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Abstract: Ordinary differential equations (ODEs) are used to model dy-
namic systems appearing in engineering, physics, biomedical sciences and
many other fields. These equations contain an unknown vector of param-
eters of physical significance, say θ which has to be estimated from the
noisy data. Often there is no closed form analytic solution of the equa-
tions and hence we cannot use the usual non-linear least squares technique
to estimate the unknown parameters. The two-step approach to solve this
problem involves fitting the data nonparametrically and then estimating the
parameter by minimizing the distance between the nonparametrically esti-
mated derivative and the derivative suggested by the system of ODEs. The
statistical aspects of this approach have been studied under the frequentist
framework. We consider this two-step estimation under the Bayesian frame-
work. The response variable is allowed to be multidimensional and the true
mean function of it is not assumed to be in the model. We induce a prior on
the regression function using a random series based on the B-spline basis
functions. We establish the Bernstein-von Mises theorem for the posterior
distribution of the parameter of interest. Interestingly, even though the pos-
terior distribution of the regression function based on splines converges at
a rate slower than n−1/2, the parameter vector θ is nevertheless estimated
at n−1/2 rate.
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1. Introduction

Suppose that we have a regression model Y = fθ(t) + ε, θ ∈ Θ ⊆ R
p. The

explicit form of fθ(·) may not be known, but the function is assumed to satisfy
the system of ordinary differential equations (ODEs) given by

dfθ(t)

dt
= F (t,fθ(t),θ), t ∈ [0, 1]; (1.1)

here F is a known appropriately smooth vector-valued function and θ is a
parameter vector controlling the regression function. Equations of this type are
encountered in various branches of science such as in genetics (Chen et al., 1999),
viral dynamics of infectious diseases (Anderson and May (1992), Nowak and
May (2000)). There are numerous applications in the fields of pharmacokinetics
and pharmacodynamics (PKPD) as well. There are a lot of instances where no
closed form solution exist. Such an example can be found in the feedback system
(Gabrielsson and Weiner, 2006, page 332) modeled by the ODEs

dR(t)

dt
=

kin
M(t)

− koutR(t),

dM(t)

dt
= ktol(R(t)−M(t)),

where R(t) and M(t) stand for loss of response and modulator at time t re-
spectively. Here kin, kout and ktol are unknown parameters which have to be
estimated from the noisy observations given by

YR(t) = R(t) + εR(t),

YM (t) = M(t) + εM (t),

εR(t), εM (t) being the respective noises at time point t. Another popular exam-
ple is the Lotka-Volterra equations, also known as predator-prey equations. The
prey and predator populations change over time according to the equations

df1θ(t)

dt
= θ1f1θ(t)− θ2f1θ(t)f2θ(t),

df2θ(t)

dt
= −θ3f2θ(t) + θ4f1θ(t)f2θ(t),
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where t ∈ [0, 1] and θ = (θ1, θ2, θ3, θ4)
T and f1θ(t) and f2θ(t) denote the prey

and predator populations at time t respectively.
Another interesting model specification through differential equations appear

in network analysis. Henderson and Michailidis (2014) considered an interesting
situation where F (·) is an unknown function of the solution of the ODE. They
assumed an additive model for F and used nonparametric techniques to fit F .
In this situation unlike the examples above the resulting model is not described
by a finite set of parameters.

If the ODEs can be solved analytically, then the usual non linear least squares
(NLS) (Levenberg (1944), Marquardt (1963)) can be used to estimate the un-
known parameters. In many of the practical situations, such closed form so-
lutions are not available as evidenced in the previous two examples. NLS was
modified for this purpose by Bard (1974) and Domselaar and Hemker (1975).
Hairer et al. (1993, page 134) and Mattheij and Molenaar (2002, page 53) used
the 4-stage Runge-Kutta algorithm to solve (1.1) numerically. The NLS can be
applied in the next step to estimate the parameters. The statistical properties
of the corresponding estimator have been studied by Xue et al. (2010). The
strong consistency,

√
n-consistency and asymptotic normality of the estimator

were established in their work.
Ramsay et al. (2007) proposed the generalized profiling procedure where the

solution is approximated by a linear combination of basis functions. The coeffi-
cients of the basis functions are estimated by solving a penalized optimization
problem using an initial choice of the parameters of interest. A data-dependent
fitting criterion is constructed which contains the estimated coefficients. Then θ
is estimated by the maximizer of this criterion. Qi and Zhao (2010) explored the
statistical properties of this estimator including

√
n-consistency and asymptotic

normality. Despite having desirable statistical properties, these approaches are
computationally cumbersome especially for high-dimensional systems of ODEs
as well as when θ is high-dimensional.

Varah (1982) used a two-step method for estimating θ. In the first step each
of the state variables is approximated by a cubic spline using the least squares
technique. In the second step, the corresponding derivatives are estimated by
differentiating the nonparametrically fitted curve and the estimator is obtained
by minimizing the sum of squares of the difference between the derivatives of
the fitted spline and the derivatives suggested by the ODEs at the design points.
This method does not depend on the initial or boundary conditions of the state
variables and is computationally very efficient irrespective of the complexity
of the model. An example given in Voit and Almeida (2004) showed the com-
putational superiority of the two-step approach over the usual least squares
technique. Brunel (2008) replaced the sum of squares of the second step by a
weighted integral of the squared deviation and proved

√
n-consistency as well as

asymptotic normality of the resulting estimator. The order of the B-spline basis
was determined by the smoothness of F (·, ·, ·) with respect to its first two argu-
ments. Gugushvili and Klaassen (2012) used the same approach but used kernel
smoothing instead of spline. They also established

√
n-consistency of the estima-

tor. Another modification has been made in the work of Wu et al. (2012). They
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have used penalized smoothing spline in the first step and numerical derivatives
instead of actual derivatives of the nonparametrically estimated functions. In
another work Brunel et al. (2014) used nonparametric approximation of the true
solution to (1.1) and then used a set of orthogonality conditions to estimate the
parameters. The

√
n-consistency as well as the asymptotic normality of the es-

timator was also established in their work. In Dattner and Gugushvili (2015)
the two-step estimator is used as a preliminary

√
n−consistent estimator and

then Newton-Raphson technique is employed to obtain asymptotically efficient
estimator. Although this approach is faster than the NLS technique, a numerical
solution of the ODE is still required at the Newton-Raphson step.

In ODE models Bayesian estimation was considered in the works of Gelman
et al. (1996), Rogers et al. (2007) and Girolami (2008). First they solved the
ODEs numerically to approximate the expected response and hence constructed
the likelihood. A prior was assigned on θ and MCMC technique was used to
generate samples from the posterior. Computation cost might be an issue in
this case as well. Campbell and Steele (2012) proposed the smooth functional
tempering approach which is a population MCMC technique and it utilizes the
generalized profiling approach (Ramsay et al., 2007) and the parallel tempering
algorithm. Campbell (2007) and Jaeger (2012) also used Bayesian analog of the
generalized profiling by putting prior on the coefficients of the basis functions.
Chkrebtii et al. (2013) divided the time range into discrete grid points. They
put a Gaussian process prior on the solution of the ODE and its derivative. The
posterior distribution of the solution is used to draw the posterior sample of the
parameter of interest. The theoretical aspects of Bayesian estimation methods
have not been yet explored in the literature.

In this paper we consider a Bayesian analog of the approach of Brunel (2008)
fitting a nonparametric regression model using B-spline basis. We assign pri-
ors on the coefficients of the basis functions. A posterior is then induced on θ
using the posteriors of the coefficients of the basis functions. In this paper we
study the asymptotic properties of the posterior distribution of θ and establish
a Bernstein-von Mises theorem with n−1/2 contraction rate. We allow the ODE
model to be misspecified, that is, the true regression function may not be a so-
lution of the ODE. The response variable is also allowed to be multidimensional
with possibly correlated errors. Normal distribution is used as the working model
for error distribution, but the true distribution of errors may be different. Inter-
estingly, the original model is parametric but it is embedded in a nonparametric
model, which is further approximated by high dimensional parametric models.
Note that the slower rate of nonparametric estimation does not influence the
convergence rate of the parameter in the original parametric model.

In the context of misspecification it is worthy to mention approximate
Bayesian computation (ABC) which can be viewed as Bayesian inference using
a misspecified likelihood for which a Bernstein-von Mises theorem with biased
center and different scaling may hold (Dean and Singh, 2011). Thus our mis-
specified Bernstein-von Mises theorem has some formal similarity with results
of this kind. See Kleijn and van der Vaart (2012) for a general approach to
misspecified Bernstein-von Mises theorem.
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The paper is organized as follows. Section 2 contains the description of the
notations and the model as well as the priors used for the analysis. The main
results are given in Section 3. We extend the results to more generalized setups in
Section 4. In Section 5 we carry out a simulation study under different settings.
We analyze a real life data in Section 6. Proofs of the theorems are given in
Section 7. Appendix contains the proofs of some auxiliary lemmas.

2. Notations, model assumption and prior specification

We describe a set of notations to be used in this paper. Boldfaced letters are used
to denote vectors and matrices. For a matrix A, the symbols Ai, and A,j stand
for the ith row and jth column of A respectively. The notation ((Ai,j)) stands
for a matrix with (i, j)th element being Ai,j . We use the notation rowssr(A)
with r < s to denote the sub-matrix of A consisting of rth to sth rows of
A. Similarly, we can define colssr(A) for columns. The notation xr:s stands for
the sub-vector consisting of rth to sth elements of a vector x. By vec(A), we
mean the vector obtained by stacking the columns of the matrix A one over
another. For an m × n matrix A and a p × q matrix B, A ⊗ B denotes the
Kronecker product between A and B; see Steeb (2006) for the definition. The
identity matrix of order p is denoted by Ip. By the symbols maxeig(A) and
mineig(A), we denote the maximum and minimum eigenvalues of the matrix A

respectively. For a vector x ∈ R
p, we denote ‖x‖ =

(∑p
i=1 x

2
i

)1/2
. We denote

the rth order derivative of a function f(·) by f (r)(·), that is, f (r)(t) = dr

dtr f(t).
The boldfaced symbol f(·) stands for a vector valued function. For functions

f : [0, 1] → R
p and w : [0, 1] → [0,∞), we define ‖f‖w = (

∫ 1

0
‖f(t)‖2w(t)dt)1/2.

For a real-valued function f : [0, 1] → R and a vector x ∈ R
p, we denote

f(x) = (f(x1), . . . , f(xp))
T . The notation 〈·, ·〉 stands for an inner product.

For numerical sequences an and bn, by an = o(bn), we mean an/bn → 0 as
n → ∞. The notation an = O(bn) implies that an/bn is bounded. We use the
notation an � bn to mean an = O(bn) and bn = O(an), while an � bn stands for
an = O(bn). The symbol an � bn will mean bn = o(an). Similarly we can define
an 
 bn. The notation oP (1) is used to indicate a sequence of random variables
which converges in probability to zero, whereas the expression OP (1) stands for
a sequence of random variables bounded in probability. The boldfaced symbols
E(·) and Var(·) stand for the mean vector and dispersion matrix respectively
of a random vector. For the probability measures P and Q defined on R

p, we
define the total variation distance ‖P −Q‖TV = supB∈Rp |P (B)−Q(B)|, where
Rp denotes the Borel σ-field on R

p. For an open set E, the symbol Cm(E)
stands for the collection of functions defined on E with firstm continuous partial
derivatives with respect to its arguments. Now we present the formal description
of the model.

We have a system of d ordinary differential equations given by

dfjθ(t)

dt
= Fj(t,fθ(t),θ), t ∈ [0, 1], j = 1, . . . , d, (2.1)
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where fθ(·) = (f1θ(·), . . . , fdθ(·))T and θ ∈ Θ, a compact subset of Rp. Let us
denote F (·, ·, ·) = (F1(·, ·, ·), . . . , Fd(·, ·, ·))T . We also assume that for a fixed θ,
F ∈ Cm−1((0, 1),Rd) for some integerm ≥ 1. Then, by successive differentiation
of the right hand side of (2.1), it follows that fθ ∈ Cm((0, 1)). By the implied
uniform continuity, the function and its several derivatives uniquely extend to
continuous functions on [0, 1].

Consider an n× d matrix of observations Y with Yi,j denoting the measure-
ment taken on the jth response at the point xi, 0 ≤ xi ≤ 1, i = 1, . . . , n; j =
1, . . . , d. We consider xi’s to be deterministic covariates satisfying condition
(2.6) below. If the covariates are random and sampled independently from a
fixed continuous and positive density and kn 
 √

n, then the condition holds
with probability tending to one since in view of Donsker’s theorem the left hand
size of (2.6) is OP (n

−1/2) = oP (k
−1
n ). Therefore the results of this paper will also

hold for random covariates. Denoting ε = ((εi,j)) as the corresponding matrix of
errors, the proposed model is given by

Yi,j = fjθ(xi) + εi,j , i = 1, . . . , n, j = 1, . . . , d, (2.2)

while the data is generated by the model

Yi,j = fj0(xi) + εi,j , i = 1, . . . , n, j = 1, . . . , d, (2.3)

where f0(·) = (f10(·), . . . , fd0(·))T denotes the true mean vector which does not

necessarily lie in {fθ : θ ∈ Θ}. We assume that f0 ∈ Cm([0, 1]). Let εi,j
iid∼ P0,

which is a probability distribution with mean zero and finite variance σ2
0 for

i = 1, . . . , n ; j = 1, . . . , d.
Since the expression of fθ is usually not available, the proposed model is

embedded in nonparametric regression model

Y = XnBn + ε, (2.4)

where Xn = ((Nj(xi)))1≤i≤n,1≤j≤kn+m−1, {Nj(·)}kn+m−1
j=1 being the B-spline

basis functions of order m with kn − 1 interior knots 0 < ξ1 < ξ2 < · · · <
ξkn−1 < 1 chosen to satisfy the pseudo-uniformity criteria:

max
1≤i≤kn−1

|ξi+1 − 2ξi + ξi−1| = o
(
k−1
n

)
,

max
1≤i≤kn−1

|ξi − ξi−1| / min
1≤i≤kn−1

|ξi − ξi−1| ≤ M (2.5)

for some constant M > 0. Here ξ0 and ξkn are defined as 0 and 1 respectively.
The criteria (2.5) is required to apply the asymptotic results obtained in Zhou
et al. (1998) where they mention the similar criteria in equation (3) of that
paper. Here we denote

Bn =
(
β
(kn+m−1)×1
1 , . . . ,β

(kn+m−1)×1
d

)
,

the matrix containing the coefficients of the basis functions. Also we consider P0

to be unknown and use N(0, σ2) as the working distribution for the error where
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σ may be treated as another unknown parameter. Denoting by Qn, the empirical
distribution function of xi, i = 1, . . . , n, we assume that for some probability
measure Q on [0, 1] with positive and continuous density

sup
t∈[0,1]

|Qn(t)−Q(t)| = o(k−1
n ). (2.6)

Let the prior distribution on the coefficients be given by

βj
iid∼ Nkn+m−1(0, c

−1nk−1
n (XT

n Xn)
−1) (2.7)

for some constant c > 0. Simple calculation yields the posterior distribution for
βj as

βj |Y ∼ Nkn+m−1

(
c−1
n (XT

n Xn)
−1

XT
n Y,j , c

−1
n σ2(XT

n Xn)
−1
)

(2.8)

and the posterior distributions of βj and βj′ are mutually independent for
j �= j′; j, j′ = 1, . . . , d, where cn = (1 + σ2ckn/n). In the model (2.4), the
expected response vector at a point t ∈ [0, 1] is given by BT

nN(t), where
N(·) = (N1(·), . . . , Nkn+m−1(·))T .

Let w(·) be a continuous weight function with w(0) = w(1) = 0 and be
positive on (0, 1). We define

Rf (η) =

{∫ 1

0

‖f ′(t)− F (t,f(t),η)‖2w(t)dt
}1/2

,

ψ(f) = arg min
η∈Θ

Rf (η). (2.9)

It is easy to check that ψ(fη) = η for all η ∈ Θ. Thus the map ψ extends the
definition of the parameter θ beyond the model. Let us define θ0 = ψ(f0). Thus,
θ0 describes the projection of the true regression function on the parametric
model. We assume that θ0 lies in the interior of Θ. From now on, we shall write
θ for ψ(f) and treat it as the parameter of interest. A posterior is induced on
Θ through the mapping ψ acting on f(·) = BT

nN(·) and the posterior of Bn

given by (2.8).

Remark 1: Note that f0(·) need not be a solution of the ODE. In real life
it is almost impossible to accurately describe a data generating mechanism in
terms of a mathematical model. ODE is a useful tool to model many dynamic
systems within a margin of error. This justifies the study of misspecified re-
gression function in the context of ODE model. Often we are more interested
in inferring on the parameters rather than the regression function described by
the ODE model. Then the role of the true parameter is played by the parameter
value which brings the ODE model closest to the true regression function. The
definition of θ0 reinforces this intuition.
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3. Main results

Our objective is to study the asymptotic behavior of the posterior distribution
of

√
n(θ − θ0). The asymptotic representation of

√
n(θ − θ0) is given by the

next theorem under the assumption that

for all ε > 0, inf
η:‖η−θ0‖≥ε

Rf0(η) > Rf0(θ0). (3.1)

We denote Dl,r,sF (t,f ,θ) = ∂l+r+s/∂θs∂fr∂tlF (t,f(t),θ). Since the posterior
distributions of βj are mutually independent when ε,j are mutually independent
for j = 1, . . . , d, we can assume d = 1 in Theorem 1 for the sake of simplicity
in notation and write f(·), f0(·), F (·, ·, ·), β instead of f(·), f0(·), F (·, ·, ·) and
Bn respectively. Extension to d-dimensional case is straightforward as shown
in Remark 5 after the statement of Theorem 1. We deal with the situation of
correlated errors in Section 4.

Theorem 1. Let the matrix

Jθ0 =

∫ 1

0

(D0,0,1F (t, f0(t),θ0))
TD0,0,1F (t, f0(t),θ0)w(t)dt

−
∫ 1

0

(D0,0,1S(t, f0(t),θ0))w(t)dt

be nonsingular, where

S(t, f(t),θ) = (D0,0,1F (t, f(t),θ))T (f ′
0(t)− F (t, f0(t),θ0)).

Let m be an integer greater than or equal to 5 and n1/2m 
 kn 
 n1/8. If
D0,2,1F (t, y,θ) and D0,0,2F (t, y,θ) are continuous in their arguments, then un-
der the assumption (3.1), there exists En ⊆ Cm((0, 1)) × Θ with Π(Ec

n|Y ) =
oP0(1), such that uniformly for (f,θ) ∈ En,

‖
√
n(θ − θ0)− J−1

θ0

√
n(Γ(f)− Γ(f0))‖ → 0 (3.2)

as n → ∞, where

Γ(z) =

∫ 1

0

(
−(D0,0,1F (t, f0(t),θ0))

TD0,1,0F (t, f0(t),θ0)w(t)

− d

dt
[(D0,0,1F (t, f0(t),θ0))

Tw(t)] + (D0,1,0S(t, f0(t),θ0))w(t)

)
z(t)dt.

Remark 2: Condition (3.1) implies that θ0 is the unique point of minimum of
Rf0(·) and θ0 should be a well-separated point of minimum.

Remark 3: The posterior distribution of Γ(f)−Γ(f0) contracts at 0 at the rate
n−1/2 as indicated by Lemma 4. Hence, the posterior distribution of (θ − θ0)
contracts at 0 at the rate n−1/2 with high probability under the truth. We refer
to Theorem 2 for a more refined version of this result.
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Remark 4: We note that fifth order smoothness of the true mean function is
good enough to ensure the contraction rate n−1/2. We do not gain by assum-
ing a higher order of smoothness. For m = 5, the required condition becomes
n1/10 
 kn 
 n1/8. Also, the knots are chosen deterministically and there is
no need to assign a prior on the number of terms of the random series used.
Hence, the issue of Bayesian adaptation, that is, improving convergence rate
with higher smoothness without knowing the smoothness, does not arise in the
present context.

Remark 5: When the response is a d-dimensional vector, (3.2) holds with the
scalars being replaced by the corresponding d-dimensional vectors. Let A(t)
stands for the p× d matrix

J−1
θ0

{−(D0,0,1F (t,f0(t),θ0))
TD0,1,0F (t,f0(t),θ0)w(t)

− d

dt
[(D0,0,1F (t,f0(t),θ0))

Tw(t)] + (D0,1,0S(t,f0(t),θ0))w(t)}.

Then we have

J−1
θ0

Γ(f) =

d∑
j=1

∫ 1

0

A,j(t)N
T (t)βjdt =

d∑
j=1

GT
n,jβj , (3.3)

where GT
n,j =

∫ 1

0
A,j(t)N

T (t)dt which is a p × (kn + m − 1) matrix for j =
1, . . . , d. Then in order to approximate the posterior distribution of θ, it suf-
fices to study the asymptotic posterior distribution of the linear combination
of βj given by (3.3). The next theorem describes the approximate posterior
distribution of

√
n(θ − θ0).

Theorem 2. Define

μn =
√
n

d∑
j=1

GT
n,j(X

T
n Xn)

−1XT
n Y,j −

√
nJ−1

θ0
Γ(f0),

Σn = n

d∑
j=1

GT
n,j(X

T
n Xn)

−1Gn,j

and Bj = ((〈Ak,j(·), Ak′,j(·)〉))k,k′=1,...,p for j = 1, . . . , d. If Bj is non-singular
for all j = 1, . . . , d, then under the conditions of Theorem 1,∥∥Π (√n(θ − θ0) ∈ ·|Y

)
−N

(
μn, σ

2Σn

)∥∥
TV

= oP0(1). (3.4)

Inspecting the proof, we can conclude that (3.4) is uniform over σ2 belonging
to a compact subset of (0,∞). Also note that the scale of the approximating
normal distribution involves the working variance σ2 assuming that it is given,
even though the convergence is studied under the true distribution P0 with
variance σ2

0 , not necessarily equal to the given σ2. Thus, the distribution matches
with the frequentist distribution of the estimator in Brunel (2008) only if σ is
correctly specified as σ0. The next result assures that putting a prior on σ
rectifies the problem.
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Theorem 3. We assign independent N(0, nc−1k−1
n σ2(XT

n Xn)
−1) prior on βj

for j = 1, . . . , d for some constant c > 0 and inverse gamma prior on σ2 with
shape and scale parameters a and b respectively. If the fourth order moment of
the true error distribution is finite, then under the conditions of Theorem 1,∥∥Π (√n(θ − θ0) ∈ ·|Y

)
−N

(
μn, σ

2
0Σn

)∥∥
TV

= oP0(1). (3.5)

4. Extensions

The results obtained so far can be extended for the case where εi,j and εi,j′ are
associated for i = 1, . . . , n and j �= j′; j, j′ = 1, . . . , d. Let under the working
model, εi, have the dispersion matrix Σ = σ2Ω for i = 1, . . . , n, Ω being a
known positive definite matrix. Denoting Ω−1/2 = ((ωjk))dj,k=1, we have the
following extension of Theorem 2.

Theorem 4. Define

μ∗
n =

√
n

d∑
k=1

cols
k(kn+m−1)
(k−1)(kn+m−1)+1

((
GT

n,1 . . .G
T
n,d

) (
Ω1/2 ⊗ Ikn+m−1

))

×(XT
n Xn)

−1
XT

n

d∑
j=1

Y,jω
jk −

√
nJ−1

θ0
Γ(f0),

Σ∗
n = n

d∑
k=1

cols
k(kn+m−1)
(k−1)(kn+m−1)+1

((
GT

n,1 . . .G
T
n,d

) (
Ω1/2 ⊗ Ikn+m−1

))

×(XT
n Xn)

−1

×rows
k(kn+m−1)
(k−1)(kn+m−1)+1

((
Ω1/2 ⊗ Ikn+m−1

) (
GT

n,1 . . .G
T
n,d

)T)
.

Then under the conditions of Theorem 1 and Theorem 2,∥∥Π (√n(θ − θ0) ∈ ·|Y
)
−N

(
μ∗

n, σ
2Σ∗

n

)∥∥
TV

= oP0(1). (4.1)

If σ2 is unknown and is given an inverse gamma prior, then under the conditions
of Theorems 1 and 3,∥∥Π (√n(θ − θ0) ∈ ·|Y

)
−N

(
μ∗

n, σ
2
0Σ

∗
n

)∥∥
TV

= oP0(1), (4.2)

where σ2
0 is the true value of σ2.

Remark 6: In many applications, the regression function is modeled as hθ(t) =
g(fθ(t)) instead of fθ(t), where g is a known invertible function and hθ(t) ∈ R

d.
It should be noted that

dhθ(t)

dt
= g′(fθ(t))

dfθ(t)

dt
= g′(g−1hθ(t))F (t, g−1hθ(t),θ)

= H(t,hθ(t),θ),

which is a known function of t,hθ and θ. Now we can carry out our analysis
replacing F and fθ in (1.1) by H and hθ respectively.
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Remark 7: Often we do not have the data on all the state variables. For the
sake of simplicity let d = 2. Let the true regression function be (f1θ0(·), f2θ0(·))T
and suppose that only the first component Y1 of the response variable Y is
observable. Let the system of ODE be given by

d

dt
f1θ(t) = F1(t, f1θ(t), f2θ(t),θ) (4.3)

d

dt
f2θ(t) = F2(t, f1θ(t), f2θ(t),θ). (4.4)

Model f1(·) by a spline series βTN(·), where β is a free parameter. We substitute
this expression for f1(·) and apply the four stage Runge-Kutta (RK4) method on
(4.4) with meshwidth hn 
 n−1/8 to obtain the corresponding nonparametric
regression model for Y2 on t given by f2(t) = φn(t, f1(t),θ). Now we define

θ = arg min
η∈Θ

∫ 1

0

(f ′
1(t)− F1(t, f1(t), f2(t),η))

2
w(t)dt. (4.5)

Since the initial condition does not appear in the optimization in (4.5), the for-
mulation of the two-step procedure is equivalent of treating the initial condition
unknown, which can be absorbed in the vector of unknown parameters. Under
the identifiability assumption that f1θ(·) �= f1θ′(·) whenever θ �= θ′, the poste-
rior distribution of θ induced from that of f1(·) will satisfy the Bernstein-von
Mises theorem with n−1/2 rate of contraction towards θ0. The proof of this
assertion is given later.

5. Simulation study

We consider the Lotka-Volterra equations to study the posterior distribution of
θ. We consider the case when the true regression function is the solution of the
ODE. For a sample of size n, the xi’s are chosen as xi = (2i − 1)/2n for i =
1, . . . , n. This choice of design points satisfy (2.6) with Q(t) = t. Samples of sizes
50, 100 and 500 are considered. The weight function is chosen as w(t) = t(1 −
t), t ∈ [0, 1]. We simulate 1000 replications for each case. Under each replication
a sample of size 1000 is directly drawn from the posterior distribution of θ and
then 95% equal tailed credible interval is obtained. This method is abbreviated
by “TS” in the tables. Each replication took around one minute. We calculate
the coverage and the average length of the corresponding credible interval over
these 1000 replications. The estimated standard errors of the interval length
and coverage are given inside the parentheses in the tables. We also consider
1000 replications to construct the 95% equal tailed confidence interval based
on asymptotic normality as obtained from the estimation method introduced
by Varah (1982) and modified and studied by Brunel (2008). We abbreviate
this method by “VB” in tables. The estimated standard errors of the interval
length and coverage are given inside the parentheses in the tables. We also
conduct a simulation using Bayesian nonlinear least squares method putting
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Table 1

Coverages and average lengths of the Bayesian credible intervals using TS and RK4 and
confidence interval obtained from VB method for Gaussian error for Lotka-Volterra

equations

n TS VB RK4
coverage length coverage length coverage length

(se) (se) (se) (se) (se) (se)
50 θ1 89.3 6.13 83.6 4.57 85.2 1.84

(0.04) (1.04) (0.05) (0.84) (0.05) (0.23)
θ2 97.3 6.37 82.4 4.26 86.2 2.09

(0.02) (1.27) (0.05) (0.80) (0.05) (0.27)
θ3 93.7 6.59 86.6 4.96 85.9 2.03

(0.03) (1.21) (0.05) (0.98) (0.05) (0.34)
θ4 98.3 6.58 85.5 4.39 85.5 1.85

(0.02) (1.40) (0.05) (0.88) (0.05) (0.31)
100 θ1 93.0 4.24 88.6 3.38 91.6 1.57

(0.02) (0.58) (0.03) (0.46) (0.03) (0.17)
θ2 97.3 4.21 89.0 3.15 92.0 1.78

(0.02) (0.63) (0.03) (0.44) (0.03) (0.20)
θ3 93.3 4.49 88.9 3.60 92.6 1.73

(0.02) (0.62) (0.03) (0.51) (0.03) (0.22)
θ4 97.3 4.27 87.4 3.19 91.7 1.57

(0.02) (0.62) (0.03) (0.46) (0.03) (0.20)
500 θ1 95.7 1.71 94.6 1.55 98.5 0.97

(0.01) (0.11) (0.01) (0.09) (0.00) (0.08)
θ2 97.0 1.63 93.8 1.45 98.9 1.10

(0.01) (0.10) (0.01) (0.09) (0.00) (0.09)
θ3 95.0 1.84 93.8 1.66 98.5 1.06

(0.01) (0.13) (0.01) (0.10) (0.00) (0.10)
θ4 97.0 1.67 93.5 1.48 98.3 0.96

(0.01) (0.11) (0.01) (0.09) (0.00) (0.09)

the same inverse Gamma prior on σ2 and independent Gaussian priors on θj for
j = 1, . . . , 4. The four stage Runge-Kutta (RK4) method is used to construct
the numerical solution of the ODE with n equispaced grid points for a sample
of size n. This numerical solution gives the likelihood based on the Gaussian
working model and hence we construct posterior for θ. We abbreviated this
approach by “RK4” in the tables. Each replication took around two hours in
this method.

Thus we have p = 4, d = 2 and the ODE’s are given by

F1(t,fθ(t),θ) = θ1f1θ(t)− θ2f1θ(t)f2θ(t),

F2(t,fθ(t),θ) = −θ3f2θ(t) + θ4f1θ(t)f2θ(t)

for t ∈ [0, 1] with initial condition f1θ(0) = 1, f2θ(0) = 0.5. The above system
is not analytically solvable. We take θ0 = (10, 10, 10, 10)T . The true regression
function is fθ0(·) = (f1θ0(·), f2θ0(·))T .

The true distribution of error is taken either N(0, (0.2)2) or a scaled t-
distribution with 6 degrees of freedom, where scaling is done in order to make
the standard deviation 0.2. We put an inverse gamma prior on σ2 with shape and
scale parameters being 99 and 1 respectively and independent Gaussian priors on
β1 and β2 with mean vector 0 and dispersion matrix nc−1k−1

n σ2(XT
n Xn)

−1 with
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Table 2

Coverages and average lengths of the Bayesian credible intervals using TS and RK4 and
confidence interval obtained from VB method for scaled t6 error for Lotka-Volterra equations

n TS VB RK4
coverage length coverage length coverage length

(se) (se) (se) (se) (se) (se)
50 θ1 88.9 6.13 83.6 4.55 85.5 1.83

(0.04) (1.02) (0.05) (0.93) (0.05) (0.25)
θ2 97.0 6.36 81.1 4.24 86.3 2.08

(0.02) (1.24) (0.06) (0.87) (0.05) (0.30)
θ3 92.0 6.57 85.1 4.93 87.0 2.03

(0.04) (1.23) (0.05) (1.06) (0.05) (0.32)
θ4 97.7 6.54 84.3 4.36 86.5 1.84

(0.02) (1.42) (0.05) (0.94) (0.05) (0.29)
100 θ1 92.0 4.22 87.6 3.34 90.7 1.56

(0.03) (0.57) (0.03) (0.47) (0.03) (0.18)
θ2 98.3 4.19 88.1 3.13 90.8 1.78

(0.01) (0.62) (0.03) (0.45) (0.03) (0.20)
θ3 94.7 4.53 89.7 3.61 90.0 1.73

(0.02) (0.65) (0.03) (0.56) (0.03) (0.23)
θ4 98.7 4.29 89.4 3.21 90.1 1.57

(0.01) (0.67) (0.03) (0.50) (0.03) (0.21)
500 θ1 95.3 1.72 93.8 1.55 97.6 0.96

(0.01) (0.12) (0.01) (0.10) (0.01) (0.08)
θ2 96.3 1.64 93.2 1.45 97.8 1.09

(0.00) (0.12) (0.01) (0.10) (0.01) (0.09)
θ3 94.7 1.84 93.8 1.66 98.1 1.06

(0.01) (0.13) (0.01) (0.12) (0.01) (0.10)
θ4 97.7 1.67 94.3 1.48 98.1 0.96

(0.00) (0.12) (0.01) (0.10) (0.01) (0.09)

c = 3.5 for TS. We choose kn−1 equispaced interior knots 1
kn

, 2
kn

, . . . , kn−1
kn

. This
specific choice of knots satisfies the quasi-uniformity criteria (2.5) with M = 1.
As far as choosing kn is concerned, we take kn = 16, 17, 20 for n = 50, 100 and
500 respectively by taking the order of kn as n1/9 as suggested by Theorem 1.
The constant multiplier to the chosen asymptotic order is selected through cross
validation. For RK4 we put the same inverse Gamma prior on σ2 and indepen-
dent N(6, 42) priors on θj for j = 1, . . . , 4. The simulation results are summa-
rized in the Tables 1 and 2. Not surprisingly asymptotic normality based confi-
dence intervals obtained from VB method are shorter but too optimistic, failing
to give adequate coverage for finite sample sizes since delta method is known
to underestimate variation. The RK4 credible intervals are shorter because of
asymptotic efficiency. But the corresponding coverages are much lower than 95%
for small samples. Also RK4 method is more computationally expensive.

6. Real life data

(Barnes’ problem) We consider the Barnes’ problem given by the chemical re-
action equations

df1θ(t)

dt
= θ1f1θ(t)− θ2f1θ(t)f2θ(t)
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Fig 1. Observed values and the 95% posterior predictive intervals of f1θ and f2θ over the 10
data points.

df2θ(t)

dt
= θ2f1θ(t)f2θ(t)− θ3f2θ(t).

The data can be found in Varah (1982) where we have 10 data points with
initial value (1, 0.3). We use B-spline basis of order 7 with kn = 2, where we
take the order of kn as n1/9 as suggested in Theorem 1. Again we select the
constant multiplier to the chosen asymptotic order using cross validation.We
put an inverse gamma prior on σ2 with shape and scale parameters 1000 and 1
respectively and use w(t) = t0.3(1 − t)0.3. Conditional on σ2 we put Gaussian
prior on β with mean vector 0 and dispersion matrix nc−1k−1

n σ2(XT
n Xn)

−1

with c = 100. Samples of size 1000 are drawn from the posterior distributions of
θ1, θ2 and θ3. The 95% posterior predictive interval of f1θ(·) and f2θ(·) at the
10 data points is superimposed on the data in Figure 1. The figures show that
most of the observed values are falling within the predictive intervals. For f2θ
some data points are very close to the lower bound which may be attributed to
the small sample size of 10.

7. Proofs

Proof of Theorem 1. The structure of the proof follows that of Proposition 3.1
of Brunel (2008) and Proposition 3.3 of Gugushvili and Klaassen (2012), but
differs substantially in detail since we address posterior variation and also allow
misspecification. First note that Γ(f)− Γ(f0) can be expressed as

∫ 1

0

(
−(D0,0,1F (t, f0(t),θ0))

TD0,1,0F (t, f0(t),θ0)w(t) (7.1)
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− d

dt
[(D0,0,1F (t, f0(t),θ0))

Tw(t)] + (D0,1,0S(t, f0(t),θ0))w(t)

)
×(f(t)− f0(t))dt.

Interchanging the orders of differentiation and integration and using the defini-
tions of θ and θ0,∫ 1

0

(D0,0,1F (t, f(t),θ))
T
(f ′(t)− F (t, f(t),θ))w(t)dt = 0, (7.2)

∫ 1

0

(D0,0,1F (t, f0(t),θ0))
T
(f ′

0(t)− F (t, f0(t),θ0))w(t)dt = 0. (7.3)

Taking difference, we get

∫ 1

0

(
(D0,0,1F (t, f(t),θ)−D0,0,1F (t, f(t),θ0))

T (f ′
0(t)− F (t, f0(t),θ0))

)
w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ0)−D0,0,1F (t, f0(t),θ0))
T

× (f ′
0(t)− F (t, f0(t),θ0))w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ0))
T
(f ′(t)− f ′

0(t)

+ F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ)−D0,0,1F (t, f(t),θ0))
T
(f ′(t)− f ′

0(t)

+ F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ))
T
(F (t, f(t),θ0)− F (t, f(t),θ))w(t)dt = 0.

Replacing the difference between the values of a function at two different values
of an argument by the integral of the corresponding partial derivative, we get

M(f,θ)(θ − θ0)

=

∫ 1

0

(D0,0,1F (t, f(t),θ0)−D0,0,1F (t, f0(t),θ0))
T

×(f ′
0(t)− F (t, f0(t),θ0))w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ0))
T
(f ′(t)− f ′

0(t)

+F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt,

where M(f,θ) is given by

∫ 1

0

(D0,0,1F (t, f(t),θ))
T

{∫ 1

0

D0,0,1F (t, f(t),θ0 + λ(θ − θ0))dλ

}
w(t)dt
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−
∫ 1

0

{∫ 1

0

(D0,0,1S(t, f(t),θ0 + λ(θ − θ0))) dλ

}
w(t)dt

−
∫ 1

0

{∫ 1

0

(D0,0,2F (t, f(t),θ0 + λ(θ − θ0))) dλ

}
(f ′(t)− f ′

0(t)

+F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt.

Note that M(f0,θ0) = Jθ0 . We also define

En = {(f,θ) : sup
t∈[0,1]

|f(t)− f0(t)| ≤ εn, ‖θ − θ0‖ ≤ εn},

where εn → 0. By Lemmas 2 and 3, there exists such a sequence {εn} so
that Π(Ec

n|Y ) = oP0(1). Then, M(f,θ) is invertible and the eigenvalues of
[M(f,θ)]−1 are bounded away from 0 and ∞ for sufficiently large n and

‖(M(f,θ))−1 − J−1
θ0

‖ = o(1)

for (f,θ) ∈ En. Hence, on En

√
n(θ − θ0) =

(
J−1
θ0

+ o(1)
)√

n(T1n + T2n + T3n),

for sufficiently large n, where

T1n =

∫ 1

0

(D0,0,1F (t, f(t),θ0)−D0,0,1F (t, f0(t),θ0))
T

×(f ′
0(t)− F (t, f0(t),θ0))w(t)dt,

T2n =

∫ 1

0

(D0,0,1F (t, f(t),θ0))
T
(f ′(t)− f ′

0(t))w(t)dt,

T3n =

∫ 1

0

(D0,0,1F (t, f(t),θ0))
T
(F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt.

In view of Lemmas 2 and 4, on a set in the sample space with high true prob-
ability, the posterior distribution of J−1

θ0

√
n(T1n + T2n + T3n) assigns most of

its mass inside a large compact set. Thus, we can assert that inside the set En,
the asymptotic behavior of the posterior distribution of

√
n(θ − θ0) is given by

that of

J−1
θ0

√
n(T1n + T2n + T3n). (7.4)

We shall extract
√
nJ−1

θ0
(Γ(f)− Γ(f0)) from (7.4) and show that the remainder

term goes to zero. First write
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T2n = −
∫ 1

0

(
d

dt
[(D0,0,1F (t, f0(t),θ0))

Tw(t)]

)
(f(t)− f0(t))dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ0)−D0,0,1F (t, f0(t),θ0)
T
(f ′(t)− f ′

0(t))w(t)dt,

which follows by integration by parts and the fact that w(0) = w(1) = 0. Note
that the first integral of the above equation appears in (7.1). The norm of the
second integral is bounded by supt∈[0,1] |f(t)−f0(t)|2+supt∈[0,1] |f ′(t)−f ′

0(t)|2 up
to a constant multiple using the continuity of D0,1,1F (t, y,θ). Now we consider
T3n in (7.4). Then,

T3n =

∫ 1

0

(D0,0,1F (t, f0(t),θ0))
T
(F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt

+

∫ 1

0

(D0,0,1F (t, f(t),θ0)−D0,0,1F (t, f0(t),θ0))
T

×(F (t, f0(t),θ0)− F (t, f(t),θ0))w(t)dt. (7.5)

The first integral on the right hand side of (7.5) can be written as

−
∫ 1

0

(D0,0,1F (t, f0(t),θ0))
T
D0,1,0F (t, f0(t),θ0)(f(t)− f0(t))w(t)dt

−
∫ 1

0

(D0,0,1F (t, f0(t),θ0))
T

×
{∫ 1

0

[D0,1,0F (t, f0(t) + λ(f − f0)(t),θ0)−D0,1,0F (t, f0(t),θ0)]dλ

}
×(f(t)− f0(t))w(t)dt

= T31n + T32n,

say. Now T31n appears in (7.1). By the continuity of D0,2,0F (t, y,θ), ‖T32n‖ can
be bounded above by a constant multiple of supt∈[0,1] |f(t)− f0(t)|2. We apply
the Cauchy-Schwarz inequality and the continuity of D0,1,1F (t, y,θ) to bound
the second integral on the right hand side of (7.5) by a constant multiple of
sup{|f(t)− f0(t)|2 : t ∈ [0, 1]}. The term T1n inside the bracket of (7.4) is given
by∫ 1

0

(D0,1,0S(t, f0(t),θ0)) (f(t)− f0(t))w(t)dt

+

∫ 1

0

{∫ 1

0

(D0,1,0S(t, f0(t) + λ(f − f0)(t),θ0)−D0,1,0S(t, f0(t),θ0)) dλ

}
×(f(t)− f0(t))w(t)dt.

The first integral appears in (7.1). The norm of the second integral of the above
display can be bounded by a multiple of sup{|f(t)−f0(t)|2 : t ∈ [0, 1]} using the
continuity of D0,2,1F (t, y,θ) with respect to its arguments. Combining these,
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we find that the norm of J−1
θ0

√
n(T1n + T2n + T3n)− J−1

θ0

√
n (Γ(f)− Γ(f0)) is

bounded above by a multiple of
√
n supt∈[0,1] |f(t)−f0(t)|2+

√
n supt∈[0,1] |f ′(t)−

f ′
0(t)|2. Now applying Lemma 2, we get the desired result.

Proof of Theorem 2. By Theorem 1 and (3.3), it suffices to show that∥∥∥∥∥∥Π
⎛
⎝√

n

d∑
j=1

GT
n,jβj −

√
nJ−1

θ0
Γ(f0) ∈ ·|Y

⎞
⎠−N(μn, σ

2Σn)

∥∥∥∥∥∥
TV

= oP0(1).

(7.6)

Note that the posterior distribution of GT
n,jβj is a normal with mean vector

(1 + σ2ckn/n)
−1GT

n,j(X
T
n Xn)

−1XT
n Y,j and dispersion matrix given by σ2(1 +

σ2ckn/n)
−1GT

n,j(X
T
n Xn)

−1Gn,j . We calculate the Kullback-Leibler divergence
between two Gaussian distributions to prove the assertion. Alternatively, we
can also follow the approach given in Theorem 1 and Corollary 1 of Bontemps
(2011). The Kulback-Leibler divergence between the distributions Np(μ1,Ω1)
and Np(μ2,Ω2) is given by

1

2

(
tr(Ω−1

1 Ω2) + (μ1 − μ2)
TΩ−1

1 (μ1 − μ2)− p− log(det(Ω−1
1 Ω2))

)
.

In the present context μ1 = (1 + σ2ckn/n)
−1GT

n,j(X
T
n Xn)

−1XT
n Y,j , μ2 =

GT
n,j(X

T
n Xn)

−1XT
n Y,j , Ω1 = σ2(1+σ2ckn/n)

−1GT
n,j(X

T
n Xn)

−1Gn,j and Ω2 =

σ2GT
n,j(X

T
n Xn)

−1Gn,j . Note that tr(Ω
−1
1 Ω2) = p+o(1) and log(det(Ω−1

1 Ω2)) =

p log(1 + cσ2kn/n) � kn/n = o(1). From the proof of Lemma 4, it follows
that

(μ1 − μ2)
TΩ−1

1 (μ1 − μ2)

� n
k2n
n2

Y T
,j Xn(X

T
n Xn)

−1Gn,jG
T
n,j(X

T
n Xn)

−1XT
n Y,j

� n
k2n
n2

1

kn

k2n
n2

n

kn
Y T
,j Y,j = oP0(1).

Hence, the total variation distance between the posterior distribution of GT
n,jβj

and a Gaussian distribution with mean GT
n,j(X

T
n Xn)

−1XT
n Y,j and dispersion

matrix σ2GT
n,j(X

T
n Xn)

−1Gn,j converges in P0- probability to zero for j =
1, . . . , d. Since the posterior distributions of βj and β′

j are mutually indepen-
dent for j �= j′; j, j′ = 1, . . . , d, we can assert that the posterior distribution
of

√
n
∑d

j=1 G
T
n,jβj −

√
nJ−1

θ0
Γ(f0) can be approximated in total variation by

N(μn, σ
2Σn).

Proof of Theorem 3. The marginal posterior of σ2 is also inverse gamma with
parameters (dn+2a)/2 and b+

∑d
j=1 Y

T
,j (In−PXn(1+c(kn/n))

−1)Y,j/2, where

PXn = Xn(X
T
n Xn)

−1XT
n . Straightforward calculations show that
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E(σ2|Y ) =
1
2

∑d
j=1

{
Y T
,j Y,j − Y T

,j PXnY,j(1 + cknn
−1)−1

}
+ b

1
2dn+ a− 1

,

Var(σ2|Y ) =

(
E(σ2|Y )

)2
1
2dn+ a− 2

.

By Chebyshev’s inequality, |E(σ2|Y ) − σ2
0 | = OP0(n

−1/2) and Var(σ2|Y ) =
OP0(n

−1). In particular, the marginal posterior distribution of σ2 is consistent
at the true value of error variance. Let N be an arbitrary neighborhood of σ0.
Then, Π(N c|Y ) = oP0(1). We observe that

sup
B∈Rp

∣∣Π(√n(θ − θ0) ∈ B|Y )− Φ(B;μn, σ
2
0Σn)

∣∣
≤

∫
sup

B∈Rp

∣∣Π(√n(θ − θ0) ∈ B|Y , σ)− Φ(B;μn, σ
2Σn)

∣∣ dΠ(σ|Y )

+

∫
sup

B∈Rp

∣∣Φ(B;μn, σ
2Σn)− Φ(B;μn, σ

2
0Σn)

∣∣ dΠ(σ|Y )

≤ sup
σ∈N

sup
B∈Rp

∣∣Π(√n(θ − θ0) ∈ B|Y , σ)− Φ(B;μn, σ
2Σn)

∣∣
+ sup

σ∈N ,B∈Rp

∣∣Φ(B;μn, σ
2Σn)− Φ(B;μn, σ

2
0Σn)

∣∣+ 2Π(N c|Y ).

The total variation distance between the two normal distributions appearing
in the second term of the previous display is bounded by a constant multiple
of |σ − σ0|, and hence the term can be made arbitrarily small by choosing N
appropriately. The first term converges in probability to zero by (3.4). The third
term converges in probability to zero by the posterior consistency. Hence, we
get the desired result.

Proof of Theorem 4. According to the fitted model, Y 1×d
i, ∼ Nd((Xn)i,Bn,

Σd×d) for i = 1, . . . , n. The logarithm of the posterior probability density func-
tion (p.d.f.) is negative half times

n∑
i=1

((Xn)i,Bn − Yi,)Σ
−1
(
BT

n (X
T
n ),i − Y T

i,

)
+

d∑
j=1

βT
j

XT
n Xn

nc−1k−1
n

βj , (7.7)

where Bn = (β1, . . . ,βd). The quadratic term in βj above for j = 1, . . . , d, can
be consolidated to

tr

((
Σ−1 +

cknId
n

)
BT

nX
T
n XnBn

)
. (7.8)

The term in (7.7) which is linear in βj , j = 1, . . . , d, is given by

n∑
i=1

(Xn)i,(β1 . . .βd)Σ
−1Y T

i, = tr
(
XnBnΣ

−1Y T
)
= tr

(
Σ−1Y TXnBn

)
.
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A completing square argument gives the posterior density to be proportional to

exp

⎧⎨
⎩−1

2
tr

⎡
⎣(Σ−1 +

cknId
n

)(
Bn − (XT

n Xn)
−1XT

n Y Σ−1

(
Σ−1 +

cknId
n

)−1
)T

XT
n Xn

(
Bn − (XT

n Xn)
−1XT

n Y Σ−1

(
Σ−1 +

cknId
n

)−1
)⎤⎦
⎫⎬
⎭ ,

which can be identified with the pdf of a matrix normal distribution. More
precisely,

vec(Bn)|Y ∼ N

(
vec

(
(XT

n Xn)
−1XT

n Y Σ−1

(
Σ−1 +

cknId
n

)−1
)
,

(
Σ−1 +

cknId
n

)−1

⊗ (XT
n Xn)

−1

)
.

For j = 1, . . . , d, the posterior mean of βj is a weighted sum of (XT
n Xn)

−1XT
nY,j′

for j′ = 1, . . . , d. The weight attached with (XT
n Xn)

−1XT
n Y,j is of the order of

1, whereas for j′ �= j, the contribution from (XT
n Xn)

−1XT
n Y,j′ is of the order

of kn/n which goes to zero as n goes to infinity. Thus, the results of Lemmas 1
to 4 can be shown to hold under this setup. We are interested in the limiting
distribution of J−1

θ0
Γ(f) =

∑d
j=1 G

T
n,jβj = (GT

n,1 . . .G
T
n,d)vec(Bn). We note

that the posterior distribution of
((

Σ−1 + cknId/n
)1/2 ⊗ Ikn+m−1

)
vec(Bn)

is a (kn + m − 1)d-dimensional normal distribution with mean vector and

dispersion matrix being vec
(
(XT

n Xn)
−1XT

n Y Σ−1
(
Σ−1 + cknId/n

)−1/2
)
and

Id ⊗ (XT
n Xn)

−1 respectively, since by the properties of Kronecker product, for
the matrices A, B and D of appropriate orders (BT ⊗A)vec(D) = vec(ADB).
Let us consider the mean vector of the posterior distribution of the vector((

Σ−1 + cknId/n
)1/2 ⊗ Ikn+m−1

)
vec(Bn). We observe that

(XT
n Xn)

−1XT
n Y Σ−1

(
Σ−1 +

cknId
n

)−1/2

= (XT
n Xn)

−1XT
n (Y,1 . . .Y,d)

(
Σ+

cknΣ
2

n

)−1/2

= (XT
n Xn)

−1XT
n

⎛
⎝ d∑

j=1

Y,jcj1 . . .

d∑
j=1

Y,jcjd

⎞
⎠ ,

where Cn = ((cjk)) =
(
Σ+ cknΣ

2/n
)−1/2

. For k = 1, . . . , d, we define Zk to
be the sub-vector consisting of [(k − 1)(kn +m− 1) + 1]th to [k(kn +m− 1)]th

elements of the vector
((

Σ−1 + cknId
n

)1/2 ⊗ Ikn+m−1

)
vec(Bn). Then Zk|Y ∼
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Nkn+m−1

(
(XT

n Xn)
−1

XT
n

∑d
j=1 Y,jcjk, (X

T
n Xn)

−1
)
. Also, the posterior distri-

butions of Zk and Zk′ are mutually independent for k �= k′; k, k′ = 1, . . . , d.
Now we show that the total variation distance between the posterior distribu-

tion of Zk and N
(
(XT

n Xn)
−1

XT
n

∑d
j=1 Y,jσ

jk, (XT
n Xn)

−1
)
converges in P0-

probability to zero for k = 1, . . . , d, where Σ−1/2 = ((σjk)). The total vari-
ation distance between two multivariate normal distributions with equal dis-

persion matrix (XT
n Xn)

−1 and mean vectors (XT
n Xn)

−1
XT

n

∑d
j=1 Y,jcjk and

(XT
n Xn)

−1
XT

n

∑d
j=1 Y,jσ

jk is bounded by
∑d

j=1 ‖(XT
n Xn)

−1/2
XT

n Y,j(cjk −
σjk)‖. Fixing k, for j = 1, . . . , d, we have that

‖(XT
n Xn)

−1/2
XT

n Y,j(cjk − σjk)‖ = |cjk − σjk|
(
Y T
,j Xn(X

T
n Xn)

−1
XT

n Y,j

)1/2
≤ |cjk − σjk|

(
Y T
,j Y,j

)
,

since the eigenvalues of Xn(X
T
n Xn)

−1
XT

n are either zero or 1. Since clearly Cn

converges to Σ−1/2 at the rate kn/n, we have for j = 1, . . . , d,

‖(XT
n Xn)

−1
XT

n Y,j(cjk − σjk)‖ � kn
n
OP0(

√
n) = oP0(1). (7.9)

The total variation distance between N((XT
n Xn)

−1
XT

n

∑d
j=1 Y,jcjk,

(XT
n Xn)

−1
) and N((XT

n Xn)
−1

XT
n

∑d
j=1 Y,jσ

jk, (XT
n Xn)

−1
) therefore conver-

ges to zero in P0-probability. Note that we can write (GT
n,1 . . .G

T
n,d)vec(Bn) in

terms of Zk as

d∑
k=1

cols
k(kn+m−1)
(k−1)(kn+m−1)+1

((
GT

n,1 . . .G
T
n,d

)((
Σ−1 +

cknId
n

)1/2

⊗ Ikn+m−1

)−1)
Zk.

Since the posterior distributions of Zk, k = 1, . . . , d are independent, we there-
fore obtain∥∥(√n

(
GT

n,1 . . .G
T
n,d

)
vec(Bn)−

√
nJ−1

θ0
(f0)

)
−N(μ∗∗

n ,Σ∗∗
n )
∥∥
TV

= oP0(1),

where μ∗∗
n is given by

√
n

d∑
k=1

cols
k(kn+m−1)
(k−1)(kn+m−1)+1

((
GT

n,1 . . .G
T
n,d

)((
Σ−1 +

cknId
n

)1/2

⊗ Ikn+m−1

)−1)

×(XT
n Xn)

−1
XT

n

d∑
j=1

Y,jσ
jk − J−1

θ0

√
nΓ(f0),
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and Σ∗∗
n is given by

n

d∑
k=1

cols
k(kn+m−1)
(k−1)(kn+m−1)+1⎛
⎝(GT

n,1 . . .G
T
n,d

)((
Σ−1 +

cknId
n

)1/2

⊗ Ikn+m−1

)−1
⎞
⎠

× (XT
n Xn)

−1 × rows
k(kn+m−1)
(k−1)(kn+m−1)+1⎛

⎝((Σ−1 +
cknId
n

)1/2

⊗ Ikn+m−1

)−1 (
GT

n,1 . . .G
T
n,d

)T⎞⎠ .

Following the steps of the proof of Lemma 4, it can be shown that the eigen-
values of the matrix Σ∗

n mentioned in the statement of Theorem 4 are bounded
away from zero and infinity. We can show that the Kullback-Leibler divergence
of N(μ∗∗

n ,Σ∗∗
n ) from N(μ∗

n, σ
2Σ∗

n) converges in probability to zero by going
through some routine matrix manipulations. Hence,∥∥(√n

(
GT

n,1 . . .G
T
n,d

)
vec(Bn)−

√
nJ−1

θ0
(f0)

)
−N(μ∗

n, σ
2Σ∗

n)
∥∥
TV

= oP0(1).

The above expression is equivalent to (7.6) of the proof of Theorem 2. Following
steps similar to those of Theorem 2, we get (4.1). We obtain (4.2) by following
the proof of Theorem 3.

Proof of Remark 7. By the definition of θ in (4.5), both the expressions∫ 1

0

(D0,0,0,1F1(t, f1(t), f2(t),θ))
T
(f ′

1(t)− F1(t, f1(t), f2(t),θ))w(t)dt

and∫ 1

0

(D0,0,0,1F1(t, f1θ0(t), f2θ0(t),θ0))
T
(f ′

1θ0
(t)−F1(t, f1θ0(t), f2θ0(t),θ0))w(t)dt

are zero vectors, and hence the difference(∫ 1

0

(D0,0,0,1F1(t, f1(t), f2(t),θ))
T
(f ′

1(t)− F1(t, f1(t), f2(t),θ))w(t)dt

−
∫ 1

0

(D0,0,0,1F1(t, f1(t), f2θ0(t),θ))
T
(f ′

1(t)− F1(t, f1(t), f2θ0(t),θ))w(t)dt

)

+

(∫ 1

0

(D0,0,0,1F1(t, f1(t), f2θ0(t),θ))
T
(f ′

1(t)− F1(t, f1(t), f2θ0(t),θ))w(t)dt

−
∫ 1

0

(D0,0,0,1F1(t, f1θ0(t), f2θ0(t),θ0))
T
(f ′

1θ0
(t)

− F1(t, f1θ0(t), f2θ0(t),θ0))w(t)dt

)
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is the zero vector as well. Since f2θ0(t) is a known function of t, it can be
absorbed in the first argument of F1 which then becomes a function of three
arguments. Then the second part of the left side above can be analyzed as in
Theorem 1. To deal with the first part of left side it is sufficient to study the
difference f2(·)− f2θ0(·). Note that f2(t) can be written as

φn(t, f1θ0(t),θ0) + (f1(t)− f1θ0(t))D0,1,0φn(t, f1θ0(t),θ0)

+(θ − θ0)
TD0,0,1φn(t, f1θ0(t),θ0) +O

(
(f1(t)− f1θ0(t))

2
)
+O

(
‖θ − θ0‖2

)
.

By the accuracy of the RK4 method the difference supt∈[0,1] |φn(t, f1θ0(t),θ0)−
f2θ0(t)| is of the order h4

n. Now using Lemmas 2 to 4, we can conclude that

‖
√
n(θ − θ0)− J−1

θ0

√
n(Γ(f1)− Γ(f10))‖ → 0

as n → ∞. Now we can prove the Bernstein-von Mises theorem as before.

Appendix

A few lemmas presented below are instrumental in proving the main results. We
denote by E0(·) and Var0(·) the expectation and variance operators respectively
with respect to P0-probability. The following lemma helps to estimate the bias
of the Bayes estimator.

Lemma 1. For m ≥ 2 and kn satisfying n1/2m 
 kn 
 n, for r = 0, 1,

supt∈[0,1] |E0(E(f
(r)(t)|Y ))− f

(r)
0 (t)| = o(k

r+1/2
n /

√
n).

Proof. We note that f (r)(t) = (N (r)(t))Tβ for r = 0, 1 with N (r)(·) standing
for the rth order derivative of N(·). By (2.8),

E(f (r)(t)|Y ) =

(
1 +

cknσ
2

n

)−1

(N (r)(t))T (XT
n Xn)

−1
XT

n Y . (A.10)

Zhou and Wolfe (2000) showed that

(N (r)(t))T (XT
n Xn)

−1
N (r)(t) � k2r+1

n

n
. (A.11)

Since f
(r)
0 ∈ C(m−r), there exists a β∗ (De Boor, 1978, Theorem XII.4, page

178) such that

sup
t∈[0,1]

|f (r)
0 (t)− (N (r)(t))Tβ∗| = O(k−(m−r)

n ). (A.12)

For any t ∈ [0, 1], we can bound the absolute bias of E(f
(r)
0 (t)|Y ) multiplied

with
√
nk

−r−1/2
n by

√
nk−r−1/2

n sup
t∈[0,1]

|E0(E(f
(r)(t)|Y ))− f

(r)
0 (t)|
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≤
√
nk−r−1/2

n sup
t∈[0,1]

∣∣∣∣∣
(
1 +

cknσ
2

n

)−1

(N (r)(t))Tβ∗ − (N (r)(t))Tβ∗

∣∣∣∣∣
+
√
nk−r−1/2

n

(
1 +

cknσ
2

n

)−1

× sup
t∈[0,1]

|(N (r)(t))T (XT
n Xn)

−1
XT

n (f0(x)−Xnβ
∗)|

+
√
nk−r−1/2

n sup
t∈[0,1]

|f (r)
0 (t)− (N (r)(t))Tβ∗|.

Using the fact that supt∈[0,1] |(N (r)(t))Tβ∗| = O(1), first term on the right hand

side of the previous inequality is of the order of k
−r+1/2
n /

√
n. Using the Cauchy-

Schwarz inequality, (A.11) and (A.12), we can bound the second term up to

a constant multiple by
√
nk−m

n . The third term has the order of
√
nk

−m−1/2
n

as a result of (A.12). By the assumed conditions on m and kn, the assertion
holds.

The following lemma controls posterior variability.

Lemma 2. If m ≥ 5 and n1/2m 
 kn 
 n1/8, then for r = 0, 1 and for all

ε > 0, Π
(√

n supt∈[0,1] |f (r)(t)− f
(r)
0 (t)|2 > ε|Y

)
= oP0(1).

Proof. By Markov’s inequality and the fact that |a+ b|2 ≤ 2(|a|2 + |b|2) for two
real numbers a and b, we can bound Π

(
supt∈[0,1]

√
n|f (r)(t)− f

(r)
0 (t)|2 > ε|Y

)
by

2

√
n

ε

{
sup

t∈[0,1]

∣∣∣E(f (r)(t)|Y )− f
(r)
0 (t)

∣∣∣2
}

+E

[
sup

t∈[0,1]

∣∣∣f (r)(t)− E(f (r)(t)|Y )
∣∣∣2 |Y

]}
. (A.13)

Now we obtain the asymptotic orders of the expectations of the two terms inside
the bracket above. We can bound the expectation of the first term by

2 sup
t∈[0,1]

∣∣∣E0(E(f
(r)(t)|Y ))− f

(r)
0 (t)

∣∣∣2

+2E0

[
sup

t∈[0,1]

∣∣∣E(f (r)(t)|Y )− E0(E[f
(r)(t)|Y ])

∣∣∣2
]
. (A.14)

Using (A.10), supt∈[0,1]

∣∣E(f (r)(t)|Y )− E0(E[f
(r)(t)|Y ])

∣∣ can be bounded up to
a constant multiple by

max
1≤k≤n

∣∣∣(N (r)(sk))
T (XT

n Xn)
−1

XT
n ε
∣∣∣
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+ sup
t,t′:|t−t′|≤n−1

∣∣∣(N (r)(t)−N (r)(t′))T (XT
n Xn)

−1
XT

n ε
∣∣∣ ,

where sk = k/n for k = 1, . . . , n. Applying the mean value theorem to the second
term of the above sum, we can bound the expression inside the E0 expectation
in the second term of (A.14) by a constant multiple of

max
1≤k≤n

∣∣∣(N (r)(sk))
T (XT

n Xn)
−1

XT
n ε
∣∣∣2

+ sup
t∈[0,1]

1

n2

∣∣∣(N (r+1)(t))T (XT
n Xn)

−1
XT

n ε
∣∣∣2 . (A.15)

By the spectral decomposition, we can write Xn(X
T
n Xn)

−1
XT

n = P TDP ,
where P is an orthogonal matrix and D is a diagonal matrix with kn +m− 1
ones and n− kn −m+ 1 zeros in the diagonal. Now using the Cauchy-Schwarz
inequality, we get

E0

(
max

1≤k≤n

∣∣∣(N (r)(sk))
T (XT

n Xn)
−1

XT
n ε
∣∣∣2)

≤ max
1≤k≤n

{
(N (r)(sk))

T (XT
n Xn)

−1
N (r)(sk)

}
E0

(
εTP TDPε

)
.

By Lemma 5.4 of Zhou andWolfe (2000) and the fact thatVar0(Pε) = Var0(ε),
we can conclude that the expectation of the first term of (A.15) is O(k2r+2

n /n).
Again applying the Cauchy-Schwarz inequality, the second term of (A.15) is
bounded by

sup
t∈[0,1]

{
1

n2
(N (r+1)(t))T (XT

n Xn)
−1

N (r+1)(t)

}
(εT ε),

whose expectation is of the order n(k2r+3
n /n3) = k2r+3

n /n2, using Lemma 5.4 of
Zhou and Wolfe (2000). Thus, the expectation of the bound given by (A.15) is
of the order k2r+2

n /n. Combining it with (A.14) and Lemma 1, we get

E0

[
sup

t∈[0,1]

∣∣∣E(f (r)(t)|Y )− f
(r)
0 (t)

∣∣∣2
]
= O

(
k2r+2
n

n

)
. (A.16)

Define ε∗ := (XT
n Xn)

1/2
β −

(
1 + σ2ckn

n

)−1

(XT
n Xn)

−1/2
XT

n Y . Note that

ε∗|Y ∼ N(0,
(
σ−2 + ckn/n

)−1
Ikn+m−1). Expressing supt∈[0,1] |f (r)(t) −

E[f (r)(t)|Y ]| as supt∈[0,1]

∣∣∣(N (r)(t))T (XT
n Xn)

−1/2
ε∗
∣∣∣ and using the Cauchy-

Schwarz inequality and Lemma 5.4 of Zhou and Wolfe (2000), the second term
inside the bracket in (A.13) is seen to be O(k2r+2

n /n). Combining it with (A.13)
and (A.16) and using 2r + 2 ≤ 4, we have the desired assertion.

Lemmas 1 and 2 can be used to prove the posterior consistency of θ as shown
in the next lemma.
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Lemma 3. If m ≥ 5 and n1/2m 
 kn 
 n1/8, then for all ε > 0, Π(‖θ−θ0‖ >
ε|Y ) = oP0(1).

Proof. By the triangle inequality, using the definition in (2.9),

|Rf (η)−Rf0(η)| ≤ ‖f ′(·)− f ′
0(·)‖w + ‖F (·, f(·),η)− F (·, f0(·),η)‖w

≤ c1 sup
t∈[0,1]

|f ′(t)− f ′
0(t)|+ c2 sup

t∈[0,1]

|f(t)− f0(t)|,

for appropriately chosen constants c1 and c2. We denote the set Tn = {f :
supt∈[0,1] |f(t)− f0(t)| ≤ τn, supt∈[0,1] |f ′(t)− f ′

0(t)| ≤ τn} for some τn → 0. By
Lemma 2, there exists such a sequence {τn} so that Π(T c

n|Y ) = oP0(1). Hence
for f ∈ Tn,

sup
η∈Θ

|Rf (η)−Rf0(η)| ≤ (c1 + c2)τn = o(1)

Therefore, for any δ > 0, Π(supη∈Θ |Rf (η) − Rf0(η)| > δ|Y ) = oP0(1). By
assumption (3.1), for ‖θ − θ0‖ ≥ ε there exists a δ > 0 such that

δ < Rf0(θ)−Rf0(θ0) ≤ Rf0(θ)−Rf (θ) +Rf (θ0)−Rf0(θ0)

≤ 2 sup
η∈Θ

|Rf (η)−Rf0(η)|,

since Rf (θ) ≤ Rf (θ0). Consequently,

Π(‖θ − θ0‖ > ε|Y ) ≤ Π

(
sup
η∈Θ

|Rf (η)−Rf0(η)| > δ/2|Y
)

= oP0(1).

The asymptotic behavior of the posterior distribution of
√
nJ−1

θ0
(Γ(f) −

Γ(f0)) is given by the next lemma.

Lemma 4. Under the conditions of Theorem 2, on a set in the sample space
with high true probability, the posterior distribution of

√
nJ−1

θ0
(Γ(f) − Γ(f0))

assigns most of its mass inside a large compact set.

Proof. Note that

J−1
θ0

Γ(f) =
d∑

j=1

GT
n,jβj , J−1

θ0
Γ(f0) =

d∑
j=1

∫ 1

0

A,j(t)fj0(t)dt,

where A,j(t) denotes the j
th column of the matrix A(t) as defined in Remark 5

for j = 1, . . . , d. In order to prove the assertion, we show that Var(GT
n,jβj |Y )

and Var0(E(GT
n,jβj |Y )) have all eigenvalues of the order n−1 and

max
1≤k≤p

∣∣∣∣[E0(E(GT
n,jβj |Y ))]k −

∫ 1

0

Ak,j(t)fj0(t)dt

∣∣∣∣ = o
(
n−1/2

)
,
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for k = 1, . . . , p, j = 1, . . . , d, where Ak,j(t) is the (k, j)th element of the matrix
A(t). Let us fix j ∈ {1, . . . , d}. We note that

E(GT
n,jβj |Y ) =

(
1 +

cknσ
2

n

)−1

GT
n,j(X

T
n Xn)

−1
XT

n Y,j .

Hence,

Var0(E(GT
n,jβj |Y )) = σ2

0

(
1 +

σ2ckn
n

)−2

GT
n,j(X

T
n Xn)

−1
Gn,j .

Also note that

Var(GT
n,jβj |Y ) = σ2

(
1 +

σ2ckn
n

)−1

GT
n,j(X

T
n Xn)

−1
Gn,j .

If Ak,j(·) ∈ Cm∗
((0, 1)) for some 1 ≤ m∗ < m, then by equation (2) of De Boor

(1978, page 167), we have sup{|Ak,j(t) − Ãk,j(t)| : t ∈ [0, 1]} = O(k−1
n ), where

Ãk,j(·) = αT
k,jN(·) and αT

k,j = (Ak,j(t
∗
1), . . . , Ak,j(t

∗
kn+m−1)) with appropriately

chosen t∗1, . . . , t
∗
kn+m−1. We can express GT

n,j(X
T
n Xn)

−1Gn,j as

(Gn,j − G̃n,j)
T (XT

n Xn)
−1(Gn,j − G̃n,j) + G̃T

n,j(X
T
n Xn)

−1(Gn,j − G̃n,j)

+G̃T
n,j(X

T
n Xn)

−1G̃n,j + (Gn,j − G̃n,j)
T (XT

n Xn)
−1G̃n,j

where [G̃T
n,j ]k, =

∫ 1

0
Ãk,j(t)(N(t))T dt for k = 1, . . . , p. Let Ã = ((Ãk,j)). We

study the asymptotic orders of the eigenvalues of the matrices
G̃T

n,j(X
T
n Xn)

−1G̃n,j and (Gn,j − G̃n,j)
T (XT

n Xn)
−1(Gn,j − G̃n,j). Note that

αT
k,j

∫ 1

0

N(t)NT (t)dtαk,j =

∫ 1

0

Ã2
k,j(t)dt � ‖αk,j‖2k−1

n ,

by Lemma 6.1 of Zhou et al. (1998) implying that the eigenvalues of the matrix∫ 1

0
N(t)(N(t))T dt are of order k−1

n . Since the eigenvalues of
(
XT

n Xn/n
)
are of

the order k−1
n (Zhou et al., 1998), we have

maxeig
(
G̃T

n,j(X
T
n Xn)

−1G̃n,j

)
� kn

n
maxeig

(
G̃T

n,jG̃n,j

)
=

kn
n
maxeig

(∫ 1

0

Ã,j(t)N
T (t)dt

∫ 1

0

N(t)(Ã,j(t))
T dt

)

=
kn
n
maxeig

(
(α1,j · · ·αp,j)

T

(∫ 1

0

N(t)NT (t)dt

)2

(α1,j · · ·αp,j)

)

� 1

nkn
maxeig((αT

k,jαl,j))
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� 1

n
maxeig((〈Ak,j(·), Al,j(·)〉))

=
1

n
maxeig (Bj) �

1

n
.

Similarly, it can be shown that mineig
(
G̃T

n,j(X
T
n Xn)

−1G̃n,j

)
� n−1. Let us

denote by 1kn+m−1 the kn +m− 1-component vector with all elements 1. Then
for k = 1, . . . , p,[

(Gn,j − G̃n,j)
T (XT

n Xn)
−1(Gn,j − G̃n,j)

]
k,k

=

∫ 1

0

(Ak,j(t)− Ãk,j(t))(N(t))T dt (XT
n Xn)

−1

×
∫ 1

0

(Ak,j(t)− Ãk,j(t))(N(t))dt

=
1

n

∫ 1

0

(Ak,j(t)− Ãk,j(t))(N(t))T dt
(
XT

n Xn/n
)−1

×
∫ 1

0

(Ak,j(t)− Ãkj(t))N(t)dt

� kn
n

∫ 1

0

(Ak,j(t)− Ãk,j(t))(N(t))T dt

∫ 1

0

(Ak,j(t)− Ãk,j(t))N(t)dt

� 1

nkn
,

the last step following by the application of the Cauchy-Schwarz inequality and

the facts that sup{|Ak,j(t)− Ãk,j(t)| : t ∈ [0, 1]} = O(k−1
n ) and

∫ 1

0
‖N(t)‖2dt ≤

1. Thus, the eigenvalues of (Gn,j − G̃n,j)
T (XT

n Xn)
−1(Gn,j − G̃n,j) are of the

order (nkn)
−1 or less. Hence, the eigenvalues of GT

n,j(X
T
n Xn)

−1Gn,j are of the

order n−1.
As in the proof of Lemma 1, we can write for the β∗

j given in (A.12),

√
n

∣∣∣∣[E0(E(GT
n,jβj |Y ))]k −

∫ 1

0

Ak,j(t)fj0(t)dt

∣∣∣∣
≤

√
n

∣∣∣∣∣
(
1 +

cknσ
2

n

)−1

[GT
n,jβ

∗
j ]k − [GT

n,jβ
∗
j ]k

∣∣∣∣∣
+
√
n

(
1 +

cknσ
2

n

)−1 ∣∣∣[GT
n,j(X

T
n Xn)

−1
XT

n (fj0(x)−Xnβ
∗
j )]k

∣∣∣
+
√
n

∣∣∣∣
∫ 1

0

Ak,j(t)fj0(t)dt− [GT
n,jβ

∗
j ]k

∣∣∣∣ ,
where [GT

n,jβ
∗
j ]k =

∫ 1

0
Ak,j(t)f

∗
j (t)dt and f∗

j (t) = NT (t)β∗
j for k = 1, . . . , p.

Proceeding in the same way as in the proof of Lemma 1, we can show that each
term on the right hand side of the above equation converges to zero. Hence, the
proof.
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