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1. Introduction

Functional data often arise from measurements obtained by separating an almost
continuous time period into natural consecutive intervals, for example days.
The functions thus obtained form a time series {Y;,i € Z}, where each Y; is
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a curve Y;(t),t € [a,b]. Such data structures are referred as functional time
series. Without loss of generality, we assume that the domain of the functions is
[0,1]. A central issue in functional time series analysis is taking into account the
temporal dependence of the observations, i.e. the dependence between curves of
{Yi(t),7 < m} and {Yj(t),j > m + 1} for any | € Z. Further, we assume that
Yi(-), ¢ € Z, is strictly stationary (stationary in short); see [3]. If a functional
time series is not stationary, it is assumed that it can be transformed into a
stationary time series by a preprocessing procedure.

The functional data analysis focuses mostly on i.i.d. functional observations;
see [18, 22, 23, 17, 21] and references therein. In spite of the methodological
advancement with independent observations, the work on functional time se-
ries has been sparse and of a more theoretical nature; see, for example, [3].
Functional time series retains the merit of functional observations, while it is
more flexible than purely i.i.d curves by allowing a dependence structure. Ap-
plications of functional time series analysis are as wide as in the i.i.d. case. For
example, we consider S&P500 data. We interpret the intraday information as
curves, and the dependence among curves is natural. Recently, more and more
researchers work on this type of functional data. To the best of our knowledge,
the available inference methods focus mostly on nonparametric estimations of
mean and covariance functions of functional series; see Part IV of [10, 1, 13, 14]
among the others. A simultaneous confidence band is lacking in the literature.

Two distinct types of functional data have been studied. [22, 23, 16] studied
sparse longitudinal data. While [5, 19] and [10] concerned dense functional data.
As in the i.i.d. case, functional time series has the same two scenarios, and we
only deal with equally-spaced dense design in this paper.

Denote by Y;; the jth observation of the random curve &;(-) at the time point
Xij, 1 <i<n, 1< j < N;. For the equally-spaced dense design, Ni = Ny =
--=Np,=N,X;; =j/N,1<i<n,1<j<N,with N going to infinity. For
the ith subject, ¢ = 1,2,...,n, its sample path {j/N,Y;;} is a noisy realization
of the continuous time stochastic process &;(t) in the sense that

Yij = &(/N) + o (j/N)eij, (L.1)

with iid. errors e;; satisfying E (e;;) = 0,E(e};) = 1, and {&(t),t € [0,1]},
independent of errors, is L?, i.e., E [0 E2(t)dt < 4oc.

The basic unit of information of functional data analysis is the entire ob-
served curve, and an important theoretical and practical issue is the necessity
of detecting the global trend of its mean function. Nonparametric simultane-
ous confidence bands are powerful tools of global inferences for functions, see
[6, 9, 11, 4, 20, 24, 25] for the theory and applications. For i.i.d. functional data,
[4] constructed simultaneous confidence bands for its mean function.

The paper seeks to construct simultaneous confidence bands of the mean
function of dense functional time series data. Our goal is to develop a simple but
flexible nonparametric method with a well-justified theory and a fast algorithm
to implement in practice. This is done by approximating the nonparametric
components via spline estimation. Our approach allows for formal derivation
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of the asymptotic properties of the proposed estimators. We establish the /-
consistency of the proposed estimator for the mean function.

We organize our paper as follows. In Section 2 we describe the physical de-
pendence and asymptotics under it. In Section 3 we state our main results of
confidence bands. In Section 4 we provide the procedure to implement the con-
struction of the proposed confidence band. In Section 5 we report findings of a
simulation study. An empirical example in Section 6 illustrates how we use the
confidence bands for statistical inferences. We end the paper with a concluding
section. Technical proofs are in the Appendix.

2. Weak dependence

In this paper we use the following notation. Let F' denote L?([0, 1]); the Hilbert
space on a compact domain of square integrable functions with the norm ||z||3 =

fol 22(s)ds and the inner product (z;y) = fol x(s)y(s)ds for x;y € F. For

a Lebesgue measurable function ¢ on [0, 1], denote [|¢|, = {fol lp(t)|" dt}/,
1 <7 < +oc and [[¢[| o, = supse(o,1) [#(t)[. For any vector ¢ = (C1,...,(s) € R?,

denote the norm |¢|, = (|G| +---+ |CS|7‘)1/T7 1 <7 < 400, [<lee =
max (|(1],...,]¢sl). || - || means || - ||2 when r is not specified.

Now we focus on the temporal dependence of functional time series, and
we extend the physical dependence for random variables ([15] and [2]) to a
functional setup. Recall that, in our paper, the strictly stationary time series
{Y;}, is functional valued rather than real valued, i.e. each Y; is a random
curve.

In the following, we directly use the description of the physical dependence
in [2] to a functional setup. Assume EY; = 0 with E || Y1)} < 00, 2 < p < 4. For
a stationary sequence allowing the representation

Yi=g(...,€-1,€€41,...),

where ¢;,i € Z are ii.d random elements, and g : F4 — F is a measurable
function with F' = L?([0, 1]). For i € Z define the shift process F; = (€,44,1 € Z).
The central element of F; is €;, and Y; = g(F;). Let {€};7 € Z} be an i.i.d. copy
of {e;;i € Z}, and for i,j € Z, let F; ; denote the process obtained from F;
by replacing the coordinate €; by €. Define Y; o = g(F; (0})- Let the physical

dependence measure §; , = (E||Y; — Ypr)l/p. This quantity can be interpreted
as the dependence of Y; on ¢ and Y; o is a coupled version of Y; with €y in the
latter replaced by €. Throughout the paper we assume

Op =) iy < 0. (2.1)
1=1

We provide an example with the functional physical dependence.

Example 1. Define the nonlinear autoregressive model by

Xn=f(Xpn-1) +€n,n € Z, (2.2)
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where ||f(z) — fWIl < pllz — y|,0 < p < 1. Special cases of (2.2) include
the functional AR model. If Elleglla < oo, then X, can be represented as
g(...,en_1,€n) and satisfies 6, , < cp™ for some 0 < p < 1. Therefore (2.1)
18 satisfied.

In the literature in functional time series, m-approximable dependence has
been extensively used, see [1] and [13] among the others. In their framework,
weak dependence is quantified by a summability condition which intuitively
states that the function g decays so fast that the impact of shocks far back in
the past is so small that they can be replaced by their independent copies, with
only a small change in the distribution of the process. To be specific, define

Yi,m:g(- ) €i—m—1, € ET)m76£T)m+1"")’ (2-3)

then the LP-m-approximable dependence conditionis ) -, v, (Y; — Yim) < o0,

here v, (X) = (E ||X||§)l/p. The next lemma shows that LP-m-approximable
dependence is ensured by the physical dependence for stationary functional
time series.

Lemma 1. For stationary functional time series, LP-m-approximable depen-
dence ensures the physical dependence. That is to say,

> 0y (Yi=Yim) S00= > v, (V; = Y q0y) < 00

m>1 i>1

The proof is in the appendix. The opposite of the statement in lemma 1 is
not true, and a simple counter example is constructed.

Example 2. Consider that Y; = > ° (n:ﬁ, here {e;}; are i.i.d. Gaussian
) with

processes. According to (2.3), Vi — Yim = Y00 m (ei_n —€_.
{€,;;n € Z} being an i.i.d. copy of {en;n € Z}. Taking expectation on the inner
product, we have

{E%—mmm—nmfﬂ

1/2
{Z Z (n+1) 3/2 kit 1)3/2E/ (€imn —€_p) (€i—k — €_1) dt}

k=mn=m

¢ (i%>>c%

i (n+1)

for a positive constant C. Noticing that >~ {E(Y; — Y, Y; — )/m>}1/2 >

270:;:1 % = 00, Y; is not of L?>-m-approzimable dependence. However, Y; —

1/2
Yitoy = grore (0 — <o), then {E(Y; =Yy, Yi=Yiqo)} " = 75om
which entails the physical dependence.
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3. Main results

For a standard process {£(¢),t € [0,1]}, one defines its mean function m(t) =
E{&(t)}. A stationary functional time series {&;(¢),t € [0,1]}_, allows Karhu-
nen-Loeve L? representation

&i(t) = Z L Sindr(t) (3.1)

where the random coefficients £ are of mean 0 and variance 1, and the func-
tions ¢y = v/Agy, here sequences {A\g}r—; and {¢y(t)},—, are the eigenvalues
and eigenfunctions of the covariance function C (¢, s) = cov{&1(t), &1(s)} respec-
tively. Recalling (1.1), the data generating process is now written as

Yij =m(j/N) —I—Z L Cikdk (/N) + 0 (§/N) ;.

Practically, we express a functional observatlon Yi; as

Vi =m(/N)+ > &xow (i/N) +0 (/N) e, (3:2)

where k is assume to be a finite pos1t1ve integer. The number k of the basis
functions impacts the performance of some procedures. For the data studied in
this paper, we generally choose k so that the plotted functional objects resem-
ble original data with some smoothing that eliminates the most obvious noise.
A practical selection of k is given in Section 4.

3.1. Confidence bands

In this subsection, we present the confidence band result. In the first step, we
estimate the mean function via spline smoothing. To describe the spline func-
tions, we first introduce a sequence of equally spaced points {tj}j-v:pl, called
interior knots which divide the interval [0, 1] into (NN, + 1) equal subintervals
[j:[tj,tj_H) ]—O 1 IN —[tN,l].

Ozto <t < --- <th+1 =1,

where h, = ﬁ is the distance between neighboring knots. Denote S, the
P

space of pth order spline space, i.e. S, is spanned by B-spline basis {B,,} of

order p as described in [7].

Let the “infeasible estimator” of function m

m() =nt) =n" Y (o)

with 7; defined in (3.1). The term “infeasible” refers to the fact that m(t) is
computed from the unknown quantites n;(t), while 7 (¢) would be the natural
estimator of m(¢) if all the i.i.d. random curves 7;(¢t), 1 < i < n, were observed,
a view taken in [10]. We propose to estimate the mean function m(t) by

= argmin Z Z {Yiy — g(i/N)}?, (33)

Plz]l

in which S, is a p-th degree spline space.
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In i.i.d. functional samples, the sample covariance operator is used, but for
functional time series this problem is more complicated with a dependence struc-
ture. For vector-valued time series, the variance of its sample mean is asymp-
totically approximated by the long-run variance G(t, s), here

G(t,s) = Em(t)ym(s) + > Em(t)m(s)+ Y _ Em(s)m(t). (3.4)
=2 =2

It is proven in [14] that the series in (3.4) is convergent in L? under some weak
dependence assumptions.

Denote by ((t) a standardized Gaussian process such that E¢(t)=0, EC?(t)=1
with the correlation function

EC(t)C(s) =G (t,s){G (t,1) G (s,5)} /* ,t,s € [0,1].

We denote by Q1_ the 100 (1 — a)th percentile of the absolute maximum dis-
tribution of ¢ (¢), i.e., Plsupyepq)1¢ (1) < Qi-a] = 1 = a,Ya € (0,1). Denote
by 21_q/2 the 100 (1 — a/2)th percentile of a standard normal distribution.

For a continuous function ¢ on [0, 1], denote the modulus of continuity as
w(¢,0) = maxy sep0,1],)t—s|<s |@(t) — & (s)|. For any 3 € (0,1], we denote by
C9%8 0, 1] the space of order 8 Holder continuous function on [0, 1], i.e.,

co’ﬂ[o,l]={¢:||¢o,ﬁ= sup L)“”S)'<+oo},

t£s,t,s€[0,1] |t — s|6

in which [|¢]|, 5 is called the C%B-norm of ¢. Clearly, C%#[0,1] ¢ C'[0,1] and
if p € CF[0,1], then w (¢,8) < [l 5 0.
We impose the following technical assumptions:

(A1) The mean function m € C®)[0,1], class of functions with pth continuous
derivatives.

(A2) The standard deviation function o (t) € C%* [0, 1] for u € [0,1].

(A3) There exist Cc,Cg > 0 such that C(t,t) > Ce and G(t,t) > Cg, t € [0,1],
for 1 <k <&k, ¢px(t) € COH[0,1], for p € [0,1].

(A4) N = O(n%) for some § > 1/2p. The number of interior knots satisfies
NN, = oo, J\Tijnl/2 — 0 and N*I/QN;/Qlogn — 0asn— oo.

(A5) There exists v > 4+20 such that Ele;;|” < oo, for 1 <i < o00,1<j < oo.

Assumptions (A1) and (A2) are typical for spline smoothing ([20]). Assump-
tion (A3) ensures that the principle components have collectively bounded
smoothness. Assumption (A4) concerns the number of observations for each
subject and the number of knots of B-splines, which are needed to ensure the
asymptotic result. Assumption (A5) provides the Gaussian approximation of
estimation error process. Besides the above assumptions, we also assume reg-
ularity conditions for the physical dependence measure about functional time
series Y, which will be stated in the Appendix.

We first present the asymptotic property of m(t), then we show that m(t)
has the same asymptotic property as m(t).
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Theorem 1. Under Assumptions (A1)-(A5), for any a € (0,1), as n — oo,
the “infeasible estimator” m(t) converges at the \/n rate with

P {supycio 2 [m(t) = m(®)| G (66) P < Qi f > 1-a
and for any t € [0, 1],
P {n1/2 () — m(t)| G (1) V2 < zl,a/g} S 1-a.
The spline estimator m is asymptotically equivalent to T, that is

supyeqo 172 m(t) — ()] = 0, (1).

The explicit expression of the confidence band for m(t) is presented in the
following corollary, which is a direct result of the theorem above.

Corollary 1. Under Assumptions (A1)-(A5), for any o € (0,1), as n — oo,
an asymptotic 100 (1 — o) % exact confidence band for m(t) is

m(t) £ G )Y Qi_an™ %t €]0,1],
while an asymptotic 100 (1 — ) % pointwise confidence interval for m(t) is

W(t) + G (t,8)% 2o jon= /2,

4. Implementation

In this section, we show in detail the kernel bandwidth selection and how we
choose the number of interior knots when we apply a spline smoothing technique.
Given any data set (j/n,Yij);y:’?,i:l from model (3.2), we obtain the spline
estimator 7 (t) through (3.3). According to Assumption (A4), the number of
interior knots for estimating m(t) is taken to be N, = c[n'/?? log(n)], where [a]
denotes the integer part of a. To select the number of knots IV, we use BIC
method as follows,

N
1 o log (n
BIC(Np) =log | S 3072 | + 800) iy )

here 7;;s are residuals and ny is the total number of observations. We choose
knots with the smallest BIC within the range of [.5n'/?? log(n), 5n'/?? log(n)].

When constructing the confidence bands, one needs to evaluate the function
o2 (t) by estimating the unknown functions f (¢) and 0% (t) and then plugging in
these estimators. The same approach from [20] will be taken for these estimators.
Also, one needs to estimate the unknown functions C'(t,s), G (¢,s) and the
quantile Q1 _4-

For two curves with lag deviation 4, the empirical covariance function is de-
fined as .

it ) = 37 (V5(8) ~ Val) (Vi i(s) ~ Fals))
=i+

n
j=it+1
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where Y,,(t) = 1/nY", <;,, Yi(t). Then, the estimation of G is given by

n—1

Gn(tﬂ 8) = ’?O(tv S) + Z K(Z/h){’%(t, S) + ’%(S,t)}, (4'1)

i=1

where K (-) is a kernel function and h = h(n) is a smoothing bandwidth satisfy-
ing h(n) — oo and h(n)/n — 0. Under m-approximable dependence assumption,
[14] showed that G is a consistent estimator of the long-run covariance function
G in the sense of [ f{én(t, s) — G(t,s)}?dtds — 0 in probability as n goes to
infinity. Similarly, this consistency holds under the physical dependence.

We use the flat top kernel as suggested by [14].

1 0<t|<0.1,
Kt)={ 11—t 01< |t <11,
0 1.1< |t

Equation (4.1) provides a pilot estimator of the covariance function G(,-).
The smoothed estimator of covariance function G (¢, s) is through

A . N . -/ 2
Gsm (t7 S) = argmiin Z . {G'jj’ -9 (J/Nuj /N)} ) (42)
g€S,®8, T 1:4'=1
where G.j; = G’(j/N,j’/N), 1 <y, <N, and S, ® Sp is a tensor prod-
uct spline space. We then estimate C' (¢, s). A pilot estimator is by the sample

Olt,s) = = 3 (Vilt) = V(1) (Yi(s) — Ta(5)).

n <
=1

Then we obtain Ci,(t,s) through bivariate spline smoothing similarly as in
(4.2). Eigenfunction decomposition of Cypn, (£, ) gives eigenvalues {A; > Ay >
A3 > .. .} as well as eigenfunctions {ngSk} correspondingly. Choose the number
of eigenfunctions by using an empirical criterion, i.e. Kk = argminlSlST{Zzzl e/
Zle Ak > .99}, where {;} are the first T estimated positive eigenvalues. Fi-
nally, we simulate ¢ (t) = Gam (t,t)_l/2 Sy Zhbqgk(t), where Zj; are ii.d.
standard normal variables with 1 < k < k and 1 < b < B with B = 1000 a
preset large number. We take the maximum absolute value of each copy of ¢,
and estimate (Q1_, by the empirical quantile Ql_a.

5. Simulation

We carry out a set of simulation studies to illustrate the finite sample behavior
of the proposed confidence bands obtained in Section 3. We consider all combi-
nations of subject sizes n = 200, 500, 1000, 2000 and within subject observation
sizes N = 50, 100, 200; each pair of data-generated processes was replicated 1000
times. We generate data from an autoregressive (FAR(1)) process

yi —m = p(yi—1 —m) + oe;,
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TABLE 1
Coverage frequency for m = sin(z) under Setting A from 1000 replications
o=1 o=0.5
n l—-a | N=50 N=100 N=200 | N=50 N=100 N =200
200 0.90 0.859 0.839 0.841 0.823 0.809 0.841
0.95 0.910 0.912 0.898 0.894 0.886 0.905
0.99 0.969 0.972 0.960 0.962 0.963 0.968
500 0.90 0.867 0.872 0.869 0.873 0.873 0.872
0.95 0.924 0.925 0.921 0.923 0.924 0.928
0.99 0.985 0.973 0.985 0.977 0.981 0.982
1000 0.90 0.886 0.878 0.894 0.866 0.871 0.882
0.95 0.938 0.926 0.946 0.926 0.921 0.934
0.99 0.983 0.977 0.987 0.983 0.972 0.985
TABLE 2
Coverage frequency for m = sin(x) under Setting B from 1000 replications
o=1 0=0.5
n l—-a | N=50 N=100 N =200 | N=50 N =100 N =200
200 0.90 0.851 0.855 0.867 0.858 0.828 0.867
0.95 0.898 0.907 0.924 0.912 0.879 0.910
0.99 0.963 0.970 0.979 0.974 0.958 0.970
500 0.90 0.882 0.873 0.880 0.876 0.870 0.843
0.95 0.934 0.931 0.933 0.926 0.922 0.904
0.99 0.980 0.977 0.983 0.983 0.970 0.978
1000 0.90 0.881 0.882 0.881 0.876 0.869 0.885
0.95 0.929 0.940 0.937 0.928 0.932 0.942
0.99 0.978 0.988 0.985 0.988 0.986 0.989

here 3(+) is a (bounded) kernel operator defined by B(z)(t) = [ B(¢t, s)z(s)ds.
We consider the following two kernel settings for the dependence structure

Setting A : B(t,s) =16s(1 — s)t(1 — 1),

Setting B : B(t,s) = ezpf{e_x(;(j—mz));j}

For the mean function m(-), we used a C(°)[0, 1] function m(t) = sin(2xt), for
0 <t < 1. Suggested by a referee, we also considered a C'®) [0, 1] mean function

7Mﬂ:{-%@—0@{ 0<t<0.5 (5.1)

8(t—0.5)* 05<t<1.

We used ¢;(t) = B;(t) + N;/1 —t(1 —t), where B;(t)'s are i.i.d. standard
Brownian bridges and N/s are ii.d. standard Normals. Note that this gives
E(e2(t)) = 1 for all 0 < ¢ < 1, which is assumed by our estimation procedure.
Different noise levels o = 0.5,1 were used to interpret the result. The first 200
trajectories were discarded to ensure stationarity.

We used cubic spline to estimate the mean functions in our simulation studies.
For the long-run covariance functions estimation, we used the flat top kernel as
described in section 4 with bandwidth h = [n!/3]. This estimation was used for
all data-generating processes. Tables 1, 2, 4 and 5 show the coverage frequencies
from 1000 replications for the nominal confidence levels 1 — o = 0.90,0.95 and
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TABLE 3
Mazimum and averaged widths of confidence bands for m = sin(x) (Setting A)
oc=1 oc=20.5
n 1—« N=50 N=100 N =200 | N=50 N=100 N =200
200 0.90 max 0.689 0.908 0.691 0.520 0.535 0.535
ave 0.548 0.556 0.560 0.406 0.418 0.419
0.95 max 0.784 0.792 0.794 0.593 0.610 0.609
ave 0.631 0.639 0.634 0.463 0.476 0.476
500 0.90 max 0.450 0.454 0.455 0.339 0.343 0.351
ave 0.362 0.367 0.368 0.265 0.270 0.275
0.95 max 0.518 0.522 0.525 0.386 0.390 0.399
ave 0.417 0.422 0.424 0.302 0.307 0.313
1000 0.90 max 0.321 0.326 0.328 0.245 0.249 0.250
ave 0.259 0.264 0.265 0.192 0.196 0.197
0.95 max 0.370 0.376 0.377 0.279 0.284 0.285
ave 0.298 0.304 0.305 0.218 0.223 0.224
TABLE 4
Coverage frequency for m(-) in (5.1) under Setting A from 1000 replications
o=1 o=0.5
n l—a | N=50 N=100 N =200 | N=50 N =100 N =200
200 0.90 0.908 0.892 0.909 0.884 0.908 0.875
0.95 0.945 0.930 0.939 0.918 0.946 0.927
0.99 0.984 0.973 0.978 0.963 0.975 0.969
500 0.90 0.935 0.921 0.932 0.885 0.903 0.873
0.95 0.963 0.957 0.959 0.936 0.935 0.920
0.99 0.989 0.989 0.990 0.975 0.975 0.975
1000 0.90 0.924 0.929 0.902 0.903 0.928 0.901
0.95 0.951 0.962 0.947 0.954 0.964 0.943
0.99 0.990 0.988 0.982 0.986 0.986 0.990
TABLE 5
Coverage frequency for m(-) in (5.1) under Setting B from 1000 replications
o=1 0=0.5
n l1—« N =50 N=100 N =200 | N=50 N =100 N =200
200 0.90 0.907 0.914 0.899 0.918 0.918 0.908
0.95 0.943 0.948 0.936 0.918 0.938 0.946
0.99 0.976 0.986 0.983 0.980 0.986 0.980
500 0.90 0.928 0.918 0.942 0.897 0.907 0.889
0.95 0.964 0.956 0.972 0.954 0.951 0.929
0.99 0.989 0.989 0.989 0.989 0.981 0.970
1000  0.90 0.942 0.921 0.917 0.893 0.910 0.902
0.95 0.965 0.958 0.951 0.944 0.959 0.953
0.99 0.989 0.989 0.988 0.982 0.986 0.991

0.99 of two different mean functions under settings A and B respectively. The
empirical frequency is measured as that the true curve m(t), 0 < ¢t < 1, is
covered by the spline confidence band at N+1 grid points {0/N,1/N,..., N/N}.
Tables 3 and 6 provide both the maximum and averaged widths of the confidence
bands over the grid points under different combinations.

The results of the simulation studies can be summarized as follows. The em-
pirical coverage rates go to the nominal ones as the sample size increases in all
cases. When the sample size is as large as n = 1000, the coverage percentages of
the confidence bands are very close to the nominal confidence levels 0.90,0.95
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TABLE 6
Mazimum and averaged widths of confidence bands for m(-) in (5.1) (Setting A)
oc=1 oc=20.5

n 1—«a N=50 N=100 N=200 | N=50 N=100 N =200
200 0.90 max 0.692 0.694 0.701 0.349 0.351 0.346
ave 0.546 0.552 0.558 0.276 0.278 0.275

0.95 max 0.776 0.780 0.786 0.390 0.394 0.388

ave 0.612 0.620 0.626 0.309 0.313 0.309

500 0.90 max 0.456 0.452 0.455 0.226 0.227 0.228
ave 0.362 0.361 0.364 0.179 0.181 0.183

0.95 max 0.512 0.508 0.511 0.253 0.254 0.256

ave 0.406 0.405 0.409 0.201 0.202 0.205

1000  0.90 max 0.325 0.325 0.326 0.163 0.163 0.164
ave 0.259 0.259 0.261 0.129 0.130 0.131

0.95 max 0.365 0.364 0.366 0.182 0.183 0.183

ave 0.291 0.291 0.293 0.145 0.146 0.147

0‘4 0‘5 0‘6
n=1000, N=50

0‘4 0‘5 O‘G
n=1000, N=200

Fi1a 1. Plots of 90% (dotted lines) and 99% (dashed lines) confidence bands as well as their
estimators (dash-dotted lines) for combinations of n = 200,1000 and N = 50,200 for m(z) =
sin(z) (Setting A, o = 1). True function m(z) is plotted in solid line in each plot.

and 0.99. The coverage frequencies under different noise levels (o = 0.5 and
1) are comparable for both settings. However, for higher noise levels, the confi-
dence bands are wider. One can also see that both the maximum and averaged
widths decrease as the sample size increases. Visualizations of such confidence
bands are shown in Figures 1 and 2 for combinations of different subject sizes
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n=200, N=50 n=200, N=200

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

n=1000, N=50 n=1000, N=200

Fic 2. Plots of 90% (dotted lines) and 99% (dashed lines) confidence bands as well as their
estimators (dash-dotted lines) for combinations of n = 200,1000 and N = 50,200 for m(x)
in (5.1) (Setting A, o = 1). True function m(z) is plotted in solid line in each plot.

n = 200, 1000 and observation sizes N = 50, 200 for both mean functions under
kernel setting A with o = 1.

6. Application

In this section, we apply the confidence band to S&P500 intraday returns data.
Let Ij(t) denote S&P500 index on the day k at the time ¢. Then yx(t) can be
viewed as the log-return of the stock, yx(t) = log I (t) —log I} (t — h), during pe-
riod h, where h is typically 1 or 5 minutes. We used h = 5 for 5-minute returns,
which was recorded throughout each trading day. The volatility of the stock is
then represented by 0% (t) = Var(yy(t)|Fx—1) with Fj_1 being the information
up to day k — 1. The left panel in Figure 3 shows S&P500 indices for 10 con-
secutive days. It is natural to choose one trading day as the underlying time
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x107

Fic 3. Left: S& P500 index for 10 consecutive days. Right: functional trajectories of volatility
for 10 days.

x107
3.5

0.5

F1G 4. Plot of daily volatility mean (solid line) and its spline regression (dash-dotted line),
90% confidence band (upper and lower dashed lines), 95% confidence band (upper and lower
dotted lines) and a constant line (solid line).

interval. We show, in the right panel of Figure 3, the corresponding trajectories
of the 10 daily volatility curves. Every day, the volatility curve exhibits a certain
pattern, typically with some upward or downward momentum. To quantify such
behavior, we use the confidence band of functional time series. Our data record
is from January 2006 to December 2011, containing 1511 trading days. For each
day, there are 79 observations from 9:30 am to 4 pm.

We estimated the mean function of daily volatility curves using cubic spline,
shown as dashed-dotted line in the middle of Figure 4. Notice from there that
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the volatility, o2(t), tends to be larger at the beginning and the end of a trading
day. We, therefore, constructed 90% and 95% confidence bands (upper and lower
dashed lines and dotted ones in Figure 4) for the mean daily volatility function.
To test the hypothesis that the mean daily curve is constant, one would like
to see if a constant line can be fitted in the confidence bands. We failed to
do it under 90% confidence level since the maximum value of the lower bound
curve is larger than the minimum value of the upper bound curve as shown in
Figure 4. Therefore, we conclude non-constant mean daily volatility with .10
significance level. However, we cannot reject constant daily volatility using .05
significance level as also shown in Figure 4 (The constant horizontal line with
value 7.3 x 107% goes through the 95% band completely). Higher volatility at
the beginning and the end of a trading day has been observed by several authors
(e.g. [12] and [8]). We confirm this phenomenon with statistical inference results.

7. Concluding remarks

In this article, we have constructed simultaneous confidence bands of mean
of functional time series. It is not a simple extension of confidence bands for
functional data analysis with independence assumption. We have rigorously es-
tablished the consistency and asymptotic normality of the proposed estimators.
The assumptions of asymptotics are based on a physical measure dependence
structure. A widely used m-approximable dependence can be ensured in our
dependence structure.

The current article has focused on fixed and dense design, and it can be used
in financial data. For instance, the intraday return data are mostly obtained
and recorded at fixed time points with high frequency. Scientific experiments
may also be designed and recorded this way. However, in some applications,
practitioners may look for random and/or sparsely designed functional data,
and this is a future topic for our research.

As one referee pointed out, our results in Theorem 1 and Corollary 1 could
be improved with the estimated G(,t) instead of the theoretical G(t,t). The
distribution theory of mean function p(t) with G(t, ) is much more challenging
than the case with G(¢,t). At this stage, we don’t even have a nice expression of
é(t, t). However, we believe this would be an interesting future research topic.

Appendix

In this section, we first provide the proof of Lemma 1. Then we include in
the subsections A.1 and A.2 the preliminaries and proof of Theorem 1 respec-
tively. Throughout this section, C' means a positive nonzero constant in a generic
sense.

Proof of Lemma 1. Because of stationarity, Y; — Y; »,, and Y, — Y;, ,, are of the
same distribution. Notice that Y, — Y, 1, is identical to Yy, 10y — Yin,m- Thus,

Z Up (Y; - }/z,m) = Z Up (Ym,{O} - Ym,m) .

m>1 m2>1
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Combining the triangle inequality and Minkowski inequality, we have

Yoot (B|Yi — Yigo )"

Yot (B[[Yi = Yisn + Yion — Yooy 1)

< T {B (1Y = Yigll + [[Yim — Y;,{O}H)p}l/p 1/
1
< O( s (BIYi = Yiml”) " st (B[ Yim = Yiqo|[) p)
= C Ele Up (Yo — Yim,m) + Zle Up (Ym;m - me{O}))
C) o1 Vp (Yi = Yim) < oo.
We get the desired result immediately. O

A.1. Preliminaries

First, we state a strong approximation lemma for a real valued stationary process
{X;}?_, with physical dependence, which is used in the proofs of Lemma A.3
and Theorem 1.

(C1) Let 2 < p < 4, suppose that there exists a constant C satisfying 0 < C' <
1/p such that for every 0 < 6 < C and every ¢ > 0

299

> 20OP(Y X > e2/7) < oo,
j=0 i=1

(C2) Define 6;, = (E|X; — X;0[")"" and ©,, = Y7, 6, then ©,, =
O(n~P=2)/CMA=P)=7) for some 7 > 0. Here X0 is a coupled version of Xj;.

Lemma A.1 (Theorem 2.1 of [15]). Let 2 < p < 4. Suppose that {X;}_, is
stationary with E(X1) = 0, E(XY) < oo, under conditions (C1) and (C2), then
on a richer probability space, setting S, = Z?:l X,

|Sn — oB(n)| = Oa-s.(nl/p)7

here B(n) is a standard Brownian motion and o =%, , E(XoX;).

Based on Karhunen-Loéve decomposition in (3.2), for 1 < k < k, consider
the coefficient sequence {¢; x}7_;. Let the physical dependence measure ¢, ; , =
(El&ir — f;‘)k|p)1/p, 1 <i < n, where &, is the corresponding Karhunen-Loe¢ve
coefficient for {Y; ¢} ,. Correspondingly, O¢, np = > iy O, .ip- We show the
conditions for Lemma A.1 are satisfied for { ;}?; if the conditions hold for
{Yitis,.

Lemma A.2. Conditions (C1) and (C2) hold for time series {&; k}i—q if they

hold for functional series {Y;}7_, in functional settings correspondingly.
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PTOOf' For 1 < k < K, ||§i,k: - E'Zk”l’ = H<)/1a¢k:> - <}/i,0a¢k>||p' USing CaUChy_
Swartz inequality, we have

Sik =& p = (Yi—Yio, o)
< (Vi = Yi0,Yi — Yio) 2 (n, 00) % = N2 |IYi = Yo, -

Thus O, n, = O(n~P=2/CU=P)=T) follows immediately under the assump-

tion that ©,, = O(n~(P=2/C@=P)=7) Similarly, condition (C1) holds for

{& x}1, if it holds for {Y;}7_,. O
In the following, we assume that the conditions in Lemma A.1 hold for

{Yi}izs-

Lemma A.3. Under Assumptions (A2)-(A5), there exist i.i.d. N (0,1) random

variables Zijg e, Zije,1 <1 < n,1 < 7 < N1 <k < kand2 <p <4,
B € (0,1/2) such that as n — 0o

o (€= Zokel = oas, (n'/r1) (A1)
X e = Zgel = Oas (n°7) (A.2)

in which Z ge=n"131" | Zige, Z je=n"1> 0 Zije, 1<j< N, 1<k <k,

Proof. Applying Lemmas A.1 and A.2, there exist Z_j, ¢ to ensure |§k ~7Z kel =
0as.(n'/P71) for 1 < k < k. For independent e;1,, as in [4], we have (A.2) under
Assumption (A5). 0

A.2. Proof of Theorem 1

With spline basis defined in section 3, denote

By ,(1/N) -+ By, (1/N)
B = : :

Bip(N/N) --- By, (N/N)
Then the solution of m (¢) in (3.3) can be expressed as
i (t) = {Bi_,(t),..., By, (t)} (B'B) ' B"Y,

in which Y = (Yﬁl,...,Y_W)T,Y_’j =n"tY" ,Y;,1<j<N.To prove the
theorem, we break the estimation error m(t) — m(t) by the representation of
Y;;, and we obtain the following crucial decomposition

m(t) = m(t) +e(t) + £(2), (A.3)

with
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m(t) = {Bipp(t),...,Bn, ()} (B"B) 'B"'m
e(t) = {Bipp(t),...,Bn, (1)} (B'B) ' BTe
£(t) = {Bipp(t),...,By, ()} (BTB)"' B¢, (A.4)

in which m = (m (1/N),...m (N/N))" is the signal vector, e = (o (1/N) €.1,
...,0 (N/N)& n)T is the noise vector with € j; =n=t 3"  €;,1<j <N, and
&= Cri&ntn (I/N) o 301 £t (N/N))T is the eigenfunction vector
with g,k =n! Z?:1 ik, 1 <k <k.

Now, m(t) —m(t) = m(t) — m(t) + £(t) + &(t) with the bias term m(t) —
m(t) + £(t) and the noise term &(t). The next three lemmas concern m(t), &(t)
and £(t) given in (A.4), and Theorem 1 follows immediately.

Lemma A.4. Under Assumptions (A1) and (A4), as n — oo,

supyefo,y 12 () = m(®)| G (t,6)"* = 0, (1).
Proof. By theorems of spline approximations in de Boor and Assump-
tion (A1), [[m(t) —m(t)|, = O (hB), thus as n — oo, SUPyc0,1] n'/2|m(t) —
m(t)|G(t,t)71/2 =0 (hgnl/z) = 0(1), here the last equation is satisfied with
Assumption (A4). |

Denote next ¢, = {Bi_p(),....Bn, (t)} (BTB)f1 BT ¢, and Zi(t)
Z kebr, k = 1,..., K, similar to the definitions of m (t) and & (t) in (A.4).
Also denote (i (t) = Z kepr, k=1,...,x and define

Ct)y=n'2G D72 Gl) (A.5)

here G(t,t) is the long-run variance.

Lemma A.5. Under Assumptions (A2)-(A5), as n — oo, there is an approxi-
mate version ¢ (t) of ¢ (t) such that

subeo) [ (8) = /3Gt 0)2E(1)] = 0, (1)
hence for any o € (0,1)
P{swprcpyn 2 [€0[G O <@ia > 1-a,
P {supye g n'/2 ) = m(®)| G (1) < Qo) = 1-a

Proof. First note the fact that Z ;¢ are independent N (0,n!) variables im-
plies that maxj<p<y |Z1k1§| =0, (n*1/2) . Similarly as in [4], we have, under
Assumption (A3),

max
1<k<k

S — 5ka <0y (gggﬂ ||¢k|0,u) M-
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The definition of (t) in (A.5), together with the definition of m(t) in (3.1), the
strong approximation in (A.1) and the above bound on maxi<g<x |Z.7k75| entail
that

sup ’m —m(t) —&(t)

tefo,1]
< mx (6] sup ou®) ~Gu0)| < On s (Z.nel + [~ Zoel)
=0, (n_l/Zhg + nl/p_lhg) =0, (n_l/Q)
sup ’m(t) —m(t) - n"Y2G(, t)l/QZ(t)\
t€[0,1]
_ 1/p—-1) _ —1/2
< mox € = Zoael s [0l = Oy (n'/71) =0y (n172).

Now for any t € [0, 1], C(t) is Gaussian with EC (¢) = 0, and the covariance
EC () (s) equal to

nt’2¢ (t, t)*1/2 ni2G (s, 5)71/2 cov HZZZI Z.’k’g(bk (t)}7 {ZZZI ?.’k’5¢k(8>}}

~nl/2G (t, t)*1/2 n2c (s, 5)*1/2 cov [{Z:Zl Z'7k7§¢k(t)}, {Z:Zl Z.yk’gqbk(s)}}
=G (t,t) "V n'2G (s,5) V2 G (t,5), W, s € [0, 1],

so L{C(t),t € [0,1]} = L{¢(t),t € [0,1]}. Lemma A.5 is proved. O
Lemma A.6. Under Assumptions (A2)-(A5), as n — oo,

sup,eo,y /2 [E(1)] G (1) = 0, (1).
Proof. Denote that
Z.(t)={Bi_p(t),...,By, (t)} (B"B) ' B'Z,

where Z = (a (1/N) 7.,1,5, ...,0(N/N) 7_,N76)T. According to Lemma A.3 and
Assumption (A5) , [|Z — €|/, = Oas. (n?71), while
—1lpT _ < _

NV o) <12 el max (Bray
< - j ' 1< -
< |Z-el, kgrglgﬁéNp#{J By (j/N) >0} N7 < Cl|Z — el hy
Since for any fixed ¢ € [0, 1], all values By, (t),..., By, (t) € [0,1] and at most
p of the which are positive

Z(t)—e(t)

[{Biw @), By, (1)} (B"B) ' B (Z - e)
ClZ — el = Oas. (n”71) .

HOO o0

IN
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Note next that the random vector (B*B) ™' B*Z is (N, + p)-dimensional normal
with the covariance matrix bounded above by

T —1
max o2 (t)n~! (B"B) ' B'B (B B) <Con ' (B"B) ' < on,
te[0.1]

bounding the tail probabilities of entries of (BTB)f1 B"Z and applying Borel-
Cantelli Lemma leads to

H(BTB)_lBTZHOO — O,. (N_l/Qn_l/Qh;UQlogl/z(Np+p))

= Oas. (Nfl/znfl/thl/z logn) .

Thus, sup;eo 1] In'/2Z, (t) G (t, t)71/2 | =0 a~S‘(N_l/zhgl/2 logn). Under As-

sumption (A4), supseo 1 |nt/%e (t)G(t,t)fl/Q\ = Ous (nP12 4 %) =

0as. (1). Lemma A.6 is thus proved. O
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