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Abstract. The generalized Pareto distribution is commonly used to model
exceedances over a threshold. In this paper, we obtain adjustments to the
generalized Pareto profile likelihood function using the likelihood function
modifications proposed by Barndorff-Nielsen (Biometrika 70 (1983) 343–
365), Cox and Reid (J. R. Stat. Soc. Ser. B. Stat. Methodol. 55 (1993) 467–
471), Fraser and Reid (Utilitas Mathematica 47 (1995) 33–53), Fraser, Reid
and Wu (Biometrika 86 (1999) 249–264) and Severini (Biometrika 86 (1999)
235–247). We consider inference on the generalized Pareto distribution shape
parameter, the scale parameter being a nuisance parameter. Bootstrap-based
testing inference is also considered. Monte Carlo simulation results on the
finite sample performances of the usual profile maximum likelihood estima-
tor and profile likelihood ratio test and also their modified versions is pre-
sented and discussed. The numerical evidence favors the modified profile
maximum likelihood estimators and tests we propose. Finally, we consider
two real datasets as illustrations.

1 Introduction

Extreme value analysis is widely used in several fields such as reliability, insur-
ance, engineering and environment (Coles, 2001, Castillo et al., 2005). The stan-
dard approach in the analysis of extreme values is based on inferences on the gen-
eralized extreme value distribution, which is suitable when the data consists of a
set of maxima. However, in some practical applications, when data on maxima of
sets of observations are used important information contained in the observations
that are not maximal is neglected. For example, in designing a dam, engineers are
typically interested in the maximal precipitation, but they may also be interested
in all amounts of precipitation which exceed the dam storage capability. In such
situations, more information can be gathered by using all observations that exceed
a given threshold. The differences between these values and a given threshold are
called exceedances over the threshold. These exceedances are typically modeled
by the generalized Pareto distribution (GPD).

Since the introduction of the GPD by Pickands (1975) several methods have
been considered in the literature for making inferences on its parameters. Estima-
tors derived using the method of moments and the method of probability-weighted
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moments are available in Hosking and Wallis (1987). Castillo and Hadi (1997) pro-
posed the percentile estimation method. Recently, Giles, Feng and Godwin (2011)
used the results in Cox and Snell (1968) to obtain bias-corrected maximum likeli-
hood estimators of the parameters that index the GPD.

Davison (2003) used the GPD to model Danish fire insurance claim exceedances
data. de Carvalho, Turkman and Rua (2013) proposed a GPD Box–Jenkins-like
model, the Box–Jenkins–Pareto model, and used it to analyze weekly unemploy-
ment insurance claims in the USA. A generalization of the GPD exceedances over
thresholds concept to the space of continuous functions was considered by Ferreira
and Haan (2014) and used to simulate wind fields connected to disastrous storms
on the basis of observed extreme but not disastrous storms.

Practitioners are frequently interested in performing inference on one of the
parameters that index the model, the remaining parameters being nuisance param-
eters. Such inferences regarding the parameter of interest are commonly based on
the profile likelihood function. It is important to note that this function is not a
genuine likelihood function and that the null distribution of likelihood ratio test
statistic can be poorly approximated by the χ2 distribution in finite samples. Sev-
eral authors have proposed modifications that can be applied to the profile likeli-
hood function in order to attenuate such problems; see Barndorff-Nielsen (1983),
Cox and Reid (1987, 1993), Fraser and Reid (1995), Fraser, Reid and Wu (1999)
and Severini (1999).

Our main goal in this paper is to obtain adjustments to the profile likelihood
function that deliver more accurate inferences on the GPD shape parameter. We
focus on maximum likelihood estimation and likelihood ratio testing. We also con-
sider bootstrap-based testing inference.

The remainder of the paper unfolds as follows. In Section 2, we review some
adjustments to profile likelihood functions. In Section 3, we obtain adjustments
to the generalized Pareto log-likelihood function and describe bootstrap-based in-
ference. Monte Carlo simulation results are presented and discussed in Section 4.
Two illustrations are presented and discussed in Section 5. Finally, some conclud-
ing remarks are given in Section 6.

2 Adjustments to the profile likelihood function

Let y be an n × 1 vector of independent observations from a distribution indexed
by the parameter vector θ . Also, let L(θ) denote the usual likelihood function. Sup-
pose that θ is partitioned as θ = (ψ�, λ�)�, where ψ is the parameter of interest
and λ is a nuisance parameter; both ψ and λ may be vectors or scalars. Inferences
on the parameter of interest may be based on a marginal or on a conditional likeli-
hood function. There are, however, a number of situations in which such functions
cannot be explicitly derived. In such cases, the profile likelihood function can be
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used. The profile likelihood function for ψ , defined as Lp(ψ) = L(ψ, λ̂ψ), is ob-
tained by replacing λ in the likelihood function by its constrained maximum like-
lihood estimator λ̂ψ , that is, the maximum likelihood estimator of λ for a given
value of ψ .

It is possible to make inferences on ψ using Lp(ψ). The maximum likelihood
estimator of ψ , ψ̂ , is the value of ψ that maximizes Lp(ψ). The likelihood ratio
statistic for testing H0 : ψ = ψ0 against H1 : ψ �= ψ0 can be expressed as

LR = 2
{
�p(ψ̂) − �p(ψ0)

}
,

where �p(ψ) = logLp(ψ) is the profile log-likelihood function. It is noteworthy,
however, that Lp(ψ) is not a genuine likelihood function. For instance, the profile
score and information biases are only guaranteed to be of order O(1).

The profile likelihood function may yield a poor approximation to the true like-
lihood function in some cases and, as a consequence, the associated estimators
and tests may display poor finite sample performances. Several modifications to
the profile likelihood function have been proposed in the literature.

Barndorff-Nielsen (1983) proposed a modified profile likelihood function that
approximates the marginal or conditional likelihood function for ψ , if either exists.
His approach uses the p∗ formula, which yields an approximation to the condi-
tional density of ψ̂ given an ancillary statistic. His modified profile log-likelihood
function is invariant under interest-respecting reparameterizations and can be ex-
pressed as

�BN(ψ) = �p(ψ) − log
∣∣∣∣∂λ̂ψ

∂λ̂

∣∣∣∣ − 1

2
log

∣∣jλλ(ψ, λ̂ψ ; ψ̂, λ̂, a)
∣∣, (1)

where jλλ(ψ,λ;a) = −∂2�/∂λ∂λ� is the observed information for λ and ∂λ̂ψ/∂λ̂

is the matrix of partial derivatives of λ̂ψ with respect to λ̂. It is possible to show that
the score and information biases are of order O(n−1). The corresponding modified
maximum likelihood estimator shall be denoted by ψ̂BN .

There is an alternative expression for the log-likelihood function given in (1)
that does not involve |∂λ̂ψ/∂λ̂|, namely

�BN(ψ) = �p(ψ) + 1

2
log

∣∣jλλ(ψ, λ̂ψ ; ψ̂, λ̂, a)
∣∣ − log

∣∣�λ;̂λ(ψ, λ̂ψ ; ψ̂, λ̂, a)
∣∣, (2)

where �λ;̂λ(ψ, λ̂ψ ; ψ̂, λ̂, a) = ∂2�(ψ, λ̂ψ ; ψ̂, λ̂, a)/∂λ∂λ̂. Notice that it involves a
sample space derivative and requires the specification of an ancillary a such that
(ψ̂, λ̂, a) is a minimal sufficient statistic.

Some approximations to the modified profile log-likelihood function given in
(1) have been proposed in the literature. An approximation to �λ;̂λ(ψ, λ̂ψ ; ψ̂, λ̂, a)

based on an approximately ancillary statistic was obtained by Fraser and Reid
(1995) and Fraser, Reid and Wu (1999):

�FR(ψ) = �p(ψ) + 1

2
log

∣∣jλλ(ψ, λ̂ψ)
∣∣ − log

∣∣�λ;y(ψ, λ̂ψ)V̂λ

∣∣, (3)
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where �λ,y(ψ,λ) = ∂lλ/∂y
�, lλ being the score function for λ,

V̂λ =
(
−∂F (y1; ψ̂, λ̂)/∂λ̂

f (y1; ψ̂, λ̂)
, . . . ,−∂F (yn; ψ̂, λ̂)/∂λ̂

f (yn; ψ̂, λ̂)

)�
.

Here, f (yj ;ψ,λ) is the probability density function of yj and F(yj ;ψ,λ) is the
cumulative distribution function of yj , j = 1, . . . , n. We denote the corresponding
modified maximum likelihood estimator by ψ̂FR .

An approximation to Barndorff-Nielsen’s modified profile likelihood which can
be more easily computed was proposed by Severini (1999). It is based on em-
pirical covariances and is especially useful when expected values of products of
log-likelihood derivatives are difficult to obtain. Such an approximation is given
by

�S(ψ) = �p(ψ) + 1

2
log

∣∣jλλ(ψ, λ̂ψ)
∣∣ − log

∣∣Ĭλ(ψ, λ̂ψ ; ψ̂, λ̂)
∣∣,

where

Ĭλ(ψ,λ;ψ0, λ0) =
n∑

j=1

�
(j)
λ (ψ,λ)�

(j)
λ (ψ0, λ0)

�.

Here, �λ(j) is the score function for the j th observation. The corresponding modi-
fied maximum likelihood estimator is denoted by ψ̂S .

A different adjustment to the profile likelihood function was proposed by Cox
and Reid (1987). Their modified profile log-likelihood function is given by

�CR(ψ) = �p(ψ) − 1

2
log

∣∣jλλ(ψ, λ̂ψ)
∣∣.

The maximizer of �CR(ψ) shall be denoted as ψ̂CR . The corresponding score bias
is O(n−1) but, in general, the information bias remains of order O(1). There are
two drawbacks associated with this adjustment: it requires an orthogonal parame-
terization and is not invariant under reparameterizations. An approximation to the
adjustment proposed by Cox and Reid (1987) that does not require orthogonality
was derived in Cox and Reid (1993) for a scalar parameter of interest. It can be
written as

�CRa (ψ) = �p(ψ) − 1

2
log

∣∣jλλ(ψ, λ̂ψ)
∣∣ − (ψ − ψ̂)mλ(ψ̂, λ̂),

where mλ(ψ̂, λ̂) denotes the trace of ∂m/∂λ. Here, m = iλλiψλ and iψλ =
−E(∂2�(ψ,λ)/∂ψ ∂λ), with iλλ denoting the inverse of iλλ = −E(∂2�(ψ,λ)/

∂λ2). This expression obtained by Cox and Reid (1993) is not invariant under
reparameterization. The corresponding modified profile maximum likelihood esti-
mator of ψ is denoted by ψ̂CRa .

For a detailed review of modified profile likelihood functions, see Pace and
Salvan (1997) and Severini (2000).
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3 Improved inference for the generalized Pareto distribution

Let Y be a random variable following the GPD with a scale parameter σ > 0 and a
shape parameter −∞ < ξ < ∞. The distribution and density functions are given,
respectively, by

F(y) =

⎧⎪⎪⎨
⎪⎪⎩

1 −
(

1 + ξy

σ

)− 1
ξ

, ξ �= 0,

1 − exp
(
− y

σ

)
, ξ = 0,

and

f (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

σ

(
1 + ξy

σ

)− 1
ξ
−1

, ξ �= 0,

1

σ
exp

(
− y

σ

)
, ξ = 0.

The range of y is 0 ≤ y < ∞ if ξ ≥ 0 and 0 ≤ y < −σ/ξ if ξ < 0. The uniform,
exponential and Pareto distributions are special cases of the GPD.

The r th central moment of Y is

E
(
Y r) = r!σ r∏r

i=1(1 − iξ)
, r = 1,2, . . . .

It exists if ξ < 1/r .
Let y = (y1, . . . , yn)

� be a random sample of size n from the GPD and let
θ = (ξ, σ )� be the unknown parameter vector. The log-likelihood function is given
by

�(θ) = −n log(σ ) −
(

1 + 1

ξ

) n∑
j=1

log
(

1 + ξyj

σ

)
. (4)

The score functions for ξ and σ are

lξ = 1

ξ2

n∑
j=1

log
(

1 + ξyj

σ

)
−

(
1 + 1

ξ

) n∑
j=1

(
yj

σ + ξyj

)

and

lσ = − n

σ
+ 1 + ξ

σ

n∑
j=1

(
yj

σ + ξyj

)
,

respectively.
As discussed in Castillo and Hadi (1997), the maximum likelihood estimators

of the GPD parameters may not exist in some cases. In particular, the maximum
likelihood estimators of ξ and σ do not exist when ξ < −1.
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Let ξ be the parameter of interest and σ the nuisance parameter. The restricted
maximum likelihood estimator of the parameter σ , σ̂ξ , is obtained by maximizing
the log-likelihood function in (4) for fixed ξ . The estimator σ̂ξ does not have a
closed-form expression. It may be found by using constrained nonlinear optimiza-
tion methods; see, for example, Nocedal and Wright (2006).

It follows from the definition of the profile likelihood function that

�p(ξ) = −n log(σ̂ξ ) −
(

1 + 1

ξ

) n∑
j=1

log
(

1 + ξyj

σ̂ξ

)
. (5)

The profile maximum likelihood estimator of ξ , the maximizer of �p(ξ), is denoted
by ξ̂p .

We shall now obtain the modified profile log-likelihoods described in Section 2.
In what follows, we shall derive two approximations to the modified profile log-
likelihood function developed by Barndorff-Nielsen (1983). The first was proposed
by Fraser and Reid (1995) and by Fraser, Reid and Wu (1999). For the GPD, it is
given by

�FR(ξ) = �p(ξ) + 1

2
log

∣∣jσσ (ξ, σ̂ξ )
∣∣ − log

∣∣�σ ;Y (ξ, σ̂ξ )V̂σ

∣∣, (6)

where

jσσ (ξ, σ̂ξ ) = − n

σ̂ 2
ξ

+ 1 + ξ

σ̂ 2
ξ

n∑
j=1

(
yj (2σ̂ξ + ξyj )

(σ̂ξ + ξyj )2

)
, (7)

and, since �σ ;Y (ξ, σ̂ξ ) = (
1+ξ

(σ̂ξ+ξy1)
2 , . . . ,

1+ξ

(σ̂ξ+ξyn)2 ) and V̂σ = (
y1
σ̂ξ

, . . . ,
yn

σ̂ξ
)�, we

have that,

�σ ;Y (ξ, σ̂ξ )V̂σ =
n∑

j=1

(
yj (1 + ξ)

σ̂ (σ̂ξ + ξyj )2

)
.

The second approximation follows from the results in Severini (1999) and can
be expressed as

�S(ξ) = �p(ξ) + 1

2
log

∣∣jσσ (ξ, σ̂ξ )
∣∣ − log

∣∣Iσ (ξ, σ̂ξ ; ξ̂ , σ̂ )
∣∣, (8)

where

Iσ (ξ, σ̂ξ ; ξ̂ , σ̂ ) =
n∑

j=1

[
− 1

σ̂ξ

+ yj (1 + ξ)

σ̂ξ (σ̂ξ + ξyj )

][
− 1

σ̂
+ yj (1 + ξ̂ )

σ̂ (σ̂ + ξ̂ yj )

]
.

The modified profile log-likelihood function proposed by Cox and Reid (1987)
requires parameter orthogonality, but ξ and σ are not orthogonal, so the adjustment
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proposed by Cox and Reid (1993) is more appropriate. Applying Cox and Reid
(1993, page 469, equation (7)) for the GPD, we obtain

�CRa (ξ) = �p(ξ) − 1

2
log

∣∣jσσ (ξ, σ̂ξ )
∣∣ + ξmσ (̂ξ , σ̂ ), (9)

where jσσ is as given in (7) and mσ (̂ξ, σ̂ ) = ∂m/∂σ with m = iσσ iξσ . Since in
our case iσσ = σ 2(1 + 2ξ)/n and iξσ = n/[σ(1 + ξ)(1 + 2ξ)], then, mσ (̂ξ, σ̂ ) =
1/(1 + ξ̂ ).

The modified profile maximum likelihood estimators of ξ obtained from (6),
(8) and (9) are denoted, respectively, by ξ̂FR , ξ̂S and ξ̂CRa . These estimators and
the profile maximum likelihood estimator ξ̂p cannot be expressed in closed-form.
They are computed by numerically maximizing the corresponding modified profile
log-likelihood functions.

The likelihood ratio statistics obtained from the profile and modified profile log-
likelihood functions given above for the test of H0 : ξ = ξ0 against H1 : ξ �= ξ0 are

LRp = 2
{
�p(̂ξp) − �p(ξ0)

}
,

LRFR = 2
{
�FR(̂ξFR) − �FR(ξ0)

}
,

LRS = 2
{
�S(̂ξS) − �S(ξ0)

}
and

LRCRa = 2
{
�CRa (̂ξCRa ) − �CRa (ξ0)

}
.

Under some regularity conditions (see Cox and Hinkley, 1974) and the null hy-
pothesis, they are all asymptotically distributed as χ2

1 .
Hypothesis testing can also be performed using bootstrap resampling (Efron,

1979). Here, inference is based on the comparison between the test statistic com-
puted using the original sample and a critical value obtained from an estimate of
its null distribution constructed using a set of artificial (computer generated) sam-
ples. In particular, B pseudo-samples of size n are generated from the GPD under
the null hypothesis and the test statistic LR∗b

p is computed for each pseudo-sample,

b = 1, . . . ,B . The critical value (say, LR∗(1−α)
p ) to be used in the test is the 1 − α

quantile of the B bootstrap test statistics, α being the test nominal significance
level. The null hypothesis is rejected if LRp > LR∗(1−α)

p , where LRp is the test
statistic computed using the original sample. This sampling scheme is known as
parametric bootstrap. For simplicity, hereafter, LRb refers to the bootstrap test.

4 Monte Carlo simulation

In what follows, we report Monte Carlo simulation results on the finite sample
behavior of the different maximum likelihood estimators and likelihood ratio tests
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proposed in this paper. All results were obtained using 10,000 Monte Carlo repli-
cations. In each replication, we also performed a bootstrap test based on B = 1000
bootstrap samples. Bootstrap sampling was performed parametrically and under
the null hypothesis. The sample sizes considered were n = 25,35,45,55, the val-
ues of the parameter of interest were ξ = 0.5, 1.0, 1.5 and the value of σ was
fixed at 1.0. All simulations were performed using the Ox matrix programming
language (Doornik, 2013) and the restricted estimator of σ , σ̂ξ , was obtained us-
ing the SQP algorithm, which is implemented in the MaxSQP function of the Ox
programming language.

Table 4 contains simulation results on the following estimators: ξ̂p , ξ̂FR , ξ̂S and
ξ̂CRa . In particular, we report the relative bias (RB), mean squared error (MSE),
asymmetry (A) and kurtosis (K) of each estimator. First, notice that the modified
profile maximum likelihood estimators (̂ξFR , ξ̂S and ξ̂CRa ) have smaller relative
biases than the standard maximum profile likelihood estimator (̂ξp). For instance,
when ξ = 1.5 and n = 25 the relative bias of ξ̂p is −5.85% whereas those of ξ̂FR ,
ξ̂S and ξ̂CRa are −2.35%, −2.27% and −2.70%, respectively. Second, notice that
all estimators of ξ are negatively biased. Third, the relative biases decrease when
the true value of the shape parameter increases. Fourth, the mean squared errors
of all estimators are nearly the same. Finally, as expected, the biases and the mean
squared errors decline as the sample size increases.

Table 2 contains the null rejection rates (%) of the profile likelihood ratio (LRp),
modified profile likelihood ratio (LRFR , LRS and LRCRa ) and bootstrap likeli-
hood ratio (LRb) tests. The null hypothesis is H0 : ξ = ξ0 which is tested against
H1 : ξ �= ξ0, where ξ0 = 0.5,1.0,1.5. All tests are carried out at four nominal lev-
els, namely: α = 0.10,0.05,0.01,0.005. At the outset, we note that the profile
likelihood ratio test (LRp) is considerably oversized, its size distortion (the differ-
ence between p-values, estimated by simulation, and nominal levels) decreasing
when the value of ξ increases in most scenarios. We also note that the modified
profile likelihood ratio tests LRFR and LRS and the bootstrap test (LRb) outper-
form the LRp test. The LRCRa test is typically conservative and in some scenarios
is more size-distorted than the LRp test, whereas the LRFR , LRS tests are slightly
liberal and the LRb test is the least size-distorted. For example, when n = 25 and
ξ = 1.0, the null rejection rates of the LRp , LRFR , LRS , LRCRa and LRb at the 10%
nominal level are, respectively, 12.10%, 10.75%, 10.83%, 8.79% and 10.02%. As
expected, the size distortions of all tests decrease when the sample size increases;
see Figure 1.

Figure 2 plots the relative quantile discrepancies (i.e., differences between ex-
act and asymptotic quantiles divided by the latter) of the four test statistics against
the corresponding asymptotic quantiles. The closer to zero the relative quantile
discrepancies, the better the approximation of the exact null distribution by the
asymptotic χ2

1 distribution. The null distributions of the LRFR , LRS and LRCRa

test statistics are better approximated by the χ2 asymptotic distribution than that
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Table 1 Point estimation of ξ for σ = 1.0

ξ = 0.5 ξ = 1.0 ξ = 1.5

n Estimator RB MSE A K RB MSE A K RB MSE A K
25 ξ̂p −0.1895 0.1202 0.0471 3.1149 −0.0879 0.1838 0.1146 3.1309 −0.0585 0.2741 0.2198 3.1066

ξ̂FR −0.0896 0.1081 0.1658 3.0798 −0.0399 0.1782 0.1691 3.0992 −0.0235 0.2729 0.2490 3.1004
ξ̂S −0.1139 0.1221 −0.0823 3.4531 −0.0416 0.1839 0.1047 3.1808 −0.0227 0.2776 0.2151 3.1516

ξ̂CRa
−0.0856 0.1034 0.2068 3.0173 −0.0427 0.1756 0.1716 3.0506 −0.0270 0.2706 0.2340 3.0521

35 ξ̂p −0.1395 0.0822 −0.0053 3.2218 −0.0637 0.1320 0.1200 3.2281 −0.0420 0.1929 0.2043 3.2107
ξ̂FR −0.0746 0.0768 0.0758 3.1736 −0.0314 0.1297 0.1544 3.2005 −0.0181 0.1926 0.2200 3.2047
ξ̂S −0.0841 0.0812 −0.0472 3.3324 −0.0319 0.1315 0.1152 3.2522 −0.0177 0.1939 0.2070 3.2138

ξ̂CRa
−0.0744 0.0752 0.0862 3.1106 −0.0330 0.1288 0.1493 3.1752 −0.0199 0.1917 0.2072 3.1797

45 ξ̂p −0.1031 0.0599 −0.0010 3.1604 −0.0495 0.1010 0.1300 3.1762 −0.0305 0.1485 0.1502 3.1007
ξ̂FR −0.0558 0.0572 0.0474 3.1301 −0.0252 0.0999 0.1470 3.1747 −0.0124 0.1486 0.1587 3.0984
ξ̂S −0.0600 0.0589 −0.0118 3.1937 −0.0253 0.1006 0.1324 3.1803 −0.0120 0.1490 0.1509 3.0997

ξ̂CRa
−0.0561 0.0567 0.0491 3.0980 −0.0264 0.0995 0.1376 3.1457 −0.0135 0.1482 0.1510 3.0873

55 ξ̂p −0.0852 0.0468 0.0384 3.1447 −0.0373 0.0768 0.0999 3.0616 −0.0251 0.1179 0.1351 3.0178
ξ̂FR −0.0477 0.0453 0.0685 3.1278 −0.0178 0.0762 0.1102 3.0518 −0.0105 0.1179 0.1401 3.0144
ξ̂S −0.0502 0.0460 0.0361 3.1628 −0.0178 0.0764 0.1021 3.0655 −0.0102 0.1182 0.1366 3.0198

ξ̂CRa
−0.0483 0.0450 0.0675 3.1075 −0.0185 0.0761 0.1062 3.0491 −0.0112 0.1177 0.1345 3.0116
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Table 2 Null rejection rates (%), σ = 1.0 and several samples sizes

α(%) LRp LRFR LRS LRCRa
LRb LRp LRFR LRS LRCRa

LRb

n = 25 n = 35
ξ = 0.5 10 13.18 10.55 11.31 7.75 9.66 12.34 10.74 10.94 9.11 10.00

5 6.98 5.22 5.78 3.01 4.61 6.60 5.41 5.58 4.15 5.12
1 1.48 0.91 1.08 0.34 0.77 1.67 1.11 1.26 0.68 1.11
0.5 0.72 0.34 0.50 0.13 0.28 0.90 0.51 0.56 0.23 0.53

ξ = 1.0 10 12.10 10.75 10.83 8.79 10.02 12.13 11.03 11.12 9.81 10.77
5 6.54 5.43 5.69 3.94 5.04 6.56 5.78 5.86 4.90 5.54
1 1.46 1.01 1.11 0.48 0.91 1.55 1.21 1.28 0.81 1.20
0.5 0.73 0.49 0.57 0.20 0.46 0.80 0.65 0.64 0.41 0.66

ξ = 1.5 10 11.65 10.40 10.42 8.86 9.62 11.23 10.67 10.58 9.60 10.04
5 5.93 5.14 5.19 4.06 4.72 6.00 5.34 5.35 4.66 5.14
1 1.35 1.04 1.11 0.61 0.93 1.36 1.25 1.28 0.94 1.19
0.5 0.67 0.54 0.57 0.27 0.55 0.77 0.65 0.66 0.42 0.68

n = 45 n = 55
ξ = 0.5 10 11.66 10.67 10.88 9.38 10.08 11.28 10.42 10.53 9.53 9.98

5 6.21 5.34 5.45 4.37 5.03 5.79 5.18 5.21 4.54 4.71
1 1.41 0.97 1.06 0.73 0.97 1.09 0.92 0.99 0.73 0.85
0.5 0.66 0.56 0.60 0.30 0.54 0.62 0.51 0.54 0.35 0.51

ξ = 1.0 10 12.12 11.21 11.31 10.49 10.81 10.97 10.26 10.23 9.65 9.90
5 6.31 5.60 5.70 5.07 5.55 5.51 5.28 5.18 4.72 4.93
1 1.50 1.26 1.26 0.95 1.23 1.29 1.12 1.12 0.96 1.13
0.5 0.70 0.61 0.64 0.53 0.70 0.62 0.55 0.53 0.41 0.54

ξ = 1.5 10 11.23 10.83 10.84 10.03 10.42 10.71 10.46 9.76 10.48 10.16
5 5.74 5.58 5.51 4.94 5.33 5.35 5.25 4.70 5.27 5.00
1 1.29 1.15 1.14 0.97 1.22 1.25 1.13 0.99 1.12 1.05
0.5 0.68 0.59 0.58 0.53 0.65 0.65 0.52 0.41 0.52 0.56
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Figure 1 Size distortions (%): ξ = 0.5, α = 10%.

Figure 2 Relative quantile discrepancy plot, inference on ξ .

of LRp . The relative discrepancy curves for LRFR and LRS are quite similar. Ta-
ble 3 presents the mean and variance of each test statistic when n = 25 and n = 55
together with the first two χ2

1 moments. Notice that there is better agreement be-
tween exact and asymptotic moments for the modified test statistics LRFR and LRS

relative to LRp .
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Table 3 Mean and variance of the different test statistics

ξ χ2
1 LRp LRFR LRS LRCRa

n = 25
0.5 mean 1.00 1.15 1.02 1.06 0.86

variance 2.00 2.43 1.90 2.22 1.35
1.0 mean 1.00 1.11 1.02 1.03 0.91

variance 2.00 2.40 2.02 2.07 1.54
1.5 mean 1.00 1.09 1.03 1.03 0.93

variance 2.00 2.34 2.04 2.07 1.61

n = 55
0.5 mean 1.00 1.07 1.02 1.02 0.97

variance 2.00 2.25 2.01 2.04 1.79
1.0 mean 1.00 1.04 1.01 1.01 0.97

variance 2.00 2.16 2.02 2.02 1.85
1.5 mean 1.00 1.04 1.02 1.02 0.98

variance 2.00 2.16 2.04 2.04 1.87

We have also performed Monte Carlo simulations under the alternative hypoth-
esis. The empirical nonnull rejection rates (i.e., powers) of the tests are presented
in Table 4 at the 10% and 5% nominal levels. Since some of the tests are size-
distorted, the tests were performed using size-corrected critical values (obtained
from the size simulations) in order to force them to have the correct size. (The
bootstrap test is omitted from the analysis since it is not possible to size-correct
it.) The power comparisons were performed for several values of ξ , σ = 1.0 and
n = 25. The figures in Table 4 show that the LRp test is the least powerful and
that the LRCRa test is slightly more powerful than the other modified tests. The
power curves are displayed in Figure 3. As expected, the tests become more pow-
erful as the true parameter value moves away from the value specified in the null
hypothesis.

5 Illustration

We shall now perform profile and modified profile likelihood inference using two
real data sets. The Ox code for the data analysis is available at http://www.de.ufpb.
br/~juliana/pareto.html.

For the first illustration we consider data on annual floods of the Nidd River
at Hunsingore, England, from 1934 to 1969 (35 years). These data were analyzed
by Hosking and Wallis (1987). The authors fitted the GPD to the excesses of the
Nidd peak floods over different thresholds using the probability weighted moments
method. We present in Table 5 the profile and modified profile maximum likeli-
hood estimates of ξ for the following thresholds: t = 70, 80, 90, 100. Except for
t = 100, all point estimates are quite similar for each of the other threshold values.

http://www.de.ufpb.br/~juliana/pareto.html
http://www.de.ufpb.br/~juliana/pareto.html


Improved inference for the generalized Pareto distribution 81

Table 4 Nonnull rejection rates (%), inference on ξ

α = 10% α = 5%

ξ0 ξ LRp LRFR LRS LRCRa
LRp LRFR LRS LRCRa

0.5 0.6 10.34 11.55 11.41 12.15 5.18 6.65 6.52 7.25
0.8 19.68 23.80 23.37 25.47 12.63 16.15 18.75 16.86
1.0 35.78 41.54 40.85 43.57 26.17 31.93 35.84 32.67
1.2 53.17 58.83 58.01 60.78 43.46 49.55 53.75 50.74
1.4 67.60 72.42 71.36 73.71 59.27 64.53 67.78 65.74
1.6 79.27 83.13 82.48 83.98 72.60 76.58 79.48 77.62
1.8 87.04 89.72 89.11 90.33 82.06 85.33 87.16 86.20
2.0 91.50 93.24 92.82 93.67 88.01 90.17 91.55 90.78
3.0 99.13 99.44 99.35 99.46 98.61 98.97 99.10 99.10

1.0 1.2 12.30 14.01 14.10 14.56 6.56 8.07 8.14 8.69
1.4 20.44 23.65 23.85 24.51 12.76 15.76 15.94 16.91
1.6 32.31 36.42 36.67 37.66 22.69 27.16 27.42 28.76
1.8 45.84 50.48 50.62 51.52 35.14 40.61 40.87 42.38
2.0 58.75 63.16 63.12 63.94 48.43 53.55 53.63 55.16
2.2 70.20 73.86 73.82 74.31 60.86 65.71 65.88 67.22
2.6 85.27 87.38 87.46 87.65 79.28 82.57 82.40 83.11
3.0 92.73 93.93 93.87 94.08 89.45 91.47 91.40 91.69
4.0 99.14 99.32 99.26 99.31 98.32 98.80 98.73 98.82

1.5 1.8 13.64 15.81 15.92 16.09 8.11 9.56 9.74 9.91
2.0 21.31 24.39 24.29 24.57 13.44 16.08 16.50 16.78
2.2 30.80 34.93 34.80 35.43 21.76 25.07 25.35 26.01
2.4 42.14 46.29 46.38 46.66 31.45 35.85 36.33 36.88
2.6 53.57 57.59 57.66 57.91 42.63 47.01 47.38 48.09
2.8 63.61 67.19 67.31 67.81 53.64 57.89 58.27 59.00
3.0 71.18 74.45 74.41 74.63 62.42 66.24 66.51 67.05
4.0 93.76 94.79 94.72 94.74 90.68 92.13 92.14 92.37
5.0 98.89 99.11 99.08 99.12 98.04 98.47 98.47 98.51

We also note that the estimates based on the modified profile likelihood functions
are slightly larger than the profile maximum likelihood estimate. Figure 4 shows
the profile and modified profile log-likelihood functions as functions of ξ and the
threshold t = 80.

Suppose we are interested in testing H0 : ξ = 0.11 against H1 : ξ �= 0.11. Ta-
ble 6 contains the p-values of the LRp , LRFR , LRS and LRCRa tests. Notice that
for t = 80 the conclusion is reversed when based on tests derived from the modi-
fied profile log-likelihood functions: the null hypothesis is not rejected at the 10%
nominal level by the profile likelihood ratio test but it is rejected by the modified
profile likelihood ratio tests. It is noteworthy that one can compute and analyze
return levels; for details, see Coles (2001).

In the second illustration we use financial data provided by Coles (2001).
The data are on daily closing prices of the Dow Jones Index from 1996 to
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Figure 3 Powers of the tests: ξ = 0.5, α = 10% and n = 25.

Table 5 Profile and modified profile maximum likelihood estimates of ξ

t ξ̂p ξ̂FR ξ̂S ξ̂CRa

100 0.0033 0.0471 0.0204 0.0504
90 0.2383 0.2649 0.2527 0.2630
80 0.3429 0.3568 0.3543 0.3556
70 0.3232 0.3295 0.3312 0.3296

2000. Since the series is non-stationary, he suggests transforming the series as
ỹi = log(yi) − log(yi−1). He also suggests setting the threshold at t = 2 which
leads to 37 exceedances out of 1303 data points. The profile and modified profile
maximum likelihood estimates of ξ are ξ̂p = 0.2878, ξ̂FR = 0.3271, ξ̂S = 0.3124
and ξ̂CRa = 0.3243. In accordance to our simulation results, the maximum likeli-
hood estimator underestimates ξ . Suppose we wish to test H0 : ξ = 0.85 against
H1 : ξ �= 0.85. The test statistics are LRp = 2.941, LRFR = 2.476, LRS = 2.594
and LRCRa = 2.304, and the respective p-values are 0.086,0.116,0.107 and
0.129. Therefore, the profile likelihood ratio test rejects the null hypothesis at the
10% nominal level, unlike the modified profile likelihood ratio tests. Thus, the
unmodified and modified tests yield different inferences.
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Figure 4 Profile and modified profile log-likelihood functions for ξ .

Table 6 p-values

t LRp LRFR LRS LRCRa

100 0.638 0.781 0.703 0.800
90 0.499 0.415 0.462 0.432
80 0.102 0.084 0.091 0.090
70 0.029 0.025 0.025 0.026

6 Concluding remarks

We considered the issue of performing inference on the GPD shape parameter. We
obtained adjustments to the profile likelihood function. Inferences based on such
functions are expected to be considerably more accurate than those based on the
standard profile likelihood function. Bootstrap inference was also considered. We
presented and discussed the results of Monte Carlo simulations on point estimation
and hypothesis testing inference. The numerical evidence favors the estimators and
tests based on the modified profile likelihood functions and also the bootstrap test.
The profile maximum likelihood estimator can be severely biased and the profile
likelihood ratio test can be quite liberal in small samples. The modified estimators
proposed in this paper displayed smaller biases and the modified tests were less
size-distorted. We therefore recommend the modified profile likelihood inference
proposed in the present paper be used in empirical applications that employ the
GPD. A direction for future research is the development of Bayesian inferential
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procedures for the GPD. Another direction for future research is the development
of testing inference based on the signed likelihood ratio statistic, including higher
order modifications.
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