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We perform Bayesian inference on historical and late Holocene (last
2000 years) rates of sea-level change. The input data to our model are tide-
gauge measurements and proxy reconstructions from cores of coastal sedi-
ment. These data are complicated by multiple sources of uncertainty, some of
which arise as part of the data collection exercise. Notably, the proxy recon-
structions include temporal uncertainty from dating of the sediment core us-
ing techniques such as radiocarbon. The model we propose places a Gaussian
process prior on the rate of sea-level change, which is then integrated and set
in an errors-in-variables framework to take account of age uncertainty. The
resulting model captures the continuous and dynamic evolution of sea-level
change with full consideration of all sources of uncertainty. We demonstrate
the performance of our model using two real (and previously published) ex-
ample data sets. The global tide-gauge data set indicates that sea-level rise
increased from a rate with a posterior mean of 1.13 mm/yr in 1880 AD (0.89
to 1.28 mm/yr 95% credible interval for the posterior mean) to a posterior
mean rate of 1.92 mm/yr in 2009 AD (1.84 to 2.03 mm/yr 95% credible in-
terval for the posterior mean). The proxy reconstruction from North Carolina
(USA) after correction for land-level change shows the 2000 AD rate of rise
to have a posterior mean of 2.44 mm/yr (1.91 to 3.01 mm/yr 95% credible
interval). This is unprecedented in at least the last 2000 years.

1. Introduction. Sea-level rise poses a hazard to the intense concentrations
of population and infrastructure that are increasingly located at the coast [Nicholls
and Cazenave (2010)]. Effective mitigation and management of this hazard is re-
liant upon accurate estimation of historic, current, and future rates of sea-level
rise. Data for estimating such rates come from instrumental measurements (tide
gauges and satellites) and proxy reconstructions (derived from a wide variety of
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palaeoenvironmental data including stratigraphical, biological, geochemical, and
archaeological data). Instrumental data are more precise, but span the relatively
short historic time period. Proxy reconstructions are less precise, but cover a much
longer time interval. We use examples of both types of data to estimate rates of
sea-level change with thorough quantification of uncertainty.

The instrumental data we use provides a historic time series of fixed and
known ages with estimated sea levels and associated measurement errors. Al-
though there are now ∼2000 operational tide gauges worldwide [Jevrejeva et al.
(2006), Woodworth and Player (2003)] that are located along coastlines and is-
lands, most were installed since the 1950s. Therefore, global compilations rely on
fewer gauges further back in time. The most widely used global tide-gauge com-
pilation spans the period since 1880 AD [Church and White (2011)]. Since late
1992 AD, satellite altimetry measurements have further provided a global record
of sea-level change [Cazenave and Llovel (2010), Nerem et al. (2010)]. Church
and White (2011) demonstrate that there is good agreement (within uncertainty
bounds) between their global mean sea-level (GMSL) record based on tide gauges
and satellite altimetry measurements over the period from 1993 AD to 2009 AD.
Thus, we use only the tide-gauge data as our instrumental record.

Proxy data provide sea-level reconstructions spanning hundreds to millions of
years. Here we use late Holocene (last 2000 years) data to place modern rates of
sea-level change in an appropriate context and characterize the relationship be-
tween climate and sea level. In our case study, we use proxy data that were pre-
processed from their raw form (counts of species preserved within cores of coastal
sediment) into estimates of sea level. We do not explore the preprocessing in this
paper; see Birks (1995), Horton and Edwards (2006), Juggins and Birks (2012) for
a discussion of how this was done. The resulting processed data are comprised of
sea-level estimates that are irregularly spaced in time and have uncertain ages in
addition to sea-level uncertainties.

Instrumental and proxy reconstructions both estimate relative sea level (RSL),
which is the product of simultaneous land- and ocean-level changes. In the absence
of tectonics, land-level changes primarily arise from the ongoing, slow rebound
of the solid Earth to deglaciation [Peltier (2004)], which is called glacio-isostatic
adjustment (GIA). Regions that were under the thickest ice at the last glacial max-
imum (between 26,000 and 19,000 years ago) are experiencing uplift (RSL fall),
while areas that were peripheral to the ice sheet are experiencing subsidence (RSL
rise). To compare sea-level measurements or reconstructions from different loca-
tions and to isolate the climate-related component of sea-level change, it is neces-
sary to estimate and remove the contribution from GIA [Engelhart et al. (2009)].
The global tide-gauge data set that we use in this paper was already corrected
for GIA [Church and White (2011)], but we must correct the proxy reconstruc-
tion. Since GIA is a rate (usually expressed in mm/yr), it affects older sediments
more than younger sediments. This has repercussions for our model, because it in-
troduces correlation between the individual age and sea-level reconstructions. We
defer full discussion of this to Section 4.
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To accurately estimate the evolution of rates of sea-level change through time
and reliably compare instrumental compilations with proxy reconstructions, it is
necessary to account for the uncertainties that characterize each data set. Previous
studies used simple linear regression models (most commonly polynomial regres-
sion), resulting in overly precise rate estimates. We develop models to estimate
rates of sea-level change and account for all available sources of uncertainty in
instrumental and proxy-reconstruction data. Our response variable with the proxy
measurements is sea level after correction for GIA. Our models place a Gaussian
process (GP) prior on the rates of sea-level change and the mean of the distribution
assumed for the observed data is the integral of this rate process. By embedding
the integrated Gaussian process (IGP) model in an errors-in-variables (EIV) frame-
work (which takes account of time uncertainty) and removing the estimate of GIA,
we quantify rates with better estimates of uncertainty than was previously possible.

To demonstrate the application of these models, we apply them to an example
global tide-gauge data set [Church and White (2011)]. Our analysis of this record
indicates that the rate of GMSL rise increased continuously since 1880 AD and
the posterior estimate of the mean rate of sea-level in 2009 AD is 1.92 mm/yr.
The 95% credible interval for this mean is 1.84 to 2.03 mm/yr. We also apply the
model to a late Holocene proxy reconstruction from North Carolina [Kemp et al.
(2011)]. Such reconstructions are important to understand the response of sea level
to known climate variability such as the Medieval Climate Anomaly and the Little
Ice Age [Mann et al. (2008)]. Application of our model to the North Carolina
proxy reconstruction indicates a posterior mean rate of rise in this locality since
the middle of the 19th century of 2.44 mm/yr. The 95% credible interval for this
mean is 1.91 to 3.01 mm/yr. This result is in agreement with results from the tide-
gauge analysis and illustrates that the current rate of sea level is unprecedented
in at least the last 2000 years. The two examples show the importance and utility
of the new models in estimating dynamic rates of sea-level change with full and
formal consideration of the uncertainties that characterize instrumental and proxy
data sets.

2. Sea-level data sets. This section describes how the global tide-gauge
record [Church and White (2011)] was compiled and how RSL in North Carolina
was reconstructed using proxies preserved in cores of coastal sediment [Kemp
et al. (2011)]. Although the methods for data collection are specific to our case
studies, the resulting records are typical of available sea-level data sets.

2.1. Tide gauges. Tide gauges are instruments that measure RSL multiple
times each day at a fixed coastal location. Monthly RSL averages for individual
locations are held by the Permanent Service for Mean Sea Level [Woodworth and
Player (2003)]. The distribution of these locations is very uneven in time and space.
To reliably estimate rates and trends against a background of annual to decadal
variability, analysis of individual tide-gauge records is commonly restricted to
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locations with more than ∼60 years of data [Douglas, Kearney and Leatherman
(2001)]. GMSL is estimated by spatially averaging tide-gauge records after indi-
vidual records (irrespective of record length) were corrected for GIA. The most
commonly used data set is that of Church and White (2011), which includes an-
nual sea-level data between 1880 AD and 2009 AD from up to 235 individual lo-
cations [Figure 1(A)]. This data set employed the spatial variability in sea level
observed by satellites to interpolate between tide-gauge locations and estimate
global sea level. Other studies produced alternative estimates of GMSL using dif-
ferent methodologies to correct for GIA and to account for the uneven distribution
of tide gauges in time and space [e.g., Hay et al. (2015), Jevrejeva et al. (2008)].
However, each of these compilations shared the basic attributes of the Church and
White (2011) data set in having a fixed and known age, but estimated GMSL with
uncertainty. Therefore, our choice of example data set is typical of tide-gauge data,
but our model could also be appropriately applied to similar data sets and poten-
tially yield different estimates of rates of historical sea-level change.

2.2. Salt-marsh reconstructions. Salt marshes keep pace with sea-level rise
by accumulating sediment [Morris et al. (2002)]. As a result, modern salt marshes
may be underlain by several meters of sediment, which is an archive of past sea-
level changes. Cores are used to recover this coastal sediment for analysis. The
ages of discrete depths in the core are estimated using techniques such as radiocar-
bon dating to provide a history of sediment accumulation. Radiocarbon dates are
calibrated into calendar ages and assimilated with other chronological constraints
(e.g., pollution markers of known age) using an age-depth model.

For the North Carolina reconstruction [Figure 1(B)], ages for the RSL data were
calculated from Bchron [Haslett and Parnell (2008), Parnell et al. (2008, 2011)],
a Bayesian, statistical age-depth model that estimates uncertain interpolated ages
between radiocarbon dated levels. This tool is particularly useful in reconstruct-
ing RSL from a core of coastal sediment, because most levels in the core were
not directly dated. Bchron assumes that the calibrated radiocarbon ages arise as
realizations of a Compound Poisson–Gamma (CPG) process, which enforces the
geological law of superposition. Bchron calibrates the radiocarbon dates, estimates
the parameters of the CPG and identifies outliers. The ages and 1 sigma age errors
used in the North Carolina proxy reconstruction are the Bchron marginal means
and standard deviations for each layer in the core that was used to reconstruct
RSL, which we approximate as being normally distributed. This would be a poor
assumption for individual calibrated radiocarbon dates that are skewed and multi-
modal. However, the CPG produces slightly more regular ages, and the effect is
further reduced when combined with our smoothing approach.

Core sediment contains the preserved remains of microorganisms such as
foraminifera. The distribution of foraminifera is controlled by tidal elevation (i.e.,
sea level) because some species are more tolerant of submergence by the tides than
others [Scott and Medioli (1978)]. The modern, observable relationship between
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FIG. 1. (A) Global tide-gauge record of Church and White (2011). These global mean sea-level
data are a compilation of individual tide-gauge records from sites located around the world that
were individually corrected for the contribution of GIA. The data set is characterized by vertical
(sea level) uncertainties (2 sigma uncertainty bands approximate the 95% confidence interval), but
ages are fixed and known. (B) Proxy reconstruction of RSL from North Carolina, USA [Kemp et al.
(2011)]. Individual data points (represented by rectangular boxes that illustrate the 95% confidence
region) are unevenly distributed through time and include age and sea-level uncertainties. (C) The
North Carolina reconstruction following correction for GIA.
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counts of foraminifera and sea level provides an analogy for interpreting similar
assemblages preserved in core material. This analogy is exploited to reconstruct
RSL using a transfer function [Birks (1995), Horton and Edwards (2006), Juggins
and Birks (2012), Kemp et al. (2013)]. The calibration of counts of foraminifera
into estimates of RSL (via these transfer functions) requires further statistical mod-
eling techniques that we do not discuss here. The transfer function output returns
an estimate of the error associated with each fossil sample. This is given by the
root mean square error of prediction of a training set, derived using a separate test
set, or by internal cross-validation. We include these error estimates, assumed to be
1 sigma uncertainties, as an input to our model. The validity of this approach was
demonstrated by comparison between reconstructions and instrumental measure-
ments from nearby tide gauges [e.g., Kemp et al. (2009)]. To extract climate-driven
rates of sea-level rise, the RSL reconstructions are corrected for GIA, which over
the last 2000 years is assumed to be a constant rate because of the slow response
time of the solid Earth [Peltier (2004)]. The GIA corrected reconstruction for North
Carolina is shown in Figure 1(C).

3. Previous work. In this section we review how rates of sea-level change are
estimated from uncertain data in existing literature. We also describe the stochastic
methods that we employed in this paper.

3.1. Sea-level rise: Rates and accelerations. The motivation for analyzing
tide-gauge records and reconstructing RSL is to establish how unusual modern
rates of sea-level rise are in comparison to longer term trends and for understand-
ing the role of climate variability as a driver of sea-level change [e.g., Donnelly
et al. (2004), Engelhart et al. (2009), Shennan and Horton (2002)]. Comparisons
of past and present rates are only complete and fair if all sources of uncertainty
are accounted for. The global tide-gauge record is the primary source of his-
toric and current sea-level data. The record includes sea-level uncertainty that is
greater earlier in the record because it is based on fewer individual records that
are unevenly distributed in space with a bias toward western Europe and North
America [Jevrejeva et al. (2008)]. The age of each annual sea-level observation
is fixed and known. Tide-gauge records are commonly analyzed using simple lin-
ear regression to estimate a rate of sea-level rise for the entire record or a shorter
segment [e.g., Barnett (1984), Church and White (2006), Douglas, Kearney and
Leatherman (2001), Gornitz, Lebedeff and Hansen (1982), Holgate and Wood-
worth (2004), Jevrejeva et al. (2014), Peltier and Tushingham (1991), Sallenger,
Doran and How’d (2012)]. For example, Church and White (2011) calculated the
mean rate of global sea-level rise to be 1.6 mm/yr ± 0.3 mm from 1880 AD to
2009 AD compared to 1.1 mm/yr ± 0.7 mm between 1880 AD and 1936 AD, and
1.8 mm/yr ± 0.3 mm after 1936 AD. Satellite altimetry data have also been ana-
lyzed in this way to estimate a rate of GMSL rise of 3.4 mm/yr ± 0.4 mm between
1993 AD and 2008 AD [Nerem et al. (2010)].
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Similar approaches were widely employed to characterize acceleration or decel-
eration of sea-level rise, where a polynomial rather than linear function was fitted
to the tide-gauge record [e.g., Boon (2012), Houston and Dean (2011), Jevrejeva
et al. (2008), Woodworth et al. (2009)]. For example, Church and White (2011)
estimated a sea-level acceleration of 0.009 mm/yr2 ± 0.003 mm/yr2 for the pe-
riod 1880 AD to 2009 AD. In contrast, Houston and Dean (2011) obtained a small
sea-level deceleration (−0.0123 ± 0.0104 mm/yr2) by selectively analyzing U.S.
tide gauges from 1930 AD to 2010 AD and suggested similar decelerations for the
global data set over the same time interval. A limitation of subdividing the tide-
gauge record into segments identified by visual inspection is that individual data
points are ascribed undue importance and information is lost in the autocorrelated
data set by discarding earlier and/or later intervals. Furthermore, the estimated
rates of change are sensitive to the data included, making comparisons among data
sets difficult. For example, the rate of sea-level change measured by satellite al-
timetry since 1993 AD is greater than the “current” (1936–2009 AD) rate often
quoted from Church and White’s (2011) analysis of their global tide-gauge record.
Although the estimated rates of change are different, Church and White empha-
sized the agreement between the two methods of measuring sea-level change over
the period where both data sources are available.

In considering proxy reconstructions with bivariate uncertainties, some studies
divided the data series into sections based on changes in slope that were qualita-
tively positioned by the researcher at a single time point [e.g., Gehrels and Wood-
worth (2013)]. Consequently, a rate of change was calculated for each segment
of the sea-level reconstruction by simple linear regression of midpoints with no
formal consideration of age and sea-level uncertainty or their covariance. Other
studies used an EIV change point approach to objectively place changes in slope
across a range of timings and to estimate linear rates for each segment with consid-
eration of uncertainty [Kemp et al. (2011, 2013), Long et al. (2014)]. A limitation
of this approach is that phases of persistent sea-level behavior are approximated by
linear trends that do not accurately represent the underlying physics of sea-level
change and mask (to some degree) the continuous evolution of sea level through
time.

3.2. Stochastic processes and rate estimation. The model we propose makes
use of the EIV approach, where we do not assume that the explanatory variable
(which we denote as x) is known, but that it is instead measured with some error
[Dey, Ghosh and Mallick (2000)]. The EIV approach can be used with multivari-
ate and hierarchical models including our application to proxy sea-level recon-
structions with age and sea-level errors. We embed our EIV regression within a
nonparametric model.

We use a GP as a prior on the rate process, which is then integrated to esti-
mate sea level. The opposite approach, where a GP is placed on the data itself and
then differentiated to produce rates, has a long literature [Cramér and Leadbetter
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(1967), O’Hagan (1992)], both where the derivatives were observed and where
they were estimated. A fuller description of GPs is found in Williams and Ras-
mussen (1996) and Rasmussen and Williams (2006). Most recently in sea-level
research, Kopp (2013) employed an empirical Bayesian analysis that used GPs to
assess the statistical significance of the “hot spot” of sea-level acceleration in the
mid-Atlantic and northeastern regions of the United States. Hay et al. (2015) use
GPs for rate estimation and to assess the robustness of their probabilistic reanalysis
of GMSL. However, GPs are not the only means for creating rate estimates. Other
work exists in the field of splines [e.g., Chaniotis and Poulikakos (2004), Mardia
et al. (1996)] or in diffusion processes and differential equation models [e.g., Liang
and Wu (2008)].

We do not cover spatio-temporal modeling of sea-level rates in this paper, focus-
ing instead on individual sites. The behavior of sea level in space is highly irregular
and relates to numerous physical features and processes that are beyond the range
of the statistical models we discuss. We focus on a novel EIV-IGP approach. The
GP has advantages over other methods mentioned previously due to its simplicity
and flexibility despite using only a small number of parameters. The IGP we em-
ploy is an inverse model where the GP is applied to the rate process rather than the
observed data. Holsclaw et al. (2013) outline a method for posterior computation
of such models which we employ in the next section.

4. Methods. In this section we outline the EIV-IGP model used to estimate
past sea level while accounting for age uncertainty. We apply this model to the
North Carolina proxy reconstruction in Section 5. Our first case study (the global
tide-gauge record) requires a slightly simplified version of this model (which we
term S-IGP), because the data has fixed and known ages and, therefore, lacks age
uncertainity. The raw data are scalars (yi, σyi

, xi, σxi
) for i = 1, . . . , n data points,

where yi is the RSL measurement and σyi
is the sample-specific estimate of uncer-

tainty for the measurement which is one standard deviation, xi is the estimated age
measurement from the chronology model, and σxi

is the age standard deviation,
also taken from the chronology model. Ignoring GIA correction for the moment,
we can write

yi = α + h(χi) + εi, i = 1, . . . ,N,(4.1)

xi = χi + δi, i = 1, . . . ,N,(4.2)

where the errors εi ∼ N(0, σ 2
yi

+ τ 2) are independent and τ 2 is a micro-scale vari-
ance term. Modelers sometimes separate the micro-scale variation using η which
captures the micro-scale variation and ε which captures the pure measurement
error [Banerjee and Fuentes (2012)]. The methods used to reconstruct sea level,
described in Section 2.2, assume that the distribution of microorganisms such as
foraminifera is controlled by tidal elevation (i.e., sea level). However, foraminifera
abundances are also affected by other sources of noise [e.g., influence of additional



MODELING SEA LEVEL CHANGE 555

environmental variables such as salinity or sediment texture; Horton, Edwards and
Lloyd (1999)]. As a result, it is necessary to include τ 2 in the model to account for
any unexplained variation that may be present in the data. δi ∼ N(0, σ 2

xi
), α is a

constant intercept parameter, h(χ) is a stochastic process in continuous time that
represents the underlying evolution of RSL and χi is the true unobserved age for
observation i. The mean of the distribution for the observed data is dependent on
the stochastic process that we want to estimate and the model is set up to have
a classical EIV structure. The key parameters are those in h and the micro-scale
variance τ 2. The estimated true ages χi are nuisance parameters. Our focus lies in
posterior inference about h and, most importantly, its derivative.

As discussed in Section 3.2, there are numerous nonparametric priors on func-
tions that provide stochastic derivatives, though our situation is complicated by the
inclusion of age uncertainties. If the data were modeled with a GP, we would write
yi = α + g(χi) + εi , where g(χi) is a GP with a mean function μg (which we set
to 0) and a covariance function denoted υ2Cg(χi,χj ). One approach to obtaining
derivatives would be to fit the GP to the data and differentiate the correlation func-
tion. However, Holsclaw et al. (2013) outline how this approach can be inadequate
due to loss of information when differentiating. They state that, if we fit the data
process directly and then differentiate, we lose information about the derivative
process, as, when observational error is present, the prediction of the derivative
process is degraded [Stein (1999)]. Since our focus is directly on the rate process,
g′(χi) = w(χi), we prefer to place a GP prior distribution on this and integrate to
create estimates of the mean of the observed data, which we now denote h.

Writing h(χ) = ∫ χ
0 w(u)du, we place a GP prior on w. The integration limits

were simplified to start at 0 by readjusting x in the model setup. For our model
we chose a GP with a mean function μw (which we set to 0) and a stationary
powered-exponential covariance function, which we denote Cw(χi,χj ). The ex-
ponential covariance function is appropriate due to the underlying smooth nature
of the sea-level data [abrupt changes in sea level are unlikely except in areas of in-
stantaneous tectonic deformation such as those caused by megathrust earthquakes;
e.g., Atwater (1987)]. We use a re-parameterized version so that Cw(χi,χj ) =
ρ|χi−χj |κ with ρ ∈ (0,1) and κ ∈ (0,2]. The distribution of the observed data pro-
cess h is available also as a GP, where the covariance function for h can be ob-
tained by integrating the covariance function for the derivative process (w) twice.
The resulting covariance of the IGP is Kh(χi,χj ) = ∫ χi

0

∫ χj

0 Cw(u, v) dudv and
h created from such a situation will be nonstationary, which will allow for the
smoothness of the function to vary with repect to the input space, resulting in a
more flexible model.

A solution to the problematic double integration is provided by Holsclaw et al.
(2013). They used an approach given in Yaglom (2011) to bypass the calculation
of the double integral by approximating the integrated process on a grid x∗ =
(x∗

1 · · ·x∗
m) for arbitrarily large m. This yields

h(χ) ≈ K∗
hwC∗∗−1

w wm,(4.3)
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where C∗∗
w = [Cw(x∗

i , x∗
j )]mi,j=1 is an m × m matrix containing the covariance

function for the derivative process and wm ∼ GP(μw,υ2C∗∗
w ). Most usefully,

K∗
hw is the covariance between the rate process and the integrated process,

and so only involves integrating the covariance once, that is, K∗
hw(χi, x

∗
j ) =

∫ χi

0 Cw(u, x∗
j ) du. This integral is calculated numerically, using Chebyshev–Gauss

quadrature [Abramowitz and Stegun (1965)].
The Holsclaw et al. (2013) approach replaces the integral estimate with the con-

ditional mean of the integrated process given the derivative process, while ignoring
any conditional variance. This approach is strongly related to that of the predictive
processes [PP: Banerjee et al. (2008)]. In the PP approach, a spatial covariance
matrix is approximated onto a smaller grid also by its conditional mean, resulting
in smaller matrix manipulations for large spatial problems. However, a significant
disadvantage of the PP is that the low rank approximation can yield poor estimates
of the correlation structure. By contrast, our processes are one dimensional and
we can set the grid size m large to arbitrarily reduce the approximation error with
little computational cost. In that sense it has elements in common with high-rank
approximations such as Lindgren, Rue and Lindström (2011).

Last, we must account for GIA in our model for the proxy measurements. This
introduces an extra fixed parameter γ (measured here in mm/yr) to account for
land-level movements at an individual site. The GIA correction involves subtract-
ing xi from the year of core collection, denoted t0. This is then multiplied by
the rate of GIA γ and added to yi for each observation i. The introduction of
the GIA parameter raises or lowers the sea level associated with each data point,
and additionally introduces a correlation between the age and sea-level reconstruc-
tions since older sea-level observations are raised/lowered to a greater degree.
As an illustration, consider the single example from the North Carolina proxy
reconstruction shown in Figure 2(A). The data point is given by the quadruple
(yi, xi, σxi

, σyi
) with the density of this data point represented as contours, and

samples shown for illustration. Once the GIA effect is removed, we obtain Fig-
ure 2(B), where the left-hand side of the density has been raised to a greater degree
than the right-hand side because it is older.

Algebraically, the GIA effect can be removed via an affine transformation of
the data and the variance matrix by matrices A = [ 1

−γ
0
1

]
and b = [ 0

γ t0

]
. The GIA-

corrected model is now

Azi + b ∼ N
(
μi,AViA

T + τ 2B
)
, i = 1, . . . ,N,(4.4)

where zi = [xi

yi

]
, μi = [ χi

α+h(χi)

]
, Vi = [σ 2

xi
0

0
σ 2

yi

]
and B = [0

0
0
1

]
. Since Azi and

AViA
T are both deterministic functions of the data, they can be calculated off-line

prior to any analysis.
The rate of GIA to be applied is spatially variable because of the underlying

physical process [Engelhart et al. (2009)]. For our North Carolina case study,
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FIG. 2. Example of correcting a single data point in the North Carolina proxy sea-level reconstruc-
tion for the effect of GIA. N=1000 data points were simulated from the bivariate distribution of the
RSL reconstruction before (A) and after (B) it was corrected for GIA. Since GIA is a rate (in mm/yr),
this correction results in bivariate correlated errors.

where there are two sites, we apply the rates of 0.9 mm/yr and 1 mm/yr that
were used in the original publication. Equation (4.4) forms the likelihood for the
observed data based on the EIV-IGP model. This completes our model specifica-
tion.

All the models we outline were fitted in the JAGS (Just Another Gibbs Sampler)
language [Plummer (2003)]. JAGS is a tool for analysis of Bayesian hierarchical
models using Markov Chain Monte Carlo (MCMC) simulation. Although writing
customized MCMC sampling algorithms can in some cases be relatively straight-
forward, it has become more common practice to make use of Bayesian MCMC
fitting software such as the Bayesian analysis Using Gibbs Sampling (BUGS) soft-
ware. JAGS is an engine for running BUGS and allows users to write their own
functions, distributions and samplers. JAGS offers cross-platform support and a
direct interface to R using the package rjags [Plummer (2014)].

We validated our model using two methods. First, we simulated data under ideal
and nonideal conditions. The ideal scenario is one where the parameters are sim-
ulated from the same distributions as the priors that are placed on the parame-
ters. The nonideal scenarios lead to the prior distributions over/underestimating
the mean and the variance of the parameters. The aim was to determine, for each
scenario, the coverage probabilities for the true rate process within 95% and 68%
credible intervals. Second, we performed a 10-fold cross-validation on our case
study data. Results were highly satisfactory for both validation methods and we
are confident that using this model for instrumental and proxy sea-level data al-
lows us to estimate the underlying rates of sea-level change with a high degree of
accuracy. Further details of how the validation was carried out along with results
can be found in the Appendix. All code is available in the supplementary materials
[Cahill et al. (2015)].

5. Case studies. In this section we outline our prior distributions in further
detail for each of our case studies. In the first case study we use tide-gauge mea-
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surements which have small age uncertainties and so are ignored, effectively re-
moving the EIV structure and allowing us to demonstrate the IGP aspect of the
model. Our second case study, the proxy data, contains all the elements outlined
in this section. To illustrate the utility of the S-IGP and EIV-IGP models, we apply
them to the global tide-gauge record since 1880 AD [Church and White (2011)]
and a proxy RSL reconstruction spanning the last 2100 years [Kemp et al. (2011)].
The goal is to obtain the posterior distribution of sea level and of the rate process
of interest.

For both case studies we initially ran the appropriate model for 5000 iterations
with a burn-in of 500 that we thinned by 3. In both cases we saw good convergence.
We then ran the model for a long run of 50,000 iterations to ensure convergence
remained and results were consistent. The R package coda [Plummer et al. (2006)]
was used to run diagnostics. We used autocorrelation plots, Geweke plots [Geweke
(1992)], the Gelman and Rubin diagnostic [Gelman and Rubin (1992)] and the
Heidelberger and Welch diagnostic [Heidelberger and Welch (1983)], which all
indicated model convergence. We also ran multiple chains from different starting
values to ensure good mixing.

5.1. Global tide-gauge record. A complete description of the approach and
methods employed to generate this data set is presented in Church and White
(2006, 2011). The data file includes 3 columns: time in years AD, GMSL in meters,
and a one-sigma sea-level error in meters.

The Simple Integrated Gaussian Process (S-IGP) model was used to analyze
this data set. The distribution for the observed data is

yi ∼ N
(
α + h(xi), σ

2
yi

+ τ 2)
,(5.1)

h(x) ≈ K∗
hwC∗∗−1

w wm,(5.2)

where h(x) is the approximation to the IGP described in Section 4. C∗∗
w =

ρ
|x∗

i −x∗
j |κ is an m × m matrix containing the covariance function for the derivative

process and wm ∼ GP(μw,υ2C∗∗
w ). Recall, K∗

hw is the covariance between the rate
process and the integrated process, that is, K∗

hw(xi, x
∗
j ) = ∫ xi

0 Cw(u, x∗
j ) du.

Prior distributions were specified for each unknown parameter. The correlation
parameter ρ was defined on the interval (0,1). The tide-gauge record [Church
and White (2011)] spans a relatively short period of time, during which there was
a single mode of climate warming and sea-level rise [Rahmstorf (2007)]. So even
though this record is highly correlated, climate forcing, as opposed to time change,
is the driver for sea-level change over this instrumental period. Therefore, we set
a mildly informative prior for ρ that favors low values of the correlation parame-
ter that are close to 0.2, where p(ρ) = Beta(2,8). Another somewhat informative
prior was used for τ 2. To determine a prior for this parameter, we considered other
global tide-gauge compilations such as Jevrejeva et al. (2008). The data supplied
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for this record have associated standard errors for each sea-level measurement.
Details of how these errors are determined can be found in Jevrejeva et al. (2006).
These standard errors range from 0.01–0.07 m. In choosing our prior we used this
information, but we do not restrict τ to be within this range, instead we chose to
conservatively place a prior on τ 2 that favors values for τ close to 0.1 m, where
τ 2 ∼ Gamma(0.1,10).

We decided on a prior for υ2, the variance of the rate process, by looking at
the information currently available regarding the rate of global sea-level rise. Be-
tween 1950 AD and 2000 AD trends in global average rates of sea-level rise varied
from 0 to 4 mm/yr [White, Church and Gregory (2005)]. Over multi-centennial
timescales during the last 2000 years (prior to industrialization), global sea level
was likely close to stable after correction for land-level movements (i.e., rate
∼0 mm/yr). Alternatively, at decadal to multi-decadal time scales, higher regional
rates (up to 4 mm/yr) are observed in instrumental records after correction for
land-level movements. A GP prior centered on 0 was used to describe the rate
process for our model. The prior information suggests that rates can reach up to
4 mm/yr. Therefore, we deemed the range of the rate of sea level, −4 to 4 mm/yr,
appropriate. If this range is treated as a 95% confidence interval, it is reasonable
to assume that the standard deviation is ∼ 2 mm/yr. Hence, we set up the prior
for υ2 to favor values close to 4, where υ2 ∼ Gamma(80,20). An uninformative
normal prior is placed on the unknown intercept parameter α.

The analysis of the global tide-gauge record is presented in Figure 3, which
shows the GMSL predictions estimated from our model (A) and our rate esti-
mates (B). The rate of GMSL rise estimated from a linear regression analysis
of the global tide-gauge record for the entire period 1880 AD to 2009 AD was
1.5 mm/yr [Church and White (2006)]. This is consistent with the average rate
suggested in Figure 3(B). The rate of sea-level rise from 1900 AD to 2009 AD
was 1.7 mm/yr ± 0.3 mm [Church and White (2006)]. The S-IGP model indicates
that this rate occurred from approximately 1965 AD to 1975 AD. Furthermore, the
model indicates that the rate of GMSL rise actually increased (accelerated) con-
stantly through time from 1.13 mm/yr in 1880 AD to 1.92 mm/yr in 2009 AD
[Figure 3(B)]. The recognition of accelerating sea-level rise agrees with projec-
tions for the 21st century that can only be realized with continued acceleration
[IPCC (2013)]. We demonstrate that the S-IGP model negates the need to analyze
specific intervals of temporal data and consequently provides more accurate and
representative estimates of the constantly evolving rate of sea-level change.

5.2. North Carolina proxy reconstruction. The example data set from North
Carolina is a proxy reconstruction spanning the last ∼2100 years that was de-
veloped from cores of salt-marsh sediment located at two sites (Tump Point,
34◦58′12′′N 76◦22′48′′W; and Sand Point, 35◦53′05′′N 75◦40′51′′W) that are
120 km apart [Kemp et al. (2011)]. As such, it provides a regional record of
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FIG. 3. (A) Predictions for GMSL since 1880 AD generated by fitting the S-IGP model to the
instrumental data set. Shading denotes 68% and 95% credible intervals for the posterior mean fit.
(B) Rate of global sea-level rise calculated as the derivative of the fitted model. Shading denotes 68%
and 95% credible intervals for the posterior mean of the rate process.

RSL change for North Carolina. The correction for GIA was estimated from a re-
gional database of late Holocene relative sea-level reconstructions [Engelhart et al.
(2009)]. The rate of GIA is 0.9 mm/yr at Tump Point and 1.0 mm/yr at Sand Point.
The data file includes 4 columns: RSL in meters, age in year AD, a one-sigma RSL
error, and a two-sigma age error.

The EIV-IGP model, described in detail in Section 4, was used to analyze this
data set. Prior distributions were specified for each unknown parameter. As with
the S-IGP model, the correlation parameter ρ is defined on the interval (0,1). The
chosen prior p(ρ) = Beta(2,8), which suggests a mean of approximately 0.2 with
a standard deviation of approximately 0.1. This assumes that data points more
than 1000 years apart have minimal effect on one another. This is a reasonable as-
sumption given that the reconstruction spans a 2100 year time period and includes
multiple phases of sea level and climate behavior, including the warmer Medieval
Climate Anomaly, cooler Little Ice Age, and very warm 20th and 21st centuries
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FIG. 4. (A) Predictions for North Carolina sea level generated by fitting the EIV-IGP model. Shad-
ing denotes 68% and 95% credible intervals for the posterior mean fit. (B) Rate of sea-level change
in North Carolina calculated as the derivative of the fitted model. Shading denotes 68% and 95%
credible intervals for the posterior mean of the rate process.

[Mann et al. (2008)]. We used the same prior for the variance parameter τ 2 as for
the previous case study. Following the same reasoning as with the tide-gauge data
in Section 5.1, a gamma prior, υ2 ∼ Gamma(80,20), was used for the variance of
the derivative process. An uninformative normal prior was placed on the unknown
intercept parameter α.

Application of the EIV-IGP model to the proxy sea-level reconstruction from
North Carolina shows four persistent phases of sea-level behavior [Figure 4(A)].
The model predictions are a good fit to the proxy reconstructed data which gives
confidence in the model. From the start of the record at approximately 100 BC to
1000 AD there is little change in sea level following correction for GIA. The period
from 1000 AD to 1400 AD is characterized by sea-level rise. Between 1400 AD
and about 1850 AD there was a fall in sea level and since 1850 AD sea level rose
rapidly in North Carolina. This evolution in sea level is reflected in the modeled
rate of sea-level rise [Figure 4(B)], where the first period has a mean sea-level
change of approximately 0 mm/yr. The second period saw a maximum rate of
rise reach a posterior mean value of 0.53 mm/yr with a 95% credible interval
for this mean of 0.39 to 0.68 mm/yr, which Kemp et al. (2011) attributed to a
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warmer climate during the Medieval Climate Anomaly. The sea-level fall between
1400 AD and 1850 AD occurred at a maximum rate of 0.3 mm/yr with a 95%
credible interval for this mean of 0.16 to 0.43 mm/yr and was likely a sea-level
response to the cooler Little Ice Age [Kemp et al. (2011)]. The transition from
the Little Ice Age is marked by a dramatic increase in the rate of sea-level rise
that continues to a mean rate of 2.44 mm/yr in 2000 AD with a 95% credible
interval of 1.91 to 3.01 mm/yr. The rate of sea-level rise since the middle of the
19th century is without precedent in North Carolina for at least the previous 2000
years. The modeled mean rate of rise departs from earlier 95% credible intervals
at around 1845 AD.

6. Conclusion. Taking into account all sources of uncertainty (temporal and
vertical) when estimating sea-level trends is essential to allow instrumental mea-
surements and proxy reconstructions of sea level to be compared directly and
fairly. Previous analysis incorrectly ignored some or all of the uncertainties. We
proposed and validated a model that allows for the direct estimation of rates of
sea-level change while quantifying uncertainties more thoroughly than previously
possible. The method involves a nonparametric reconstruction of the derivative
process. A GP prior is placed on the derivative process and we view the mean of
the distribution assumed for the observed data to be the integral of this process.
For our case study data, the derivative at a particular time point is representative of
the rate of sea-level change at that time point. This enables us to estimate instanta-
neous rates of change and observe the constant evolution of dynamic sea-level rise
through time. The model also provides a flexible fit and allows us to estimate the
uncertainty about the rate process of interest.

Our analysis of the global tide-gauge record shows that the rate of GMSL rise
increased (accelerated) continuously from 1.13 mm/yr in 1880 AD to 1.92 mm/yr
in 2009 AD. Application of our model to an example proxy sea-level reconstruc-
tion from North Carolina quantified the changing rate of sea-level rise through the
Medieval Climate Anomaly, Little Ice Age and 20th century. The posterior mean
rate of rise in North Carolina at 2000 AD was 2.44 mm/yr with a 95% credible
interval of 1.91 to 3.01 mm/yr. This is the fastest rate of rise in the 2000-year long
reconstruction.

APPENDIX: MODEL VALIDATION

A.1. Simulated scenarios. In this section we demonstrate the validity of our
model. Through the use of simulated data, parameters α and τ 2 (see Section 4),
proved to be robust. Within reason, there was no difficulty in estimating the val-
ues of these parameters, regardless of prior choice. We found the parameters that
related to the GP, that is, σ 2

g and ρ, were the more sensitive parameters in the
model and, as a result, the validation focused on these. For the purposes of this
validation we used a simpler model, that is, the version that is not set in the EIV
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framework. The parameters that were introduced in cases where an errors-in vari-
ables approach was necessary were all estimated directly from the data and, thus,
we excluded this component of the model in the validation process in order to
simplify things. Therefore, the data was simulated from the following distribu-
tion:

yi ∼ N
(
α + h(xi), τ

2)
, i = 1, . . . ,N,(A.1)

h(xi) ≈ K∗
hwC∗∗−1

w wm,(A.2)

where C∗∗
w = [Cw(x∗

i , x∗
j )]mi,j=1 is an m×m matrix containing the covariance func-

tion for the derivative process and wm ∼ GP(μw,υ2C∗∗
w ). K∗

hw is the covariance
between the rate process and the integrated process.

To validate the model, we considered several different scenarios under ideal
and nonideal conditions. For each scenario we simulated values for the unknown
parameters, which in turn were used to simulate data from an integrated GP
model. Data simulation required simulation of the underlying rate process, which,
based on our model assumptions, is a GP. Therefore, we knew the true under-
lying rate process. As the focus of this work is in establishing rates of sea-level
change, our primary concern was whether or not our model was successful in es-
timating the true underlying rate process. We observed how often the true rate
falls within the 95% and 68% credible intervals for the rate predicted from the
model.

For the purposes of this validation, the priors that were placed on the parame-
ters σ 2

g and ρ were σ 2
g ∼ gamma(10,10) and ρ ∼ beta(2,8). Therefore, σ 2

g will
be centered around 1 with a variance of 0.1 and ρ will be centered around 0.2
with a variance of 0.01. In scenario (a) the parameter values came from the same
distributions as our priors. This was the ideal case and we expected the model
to perform best under these conditions. In scenarios (b) and (c) we simulated
the parameters so that our prior assumptions were underestimating/overestimating
the means, respectively. In scenarios (d) and (e) we simulated parameter values
so that our prior assumptions were underestimating/overestimating the variances,
respectively. Finally, for scenarios (f) and (g) we simulated parameter values so
that our prior assumptions were underestimating/overestimating both the mean
and variances. 500 simulations were run for each scenario. The 95% and 68%
coverage probabilities were observed. An average over the 500 simulations was
taken for our validation results. The results of this validation are shown in Ta-
ble 1.

The model was capable of estimating the rate process, even if the prior distribu-
tions for the parameters were over/underestimating means and variances. For the
ideal scenario the true rate fell within the 95% credible interval and 68% credi-
ble interval of the estimated rate approximately 95% and 68% of the time as ex-
pected. For scenarios (b) and (e) the rate fell into the credible intervals a higher
proportion of the time. This suggests that underestimating the mean values of our
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TABLE 1
Validation results for simulated scenarios (a)–(g)

Simulated σ 2
g Simulated ρ

Scenario Mean Var Mean Var
Coverage probability

(95% CI)
Coverage probability

(68% CI)

(a) (Ideal) 1 0.1 0.2 0.01 0.954 0.679
(b) 2 0.1 0.2 0.01 0.969 0.733
(c) 0.5 0.1 0.1 0.01 0.931 0.656
(d) 1 0.5 0.2 0.1 0.868 0.604
(e) 1 0.02 0.2 0.001 0.963 0.715
(f) 2 0.5 0.4 0.1 0.962 0.716
(g) 0.5 0.02 0.1 0.001 0.936 0.661

parameters or overestimating the variance of our parameters will result in wider
than expected credible intervals for the rate. For scenarios (c) and (d) the rate
fell into the credible intervals a lower proportion of the time. This suggests that
overestimating the mean values of our parameters or underestimating the variance
of our parameters will result in narrower credible intervals than expected for the
rate.

For scenario (f) the rate fell into the 95% and 68% credible intervals more
than 95% and 68% percent of the time. For this scenario the priors were un-
derestimating both the mean and variance for the parameters of interest. From
the cases where the mean and variance were underestimated separately [i.e.,
(b) and (d)], the results were wider credible intervals and narrower credible
intervals, respectively. Comparing these results with case (f), it appears that
underestimating the mean dictated the results and caused the credible inter-
val for the rate to be wider than expected. For scenario (g) the true rate falls
into the 95% and 68% credible interval less than 95% and 68% of the time.
In this case, when the means and variances were overestimated [i.e., (c) and
(e)], the results indicated narrower and wider credible intervals, respectively.
When compared with scenario (g), this suggested that overestimating the means
dictated the results and caused the credible intervals to be narrower than ex-
pected.

From this validation we are made aware of some of the consequences of mis-
specifying prior distributions for the parameters σ 2

g and ρ in our model. The
results indicated that although for all of the cases excluding the ideal scenario
we overestimate or underestimate our confidence around the rate, we do not
over/underestimate the credible intervals by enough to cause concern.

A.2. 10-fold cross-validation. A second method we used to validate our
model was a 10-fold cross-validation. We performed this on both our case study
data sets. Each observation was numbered 1 : N , where N was the total number of
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observations. A random permutation of these numbers was taken using a function
in R. The first 10% of these numbers were taken and the corresponding obser-
vations were removed from the data. The model was run on the data with these
observations missing. We then used the model results to predict values for our
missing observations.

By definition, the observed data is an integral of the rate process. Therefore,
by integrating the rate process that we obtained from running the model, at the
points where we had missing data, we obtained predictions for our missing data.
We took sample paths from the posterior estimates of the rate process (we used
500 samples) and integrated these sample rate curves at the places where we re-
moved the observations. This provided us with 500 samples of posterior predic-
tions for each of the missing data points. From these samples we determined the
mean and standard deviations for each prediction and used this information to ap-
proximate a mean prediction and a 95% prediction interval. Note, there is some
variation in the prediction intervals from sample to sample due the credible in-
tervals for the rate process varying slightly depending on which samples were
removed.

The cross-validation was carried out for both case study data sets. In Figure 5
we plot the true sea-level observations versus the posterior estimates of the mean
predictions and their 95% prediction intervals. We performed the cross-validation
for our IGP models in comparison to a simplistic least squares regression (LSR)
model for both case studies. The results are displayed in Figures 6 and 7 for the
global tide-gauge data set of Church and White (2011) and the North Carolina
proxy measurements of Kemp et al. (2011), respectively.

FIG. 5. True vs Predicted. (A) results for Church and White (2011) global tide-gauge compilation.
(B) shows the results for the North Carolina proxy reconstruction.
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FIG. 6. Cross-validation for Church and White. Panel (A) shows predicted means for each sea-level
observation and their 95% prediction intervals, overlaid on the true data, using a LSR modeling
approach. Panel (B) shows the same results using an S-IGP approach.

To asses the prediction intervals, we used the interval score in equation (A.3)
proposed by Gneiting and Raftery (2007):

Sint
α (l, u;x) = (u − l) + 2

α
(l − x)1{x < l} + 2

α
(x − u)1{x > u},(A.3)

where l and u are the upper and lower bounds of the prediction interval and x is
the true value we are trying to predict. The resulting score is negatively oriented
and we wanted to minimize the result. The score rewards for narrow prediction
intervals and penalizes if the observation misses the interval. Table 2 shows the
empirical coverage (% of time the true observation fell within the prediction inter-
val), the average width of all the prediction intervals and the average interval score
for the prediction intervals.
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FIG. 7. Cross-validation for North Carolina. Panel (A) shows predicted means for each sea-level
observation and their 95% prediction intervals, overlaid on the true data, using a LSR modeling
approach. Panel (B) shows the same results using an EIV-IGP approach.

TABLE 2
Scoring results for the 95% prediction intervals estimated for each observation in the 10-fold

cross-validation

Data Model Empirical coverage Average interval width Average interval score

C&W LSR 97.69% 0.035 0.039
C&W S-IGP 95.34% 0.027 0.032
N. Carolina LSR 93.53% 0.256 0.340
N. Carolina EIV-IGP 95.27% 0.182 0.198
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SUPPLEMENTARY MATERIAL

Data and code (DOI: 10.1214/15-AOAS824SUPP; .zip). We provide the tide-
gauge and proxy reconstructed data for both case studies. We also supply the R
code and JAGS code needed to run the S-IGP and EIV-IGP models described.
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