of r.v.s ηt , respectively,

μη := E[ηt ] = mcμε = mcθg′(θ) = mcθ
f ′(θ)

f (θ)
, (A.1)

σ 2
η := Var[ηt ] = mc

θf ′(θ) + θ2f ′′(θ)

f (θ)
− m2

c

(
θ
f ′(θ)

f (θ)

)2

= mcθ
f ′(θ)

f (θ)
+ mcθ

2 f ′′(θ)f (θ) − mc(f
′(θ))2

[f (θ)]2 (A.2)

= μη + mcθ
2[

g′′(θ) + Fε(c)
(
g′(θ)

)2]
.

As we assumed that Fε(c) ∈ (0,1), the inequality Dη(θ) := σ 2
η − μη > 0 holds if

and only if the condition (2.6) is valid. Finally, for an arbitrary k ∈ N, it follows

Cov[ηt , ηt+k] = E[ηtηt+k] − (
E[ηt ])2

=
{

E[qt−1]E[qtεt ]E[εt+1] − μ2
η, k = 1,

E[qt−1]E[qt+k−1]E[εt ]E[εt+k] − μ2
η, k > 1,

=
{
mcμεE

[
(1 − mc)I0 + mcεt

] − m2
cμ

2
ε, k = 1,

m2
cμ

2
ε − m2

cμ
2
ε, k > 1,

= 0.

In this way, the theorem is completely proven. �

Proof of Theorem 2.3. According to the assumptions given in the theorem, there
exists a constant M > 0 such that 0 < με(θ) ≤ M < +∞ for any θ ∈ (0,R). Then,

∞∑
k=1

P {εt ≥ k} =
∞∑

k=1

kP {εt = k} = με(θ) ≤ M < +∞,

that is, the sum above converges uniformly on θ ∈ (0,R). Furthermore, after some
simple calculations, it follows P {ηt ≥ k} = mcP {εt ≥ k}, that is,

∞∑
k=1

P {ηt ≥ k} = mcμε(θ) < με(θ) < +∞.

On the other hand, as the sequence bk = 1
k

, k = 1,2, . . . is a monotone and
bounded, the Abel’s convergence criteria implies

∞∑
k=1

1

k
P {ηt ≥ k} ≤

∞∑
k=1

1

k
P {εt ≥ k} < +∞, (A.3)
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uniformly on θ . As it is known from Alzaid and Al-Osh (1990), the inequality
(A.3) is necessary and sufficient condition for the equality

	X(u) =
∞∏

k=0

	η

(
1 + αk(u − 1)

)
, (A.4)

where 	X := E[uXt ] and 	η := E[uηt ] are the PGFs of the r.v.s Xt and ηt , re-
spectively, and the product above converges absolutely at least for all u ∈ [−1,1].
Hence, the equality (A.4) is equivalent to the INMA(∞) representation (2.12).

In order to prove the second part of theorem, notice that, according to the defi-
nition (2.7) of the series (Xt), for an arbitrary k ∈ N holds

Xt
d= αk ◦ Xt−k +

k−1∑
j=0

αj ◦ ηt−j . (A.5)

This implies

E

[
Xt −

k−1∑
j=0

αj ◦ηt−j

]2

= α2kE
[
X2

t−k

]+αk(1−αk)E[Xt−k] −→ 0, k → ∞,

and the mean-square convergence of the sum in (2.12) is confirmed. Now, if we
define the event A := {limk→∞

∑k−1
j=0 αj ◦ ηt−j = Xt }, i.e., A = ⋃∞

n=1 An, where

An := ⋂∞
k=n{αk ◦ Xt−k = 0}, then we have

P(An) = lim
m→∞

(
P

{
αm+n ◦ Xt−m−n = 0

} ×
m+n−1∏

k=n

P
{
αk ◦ ηt−k = 0

})

= lim
m→∞

( ∞∑
j=0

(
1 − αm+n)j

P {Xt−m−n = j}
)

× lim
m→∞

m+n−1∏
k=n

( ∞∑
j=0

(
1 − αk)jP {ηt−k = j}

)

= lim
m→∞	X

(
1 − αm+n) × lim

m→∞
m+n−1∏

k=n

	η

(
1 − αk)

= 	X(1) ×
∞∏

k=n

	η

(
1 − αk)

=
∞∏

k=n

	η

(
1 − αk).

According to the continuity of probability, as well as the convergence of the prod-
uct proven in (A.4), it follows P(A) = limn→∞ P(An) = 1, that is, the almost
surely convergence of the sum in (2.12) holds. �
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Proof of Theorem 2.4. For an arbitrary n ∈ N, let us denote pn(x;α) :=(n
x

)
αx(1 − α)n−x , x = 0,1, . . . , n the p.m.f. of the binomial B(n;α) distributed

r.v. Then, the conditional distribution of Xt for a given Xt−1 can be written as the
convolution of the binomial distribution and the distribution of NIPS-innovations
(see, for more details, Bourguignon and Vasconcellos (2015)):

pjk =
N2∑

x=N1

pj (x;α)pη(k − x; θ) =
N2∑

x=N1

(
j

α

)
αx(1 − α)j−xpη(k − x; θ).

According to equality (2.5) for the p.m.f. of ηt , it follows

pjk =
N2∑

x=N1

pj (x;α)
[
(1 − mc)p0(k − x) + mcpε(k − x; θ)

]

= (1 − mc)

N2∑
x=N1

pj (x;α)I (k = x) + mc

N2∑
x=N1

pj (x;α)pε(k − x; θ)

= (1 − mc)pj (k;α)I (N1 ≤ k ≤ N2) + mc

N2∑
x=N1

pj (x;α)pε(k − x; θ).

By definition of the numbers N1,N2 it can be easily seen that inequality k ≥ N1 is
fulfilled for each k ∈ Z+, that is, (2.14) is valid. �

Proof of Theorem 3.1. In order to prove the consistency of 
̂
(r)
T , we check suf-

ficient consistency conditions of extremum estimators (see, for instance Newey
and McFadden, 1994). Under assumption (i), the set K = [0,R] × [0,1]2 is the
compact, and 
0 ∈ int(K). As the series (Xt) is ergodic and 	̃T (u) is an unbi-
ased estimator of 	

(r)
X (u;
0), that is, E[	̃(r)

T (u)] = 	
(r)
X (u;
0), the strong law

of large numbers gives 	̃T (u)
a.s.−→ 	

(r)
X (u;
0). Hence, it follows

sup

∈K

∣∣	̃T (u) − 	
(r)
X (u;
0)

∣∣ a.s.−→ 0, T → +∞.

Further on, notice that 	
(r)
T (u;
) is a continuous function on the compact

[−1,1]r × K , and 	̃
(r)
T (u) is a continuous on the compact [−1,1]r . Hence, for

some M1,M2 > 0, the inequalities

max
(u,
)∈[−1,1]r×K

∣∣	(r)
T (u;
)

∣∣ ≤ M1 < +∞, max
u∈[−1,1]r

∣∣	̃(r)
T (u)

∣∣ ≤ M2 < +∞,

hold, and according to these, it can be easily obtain

∣∣S(r)
T (
) − S

(r)
0 (
)

∣∣ ≤ (3M1 + M2)

∫ 1

−1
· · ·

∫ 1

−1
g(u)

∣∣	̃(r)
T (u) − 	

(r)
X (u;
0)

∣∣ du.
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Thus,

sup

∈K

∣∣S(r)
T (
) − S

(r)
0 (
0)

∣∣ a.s.−→ 0, T → +∞,

that is, S
(r)
T (
) uniformly converges almost surely to S

(r)
0 (
). According to the

aforementioned facts and the assumption (ii), Theorem 2.1 in Newey and McFad-
den (1994) imply


̂
(p)
T − 
0

a.s.−→ 0, T → +∞.

In order to show the AN, notice that function S
(r)
T (
) has the continuous partial

derivatives up to the second order, for any component of the vector 
. Thus, the
Taylor expansion of ∂S

(r)
T (
)/∂
 at 
 = 
0 gives

∂S
(r)
T (
)

∂

= ∂S

(r)
T (
0)

∂

+ ∂2S

(r)
T (
0)

∂
∂
′ · (
 − 
0) + o(
 − 
0).

Substituting for T large enough 
 with 
̂
(p)
T , under assumption (iii) and the fact

that ∂S
(r)
T (
̂

(r)
T )/∂
 = 0, we have


̂
(r)
T − 
0 = −

[
∂2S

(r)
T (
0)

∂
∂
′
]−1 ∂S

(r)
T (
0)

∂

+ o

(

̂

(r)
T − 
0

)
.

According to the above-mentioned properties, the function S
(r)
T (
) can be differ-

entiated under the integral sign, i.e.

∂S
(r)
T (
)

∂

= 2

∫ 1

−1
· · ·

∫ 1

−1
g(u)

[
	

(r)
X (u;
) − 	̃T (u)

]∂	
(p)
X (u;
)

∂

du (A.6)

and

∂2S
(r)
T (
)

∂
∂
′ = 2
∫ 1

−1
· · ·

∫ 1

−1
g(u)

{
∂	

(r)
X (u;
)

∂


∂	
(r)
X (u;
)

∂
′
(A.7)

+ [
	

(r)
X (u;
) − 	̃T (u)

]∂2	
(p)
X (u;
)

∂
∂
′
}

du.

Now, equations (A.6)–(A.7) give

E

[
∂S

(r)
T (
0)

∂


]
= 0, E

[
∂2S

(r)
T (
0)

∂
∂
′
]

= 2V, (A.8)

where

V =
∫ 1

−1
· · ·

∫ 1

−1
g(u)

∂	
(r)
X (u;
0)

∂


∂	
(r)
X (u;
0)

∂
′ du.
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As the function h(u) := ∂	
(r)
X (u;
0)/∂
 × ∂	

(r)
X (u;
0)/∂
′ is continuous on

the compact [−1,1]r , it follows∣∣h(u)
∣∣ ≤ M < +∞, u ∈ [−1,1]r

for some M > 0. Hence, the inequalities

0 < ‖V‖ ≤ M

∫ 1

−1
· · ·

∫ 1

−1
g(u)du < +∞

hold, and consequently(
∂S

(r)
T (
0)

∂

,
∂2S

(r)
T (
0)

∂
∂
′
)

a.s.−→ (0,2V), T → +∞. (A.9)

Further on, we shall write the gradient of S
(r)
T (
) as

∂S
(r)
T (
)

∂

= 2

T − r + 1

T −1∑
t=1

Ct(
),

where

Ct(
) =
∫ 1

−1
· · ·

∫ 1

−1
g(u)

[
	

(r)
X (u;
) − 	̃T (u)

]∂	
(r)
X (u;
)

∂

du.

It can be shown (see, for instance, Yu (2004)), that the finite nonzero limit

W2 := lim
T →∞

1

(T − r + 1)2 Var

[
T −r+1∑

t=1

Ct(
0)

]

= lim
T →∞

1

(T − r + 1)2

T −r+1∑
t=1

T −r+1∑
s=1

Cov
[
Ct(
0)Cs(
0)

]
exists if the series γX(k) := Cov(Xt ,Xt+k), k = 0,±1,±2, . . . has the finite, non-
zero sum. In the case of our, NIINAR(1) model, we have

C :=
+∞∑

k=−∞
γX(k) = γX(0)

(
2

+∞∑
k=0

αk − 1

)
= σ 2

X

1 + α

1 − α
,

and the inequalities 0 < C < +∞ hold for each 
 ∈ K . Now, if we applying the
central limit theorem for stationary processes, we obtain

√
T − r + 1

∂S
(r)
T (
0)

∂


d−→N
(
0,4W2)

, T → +∞.

This convergence and the equations (A.8)–(A.9) imply
√

T − r + 1
(

̂

(p)
T − 
0

) d−→ N
(
0,V−1W2V−1)

, T → +∞,

and the theorem is completely proven. �
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