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I was very happy to read this paper by Sasha, Anatoli and Arkadi not only
because it is an exciting paper about testing problems that I have been interested
in for many years but also for some more personal reasons. It actually reminded
me of various problems about testing between sets that I begun to consider and
work on almost fourty years ago and to which I gave a continuous interest up
to now. It also brought back to my memory many exchanges and discussions
that I had in the late seventies and early eighties with Lucien Le Cam, as well
as many seminars and talks about robustness, which was at that time a very
fashionable subject, and many friends that I made then like Tadeusz Bednarski,
Gabor Tusnady and Piet Groeneboom, among others.

1. Historical remarks

The general problem of testing between two non-trivial sets received a lot of
attention in the seventies along two different streams of research. One was ini-
tiated by Le Cam and its collaborators much earlier, actually in the fifties and
a milestone paper was Kraft (1955) about the consistency of tests. It actually
contains (Theorem 5) a fundamental result by Le Cam (previously unpublished)
that I shall comment about below and which provides the performance of a best
test between two convex sets of probabilities. Other important results about
the performance of tests are provided by Le Cam (1973) in a paper which was
directed towards the use of tests in order to derive “universal” estimators under
some dimensionality restrictions.

Le Cam’s work was about the possibility of testing efficiently between two sets
of probabilities with application to estimation while the theory of robustness was
about a different problem that I could summarize by “improving the stability” of
statistical procedures. When applied to testing between two simple hypotheses,
say {P} and {Q@}, it amounts to finding tests that are more or less equivalent to
the classical likelihood ratio (Neyman-Pearson) tests between P and @ but with
errors that do not increase too much when the truth is actually slightly different
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from either P or (). This amounts to finding tests between some vicinities P
and Q of P and @ respectively, the result depending on the topology that
is used. Various results in this direction appeared in the sixties and seventies
after the milestone paper by Huber (1965). It would be much too long to cite
them all but Huber showed how to find explicit optimal tests between IL;-balls,
among other vicinities, and more generally between sets that are dominated by
two-alternating capacities — Huber and Strassen (1973). There are indeed many
available results about tests between convex sets but a large part of them is
of a purely theoretical nature (existence results) and does not provide explicit
tests that perform as predicted by the theory. It is a great merit of this paper
to provide such tests in some interesting and useful statistical frameworks.

2. Kraft and Le Cam’s results

Let us begin with some elementary facts and notations. To test with a random
variable X between two probability sets P and Q, we use a test function ¢ with
values in {—1,1}, deciding P when ¢(X) = 1 and Q otherwise. This results in
errors of the form

a(P.) = sup Pplp(X) = 1] and  a(Q¢) = sup Pglp(X) = 1].
PeP QeQ

For a given test ¢ these errors do not change if we replace both P and Q by
their convex hulls, hereafter denoted by Co(P) and Co(Q) respectively. Le Cam
was interested by what he called the “testing affinity”

(P, Q) = nf{a(P,¢) + a(Q )} = m(Co(P), Co(Q)),

(where the infimum runs over all test functions ¢) which measures, in a sense,
the performance of a best test between P and Q. In particular, denoting by dP
and d@ the densities of P and @) with respect to any dominating measure,

7(P,Q) = n({P}.{Q}) = / min{dP,dQ} = 1 - D(P,Q),

where D(P, @) denotes the “variation distance”:
1
D(P.Q) = sup|P(4) - Q)| = 5 [ 4P - dq).

The fundamental theoretical result of Le Cam which appeared in Kraft (1955)
says:

Theorem 1 If P and Q are two sets of probabilities, then

m(P,Q) = 1-—D(Co(P),Co(Q)) = 1—P€CO(Pi)1’qg€co(Q)D(P,Q)

= sup (P, Q). (2.1)
PeCo(P),QeCo(Q)

In words, the testing affinity between two convex sets is determined by their
variation distance.
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Although quite precise, this result is actually very difficult to use for analyzing
concrete testing problems for two reasons. First the proof of Theorem 1 is based
on the Hahn-Banach Theorem and therefore does not provide the construction
of an optimal test. Then many problems involve i.i.d. observations Xi,..., X,
with joint distribution R®™ with R belonging either to P or Q so that the
application of Theorem 1 requires to compute (.S, T') for S and T in the convex
hulls of P&" = {P®" P € P} and Q%" = {Q®",Q € Q}. Unfortunately, there
is no direct relationship between n( P®" Q®") and 7(P, Q).

A major idea of Kraft and Le Cam, in view of solving the second problem,
was the introduction of the Hellinger distance h and affinity p as substitutes to
m and D:

p(P.Q) = [ VIPIQ = 1-12P.Q) =1~ [ (ViP - Vaq)".

They can be related to m or D via the following inequalities:

(P.Q) < p(P.Q) < \/x(P,Q)2 —n(P.Q)], (2.2)

or equivalently,
D(P,Q) > h*(P,Q) > 1—+/1 - D2(P,Q)] > (1/2)D*(P, Q).

The main advantage of p over 7 derives from the fact that fP®", Q®") =
p" (P, Q) which allows to deal with i.i.d. samples. Let us now define, for two
probability sets P or Q,

P,Q) = su P, =1- inf h? P, .
ol ) PeCO(P),gecO(g)p( Q) PeCo(P), QeECo(Q) (F.Q)

It then follows from (2.1) and (2.2) that
(P, Q) < p(P, Q) and m(PE"™, Q%") < p(P®", Q¥").
Moreover, the following fundamental result holds for p.

Theorem 2 If P and Q are two sets of probabilities, then

p(PE™, Q%) < p"(P, Q) = sup p" (P, Q).
PeCo(P),QeCo(Q)

Putting everything together, we can conclude that if P and Q are convex, then

T(PE",Q%") < p"(P,Q) = sup p"(P,Q)
PeP,QeQ

_ [1 _ ]12(737 Q)]n < exp [—nhQ(P, Q)] )

with h?(P, Q) = infpep. geo h*(P, Q). This shows that, as soon as two convex
sets of probabilities P and Q are separated (i.e. h(P, Q) > 0), the errors of a
best test between P and Q decrease exponentially fast with the number n of
observations. But this does not solve the problem of finding explicit tests with
such a performance.
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3. An alternative point of view

The point of view that underlines the paper by Sasha, Anatoli and Arkadi
derives from the following observations. The best test between P and @ is the
likelihood ratio test given by ¢(z) = —1 if L(z) = log(dQ/dP)(z) > 0 and
p(z) =11if L(x) = log(dQ/dP)(x) < 0, the value of p(x) when L(z) = 0 being
irrelevant. Hence

(P, Q) = Pplp(X) = 1] + Polp(X) = 1] < p(P, Q).

But it is actually much more fruitful to proceed differently in order to bound
both errors of this test separately. The following sequence of inequalities is
straightforward but nevertheless enlightening.

Prlp(X)=-1] < Pp[L(X)>0] < infEp [ewxq

IN

Ep ["00] = Ep [VdQ/PIX)] = p(P.Q)
and also
Palip(X) = 1] < Po[L(X) < 0] < Eq [ 2/2] = (P,Q).

This actually leads to the suboptimal bound 7(P,Q) < 2p(P, Q) but this is
unimportant in the very interesting case of a small value of p(P, Q). Here we
have an exemple of a function ¢ (x) = exp[L(z)/2] such that Ep[¢)(X)] < p(P, Q)
and Eg[1/¢(X)] < p(P,Q). The authors actually call ¢ = logty a detector.
Inequalities of the form
sup Ep[¢(X)] <a<1  and sup Eg[1/4(X)] <8< 1 (3.1)
PeP QeQ
are indeed extremely useful to control the performance of tests between P and
Q based on the detector ¢ according to the following (trivial) lemma which
already appears (hidden in the proofs) in Birgé (1984), but also in earlier works
like Chernoff (1952) about large deviations.

Lemma 1 LetP; and Q;, 1 < i < n be sets of probabilities on measurable spaces
X and P = {Q;_, P;,P, € P;}, Q = {Q.—, Qi,Q; € Q;} the corresponding
sets of probabilities on [, X;. If there exists for each i a function v; such that

sup Ep[t);(X)] <a; <1 and sup Eq[l/vi(X)] < B <1, (3.2)
PeP; QeQ;

then, for all y € R and random variables X; € X; for 1 <i <n,

4 e
i=1

sup Pp [Z log 1i(X;) > y] < exp
PeP i—1

and
n n
sup Pg lz log 1 (X;) < y] <exp |y+ Zlogﬂi] :
QeQ i=1 i=1
It follows from this lemma that, once one has found a set of functions ;, one
can easily derive tests between the convex envelopes of P and Q with controlled
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errors and play with y in order to balance between them. Finding suitable func-
tions 1; is therefore essential. This is the approach that I considered in Birgé
(1984) and more recently in Birgé (2013). But again, given two sets P and Q,
the problem of finding v satisfying (3.1) has no explicit solution in general, in
contrast to Huber’s results that provide explicit tests between some particu-
lar vicinities of P and ). Unfortunately his results do not apply to Hellinger
vicinities which are not generated by two-alternating capacities but, fortunately,
although abstract in the general case, my results apply to Hellinger balls and
provide in this particular case some explicit tests which are actually likelihood
ratio tests between the closest points in the balls. This is exactly the type of
result that Sasha, Anatoli and Arkadi get for their “good observation schemes”.
One can readily see from their illustrations (a), (b) and (c¢) that the “least fa-
vorable” pair (P, , P,.) is actually a pair that minimizes the Hellinger distance
between the two hypotheses and the “nearly optimal” test is a likelihood ratio
test between them.

As we have seen, finding pairs of sets P and Q for which one can explicitly
compute a function v that satisfies (3.1) is a major issue in testing theory. The
interest and importance of the present paper is that it solves this problem for
particular sets P and Q connected to some classical parametric statistical mod-
els. On the one hand the results only apply to some very specific cases (the good
observation schemes), on the other hand they allow to derive concrete and prac-
tical tests with excellent performances, which is definitely more useful than a
mere existence theorem. As we often say in French “on ne peut avoir le beurre et
largent du beurre !” (no free lunch!). Moreover, in view of Lemma 1, these tests
apply to i.i.d. samples and allow to balance between the two kinds of errors. Al-
though dealing with some particular parametric models, they nevertheless apply
to many interesting situations as illustrated by the authors in their Section 4.

4. Combining elementary tests

An important part of the paper (namely Section 3) is devoted to various ways of
combining detectors ¢ = log 1), where v satisfies (3.1), in order to test between
more complex hypotheses. Given a family Hy, ..., Hy of hypotheses (with H;
corresponding to P € P;) for which one can find tests between pairs (H;, H,),
1 <4 <j < M,itis not obvious to design good tests between U7, H; and
UjM:m 4+1H;. T am personally not fond of considering this problem when some
of the hypotheses overlap or, more generally, when some of them are almost
indistinguishable. Le Cam (1973) (and this also follows from the inequalities of
the previous Section 2) shows that if nh?(P, Q) is too small, no test can correctly
distinguish between P®™ and Q®". I therefore believe that when combining tests
between various hypotheses H;, one should not try to test between H; and H;
when these hypotheses are too close (in Hellinger distance). In such a case, one
knows that there is no hope to get small errors so that such a situation should
be avoided and a good solution is to proceed as indicated in Section 3.2.1 and
avoid testing between hypotheses that are too close.
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Considering the problem of choosing between M hypotheses (but this remark
is also valid for testing, when M = 2) I believe that it has to be put in the
classical decision-theoretic framework with a decision function §(X) with values
in {1,..., M}. Since the assumption is that the true distribution satisfies at least
one assumption the decision § should choose one. This rules out any strategy, like
some that appear in Section 3 which, may be, reject all hypotheses and therefore
lead to no decision. A simple solution, which would not increase the rejection
rate and therefore the errors, would be, for instance, to decide at random when
the multiple testing procedure rejects all hypotheses.

Clearly, the procedure of Section 3.2.1 tends to improve the situation. It can
be viewed as the choice of a family of “pseudo”’-distances between the differ-
ent hypotheses, the “distance” between H; and H; being zero when (i,5) € C
(assuming symmetry: (¢, 7) € C is equivalent to (j,4) € C) and one otherwise. For
a given ¢, one only tests with H; if the “distance” between H; and Hj is one.
One could actually adopt a more sophisticated strategy with mutual distances
between the assumptions being arbitrary nonnegative numbers. One could for
instance take, as the “distance” between H; and Hj;, minus the logarithm of
the error of a best test between them. To build the final decision function, one
should not only consider the various tests involved but also look at the mutual
distances between the hypotheses and decide according to these mixed informa-
tions. The idea is to decide for an i such that no test for which H; is far from H;
rejects it, based on the fact that two hypotheses that are close cannot be prop-
erly distinguished while two hypotheses that are far apart lead to a test with
small errors. I actually used this argument in Birgé (1983) and Birgé (2006) to
derive estimators from families of tests. I am convinced that the method that I
used to build T-estimators can be adapted to deal with multiple hypotheses via
the function Dx provided by (4.5) of Birgé (2006). One could analogously use
a suitable version of Dx (k) as a criterion of the “credibility” of the assumption
Hj, (the larger Dx (k) the less credible Hy) and finally decide for the minimizer
over k of Dx (k). Various modifications of this procedure are certainly possible.

5. Conclusion

I definitely find this paper exciting and hope it will open a new research trend
towards finding explicit detectors for testing between two hypotheses for other
observation schemes. I hope that more examples will be found in the future.
I also greatly appreciated the applications of Section 4 but discussing this as-
pect is not really in my field of expertise. As to the problem of handling many
hypotheses, I believe that the point of view developed in Section 3.2.1 is the
more fruitful and promising one and that the authors should pursue in this
direction.
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