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Abstract. Gupta and Kundu (Statistics 43 (2009) 621–643) introduced a new
class of weighted exponential distribution and established its several proper-
ties. The probability density function of the proposed weighted exponential
distribution is unimodal and it has an increasing hazard function. Following
the same line Shahbaz, Shahbaz and Butt (Pak. J. Stat. Oper. Res. VI (2010)
53–59) introduced weighted Weibull distribution, and we derive several new
properties of this weighted Weibull distribution. The main aim of this paper
is to introduce bivariate and multivariate distributions with weighted Weibull
marginals and establish their several properties. It is shown that the hazard
function of the weighted Weibull distribution can have increasing, decreas-
ing and inverted bathtub shapes. The proposed multivariate model has been
obtained as a hidden truncation model similarly as the univariate weighted
Weibull model. It is observed that to compute the maximum likelihood es-
timators of the unknown parameters for the proposed p-variate distribution,
one needs to solve (p + 2) non-linear equations. We propose to use the EM
algorithm to compute the maximum likelihood estimators of the unknown
parameters. We obtain the observed Fisher information matrix, which can be
used for constructing asymptotic confidence intervals. One data analysis has
been performed for illustrative purposes, and it is observed that the proposed
EM algorithm is very easy to implement, and the performance is quite satis-
factory.

1 Introduction

Using the similar idea as of Azzalini (1985), a new class of weighted exponential
distribution has been introduced recently by Gupta and Kundu (2009). The ran-
dom variable X is said to have a weighted exponential (WEX) distribution with
the shape parameter β > 0 and scale parameter λ > 0, if the probability density
function (PDF) of X for x > 0, is

fX(x;β,λ) = β + 1

β
λe−λx(

1 − e−βλx)
, (1)

and 0, otherwise. From now on, a WEX distribution with the PDF (1) will be
denoted by WEX(β,λ). Gupta and Kundu (2009) developed several interesting
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properties of the WEX distribution. The PDF of the WEX is always unimodal and
the hazard function (HF) is an increasing function. It can be obtained as a hidden
truncation model, and it is observed that the WEX distribution can be used very
efficiently to analyze skewed data. Al-Mutairi et al. (2011) provided a bivariate
extension of the WEX distribution which has an absolute continuous bivariate joint
PDF. Jamalizadeh and Kundu (2013) proposed a bivariate WEX distribution which
has a singular component.

Following the same line as in Gupta and Kundu (2009), Shahbaz et al. (2010)
introduced three-parameter weighted Weibull (WWE) distribution, which is a nat-
ural generalization of the WEX model. The random variable X is said to have a
WWE distribution with parameters, α > 0, β > 0 and λ > 0, if X has the PDF

fX(x;α,β,λ) = β + 1

β
αλxα−1e−λxα (

1 − e−βλxα )
, (2)

and 0 otherwise. We will denote this model as WWE(α,β,λ). Here α and β are
shape parameters and λ is the scale parameter. The authors obtained the moment
generating function of WWE distribution and showed graphically that the PDF is
unimodal for different values of α and β . They have provided plots of the hazard
function also for different values of α and β , and claimed that the hazard func-
tion is either increasing or decreasing depending on the shape parameters. In this
paper, we have proved that the PDF is a decreasing function if α ≤ 1

2 , and uni-
modal if α > 1

2 , for all β > 0. We have further showed that the hazard function of
WWE distribution can be increasing, decreasing and bathtub shape depending on
the values of α. Therefore, the shape of the PDF and hazard function of a WWE
distribution depends only on the values of α, not on the parameter β .

The main aim of this paper is to introduce bivariate and multivariate WWE
distributions which have WWE marginals. First, we introduce a four-parameter
bivariate weighted Weibull (BWWE) distribution. The proposed BWWE distribu-
tion has closed form expressions for its joint PDF and the joint CDF. The joint PDF
can take variety of shapes. It is shown that the joint PDF of a BWWE distribution
can be either a decreasing or an unimodal function. Hence, it will be very use-
ful for analyzing different bivariate data sets in practice. Although, the joint CDF
may not be inverted easily, but using a structural representation, it is observed
that the generation from a BWWE distribution is quite simple. Due to this reason,
simulation experiments related to the BWWE distribution can be performed quite
conveniently. It is observed that the BWWE distribution has the total positivity of
order two (TP2) property in the sense of Karlin and Rinott (1980). The distribu-
tion function of the minimum or the maximum can be obtained in explicit forms.
The stress-parameter also can be obtained in a compact form. We finally introduce
multivariate weighted Weibull (MWWE) distribution, and established its several
properties.

The proposed p-variate MWWE distribution has p + 2 unknown parameters.
The maximum likelihood estimators (MLEs) of the unknown parameters do not



22 D. K. Al-Mutairi, M. E. Ghitany and D. Kundu

exist in explicit forms, as expected. It involves solving a p + 2 dimensional op-
timization problem, which may not be a trivial issue particularly if p is large. In
finding the MLEs in this case, we treat this problem as a missing value problem,
and propose to use the EM algorithm to compute the MLEs. It is observed that in
the proposed EM algorithm, in each “E” step, the corresponding “M” step can be
performed by a simple one dimensional optimization process. It can be solved by
using the standard Newton–Rapson type algorithm. In this case, the EM algorithm
can be implemented quite conveniently. Since it involves only a one dimensional
optimization problem, the convergence can be assessed quite easily. One trivariate
data set has been analyzed for illustrative purposes and also to show the usefulness
of the proposed model. Therefore, here we have a multivariate distribution whose
joint PDF can take variety of shapes, whose marginals can have both monotone
and non-monotone hazard functions, on the other hand the implementation of the
proposed model is quite simple even in a higher dimensional case. Hence, the pro-
posed model will provide another choice to the practitioner to use it in practice for
multivariate data analysis purposes.

Rest of the paper is organized as follows. In Section 2, we provide some new
properties of a WWE distribution. The BWWE is introduced and its several prop-
erties are discussed in Section 3. In Section 4, we introduce the MWWE distribu-
tion. In Section 5, we present the EM algorithm. The analysis of a real data set is
presented in Section 6, and finally the conclusions appear in Section 7.

2 WWE: Some new results

In this section, we establish different properties of a WWE distribution of Shahbaz
et al. (2010). Shahbaz et al. (2010) provided PDF plots of a WWE distribution for
different values of α and β , when λ = 1. They mentioned that the PDF of WWE
distribution is unimodal for different values of α and β . We have the following re-
sult which indicates that the PDF of a WWE distribution will be either a decreasing
or an unimodal function depending on the values of α, and it does not depend on
the values of β or λ.

Theorem 2.1. fX(x;α,β,λ) is a decreasing function of x, if α ≤ 1
2 , and unimodal

if α > 1
2 , for all β > 0 and λ > 0.

Proof. See in the Appendix. �

In Figure 1, we provide the plots of PDFs for different values of α and β , when
λ = 1. It is clear that it can take different shapes, and the shape depends only on α.

We introduce the following notation. The PDF of a Weibull distribution with the
shape parameter α > 0 and the scale parameter λ > 0 is

fWE(u;α,λ) = αλuα−1e−λuα

, (3)
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Figure 1 PDF of WWE distribution for different α and β , when λ = 1: (a) α = 2, β = 2, (b) α = 3,
β = 3, (c) α = 0.5, β = 2, (d) α = 0.25, β = 1.

for u > 0 and 0 otherwise. We will denote this as WE(α,λ). We will show that
the weighted Weibull model as defined in (2) can be obtained as a hidden trunca-
tion model. Suppose U ∼ WE(α,λ), V ∼ WE(α, θ) and they are independently
distributed. Let us define the random variable X = U , if U > V . Then it easily
follows that X has the WWE(α, θ

λ
, λ) distribution.

Now to establish different properties of a WWE(α,β,λ) without loss of gener-
ality it is assumed that λ = 1. We denote this as WWE(α,β). If X ∼ WWE(α,β),
then it has the cumulative distribution function as

FX(x;α,β) = β + 1

β

[
1 − e−xα − 1

β + 1

(
1 − e−(1+β)xα )]; (4)

for x > 0, and 0 otherwise. The hazard function for x > 0, is

hX(x;α,β) = α(β + 1)xα−1 × (1 − e−βxα
)

(β + 1 − e−βxα
)

= α(β + 1)xα−1 × 1

(β(1 − e−βxα
)−1 + 1)

.

(5)

The hazard functions for different values of α and β are plotted in Figure 2. The
hazard function of WWE distribution can be increasing, decreasing and upside
down functions. The following result provides the shape of the hazard function for
different values of α. Theorem 2.2 establishes that the shape of the hazard function
of a WWE distribution depends only on α, and it does not depend on β .

Theorem 2.2. The hazard function is decreasing (upside-down bathtub shape)
(increasing) if α ≤ 1

2 ( 1
2 < α < 1) (α ≥ 1), for all β > 0.

Proof. See in the Appendix. �

Now we provide the following representation of X.
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Figure 2 HF of WWE distribution for different values of α and β when λ = 1: (a) α = 0.25, β = 1.0,
(b) α = 0.75, β = 5.0, (c) α = 1.5, β = 0.1.

Theorem 2.3. X ∼ WWE(α,β) if and only if Xα d= U + V . Here U and V are
independent exponential random variables with means 1 and 1

(1+β)
respectively,

and “
d=” means equal in distribution.

Proof. The moment generating function of Xα for |t | < 1 is

MXα(t) = EetXα = β + 1

β
α

∫ ∞
0

etxα

xα−1e−xα (
1 − e−βxα )

dx

= β + 1

β

∫ ∞
0

etue−u(
1 − e−βu)

du

= β + 1

β

[
(1 − t)−1 − 1

1 + β

(
1 − t

1 + β

)−1]

=
(

1 − t

1 + β

)−1
(1 − t)−1.

Therefore, the result immediately follows. �

Theorem 2.3 becomes very useful in generating WWE distribution, using inde-
pendent exponential distributions.

3 BWWE distribution

In this section, we introduce the bivariate weighted Weibull (BWWE) distribution
and establish its different properties. Suppose X1 ∼ WE(α,λ1), X2 ∼ WE(α,λ2)
and X3 ∼ WE(α,λ3) and they are independently distributed. Consider the follow-
ing bivariate random variables X = X1 and Y = X2, if X1 > X3 and X2 > X3. The
new random variables (X,Y ) is called the bivariate weighted Weibull distribution
with parameters α,λ1, λ2, λ3, and it will be denoted by BWWE (α,λ1, λ2, λ3).
The joint CDF and the joint PDF can be obtained as follows.
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Theorem 3.1. If (X,Y ) ∼ BWWE(α,λ1, λ2, λ3), then the joint CDF of (X,Y ) is

FX,Y (x, y) = (
1 − e−λzα ) − λ

λ1 + λ3
e−λ2y

α (
1 − e−(λ1+λ3)z

α )
− λ

λ2 + λ3
e−λ1x

α (
1 − e−(λ2+λ3)z

α )
+ λ

λ3
e−λ1x

α

e−λ2y
α (

1 − e−λ3z
α )

,

(6)

where z = min{x, y}, and λ = λ1 + λ2 + λ3.

Proof.

FX,Y (x, y) = P(X ≤ x,Y ≤ y) = P(X1 ≤ x,X2 ≤ y|X1 > X3,X2 > X3)

= P(X1 ≤ x,X2 ≤ y,X3 ≤ min{X1,X2})
P (X3 ≤ min{X1,X2}) .

(7)

The numerator of (7) is∫ z

0
αλ3u

α−1e−λ3u
α (

e−λ1u
α − e−λ1x

α ) × (
e−λ2u

α − e−λ2y
α )

du. (8)

Making the transformation v = uα to perform the integration, and using the fact
P(X3 ≤ min{X1,X2} = λ3

λ
), the result follows. �

The following results provide the joint PDF, marginals and the conditional PDF
of a BWWE distribution.

Theorem 3.2. Suppose (X,Y ) ∼ BWWE(α,λ1, λ2, λ3).

(a) The joint PDF of (X,Y ) is

fX,Y (x, y) = α2λ(λ1λ2)

λ3
xα−1yα−1e−λ1x

α−λ2y
α (

1 − e−λ3z
α )

. (9)

(b) The PDFs of X and Y are

fX(x) = αλλ1

(λ2 + λ3)
xα−1e−λ1x

α (
1 − e−(λ2+λ3)x

α )
(10)

and

fY (y) = αλλ2

(λ1 + λ3)
yα−1e−λ2y

α (
1 − e−(λ1+λ3)y

α )
, (11)

respectively.
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(c) The conditional PDF of X given Y = y is

fX|Y=y(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αλ1(λ1 + λ3)

λ3
xα−1e−λ1x

α × (1 − e−λ3y
α
)

(1 − e−(λ1+λ3)y
α
)

if y < x,

αλ1(λ1 + λ3)

λ3
xα−1e−λ1x

α × (1 − e−λ3x
α
)

(1 − e−(λ1+λ3)y
α
)

if y > x.

(12)

Proof. The proofs can be obtained by routine calculations, and they are
avoided. �

In Figure 3, we provide the surface plots of the joint PDF of (X,Y ) for different
parameters values. The joint PDF surface of (X,Y ) is either a decreasing or an
unimodal shape.

The following theorem provides the shape of the joint PDF of a BWWE distri-
bution.

Theorem 3.3. If (X,Y ) ∼ BWW(α,λ1, λ2, λ3), then fX,Y (x, y) is decreasing
(unimodal) if α ≤ 2

3 (α > 2
3 ), for all λ1 > 0, λ2 > 0, λ3 > 0.

Proof. See in the Appendix. �

Figure 3 Surface plots of fX,Y (x, y) for different values of α, λ1, λ2 and λ3. (a) α1 = 2.0,
λ1 = λ2 = 1, λ3 = 2.00, (b) α1 = 0.25, λ1 = λ2 = 1, λ3 = 2.00, (c) α1 = λ1 = λ2 = λ3 = 2.00,
(d) α1 = 2.0, λ1 = λ2 = 1, λ3 = 0.25.
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Using the joint PDF (9), we can calculate the product raw moment as follows.

E(XY) =
∫ ∫

x<y
xyfX,Y (x, y) dx dy +

∫ ∫
x>y

xyfX,Y (x, y) dx dy

= λλ1λ2

λ3
α

{∫ ∞
0

yαe−λ2y
α
[
γ (1 + 1

α
, λ1y

α)

λ
1+ 1

α

1

− γ (1 + 1
α
, (λ1 + λ3)y

α)

(λ1 + λ3)
1+ 1

α

]
dy

+
∫ ∞

0
xαe−λ1x

α
[
γ (1 + 1

α
, λ2x

α)

λ
1+ 1

α

2

− γ (1 + 1
α
, (λ2 + λ3)x

α)

(λ2 + λ3)
1+ 1

α

]
dx

}

= λλ1λ2

λ3

{
I (α,λ2, λ1) − I (α,λ2, λ1 + λ3)

+ I (α,λ1, λ2) − I (α,λ1, λ2 + λ3)
}
,

where γ (a, z) = ∫ z
0 ta−1e−t dt, a, z > 0, is the lower incomplete gamma function

and, for α,b, c > 0,

I (α, b, c) = α

c1+ 1
α

∫ ∞
0

xαe−bxα

γ

(
1 + 1

α
, cxα

)
dx

= 1

c1+ 1
α

∫ ∞
0

t1/αe−btγ

(
1 + 1

α
, ct

)
dt

= �(2 + 2
α
)

(1 + 1
α
)(b + c)2+ 2

α

2F1

(
2 + 2

α
,2 + 2

α
;2 + 1

α
; c

b + c

)
,

where

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! , |z| < 1,

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1),

is the hypergeometric function, see Erdélyi (1954, p. 308).
In Figure 4, we provide the correlation coefficient of X and Y for different

values of α and λ3, when λ1 = 1 and λ2 = 1. For each λ3, as α increases correlation
coefficient increases, and for fixed α, as λ3 increases the correlation coefficient
decreases.

Now we discuss how a random sample can be generated from the BWWE distri-
bution. It is possible to generate random sample from a BWWE distribution using
the acceptance rejection principle. To avoid that the following representation of
the BWWE may be used.

Theorem 3.4. (X,Y ) ∼ BWWE(α,λ1, λ2, λ3) if and only if

Xα d= U1 + V and Yα d= U2 + V, (13)
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Figure 4 Correlation coefficient between X and Y for different values of α and λ3 when λ1 = 1,
λ2 = 1: (a) λ3 = 2.0, (b) λ3 = 3.0, (c) λ3 = 4.0, (d) λ3 = 5.0.

where U1, U2 and V are independent exponential random variables with means
1
λ1

, 1
λ2

and 1
λ

, respectively.

Proof. Using (9), the joint PDF of X and Y , the joint moment generating function
of Xα and Yα can be easily obtained for |t1| < λ1 and |t2| < λ2, as

MXα,Yα (t1, t2) =
(

1 − t1

λ1

)−1(
1 − t2

λ2

)−1(
1 − t1 + t2

λ

)−1
.

Hence, the result follows immediately. �

It is clear that using Theorem 3.4, the BWWE random deviates can be generated
from independent exponential random deviates directly. Moreover, Theorem 3.4 is
a characterization of the BWWE distribution. Several structural properties of a
BWWE can be obtained using Theorem 3.4. Using Theorem 3.4, it immediately
follows that if (X,Y ) is same as defined in Theorem 3.4, the stress strength param-
eter R = P(X < Y) can be easily obtained as

R = P(X < Y) = P
(
Xα < Yα) = P(U1 < U2) = λ1

λ1 + λ2
.

Now we study some of the stochastic monotonicity and dependence properties.

Theorem 3.5. Suppose (X,Y ) ∼ BWWE(α,λ1, λ2, λ3), then for all values of
α > 0, λ1 > 0, λ2 > 0, λ3 > 0, X (Y ) is neither stochastically increasing or de-
creasing in Y (X).

Proof. X is stochastically increasing (decreasing) in Y , if P(X > x|Y = y) is a
non-decreasing (non-increasing) function of y for all x, see Shaked (1977). From
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Theorem 3.2(c), we obtain

P(X > x|Y = y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1(x)

(1 − e−λ3y
α
)

(1 − e−(λ1+λ3)y
α
)

if y < x,

g2(x)
1

(1 − e−(λ1+λ3)y
α
)

if y > x.

(14)

Here g1(·) and g2(·) are functions of x only. For any fixed x, since (1−e−λ3yα
)

(1−e−(λ1+λ3)yα
)

is an increasing and 1
(1−e−(λ1+λ3)yα

)
is a decreasing function of y, for all α > 0,

λ1 > 0 and λ3 > 0, the result follows. �

Theorem 3.6. Suppose (X,Y ) ∼ BWWE(α,λ1, λ2, λ3), then (X,Y ) has total
positivity of order two (TP2) property.

Proof. Note that (X,Y ) has TP2 property if and only if for any t11, t12, t21, t22,
whenever 0 < t11 < t12 and 0 < t21 < t22, we have

fX,Y (t11, t21)fX,Y (t12, t22) − fX,Y (t12, t21)fX,Y (t11, t22) ≥ 0. (15)

Now we will consider all the cases separately. For example, if t11 < t21 < t12 < t22,
then left side of (15) becomes

e−λ3t
α
21 − e−λ3t

α
12 . (16)

Since t21 < t12, (16) is true. Similarly, it can be proved other cases also. �

The distribution of minimum and maximum of two random variables, say X

and Y , play an important role in various statistical applications. For example, in
the competing risks problems when the item can fail by two failures only, one ob-
serves only T1 = min{X,Y }, not both X and Y . In the reliability studies, when
the components are arranged in a series system, only T1 = min{X,Y } is observed.
Similarly, in the complementary risks analysis, or when the components are ar-
ranged in parallel, one observes only T2 = max{X,Y }. If X and Y are independent
and identically distributed random variables, T1 and T2 represent the two order
statistics in a random sample of size 2. In practice, the independent assumptions
may not very reasonable. Now we study different properties of T1 and T2, when
(X,Y ) follows BWWE.

Theorem 3.7. Suppose (X,Y ) ∼ BWWE(α,λ1, λ2, λ3).

(a) If T1 = min{X,Y }, then T1 has WWE(α,
λ3

λ1+λ2
, (λ1 + λ2)) distribution with

the following PDF;

fT1(x) = αλ(λ1 + λ2)

λ3
xα−1e−(λ1+λ2)x

α (
1 − e−λ3x

α ); x > 0. (17)
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(b) If T2 = max{X,Y }, then the PDF of T2 is

fT2(x) = c1fWE(x;α,λ) + c2fWE(x;α,λ1)

+ c3fWE(x;α,λ2) − c4fWE
(
x;α, (λ1 + λ2)

) (18)

here

c2 = λ

λ2 + λ3
, c3 = λ

λ1 + λ3
, c4 = λ

λ3
, c1 = 1 − c2 − c3 + c4

and fWE(·) is the Weibull PDF as defined in (3).

Proof. (a) Since

T1 = min{X,Y } ⇒ T α
1 = min

{
Xα,Yα} = min{U1,U2} + V.

Here U1, U2 and V are same as defined in Theorem 3.3. Since U1 and U2 are
independent, min{U1,U2} has exponential distribution with mean 1/(λ1 + λ2).
Since V is also exponential it follows that T1 has WWE distribution. The PDF of
T1 can be obtained using the moment generating function.

(b) Note that using Theorem 3.1 and properly arranging the terms, P(T2 ≤ x)

can be written as follows;

FT2(x) = P(T2 ≤ x) = P(X ≤ x,Y ≤ x)

= 1 − c1e
−λxα − c2e

−λ1x
α − c3e

−λ2x
α + c4e

−(λ1+λ2)x
α

.

Hence, the result can be easily obtained by taking d
dx

FX,Y (x, x). �

4 Multivariate weighted Weibull distribution

In this section, we introduce the the multivariate weighted Weibull (MWWE) dis-
tribution using the same idea as the BWWE model. Suppose U1 ∼ WE(α,λ1), . . . ,
Up ∼ WE(α,λp), and V ∼ WE(α,λp+1), and they are independently distributed.
Then we define the MWWE as follows:

Definition. Define X1 = U1, . . . ,Xp = Up , if min{U1, . . . ,Up} ≥ V , where
U1, . . . ,Up,V are same as defined above. The random vector (X1, . . . ,Xp) is
said to have MWWE distribution with parameters α,λ1, . . . , λp+1, and it will be
denoted by MWWE(α,λ1, . . . , λp+1).

To provide the distribution function of a MWWE, we need the following nota-
tions.

I = {1, . . . , p}, Ai1,...,ij = {i1, . . . , ij } ⊂ I,

Ac
i1,...,ij

= I \ Ai1,...,ij , λ =
p+1∑
k=1

λk.
(19)

The joint CDF and the joint PDF are provided in the following theorem.
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Theorem 4.1. Suppose X = (X1, . . . ,Xp) ∼ MWWE(α,λ1, . . . , λp+1).

(a) The joint CDF of X = (X1, . . . ,Xp) for z = min{x1, . . . , xp}, is

P(X1 ≤ x1, . . . ,Xp ≤ xp)

= FX(x1, . . . , xp)

= λ

p∑
j=0

∑
1≤i1<···<ij≤p

(−1)p−j e
−∑

k∈Ac
i1,...ij

(λkx
α
k )

λp+1 + ∑
k∈Ai1,...,ij

λk

(
1 − e

−zα ∑
k∈Ai1,...,ij

λk )
,

for x1 > 0, . . . , xp > 0, when λ = λ1 + · · · + λp+1, and z = min{x1, . . . , xp}.
(b) The joint PDF of X = (X1, . . . ,Xp) is

fX(x1, . . . , xp) = αpλ

λp+1

p∏
j=1

{
λjx

α−1
j e

−λj xα
j
}(

1 − e−λp+1z
α )

, (20)

for x1 > 0, . . . , xp > 0, when λ = λ1 + · · · + λp+1, and z = min{x1, . . . , xp}.

Proof. (a)

P(X1 ≤ x1, . . . ,Xp ≤ xp)

= P
(
U1 ≤ x1, . . . ,Up ≤ xp|V < min{U1, . . . ,Up})

= P(U1 ≤ u1, . . . ,Up ≤ up,V ≤ min{U1, . . . ,Up})
P (V ≤ min{U1, . . . ,Up}) .

(21)

The denominator of (21) is
λp+1

λ
, and the numerator can be written as∫ z

0
αλp+1u

α−1e−λp+1u
α (

e−λ1u
α − e−λ1x

α
1
) · · · (e−λpuα − e−λ1x

α
p
)
du. (22)

Making the transformation v = uα , in (22), we can write (21) as

λ

∫ zα

0
e−λp+1v

p∏
k=1

(
e−λkv − e−λkx

α
p
)
dv. (23)

Now the result follows by expanding

p∏
k=1

(
e−λkv − e−λkx

α
p
)

=
p∑

j=0

∑
1≤i1<···<ij≤p

(−1)p−j e
−∑

k∈Ac
i1,...ij

(λkx
α
k )

e
−v

∑
k∈Ai1,...,ij

λk
,

(24)

and performing the integration.
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(b) The joint PDF of X = (X1, . . . ,Xp) can be obtained as

fX(x1, . . . , xp) = ∂p

∂x1 · · · ∂xp

FX1,...,Xp(x1, . . . , xp). (25)

From (23), it is clear that if z = x1, then

∂p

∂x1 · · · ∂xp

FX(x1, . . . , xp)

= (−1)p
∂p

∂x1 · · · ∂xp

λe−∑p
k=1 λkx

α
k

∫ xα
1

0
e−λp+1v dv

+ (−1)p−1 ∂p

∂x1 · · · ∂xp

λe−∑p
k=2 λkx

α
k

∫ xα
1

0
e−(λ1+λp+1)v dv

= (−1)p
λ

λp+1

∂p

∂x1 · · · ∂xp

e−∑p
k=1 λkx

α
k
(
1 − e−λp+1x

α
1
)

+ (−1)p−1 λ

λ1 + λp+1

∂p

∂x1 · · · ∂xp

e−∑p
k=2 λkx

α
k
(
1 − e−(λ1+λp+1)x

α
1
)
.

(26)

The right-hand side of (26) can be written as

λ

λp+1
αp

p∏
k=1

{
λkx

α−1
k e−λkx

α
k
}

− λ

λp+1
αp(λ1 + λp+1)x

α1
1 e−(λ1+λp+1)x

α
1

p∏
k=2

{
λkx

α−1
k e−λkx

α
k
}

+ λαpx
α1
1 e−(λ1+λp+1)x

α
1

p∏
k=2

{
λkx

α−1
k e−λkx

α
k
}
.

(27)

Note that (27) can be written as

λ

λp+1
αp

p∏
k=1

{
λkx

α−1
k e−λkx

α
k
}(

1 − e−λp+1x
α
1
)

= λ

λp+1
αp

p∏
k=1

{
λkx

α−1
k e−λkx

α
k
}(

1 − e−λp+1z
α )

.

(28)

Similarly, it can be shown if z = x2, . . . , xp , and the result follows. �

It can be shown that the moment generating function of Xα
1 , . . . ,Xα

p , for
|t1| < λ1, . . . , |tp| < λp , is

MXα
1 ,...,Xα

p
(t1, . . . , tp) =

(
1 − t1

λ1

)−1
· · ·

(
1 − tp

λp

)−1(
1 −

∑p
k=1 tk

λ

)−1
. (29)
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Clearly, (29) can be used quite effectively for generating MWWE random deviates,
because from (29) it easily follows that

Xα
1

d= U1 + V, . . . , Xα
p

d= Up + V. (30)

U1, . . . ,UP and V are independent exponential random variables with means 1
λ1

,

. . . , 1
λp

, 1
λ

respectively. It is immediate from the moment generating function (29)
that if (X1, . . . ,Xp) ∼ MMWE(α,λ1, . . . , λp+1), then for q < p, (X1, . . . ,Xq) ∼
MMWE(α,λ1, . . . , λq, λ̃q+1), where λ̃q+1 = (λq+1 + · · · + λp+1).

Now we provide the distributions of the minimum and the maximum of
X1, . . . ,Xp , for some particular cases.

Theorem 4.2. Suppose (X1, . . . ,Xp) ∼ MWWE(α,λ1, . . . , λp+1).

(a) If T1 = min{X1, . . . ,Xp}, then T1 has the WWE(α,
λp+1∑p
j=1 λj

,
∑p

j=1 λj ) distri-

bution with the following PDF for x > 0;

fT1(x) = αλ(
∑p

j=1 λj )

λp+1
xα−1e

−xα ∑p
j=1 λj

(
1 − e−λp+1x

α )
. (31)

(b) If Tp = max{X1, . . . ,Xp}, and λ1 = · · · = λp = θ , λp+1 = β , then the PDF of
Tp for x > 0, is as follows;

fTp(x) = αxα−1pθ(pθ + β)

×
p−1∑
j=0

(
p − 1

j

)
(−1)p−1−j (1 − e−(θ−2+p−j)xα

)

(θ − 2 + p − j)
.

(32)

Proof. (a) It mainly follows from the representation (30).
(b) Using (30), we obtain

T α
p = max

{
Xα

1 , . . . ,Xα
p

} = max{U1, . . . ,Up} + V = W + V. (33)

Note that W has a generalized exponential distribution (see Gupta and Kundu
(1999)) with the PDF

fW(w) = pθe−θw(
1 − e−θw)p−1; w > 0. (34)

Therefore, the PDF of W + V = T α
p can be obtained as

fW+V (y) = pθ(pθ + β)e−(pθ+β)y
∫ y

0
e−(θ−1)x(

1 − e−θx)p−1
dx. (35)

Since p is an integer, making the binomial expansion of (1 − e−θx)p−1, and using
the transformation (W + V )1/α , the result follows. �
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Theorem 4.3. Suppose X = (X1, . . . ,Xp) ∼ MWWE(α,λ1, . . . , λp+1), the joint
PDF of X = (X1, . . . ,Xp) has the multivariate total positivity of order two (MTP2)
property.

Proof. Recall that a random vector (X1, . . . ,Xp) has the MTP2 property if the
joint PDF of (X1, . . . ,Xp) satisfies the following;

fX(x1, . . . , xp)fX(y1, . . . , yp)

≤ fX(x1 ∨ y1, . . . , xp ∨ yp)fX(x1 ∧ y1, . . . , xp ∧ yp),
(36)

for xi, yi ≥ 0, xi ∨ yi = max(xi, yi) and xi ∧ yi = min(xi, yi) for i = 1, . . . , p. Let
us use the following notations;

u = min{x1, . . . , xp}, v = min{y1, . . . , yp},
a = max{x1 ∨ y1, . . . , xp ∨ yp}, b = min{x1 ∧ y1, . . . , xp ∧ yp}.

Clearly b = min{u, v} ≤ max{u, v} ≤ a.
First, consider the case u ≤ v. Therefore, b = u ≤ v ≤ a. Now proving (36) is

equivalent in proving(
e−λp+1v − e−λp+1a

)(
1 − e−λp+1u

) ≥ 0. (37)

Since v ≤ a, (36) is true. Similarly, it can be proved for u > v also. �

5 Maximum likelihood estimators

In this section, we consider the maximum likelihood estimators of the unknown
parameters of the multivariate weighted Weibull distribution. We can state the
problem as follows. Suppose we have the following p-variate sample of size n,
{(x11, . . . , xp1), . . . , (x1n, . . . , xpn)} from MWWE(α,λ1, . . . , λp+1). Based on the
sample, we want to estimate the unknown parameters, α,λ1, . . . , λp+1. Based on
the above data, from (20), the log-likelihood function can be written as

l(α,λ1, . . . , λp+1|data) = n

(
p lnα + lnλ +

p∑
j=1

lnλj − lnλp+1

)

+ (α − 1)

n∑
i=1

p∑
j=1

lnxji

−
n∑

i=1

p∑
j=1

λjx
α
ji −

n∑
i=1

ln
(
1 − e−λp+1z

α
i
)
.

(38)

Here zi = min{x1i , . . . , xpi} and λ = ∑p+1
j=1 λj . The MLEs can be obtained by

maximizing (38) with respect to the unknown parameters. One needs to solve
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(p + 2) non-linear equations to compute the MLEs of the unknown parameters.
To avoid that, we propose to use the EM algorithm, which can be obtained by
solving one non-linear equation at “E” step.

We will treat this problem as a missing value problem. It is clear from the
definition of the MWWE that X1 = U1, . . . ,Xp = Up are observable and V is
missing. But it is known that when we observe X1 = U1, . . . ,Xp = Up , V ≤
min{U1, . . . ,Up}. Suppose we have the observed data and also the missing data
{(x11, . . . , xp1, v1), . . . , (x1n, . . . , xpn, vn)}, then the log-likelihood function based
on the complete observations (CO) can be written as

lC(α,λ1, . . . , λp+1|CO) = n

(
(p + 1) lnα +

p+1∑
j=1

lnλj

)

+ (α − 1)

{
n∑

i=1

p∑
j=1

lnxji +
n∑

i=1

lnvi

}

−
n∑

i=1

p∑
j=1

λjx
α
ji − λp+1

n∑
i=1

vα
i .

(39)

From (39) based on the complete observations, for fixed α, the MLEs of
λ1, . . . λp+1, say λ̂1(α), . . . , λ̂p+1(α) can be obtained as

λ̂1(α) = n∑n
i=1 xα

1i

, . . . , λ̂p(α) = n∑n
i=1 xα

pi

, and

λ̂p+1(α) = n∑n
i=1 vα

i

,

(40)

respectively. By maximizing lC(α, λ̂1(α), . . . , λ̂p+1(α)|CO) with respect to α, the
MLE of α can be obtained by, say α̂. Finally, the MLEs of λ1, . . . , λp+1 become
λ̂1(α̂), . . . , λ̂p+1(α̂), respectively.

We use the following result, whose proof is trivial, for further development.

Result 5.1. If U ∼ WE(α, θ), then for any fixed c > 0,

E(U |U ≤ c) = αθ
∫ c

0 xαe−θxα
dx

1 − e−θcα . (41)

The following approximation of (41) will be useful.

E(U |U ≤ c) ≈ (
E

(
Uα|Uα ≤ cα)) 1

α =
(

1

θ
− cαe−θcα

1 − e−θcα

) 1
α = A(α, θ, c). (42)

Now we are in a position to provide the EM algorithm. Suppose at the kth
stage of the EM algorithm the values of α, λ1, . . . , λp+1 are α(k), λ

(k)
1 , . . . , λ

(k)
p+1

respectively, we will show how to obtain α(k+1), λ
(k+1)
1 , . . . , λ

(k+1)
p+1 .
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The “E”-step or the “pseudo” log-likelihood function at the kth stage can be
formed by writing the log-likelihood function of the complete observations where
the missing values are replaced by their expectation. Since vi ’s are missing, we
replace vi by its expectation, namely A(α(k),

∑k
j=1 λ

(k)
j , zi) = A

(k)
i . At the “M”-

step the “pseudo” log-likelihood function needs to be maximized with respect
to the unknown parameters to compute α(k+1), λ

(k+1)
1 , . . . , λ

(k+1)
p+1 . By maximiz-

ing lC(α,λ
(k+1)
1 (α), . . . , λ

(k+1)
p+1 (α)|CO) with respect to α, α(k+1) can be obtained,

where

λ
(k+1)
1 (α) = λ̂1(α) = n∑n

i=1 xα
1i

, . . . ,

λk+1)
p (α) = λ̂p(α) = n∑n

i=1 xα
pi

,

λ
(k+1)
p+1 (α) = n∑n

i=1[A(k)
i ]α .

(43)

The maximization of lC(α,λ
(k+1)
1 (α), . . . , λ

(k+1)
p+1 (α)|CO) with respect to α needs

to be performed numerically. The following result provides the uniqueness of the
solution.

Theorem 5.1. The function g(α) = lC(α,λ
(k+1)
1 (α), . . . , λ

(k+1)
p+1 (α)|CO) is uni-

modal.

Proof. Along the same line as the proof of Theorem 2 of Kundu (2008), it can be
shown that g(α) is log-concave. Now the result follows by observing the fact g(α)

goes to −∞ as α → 0 or α → ∞. �

6 Data analysis

In this section, we perform the analysis of a data set to see how the proposed model
works in practice. The data set represents the marks of Physics (P), Chemistry (C)
and Mathematics (M) of 30 students who had qualified Joint Entrance Examination
(JEE) 2009 and are studying in a particular branch of Indian Institute of Technol-
ogy (IIT) Kanpur. The JEE is a nation wide examination in India, which is being
conducted at the class 12th level for entries in different IITs in India. Before 2007,
these marks were not available, but after that, due to Right to Information (RTI)
act, these marks are available. One of the authors have collected these marks of 30
students, from a particular class. The marks are presented in Table 1.

It is known that for qualifying the JEE, it is not only the total marks, but each
subject has a individual cutoff, i.e. for each qualified student it is known that
X1 > u1, X2 > u2, and X3 > u3. Here u1, u2, u3 are the cutoff marks for Math-
ematics, Physics and Chemistry, and they are not fixed. They vary in each year,
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Table 1 The marks of Mathematics (M), Physics (P) and Chemistry (C) of 30 students

No. M P C No. M P C No. M P C
X1 X2 X3 X1 X2 X3 X1 X2 X3

1 153 149 122 2 149 148 120 3 143 144 126
4 136 156 117 5 141 151 115 6 153 154 97
7 151 127 118 8 117 149 120 9 156 124 105

10 132 146 106 11 126 140 118 12 137 131 114
13 132 118 132 14 131 142 109 15 145 131 105
16 123 136 122 17 139 132 109 18 145 132 101
19 138 121 118 20 145 130 101 21 134 120 121
22 143 131 100 23 124 131 118 24 115 136 121
25 127 141 104 26 113 141 118 27 151 139 82
28 119 141 111 29 135 124 112 30 128 126 117

Table 2 The basic statistics of the subject wise scores of 30 students

Var. Mean SD Median Minimum Maximum Q1 Q3 IQR

X1 136.03 12.06 136.5 113 156 127.25 145 17.75
X2 136.37 10.45 136 118 156 130.25 143.5 13.25
X3 112.63 10.25 116 82 132 105.25 119.5 14.25

therefore, we can take them as random variables. We are making the assumption
that u1 = u2 = u3, therefore, our model can be used to analyze this data set. We
may have another interpretation of our model for fitting this data set as follows.
It may be assumed that the marks (or a transformed version of the marks) of a
student for a specific subject depend on his/ her overall knowledge plus the subject
specific knowledge, that is,

Xα = V + U1, Xα
2 = V + U2, Xα

3 = V + U3.

Here V is the contribution due to overall knowledge, Xi is the contribution due
to subject specific knowledge. Therefore, based on the above assumptions, our
proposed model is applicable for this data set.

We present the mean, standard deviation (SD), median, lowest score, highest
score, first quartile (Q1), third quartile (Q3) and inter quartile range (IQR) of the
subject wise scores of the 30 students in Table 2. We have also provided the scaled
total time on test (TTT) transform as suggested by Aarset (1987) in Figure 5, where

T

(
r

n

)
=

∑r
i=1 t(i) + (n − r)t(r)∑n

i=1 ti
, r = 1,2, . . . , n,

and t(1) ≤ t(2) ≤ · · · ≤ t(n) are the order statistics of a data set t1, t2, . . . , tn.
Since each of them is concave in nature, we conclude that the hazard rate func-

tions are increasing, see Aarset (1987).
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Figure 5 Scaled TTT transform of (a) X1, (b) X2, (c) X3.

First, we fit the univariate weighted Weibull models to X1, X2 and X3. We use
the EM algorithm, to compute the MLEs of α, λ1 = λ, λ2 = λ1/β and we have
computed the associated 95% confidence intervals also based on bootstrapping. In
each case, we have also computed the Kolmogorov–Smirnov distances between
the empirical distribution function and the fitted distribution functions, and the
associated p values. The results are presented in Table 3. From the p values, it
is clear that we cannot reject the null hypotheses that X1, X2 and X3 are coming
from weighted Weibull distributions.

Now we fit the trivariate weighted Weibull distribution to the data set. We ob-
tain the estimates of α, λ1, λ2, λ3 and λ4 as 13.8399, 0.0081, 0.0086, 0.1141 and
0.0077, respectively. The corresponding log-likelihood value becomes −232.131.
The associated 95% confidence intervals are (12.6964, 16.1787), (0.0038, 0.0144),
(0.0038, 0.0146), (0.0677, 0.1532), (0.0022, 0.0366), respectively.

Some of the simple interpretations can be provided from the fitted model. For
example, the estimate of the probability that in this group a student gets more
marks in Mathematics than Chemistry, that is, P(X1 > X3), is 0.94, similarly, a
student gets more marks in Mathematics than Physics, P(X1 > X2), is 0.52. More-
over, for the transformed data say for Mathematics, Xα

1 , the mean contribution due
to subject knowledge is (λ1 + λ2 + λ3 + λ4)/λ1 ≈ 17.1 more than the mean con-
tribution due to overall knowledge.
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Table 3 The parameter estimates of the weighted Weibull distribution fitted to the subject wise
scores of 30 students

Var. Estimates Goodness of fit
(confidence intervals)

α λ1 λ2 K-S p

X1 13.320 0.0099 0.0005 0.1096 0.864
(10.700, 17.461) (0.0015, 0.0292) (0.0000, 0.0018)

X2 14.467 0.0068 0.0004 0.1918 0.220
(12.250, 18.549) (0.0009, 0.0165) (0.0000, 0.0012)

X3 13.756 0.1159 0.0047 0.1189 0.790
(10.350, 20.427) (0.0330, 0.2257) (0.0015, 0.0127)

Table 4 AIC and BIC values for the different models

Model No. of Log-likelihood AIC BIC
parameters value value value

TWE 4 −345.17 698.34 703.94
BBTW 5 −271.56 553.12 560.13
MWWE 5 −232.13 474.26 481.27

For comparison purposes, we have fitted four-parameter trivariate weighted ex-
ponential (TWE) distribution as provided in Al-Mutairi et al. (2011) and five-
parameter Block and Basu trivariate Weibull distribution (BBTW) as proposed by
Pradhan and Kundu (2016). We use the same set of notations as they have been
used in those respective papers, and we present the MLEs and the corresponding
log-likelihood (ll) values:

TWE: λ̂1 = 0.7351, λ̂2 = 0.7333, λ̂3 = 0.8878, λ̂4 = 9.4251, ll = −345.17.
BBTW: λ̂0 = 0.1345, λ̂1 = 0.4561, λ̂2 = 0.6751, λ̂3 = 0.4519, α̂ = 5.1756, ll =

−271.56.

Now we would like to choose the best fitted model based on Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC). The AIC and BIC values
for the different models are provided in Table 4. Therefore, based on AIC and BIC
values, it is observed that for this data set MWWE provides a better fit than the
other two models.

7 Conclusions

In this paper, we have studied different properties of the weighted Weibull distribu-
tion proposed by Shahbaz et al. (2010). It is observed that the proposed model can
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be obtained as a hidden truncation model, similarly as the skewed normal distribu-
tion proposed by Azzalini (1985). This three parameter weighted Weibull model is
very flexible in terms of the different shapes of its PDF and HRF, and therefore it
can be used very effectively to analyze failure time data. We have also proposed to
use the EM algorithm to compute the maximum likelihood estimators, and the im-
plementation of the EM algorithm is also quite simple since it involves just solving
one non-linear equation at each “M” step.

We further extend the model to bivariate and multivariate cases. We have
observed that the bivariate and multivariate models enjoy several interesting prop-
erties. The generation from the bivariate or multivariate weighted Weibull distribu-
tion is quite straight forward. The MLEs of the unknown parameters for the multi-
variate weighted Weibull distribution can be obtained using the EM algorithm, and
it also involves just solving one non-linear equation at each “M”-step. We have an-
alyzed one trivariate data set, and it is observed that the proposed model and the
EM algorithm work very well in this case.

Appendix

Proof of Theorem 2.1. Without loss of generality we assume λ = 1, and we de-
note in this proof only fX(x;α,β,1) = f (x). Now note that

f (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞, if α <
1

2
,

1, if α = 1

2
,

0, if α >
1

2
,

f (∞) = 0.

f ′(x) = 0 implies that

w(y) =
(
α − 1 − α

β
y

)
ey + α

(
1 + 1

β

)
y + 1 − α = 0, y = βxα > 0.

Note that w(0) = 0, and w(∞) = −∞,

w′(y) =
[
α − 1 − α

β
(1 + y)

]
ey + α

(
1 + 1

β

)
, y > 0.

Note that w′(0) = 2α − 1 and w′(∞) = −∞.
Now, since

w′′(y) =
[
α − 1 − α

β
(2 + y)

]
ey, y > 0

it follows that w′(y) is monotonically decreasing. So, w′(y) is −ve (if α ≤ 1
2 )

and has a unique maximum changing sign from +ve to −ve (if α > 1
2 ). Since

w(0) = 0 and w(∞) = −∞, it follows that w(y) is −ve (if α ≤ 1
2 ) and has a

unique maximum changing sign from +ve to −ve (if α > 1
2 ). �
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To prove Theorem 2.2, we need the following lemma.

Lemma 1. The sign of the function

g(y) = 2(α − 1)(β + 1)ey + αβy + β − 2(α − 1), y > 0, α,β > 0,

is negative (positive then negative) (positive) if α ≤ 1
2 ( 1

2 < α < 1) (α ≥ 1).

Proof. First, note that g(0) = (2α − 1)β and

g′(y) = 2(α − 1)(β + 1)ey + αβ, y > 0, α,β > 0.

(i) 0 < α ≤ 1
2 : Here, g′(y) ≤ 2(α − 1)β + αβ = (3α − 2)β < 0 and g(0) ≤ 0,

implying that g(y) ≤ 0.
(ii) 1

2 < α < 1: Here, g′(y0) = 0 implies that y0 = ln[ αβ
2(1−α)(β+1)

]. Also, g′′(y) =
2(α − 1)(β + 1)ey > 0, implying that g(y) has a unique maximum at y0.
Now, in this case, g(0) > 0 and g(∞) = −∞, implying that g(y) changes
sign from positive to negative.

(iii) α ≥ 1: Here, g′(y) > 0 and g(0) > 0, implying that g(y) > 0. �

Proof of Theorem 2.2. Without loss of generality, we assume λ = 1. In this proof,
only we denote hX(x;α,β) = h(x). Now note that

h(0) = f (0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞, if α <
1

2
,

1, if α = 1

2
,

0, if α >
1

2
,

h(∞) =

⎧⎪⎪⎨⎪⎪⎩
0, if α < 1,

1, if α = 1,

∞, if α > 1.

h′(x) = 0 implies that

u(y) = (α −1)(β +1)e2y − [
(α −1)(β +2)−αβy

]
ey +α −1, y = βxα > 0.

Note that the sign of h′(x) is the sign of u(βxα) and u(0) = 0.
Since

u′(y) = ey[
2(α − 1)(β + 1)ey + αβy + β − 2(α − 1)

] = eyg(y),

it follows that the sign of u′(y) is the sign of g(y). Now by Lemma 1, we have

(i) 0 < α ≤ 1
2 : Here, u(y) ≤ 0, for all y > 0, i.e. h′(x) ≤ 0 implying that h(x) is

a decreasing function.
(ii) 1

2 < α < 1: Here, u(y) changes sign from positive to negative, i.e. h′(x)

changes sign from positive to negative implying that h(x) is an increasing-
decreasing (upside-down bathtub shape) function.

(iii) α ≥ 1: Here u(y) > 0, for all y > 0, i.e. h′(x) > 0 implying that h(x) is an
increasing function. �
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Proof of Theorem 3.3. Case 1: R1 = {(x, y) : 0 < x < y}: Here, we have

fX,Y (x, y) = a1f1(x)g1(y), x < y,

where a1 is a normalizing constant, f1(x) and g1(y) are the PDFs of
WWE(α,λ1,

λ3
λ1

) and WE(α,λ2), respectively.
We know, using Theorem 2.1, that WWE PDF f1(x) has a unique critical point

x1 if α > 1
2 . Also, the Weibull PDF g1(y) has a unique critical point y1 = (α−1

αλ2
)1/α

if α > 1. It follows that (x1, y1) is the unique critical point of fX,Y (x, y) provided
that α > 1 and x1 < y1. Finally, (x1, y1) ∈ R1 maximizes fX,Y (x, y), since, for
α > 1, fX,Y (0,0) = 0 and fX,Y (x, y) > 0.

Case 2: R2 = {(x, y) : x > y > 0}: Here, we have

fX,Y (x, y) = a2f2(x)g2(y), x > y,

where a2 is a normalizing constant, f2(x) and g2(y) are the PDFs of WE(α,λ1)

and WWE(α,λ2,
λ3
λ2

), respectively.
By similar arguments as in Case 1, f2(x) has a unique critical point x2 =

(α−1
αλ1

)1/α if α > 1 and g2(y) has a unique critical point y2 if α > 1
2 . The unique

critical point (x2, y2) ∈ R2 maximizes fX,Y (x, y) provided that α > 1 and x2 > y2.
Before we proceed further, we show that, under the conditions of Cases 1 and 2,

the critical points (x1, y1) ∈ R1 and (x2, y2) ∈ R2 cannot occur simultaneously.
First, note that f1(x) = b1f2(x)F3(x), where b1 is a normalizing constant and

F3(x) is the CDF of W(α,λ3). Since

f ′
1(x)

∣∣
x=x2

= b1
{
f2(x)F ′

3(x) + f ′
2(x)F3(x)

}∣∣
x=x2

= b1f2(x2)F
′
3(x2) > 0,

it follows that x1 > x2. Similarly, by noting that g2(y) = b2g1(y)F3(y), where b2
is a normalizing constant, we have y1 < y2. Figure 4 shows that the critical points
(x1, y1) ∈ R1 and (x2, y2) ∈ R2 cannot occur simultaneously.

Case 3: R3 = {(x, y) : x = y > 0}: Here, we have

fX,Y (x, x) = λλ1λ2

λ3
α2x2(α−1) e−(λ1+λ2)x

α (
1 − e−λ3x

α )
, x > 0,

which is a unimodal function if α > 2
3 , the proof is similar to that of Theorem 2.1.

Clearly, if α > 1 and there does not exist a critical point in R1 (R2), that is,
if x1 ≥ y1 (x2 ≤ y2), then fX,Y (x, y) has a global maximum on the boundary
R3, since, in this case, fX,Y (0,0) = fX,Y (∞,∞) = 0 and fX,Y (x, y) > 0. Also,
when 2

3 < α ≤ 1, fX,Y (x, y) is maximized on the boundary R3. Finally, when
α ≤ 2

3 no critical point exist for fX,Y (x, y) in the space (0,∞) × (0,∞). In fact,
fX,Y (x, y) is a decreasing function in (x, y), since, in this case, f (0,0) = ∞ and
f (∞,∞) = 0. �
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