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BAYESIAN STRUCTURED ADDITIVE DISTRIBUTIONAL
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We propose a generic Bayesian framework for inference in distribu-
tional regression models in which each parameter of a potentially complex
response distribution and not only the mean is related to a structured ad-
ditive predictor. The latter is composed additively of a variety of different
functional effect types such as nonlinear effects, spatial effects, random co-
efficients, interaction surfaces or other (possibly nonstandard) basis func-
tion representations. To enforce specific properties of the functional effects
such as smoothness, informative multivariate Gaussian priors are assigned
to the basis function coefficients. Inference can then be based on computa-
tionally efficient Markov chain Monte Carlo simulation techniques where a
generic procedure makes use of distribution-specific iteratively weighted least
squares approximations to the full conditionals. The framework of distribu-
tional regression encompasses many special cases relevant for treating non-
standard response structures such as highly skewed nonnegative responses,
overdispersed and zero-inflated counts or shares including the possibility for
zero- and one-inflation. We discuss distributional regression along a study
on determinants of labour incomes for full-time working males in Germany
with a particular focus on regional differences after the German reunification.
Controlling for age, education, work experience and local disparities, we es-
timate full conditional income distributions allowing us to study various dis-
tributional quantities such as moments, quantiles or inequality measures in a
consistent manner in one joint model. Detailed guidance on practical aspects
of model choice including the selection of several competing distributions
for labour incomes and the consideration of different covariate effects on the
income distribution complete the distributional regression analysis. We find
that next to a lower expected income, full-time working men in East Ger-
many also face a more unequal income distribution than men in the West,
ceteris paribus.
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1. Introduction. The analysis of determinants of labour incomes has a long
tradition in economics, dating back at least to Mincer (1974). His classical wage
equation includes potential labour market experience as well as years of educa-
tion as the most important determinants of human capital which then translates
into expected income [Lemieux (2006)]. Additional possible determinants include
age, actually realised labour market experience, gender, regional information con-
cerning the residence of employees, or area of employment. One considerable re-
striction of most analyses conducted so far is their sole focus on the expected
income given covariates, that is, the conditional mean. In some cases, distributions
are required, for example, for inequality decomposition or to account for incom-
plete information due to truncation or censoring. Then, the (log-)normal distribu-
tion [Greene (2008), Chapter 19, Morduch and Sicular (2002)] is often implicitly
considered (again with regression effects only on the mean) or one reverts to lo-
cal analyses by means of quantile regression [Autor, Katz and Kearney (2008),
Galvao, Lamarche and Lima (2013)]. More flexible types of distributions have so
far mostly been used to describe income distributions on a highly aggregated level,
normally the national level [Kleiber (1996)].

We utilise detailed, longitudinal information on incomes available from the Ger-
man socio-economic panel (SOEP) to derive a flexible, structured additive distribu-
tional regression model for labour incomes of full-time male workers. We consider
several candidate distributions for describing the nonnegative conditional income
distributions, including the log-normal distribution, the gamma distribution, the in-
verse Gaussian distribution and the Dagum distribution. To obtain flexible models,
we allow for regression effects on potentially all parameters of the income distribu-
tion, thereby overcoming the previous concentration on expected incomes. As an
illustration, consider the income distributions visualised in Figure 1 correspond-
ing to an “average,” full-time male worker with/without higher education in East
and West Germany. Here we find that the income distributions differ considerably
not only in terms of their expectation but also with respect to other aspects of the
distribution, like the variance (see Section 4 for more details on the analysis).

Some earlier attempts to define distributional regression models comprise
Biewen and Jenkins (2005) or Donald, Green and Paarsch (2000). Biewen and
Jenkins (2005) suggest to decompose the population into a coarse set of subgroups
for which parametric income distributions are estimated such that the distributional
form varies over the subgroups. Donald, Green and Paarsch (2000) propose to vary
location and scale parameters with respect to covariates while the general shape of
the distribution remains fixed over the covariate set. Building on their work, we
propose to combine these approaches in the sense that conditional income distri-
butions are modelled parametrically as suggested by Biewen and Jenkins (2005),
while allowing for variation in the whole distribution (not just location and scale)
with respect to covariates as specified by Donald, Green and Paarsch (2000).

Differences between East and West Germany have received considerable atten-
tion in the economic literature [Biewen (2000), Fuchs-Schündeln, Krueger and
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FIG. 1. SOEP data. Four conditional income distributions for 42-year-old males with 19 years of
working experience without higher education (left) or with higher education (right) and living in the
East (dashed lines) or West (solid lines). Densities shown are posterior means of the densities in our
best model DA_M1; compare Section 3 for details on the model specification.

Sommer (2010), Kohn and Antonczyk (2011)] and also consistently played a ma-
jor role in the domestic political debate. Instead of solely taking a macroeconomic
perspective to look at income inequality in the East and West at a highly aggregated
level, we build a microeconomic foundation to the analysis of income inequality.
Thereby, we consider the effect of various covariates on the conditional individual
income distribution underlying the aggregate income distribution. It is our hypoth-
esis that there are not only significant differences between East and West in the
conditional mean income but also in the conditional income inequality aggravat-
ing the economic divide more than two decades after the reunification.

As a conceptual framework for our analyses, we extend the Bayesian structured
additive distributional regression models recently proposed in Klein, Kneib and
Lang (2015) for zero-inflated and overdispersed count data regression to general
types of univariate distributions. In this class of regression models, all parameters
of a potentially complex response distribution are related to additive regression
predictors in the spirit of generalised additive models (GAMs). While the latter
assume responses to follow a distribution from the exponential family and focus
exclusively on relating the mean of a response variable to covariates [see, e.g.,
Fahrmeir, Kneib and Lang (2004), Fahrmeir et al. (2013), Ruppert, Wand and Car-
roll (2003), Wood (2004, 2008)], distributional regression enables the considera-
tion of basically any response distribution and allows to specify regression predic-
tors for all parameters of this distribution. The main advantage of distributional
regression is that it provides a broad and generic framework for regression models
encompassing continuous, discrete and mixed discrete-continuous response distri-
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butions and therefore considerably expands the common exponential family frame-
work.

Distributional regression is closely related to generalised additive models for
location, scale and shape (GAMLSS) as suggested by Rigby and Stasinopoulos
(2005). We prefer the notion of distributional regression for our approach since
in most cases, the parameters of the response distribution are in fact not directly
related to location, scale and shape but are general parameters of the response
distribution and only indirectly determine location, scale and shape. For example,
in case of the Dagum distribution, there are three distributional parameters, but
none of them is directly related to a measure of location which is jointly determined
by all three parameters.

In GAMLSS, inference is commonly based on penalised maximum likelihood
estimation achieved via backfitting loops over the additive predictor components.
In this paper, we consider a generic Bayesian treatment of distributional regres-
sion relying on Markov chain Monte Carlo simulation algorithms. To construct
suitable proposal densities, we follow the idea of iteratively weighted least squares
proposals [Brezger and Lang (2006), Gamerman (1997)] and use local quadratic
approximations to the full conditionals in order to avoid manual tuning. Utilising
explicit derivations of the score function and expected Fisher information in these
approximations considerably enhances numerical stability as compared to using
numerical derivatives and the observed Fisher information (which are frequently
used in the R add-on package gamlss implementing penalised likelihood infer-
ence). The Bayesian approach also has the advantage to provide credible intervals
without relying on asymptotic arguments. The full potential of distributional re-
gression is only exploited when the regression predictor is broadened beyond the
scope of simple linear or additive specifications. We will consider structured ad-
ditive predictors [Brezger and Lang (2006), Fahrmeir et al. (2013)] where each
predictor is determined as an additive combination of various types of functional
effects, including nonlinear effects of continuous covariates, spatial effects, ran-
dom effects or varying coefficient terms.

Alternatives to distributional regression are provided by quantile and expectile
regression which also allow us to go beyond studying the mean by focusing on
local features of the response distribution, indexed by a prespecified asymmetry
parameter (the quantile or expectile level); see Koenker and Bassett (1978), Newey
and Powell (1987) for the original references and Koenker (2005), Schnabel and
Eilers (2009), Sobotka and Kneib (2012), Yu and Moyeed (2001) for more recent
overviews. Single quantiles or expectiles are elicitable [Gneiting (2011a), Osband
and Reichelstein (1985)] by considering asymmetrically weighted loss functions
and consistent estimates can be obtained under rather mild conditions on the con-
ditional distribution of the responses (basically reducing to independence and the
correct specification of the quantity of interest). However, when interest focuses
on the complete conditional distribution or if distributional quantities such as the
Gini coefficient for inequality that are not elicitable by specifying a corresponding
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loss function are desired, the direct specification of distributional regression turns
out to be advantageous.

Many of the aspects discussed in the remainder of this paper (such as choice
of a suitable response distribution and adequate predictor specifications, Bayesian
inference, interpretation of estimation results) are relevant beyond our application.
We therefore provide an analysis on the proportion of farm outputs achieved by
cereals in the application Supplement A [Klein et al. (2015b), Section A.2], to this
paper as a second example on distributional regression.

The remainder of the paper is structured as follows: Section 2 provides a de-
tailed introduction to distributional regression and Bayesian inference along our
case study on labour incomes. Model choice concerning the type of the response
distribution and the specification of the regression predictors is treated in Sec-
tion 3. Given the selected models, Section 4 provides empirical results on the re-
gional disparities of conditional incomes in East and West Germany. Additional
material on the application is provided in the application supplement Section A.1.
Section 5 provides a summary and comments on directions for future research. Fi-
nally, we summarise general aspects of distributional regression with other types
of responses in the methodological Supplement B [Klein et al. (2015c)] which also
comprises details on Bayesian inference, derivations of required quantities for the
iteratively weighted least squares proposals and simulation studies.

2. Distributional regression. As a conceptual framework for our analysis of
labour incomes and their regional disparities, we consider distributional regres-
sion models where, conditional on all available covariate information summarised
in the vector νi , the response variables y1, . . . , yn are assumed to be indepen-
dently distributed with K-parametric densities p(yi |ϑi1, . . . , ϑiK) ≡ pi . The con-
ditional distribution pi of observation yi given νi is indexed by the (in general
covariate-dependent) distributional parameters ϑi1, . . . , ϑiK . Each parameter ϑik ,
k = 1, . . . ,K is then related to a semiparametric, additive predictor η

ϑk

i defined in
terms of (potentially different) subvectors of the covariate vector νi . Similarly, as
in generalised linear models, a suitable (one-to-one) response function is utilised
to map the predictor to the parameter of interest, that is, ϑik = hϑk (η

ϑk

i ), where the
superscript ϑk in the predictors and response functions indicates that we are deal-
ing with K predictors specific to the different distributional parameters instead of
only one single predictor as in mean regression. The response function is chosen
to ensure appropriate restrictions on the parameter space such as the exponential
function ϑik = exp(η

ϑk

i ) to ensure positivity. We discuss specific choices for dis-
tributional regression of labour incomes after having introduced our data in more
detail.

2.1. German labour income data. For studying conditional income distribu-
tions in Germany, we utilise information from the German Socio-Economic Panel
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[Wagner, Frick and Schupp (2007)]. More specifically, we consider real gross an-
nual personal labour income in Germany as defined in Bach, Corneo and Steiner
(2009) for the years 2001 to 2010. We deflate the incomes by the consumer price
index [Statistisches Bundesamt (2012)], setting 2010 as our base year. Thus, all
incomes are expressed in real-valued 2010 Euros from here on.

Following the standard literature, we only look at the income of males in full-
time employment [see, among others, Card, Heining and Kline (2013), Dustmann,
Ludsteck and Schönberg (2009)] in the age range 20–60. This yielded 7216 indi-
viduals for whom we considered the income trajectories from the ten year period.
For each individual, we used every observation for which all required dependent
and independent variables were available, yielding a total of n = 40,965 observa-
tions. Naturally, this implies that for some individuals we do not have full longitu-
dinal coverage over the whole ten year period.

As covariates, we consider educational level measured as a binary indicator for
completed higher education (according to the UNESCO International Standard
Classification of Education 1997 provided in the SOEP) in effect coding (educ),
age in years (age), previous labour market experience in years (lmexp), the calen-
dar time (t), information on the geographical district (Raumordnungsregion) repre-
senting the area of residence (s) and a binary indicator in effect coding for districts
belonging to the eastern part of Germany (east). A description of the data set is
given in Table A1; details on the specifications for the different effect types will
be provided in Section 2.3.

A common assumption in economic analyses of income is that incomes yi are
log-normally distributed with covariate-dependent location parameter ηi (corre-
sponding to the mean of the log-transformed incomes) and a constant scale param-
eter σ 2. For an observation i collected at time point ti , a suitable semiparametric
predictor (dropping the dependence on the parameter ϑk) could then be specified
as

ηi = β0 + educiβ1 + f1(agei ) + educif2(agei )
(1)

+ f3(lmexpi ) + fspat(si) + ftime(ti),

where β0 represents the overall intercept, β1 captures the effect of higher educa-
tion, f1(age) and f2(age) are nonlinear effects of age capturing also the interaction
with the educational status, f3(lmexp) is the nonlinear effect of previous labour
market experience, fspat(s) is a spatial effect capturing heterogeneity at the level
of the districts s, and ftime(t) is an effect specific for the calendar year t . In a
second step, the spatial effect can further be decomposed into

fspat(s) = eastsγ1 + gstr(s) + gunstr(s),(2)

where γ1 captures the difference between the eastern and western part of Germany
and gstr(s) and gunstr(s) represent spatially structured (smooth) or unstructured
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TABLE 1
Selected candidate distributions; for a more comprehensive list see Table B1

Name Density Parameters Response functions

Log-normal p(y|μ,σ 2) = 1√
2πσ2y

exp(− (log(y)−μ)2

2σ2 ) μ ∈ R, σ 2 > 0 hμ(η) = η,hσ2
(η) = exp(η)

Inverse Gaussian p(y|μ,σ 2) = 1√
2πσ2y3/2

exp(− (y−μ)2

2yμ2σ2 ) μ,σ 2 > 0 hμ(η) = hσ2
(η) = exp(η)

Gamma p(y|μ,σ) = ( σ
μ )σ

yσ−1

�(σ)
exp(− σ

μy) μ,σ > 0 hμ(η) = hσ (η) = exp(η)

Dagum p(y|a, b, c) = acyac−1

bac(1+(y/b)a)c+1 a, b, c > 0 ha(η) = hb(η) = hc(η) = exp(η)

(unsmooth) district-specific effects. Note that, in addition to the East–West indica-
tor east, more district-specific information could be included if desired. While this
decomposition could simply be plugged into (1) to obtain a reduced-form specifi-
cation, it can also be interpreted as a hierarchical multilevel specification where we
differentiate between an individual-specific level in (1) and a region-specific level
in (2). Further details on the predictors and associated priors will be discussed in
Section 2.3.

2.2. Potential response distributions. One of the great advantages of struc-
tured additive distributional regression is the wide range of distribution types that
can be modelled. Since labour income is by definition positive, we will restrict our-
selves to four nonnegative distributions summarised in Table 1. For a more compre-
hensive list of distributions supported by the distributional regression framework,
see Section B.1.1.

As noted, the standard conditional distribution type in econometric income anal-
yses is the log-normal distribution. Next to its theoretical appeal from an economic
perspective [see Arnold (2008), page 122], it has the advantage that it makes the
vast statistical inference machinery built around Gaussian regression available to
researchers. However, Atkinson (1975) and others have noted that, at least for
the aggregate income distribution, the log-normal distribution fit is problematic
at times, especially for the upper tail of the distribution.

Partly as a consequence, various other distribution types have thus been sug-
gested for the modelling of income distributions. Salem and Mount (1974) pro-
posed the gamma distribution as a suitable alternative to the log-normal distribu-
tion. One of its advantages is that its estimation is possible within the framework
of generalised linear models as the distribution belongs to the exponential family
(as long as covariate effects are restricted to the mean).

The third distribution we consider also belongs to the exponential family (if the
second parameter is assumed to be independent of covariates). The inverse Gaus-
sian distribution has to our knowledge not been used in the context of modelling
income distributions yet. But for other nonnegative distributions with a similar eco-
nomic rationale, like the distribution of claim sizes arising in car insurance [Heller,
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Stasinopoulos and Rigby (2006), Klein et al. (2014)], it has shown to perform well
due to its flexibility in modelling extreme right skewness. As it is conceivable that
some conditional income distributions also portray such extreme skewness, we
decided to also consider this distribution type.

The last distribution we consider is the Dagum distribution [Dagum (1977)]
which belongs to the beta-type size distributions that have seen considerable at-
tention in the literature on modelling (aggregate) income distributions [see Kleiber
and Kotz (2003)]. One of its appealing properties is that towards the upper end of
the distribution its shape mirrors the one of the Pareto distribution which is gener-
ally assumed to provide a good approximation for the income distribution for the
top percentiles of the (aggregate) income distribution [Piketty and Saez (2007)].

2.3. Structured additive predictors and associated priors.

Generic representation. While considering a specific instance of a structured
additive predictor for the analysis of income, a generic structured additive predictor
for parameter ϑik is given by

η
ϑk

i = β
ϑk

0 + f
ϑk

1 (νi ) + · · · + f
ϑk

Jk
(νi),(3)

where β0 represents the overall level of the predictor and the functions f
ϑk

j (νi ),
j = 1, . . . , Jk , relate to different covariate effects defined in terms of the complete
covariate vector νi . Note that each distribution parameter may depend on different
covariates and a different number of effects Jk , but we suppress this possibility (as
well as the parameter index) in the following.

In structured additive regression, each function fj is approximated by a linear
combination of Dj appropriate basis functions, that is,

fj (νi ) =
Dj∑

dj=1

βj,dj
Bj,dj

(νi )

such that in matrix notation we can write fj = (fj (ν1), . . . , fj (νn))
′ = Zjβj ,

where Zj [i, dj ] = Bj,dj
(νi ) is a design matrix and βj is the vector of coefficients

to be estimated. To ensure identifiability specific constraints representing for ex-
ample centring of the functional effects are added, see Section B.2.2 for further
details. The basis function representation then leads to the following matrix repre-
sentation of the generic predictor (3):

η = β01 + Z1β1 + · · · + ZJ βJ .(4)

For each of the parameter vectors βj we can then either assume a hierarchical
specification, where βj is related to another structured additive predictor (as in the
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case of the spatial effect in our example), or we directly assume the multivariate
normal prior

p
(
βj |τ 2

j

) ∝
(

1

τ 2
j

)(rk(Kj ))/2

exp
(
− 1

2τ 2
j

β ′
j Kjβj

)
(5)

with (potentially rank-deficient) precision matrix Kj and prior smoothing vari-
ance τ 2

j . The latter is assigned an inverse gamma hyperprior τ 2
j ∼ IG(aj , bj ) (with

aj = bj = 0.001 as a default option) in order to obtain a data-driven amount of
smoothness.

A detailed discussion of terms that fit into the generic predictor framework (in
the context of mean regression) is provided in Fahrmeir, Kneib and Lang (2004)
and Fahrmeir et al. (2013), Chapters 8 and 9.

In the following, we will discuss suitable specifications and prior assumptions
for the hierarchical predictor defined in (1) and (2). Note that we drop the depen-
dence on the distributional parameter indicated by the superscript ϑk , the observa-
tion index i and the function index j to simplify notation. Hierarchical extensions
are treated in detail in Lang et al. (2014).

Linear effects. For all parametric, linear effects, we assume a flat, noninfor-
mative prior. This may be considered the limiting case of a multivariate Gaussian
prior with high dispersion which can also be used to achieve regularisation in the
case of high-dimensional parameter vectors. In our analyses, we assume linear ef-
fects for the intercept and the educational indicator, as well as for the East–West
indicator.

Continuous covariates. For the effects of age and previous work experi-
ence, assuming a linear effect is probably too restrictive. We therefore consider
P(enalised)-splines [Eilers and Marx (1996)] as a flexible device for including po-
tentially nonlinear effects f (x) of a continuous covariate x. In a first step, f (x)

is approximated by a linear combination of D B-spline basis functions Bd(x) that
are constructed from piecewise polynomials of a certain degree l upon an equidis-
tant grid of knots, f (x) = ∑D

d=1 βdBd(x). To avoid the requirement of choosing
an optimal number of knots together with optimal knot positions, Eilers and Marx
(1996) regularise the function estimate by augmenting a difference penalty to the
fit criterion. In our Bayesian framework, the stochastic analogue is to assume a
first or second order random walk

βd = βd−1 + εd, d = 2, . . . ,D,

βd = 2βd−1 − βd−2 + εd, d = 3, . . . ,D

with Gaussian errors εd ∼ N(0, τ 2) and noninformative priors for β1 or β1
and β2 [Lang and Brezger (2004)]. The joint prior of all basis coefficients β =
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(β1, . . . , βD)′ can then be shown to be a (partially improper) multivariate Gaus-
sian distribution with zero mean and precision matrix K = D′D, where D is a
difference matrix of appropriate order. In our analysis, we use twenty inner knots,
a cubic spline basis and a second order random walk prior as the default specifica-
tion for penalised splines.

In the case of the age effect, we allow for separate functions for individuals
with high and low levels of education. This is achieved by the inclusion of the
varying coefficient term [Hastie and Tibshirani (1993)] f2(age) such that the age
effect is given by f1(age) − f2(age) for individuals with low educational level
and f1(age) + f2(age) for individuals with high educational level. In this case,
a penalised spline can be assumed for function f2(age) as well.

Random effects. Penalised splines can in principle also be considered to rep-
resent the temporal effect ftime(t) in (1). However, since in economic research
temporal effects such as ours are generally considered by year-specific effects,
we do not impose the smoothness assumption implied by penalised splines. We
therefore consider a random effects specification where separate regression effects
βt = ftime(t) are assumed for the distinct time points. An i.i.d. Gaussian prior with
random effects variance τ 2 is then placed on the coefficients β = (β1, . . . , βT )′.
Similarly, random effects priors can be used for any other grouping variable with
levels {1, . . . ,G} present in the data.

Note that we have not included individual-specific random effects. The reason
for this is that we are specifically interested in the unobserved heterogeneity among
individuals with similar covariate sets which finds expression in income inequality
among them. In some sense our analysis is thus systematically different from stan-
dard regression techniques which pursue to eradicate the stochastic component or
at least reduce it to a minimum. The inclusion of individual-specific effects goes a
long way towards seemingly achieving this aim, as the share of the variance left to
the error term is drastically reduced. However, the inferential gain obtained thereby
could be expressed as follows: including individual-specific effects, we have found
that incomes are largely different because individuals are different. While there are
some analyses where such eradication of variance is useful, it sheds little insights
on the nature of inequality at the disaggregated level since we are unable to disen-
tangle the differences between individuals in a meaningful way.

Spatial effects. For the spatial effect fspat(s) defined upon the discrete, spatial
variable s ∈ {1, . . . , S} which denotes the different regions in the data set, we as-
sume a hierarchical predictor specification following Lang et al. (2014). In fact,
equation (2) merely defines a second structured additive predictor where now the
distinct spatial regions define the unit of observation. As a consequence, any type
of regression effect that is specific for the region can be included on this level. In
our case, the East–West indicator is one such example that is assigned a parametric
effect with flat prior.
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In addition, we consider the spatially structured and spatially unstructured ef-
fects gstr(s) and gunstr(s), respectively. In both cases, separate regression effects
βstr,s = gstr(s) and βunstr,s = gunstr(s) are assumed for each of the regions, but the
effects differ in terms of their prior assumptions. For the structured spatial effect,
we assume spatial correlations defined implicitly by assuming a Gaussian Markov
random field prior [Rue and Held (2005)] for a suitable neighbourhood structure
derived from the spatial orientation of the data. The most common case would be
to treat two regions as neighbours if they share a common boundary. If ∂s denotes
the set of all neighbours of region s, the Markov random field prior then assumes

βstr,s |βstr,r , r 	= s, τ 2 ∼ N
(∑

r∈∂s

1

Ns

βstr,r ,
τ 2

Ns

)
(6)

with number of neighbours of region s denoted as Ns . Consequently, the condi-
tional mean of βstr,s given all other coefficients is the average of the neighbouring
regions. It can be shown that the conditional normal distributions specified in (6)
correspond to a multivariate, partially improper normal distribution with zero mean
and precision matrix given by the adjacency matrix induced by the neighbourhood
structure.

For the unstructured spatial effect, we consider an i.i.d. Gaussian prior, that is,
we assume a random effects prior specification. The rationale for considering both
a structured and unstructured part of the spatial effect is that they are surrogates
for unobserved spatial heterogeneity which may either be spatially structured (i.e.,
spatially smooth) or unstructured.

2.4. Bayesian inference. To perform Bayesian inference, we consider Markov
chain Monte Carlo (MCMC) simulation techniques and develop suitable proposal
densities based on iteratively weighted least squares (IWLS) approximations to the
full conditionals. The derivation of the approximations and the complete algorithm
are documented in Section B.2. Here, we only sketch the essential parts.

IWLS proposals for regression coefficients. The regression coefficients βj are

proposed from N(μj ,P−1
j ) with expectation and precision matrix

μj = P−1
j Z′

j W(z − η−j ), Pj = Z′
j WZj + 1

τ 2
j

Kj ,

where W is a diagonal matrix of working weights wi = E(−∂2l/∂η2
i ), z = η +

(W)−1v is a working response depending on the score vector v = ∂l/∂η and η−j =
η − Zjβj is the predictor without the j th component. The working weights and
the score vector are specific for the chosen response distribution and induce an
automatic adaptation to the form of the full conditional without requiring manual
tuning.
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Updates for the smoothing variances. The smoothing variances τ 2
j can be

sampled in a Gibbs update where τ 2
j |· ∼ IG(a′

j , b
′
j ), with updated parameters

a′
j = rk(Kj )

2 + aj , b′
j = 1

2β ′
j Kjβj + bj .

Working weights. The specification of the working weights W involves the ex-
pectations of the negative second derivatives of the log-likelihood which improved
both mixing and acceptance rate in comparison with the (seemingly simpler) ap-
proach of using the negative second derivative without deriving the expectation.
Furthermore, invertibility of the precision matrix Pj is ensured for many distri-
butions when using the expectation since the working weights are then nonneg-
ative. Explicit derivations for both the distributions utilised for analysing labour
incomes and the additional distributions summarised in Table B1 can be found in
Section B.2.3.

Propriety of the posterior. Propriety of the posterior in distributional regres-
sion can be ensured when combining the assumptions considered in Klein, Kneib
and Lang (2015) for count data regression with appropriate restrictions on the
densities. These need to be bounded or integrable with respect to the predictors,
whereby at least one observation fulfilling the latter assumption is required. Note
that integrability of the densities can be assured by the assumption that none of
the distributional parameters is on the boundary of the parameter space (an as-
sumption that would also have to be made to apply standard maximum likelihood
asymptotics).

Software. Our Bayesian approach to distributional regression is implemented
in the free, open source software BayesX [Belitz et al. (2015)]. As described in
Lang et al. (2014), the implementation makes use of efficient storing mechanisms
for large data sets and sparse matrix algorithms for sampling from multivariate
Gaussian distributions. An R interface to BayesX is provided in the R add-on pack-
age bamlss [Umlauf et al. (2014)].

Empirical evaluation. We compared the empirical performance of the pro-
posed Bayesian approach to the frequentist GAMLSS framework in two simu-
lation scenarios and also investigated the performance of the deviance information
criterion [DIC, Spiegelhalter et al. (2002)] for choosing between competing mod-
els. The studies and their outcomes are documented in more detail in Section B.3.
A summary on the ability of the DIC for model choice is given in Section 3 and for
the comparison with the frequentist approach (denoted as ML) in the following:

(1) Comparison with ML in additive models. In purely additive models, the
point estimates and corresponding posterior means, as well as their mean squared
errors (MSEs), are very similar. However, coverage rates based on asymptotic
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maximum likelihood theory for ML are far too narrow in several distribution pa-
rameters. In particular, for the Dagum distribution, rates for all three parameters
are far from the desired coverage level, while the credible intervals of the Bayesian
approach are still reliable (albeit being usually slightly too conservative); compare,
for example, Figure B2.

(2) Comparison with ML in geoadditive models. 10% of the estimation runs
of ML failed before convergence. MSEs of the spatial effect (based on a Markov
random field) are slightly smaller for the Bayesian approach compared to ML.
While the MSEs of the other effects do not deteriorate for our proposed method,
we observe partly increasing MSEs for ML.

3. Model choice. In any application of distributional regression, one faces
important model choice decisions: choosing the most appropriate out of a set of
potential response distributions and selecting adequate predictor specifications for
each parameter of these distributions. For our application on conditional income
distributions, we consider the inverse Gaussian (IG), log-normal (LN), gamma
(GA) and Dagum (DA) distribution as candidate distributions. A general predic-
tor that could now be utilised for any of the parameters of these distributions was
already introduced in equations (1) and (2). Instead of performing a complete step-
wise model selection for each distribution, we study the following model specifi-
cations:

(M1) All distributional parameters are related to a predictor of type (1). For
the spatial effect, we only include the unstructured effect since it turned out in
exploratory analyses that the smooth component has only negligible impact.

(M2) Instead of modelling all parameters in terms of covariates, the model
structure of M1 is only applied to the parameters μ in the case of LN, IG and
GA, and b in case of DA. The parameters a, c, σ, σ 2 are considered to be equal
across all individuals. This corresponds to a usual GAM specification with focus
on conditional means.

(M3) All parameters are modelled in analogy to M1 except that the random
effect for calendar time and the complete spatial effect (including the East–West
indicator) are not included in the parameters a, c, σ, σ 2.

In total, we therefore end up with 12 models to compare. In the following, we
will discuss different options for conducting this comparison and will also com-
ment on their wider applicability in the context of model choice for distributional
regression.

3.1. Deviance information criterion. The deviance information criterion
(DIC) is a commonly used criterion for model choice in Bayesian inference that
has become quite popular due to the fact that it can easily be computed from the
MCMC output. If θ [1], . . . , θ [T ] is a MCMC sample from the posterior for the
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complete parameter vector θ , the DIC is given by D(θ) + pd = 2D(θ) − D(θ) =
2
T

∑
D(θ [t]) − D( 1

T

∑
θ [t]), where D(θ) = −2 log(f (y|θ)) is the model deviance

and pd = D(θ) − D(θ) is an effective parameter count.
The DIC can be used to discriminate between types of response distributions as

well as different predictor specifications for a fixed distribution. The latter can also
be implemented in a stepwise model choice strategy. However, since the DIC is
sample-based, small differences of DIC values for competing models may induce
a region of indecisiveness. If in such a situation sparser models are desired, the
DIC-based selection of covariate effects can be assisted by only including signif-
icant effects, that is, effects for which the credible interval of a certain level does
not contain the zero (parametric effects) or the zero line (nonparametric effects);
compare also Section B.3.3.2.

For distributions and models considered in our applications, we conducted sim-
ulations on the performance of the DIC which are documented in detail in Sec-
tion B.3.3. The basic outcome is that the DIC can discriminate between competing
response distributions although differences can be rather small depending on what
distributions are compared. Concerning the identification of relevant covariates,
we focused on spatial effects and found that the DIC usually is in clear favour of
the true model if a relevant effect is omitted. In the reverse situation, that is, irrele-
vant information is included, the DICs of the true models are only slightly smaller,
but then the irrelevant covariate mainly yields an insignificant effect (i.e., the 95%
credible interval of each region contains zero) and would thus be excluded under
the aim of a sparser model. For count data distributional regression models, the
performance of the DIC was also positively evaluated by Klein, Kneib and Lang
(2015) who compare several misspecified models to the true model in terms of the
DIC.

The DIC values for the 12 income regression models under consideration are
documented in Table 2 and indicate a clear preference for the model DA_M1. In
general, it is noticeable that the DIC favours our flexible model specifications (M1)
compared to the simplified versions (M2, M3).

3.2. Quantile residuals. For continuous random variables, it is a well-known
result that the cumulative distribution function F(·) evaluated at the random vari-
able yi yields a uniform distribution on [0,1]. As a consequence, quantile residuals
defined as r̂i = �−1(F (yi |ϑ̂ i)), with the inverse cumulative distribution function
(c.d.f.) of a standard normal distribution �−1 and F(·|ϑ̂ i) denoting c.d.f. with es-
timated parameters ϑ̂ i = (ϑ̂i1, . . . , ϑ̂iK)′ plugged in, should at least approximately
be standard normally distributed if the correct model has been specified [Dunn and
Smyth (1996)]. In practice, the residuals can be assessed graphically in terms of
quantile–quantile-plots: the closer the residuals are to the bisecting line, the bet-
ter the fit to the data. We suggest to use quantile residuals as an effective tool for
deciding between different distributional options where strong deviations from the
bisecting line allow us to sort out distributions that do not fit the data well.
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TABLE 2
Comparison of DIC values (calculated based on the complete data set) and average scores obtained

from ten-fold cross-validation

Distribution DIC Quadratic score Logarithmic score Spherical score CRPS

LN_M1 179,090 0.130 −2.436 0.362 −2.158
LN_M2 180,533 0.126 −2.460 0.357 −2.141
LN_M3 179,451 0.130 −2.435 0.362 −2.163

IG_M1 184,614 0.146 −2.274 0.378 −1.620
IG_M2 189,702 0.138 −2.314 0.366 −1.677
IG_M3 186,494 0.144 −2.282 0.374 −1.642

GA_M1 177,453 0.161 −2.172 0.396 −1.274
GA_M2 178,736 0.156 −2.181 0.392 −1.279
GA_M3 177,971 0.160 −2.174 0.395 −1.277

DA_M1 172,421 0.168 −2.103 0.405 −1.266
DA_M2 173,791 0.164 −2.120 0.402 −1.274
DA_M3 172,790 0.167 −2.108 0.404 −1.270

Quantile residuals are closely related to the probability integral transform (PIT)
which considers ui = F(yi |ϑ̂ i ) without applying the inverse standard normal c.d.f.
If the estimated model is a good approximation to the true data generating process,
the ui will then approximately follow a uniform distribution on [0,1]. As a graph-
ical device, histograms of the ui are then typically considered.

Quantile residual plots for the models of type M1 are shown in Figure 2. Sim-
ilar outcomes for model types M2/M3 and PITs for the models M1 can be found
in Figures A1 and A2, respectively. We prefer quantile residuals in the quantile–
quantile-plot representation since they avoid the requirement to define breakpoints
in the construction of the histogram.

While none of the distributions provides a perfect fit for the data, the Dagum
distribution turns out to be most appropriate for residuals in the range between −2
and 2 but deviates from the diagonal line for extreme residuals. In contrast, the
log-normal and inverse Gaussian distribution seem to have problems in capturing
the overall shape of the income distribution, resulting in sigmoidal deviations from
the diagonal. Residuals of the gamma model are reasonable in the range between
−2 and 2 (similar to the Dagum distribution) but deviate more strongly from the
diagonal for extreme residuals.

3.3. Proper scoring rules. Gneiting and Raftery (2007) propose proper scor-
ing rules as summary measures for the evaluation of probabilistic forecasts, that
is, to evaluate the predictive ability of a statistical model. We consider three com-
mon scores, namely, the Brier or quadratic score (QS), the logarithmic score (LS)
and the spherical score (SPS). For continuous response distributions with density
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FIG. 2. Comparison of quantile residuals for the full models DA_M1 (topleft), LN_M1 (topright),
IG_ M1 (bottomleft), GA_M1 (bottomright).

pr(y) = p(y|ϑr1, . . . , ϑrK) and a given new realisation ynew, these are defined as

LS(pr, ynew) = log
(
pr(ynew)

)
,

SPS(pr, ynew) = pr(ynew)

(
∫ |pr(y)|2 dy)1/2 ,

QS(pr, ynew) = 2pr(ynew) −
∫ ∣∣pr(y)

∣∣2 dy.

Appropriate definitions for discrete as well as mixed discrete continuous responses
are provided in Section B.1.2. As a fourth alternative, we consider the continuous
ranked probability score (CRPS)

CRPS(pr, ynew) = −
∫ ∞
−∞

(
Fr(y) − 1{y≥ynew}

)2 dy,

where Fr is the cumulative distribution function corresponding to the density pr

[Gneiting and Ranjan (2011)]. Laio and Tamea (2007) showed that the CRPS score
can also be written as

CRPS(pr, ynew) = −2
∫ 1

0
(1{ynew≤F−1

r (α)} − α)
(
F−1

r (α) − ynew
)

dα,
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where F−1
r (α) is the quantile function of pr evaluated at the quantile level

α ∈ (0,1). This formulation allows not only to look at the sum of all score contri-
butions (i.e., the whole integral) but also to perform a quantile decomposition and
to plot the mean quantile scores versus α in order to compare fits of specific quan-
tiles [Gneiting and Ranjan (2011)]. This decomposition is especially helpful in
situations where the quantile score can be interpreted as an economically relevant
loss function [Gneiting (2011b)].

In practice, we obtain the probabilistic forecasts in terms of predictive distri-
butions pr for observations yr by cross-validation, that is, the data set is divided
into subsets of approximately equal size and predictions for one of the subsets are
obtained from estimates based on all the remaining subsets. Let y1, . . . , yR be data
in a hold-out sample and pr the predictive distributions with predicted parameter
vectors ϑ̂ r = (ϑ̂r1, . . . , ϑ̂rK)′, r = 1, . . . ,R. Competing forecasts are then ranked
by averaged scores S = 1

R

∑R
r=1 S(pr, yr) such that higher scores deliver better

probabilistic forecasts when comparing different models.
In our application, we conducted ten-fold cross-validation; observations are as-

signed randomly to the different folds. The scores discussed above are documented
in Table 2 where the values are averages of the ten folds (and scores within the
folds are themselves averages over the individual score contributions). In line with
the DIC and the residual plots, the scores of the DA_M1 model are the highest
and thus deliver the best forecast among the 12 models under consideration. Also
similar to the DIC, models of type M2 (the simplest versions) show lower scores
compared to the ones of type M3 and they themselves are inferior compared to the
most flexible models of type M1.

In addition to the averages over the ten folds, the proper scoring rules can also
be used to assess the predictive distributions in more detail. We illustrate this along
a decomposition of the CRPS over quantile levels (Figure 3) and a decomposition
of the scores over the cross-validation folds; compare the supplement Section A.1.
The quantile level decomposition of the CRPS again indicates a comparable per-
formance of the Dagum distribution and the gamma distribution as compared to
the inverse Gaussian distribution which performs somewhat worse and the log-
normal distribution which shows a considerably deteriorated behaviour. This or-
dering holds true over the complete range of quantiles. The fact that the log-normal
distribution fails to provide a competing predictive ability is most probably related
to the strong impact of the extreme observations. These are hard to capture by the
log-normal distribution in general. However, since extreme observations are typi-
cally also influential observations, they seem to impact estimates in the log-normal
model to such an extent that even predictions for the central part of the distribution
are affected negatively.

4. Regional disparities of the distribution of labour income in Germany.
As discussed in the Introduction, our main focus is on investigating differences in



BAYESIAN STRUCTURED ADDITIVE DISTRIBUTIONAL REGRESSION 1041

FIG. 3. Quantile decomposition of CRPS in the full models DA_M1, LN_M1, IG_M1, GA_M1.

conditional income distributions between former East and West Germany in the
first decade of the new millennium. More specifically, we focus on differences
in the inequality of the conditional income distribution as measured by the Gini
coefficient [Silber (1999)] next to significant differences in the first two moments
of conditional income distributions. Based on our model choice, we illustrate the
estimation results along the Dagum model DA_M1.

In their seminal paper, DiNardo, Fortin and Lemieux (1996), stress the need
to look at differences between the whole conditional income distributions rather
than just the conditional mean income, or certain indices. Using our proposed es-
timation procedure, this is feasible. Figure 1 displays an exemplary contrast of
four conditional income distributions in a ceteris paribus type analysis. The four
distributions have all but two covariates fixed at their average value. For age (42
years) and labour market experience (19 years) we use the arithmetic mean of the
observations in our sample, while we fixed the random effects at their prior expec-
tation, that is, at zero. Keeping these covariates fixed, we can observe the nature of
the change if the regional variable is changed from East to West. For both educa-
tional levels, this figure furthermore indicates that there is a noticeable difference
not only in the mean value of the distributions but also in other aspects, like vari-
ability, skewness, etc. Thus, a simple analysis of means falls short of portraying a
comprehensive picture of the differences in income between East and West.

Note that for determining the densities displayed in Figure 1 we consider the
posterior mean of the densities obtained in the different MCMC iterations instead
of plugging in the posterior mean parameters in the corresponding parametric den-
sities. The availability of such posterior mean estimates is another advantage of the
Bayesian inferential approach based on MCMC simulations.
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There are various additional aspects of the distribution that can be considered. In
principle, it is possible to obtain any distributional measure from the conditional
distribution as long as it is defined for the given distribution type and the corre-
sponding parameter set. Here, we consider the mean, the standard deviation and
the Gini coefficient of the estimated conditional income distributions. While the
mean provides important information on the location of the income distribution,
the standard deviation provides information on the scale of the distribution and the
Gini coefficient is the most frequently used scalar measure on income inequality
[Silber (1999)]. We therefore look at three important aspects of the conditional
income distributions and observe how they change over the covariate space.

4.1. The spatial effect on conditional means and standard deviations. Assum-
ing a Dagum distribution, the first two moments of the conditional income dis-
tributions of yi can be found in Dagum (2008), respectively. Figure 4 displays the
posterior mean estimates for the expected incomes for each of the 96 regions (Rau-
mordnungsregionen) and education. As described above, the other covariates are
fixed at their mean.

Unsurprisingly, there is a clearly visible divide between East and West Ger-
many, as expected incomes are higher in the former Federal Republic of Germany
for both education levels and at the average of the other covariates. Abstracting
from the variations at the district level, we get an expected income of 33,600€ if

FIG. 4. SOEP data. Posterior means for the expected incomes for 42-year-old males with 19 years
of working experience. Left: males without higher education. Right: males with higher education.
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FIG. 5. SOEP data. Posterior means for standard deviations for 42-year-old males with 19 years
of working experience. Left: males without higher education. Right: males with higher education.

the average man lives in the East and has no higher education. With higher ed-
ucation the income increases to 55,200€. The corresponding values if a person
with the same attributes lives in the West are 48,100€ and 78,300€. The differ-
ence between East and West is thus 14,500€ (12,000€; 17,100€) and 23,100€
(19,000€; 27,400€) without and with higher education, respectively, where the
numbers in the brackets denote the corresponding 95% credible intervals. In addi-
tion to posterior means, we also looked at posterior medians. Overall, differences
were negligible, which is in line with the theory suggesting asymptotic normality
for the posterior distribution.

The posterior mean estimates for the standard deviations of the conditional in-
come distributions are shown in Figure 5. We prefer presenting the square roots of
the second moments, that is, we consider the standard deviations rather than the
variances for interpretability reasons.

For standard deviations, the division between East and West is not as distinct
as for the means. The main difference in the scale of the conditional distributions
is found between the education levels and not along the different regions or for-
mer two parts of Germany. Nonetheless, if we set the spatial random effect to zero
again and only consider the structural effect, the resultant conditional distribution
in the West has a standard deviation of 19,300€, while that of the East has a
standard deviation of 16,000€ for those without higher education. For those with
higher education the respective numbers are 32,000€ and 26,600€. The differ-
ence between the standard deviations is thus 3300€ (1300€; 5200€) in the group
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of lower educated males and 5400€ (1700€; 9100€) for the one with higher ed-
ucated males.

Our results show that evaluated at the mean of other covariates, the first and
second moment are significantly different in East and West Germany for both ed-
ucation levels, highlighting the diverse nature of the change of conditional income
distributions.

4.2. The spatial effect on the conditional income inequality. The Gini coeffi-
cient is an inequality measure based on the Lorenz curve [Sarabia (2008)], which
can vary between the value 0 (everybody has the same) and 1 (one person has
everything). Note that the Gini coefficient is scale invariant such that in stan-
dard mean regression on log-incomes it would be postulated as constant across
the covariate space. In analogy to the conditional mean income and standard de-
viation, the Gini coefficient of the conditional income distribution can easily be
obtained from the parameter estimates of the Dagum distribution [Dagum (2008),
page 104].

Figure 6 portrays the posterior mean estimates for the Gini coefficients for each
region. As we can see, the differences are not as clear cut as for the conditional
mean incomes. Nonetheless, the pattern emerging indicates that income inequality
among 42-year-old males with 19 years of experience is higher in the East for both
education levels. Indeed, if we only consider the impact of the binary East–West

FIG. 6. SOEP data. Posterior means for the Gini coefficients for 42-year-old males with 19 years
of working experience. Left: males without higher education. Right: males with higher education.
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variable on the Gini coefficient, we obtain a difference of the posterior means of
0.039 and 0.036 for those without higher education and those with higher educa-
tion, respectively. The corresponding 95% credible intervals are [0.015,0.067] and
[0.013,0.063], respectively. Thus, we have a significantly larger income inequal-
ity for 42-year-old males with 19 years of experience, as measured by the Gini
coefficient, in the East than in the West. Putting these differences into perspec-
tive, the standard deviations of the Gini coefficients of the regions’ conditional
income distributions within East and West are 0.030 and 0.031 for those without
higher education, and 0.032 and 0.031 for those with higher education. Thus, the
differences between East and West are not only significant, they also surpass their
variation within East and West.

4.3. Further analysis of the conditional income distribution.

The effect of varying age and experience. Next to spatial effects, the impact
of the other covariates can also be of interest. In the following, we focus on the
effects of age and experience, while the effect of year is treated in Section A.1.1.
For results on additional covariate sets, see Section A.1.2.

In Figure 7, we display the expected conditional mean income and the Gini
coefficient with respect to age and experience. In order to keep the dimension of
the varying covariate to one, we simply assume that from the age of 21 onwards
people gain one year of work experience as they grow older by one year. Here, we
thus portray the development of expected incomes and the Gini coefficient for full-
time working males who have been working since the age of 21. With regard to the
categorical variables region and education, we consider only the West and lower
education, respectively. The random effects for the Raumordnungsregion and year

FIG. 7. SOEP data. Posterior means for expected income (left) and Gini coefficients (right) for
males who have been working since the age of 21, without higher education and living in the West,
together with 95% simultaneous credible bands.
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are considered at zero, that is, their prior expectation. The grey lines indicate the
95% simultaneous credible bands. As expected, there is a general upward trend
such that expected incomes are rising with increasing age. In addition, we see the
concave structure that is generally also found by the literature.

For the Gini coefficient, we observe a U-shaped development over age. This
indicates that the conditional income distribution is not simply rescaled over the
age range but rather that it changes its shape such that the Gini coefficient rises.
Our results are again in line with economic theory. At the very beginning of the
career, income inequalities should be rather high, as large parts are still not yet
allocated in accordance to their capabilities and, consequently, are employed and
paid more or less arbitrarily. These mismatch-induced inequalities quickly fade
away. From then on we would expect rising inequality, as following the classical
theories on the shape of the unconditional income distribution [Arnold (2008)];
the latter is made up of incomes derived from a varying number of autoregressive
permutations. These permutations, which would generally occur over the age range
under consideration, would lead to a rising inequality in incomes with rising age.

Other quantities derived from conditional income distributions. Using distri-
butional regression, it is easily possible to obtain estimates for certain quantiles,
like the median, which is an alternative to the mean as a location measure. Fur-
thermore, one can calculate interquantile ranges as an alternative measure of in-
equality. Naturally, such quantiles can be estimated in a more direct manner using
quantile regression, although additional efforts may be required to avoid cross-
ing quantile curves, in particular when considering a dense set of quantile levels.
Distributional regression automatically avoids the problem of quantile crossing
and makes model comparison easier in such situations. We contrast distributional
regression against quantile regression in more detail for our case study in Sec-
tion A.1.3.

Next to measures of inequality like the Gini coefficient or the Theil index, which
are easily computable, it is also straightforward to calculate measures of polari-
sation, which have recently received considerable attention in the literature [for
further references and explanations, see, e.g., Duclos, Esteban and Ray (2004),
Wolfson (1994)]. Following Gradín (2000), it would be possible to calculate the
polarisation between two groups as defined by sets of covariates.

It is also possible to assess density differences at different income levels or prob-
ability mass differences for different income ranges. For instance, one could con-
sider the probability mass above a certain income, for example, 48,000€, which
according to John Keynes would suffice to turn one’s mind away from pecuniary
worries [Skidelsky (2010)]. Consequently, it could be highlighted that not only the
conditional mean income for the average man without higher education is lower
in the East but also that the probability mass of incomes below that threshold is
much lower. Such an analysis may be of particular interest for research questions
on poverty and vulnerability [Pudney (1999)].
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4.4. Economic consequences. Our findings show that keeping other variables
fixed at their average level, there are significant differences in income inequalities
within East and West Germany. Duclos, Esteban and Ray (2004) have noted the
importance of within-group inequality for levels of alienation and identification
within society. The higher income inequality in the East would thereby induce a
weakened in-group identity. Lack of in-group identity in turn is likely to cause
feelings of isolation and mistrust [Misztal (2013)], and thus leads to a deteriora-
tion of well-being which is beyond that captured by solely considering average
incomes, or even distribution-adjusted well-being measures [Klasen (2008)].

While a profound analysis of the effect of different income distributions to well-
being must be left for further research, our application shows that structured ad-
ditive distributional regression offers a methodology to the analysis of income
inequality which goes beyond the analysis at a highly aggregated level and thus
allows to start the assessment of this important issue at a microeconomic level.

5. Conclusion. Distributional regression and the closely related class of
GAMLSS provide a flexible, comprehensive toolbox for solving complex regres-
sion problems with potentially nonstandard response types. They are therefore use-
ful to overcome the limitations of common mean regression models and to enable
a proper, realistic assessment of regression relationships. In this paper, we pro-
vided a Bayesian approach to distributional regression and described solutions for
the most important applied problems, including the selection of a suitable predic-
tor specification and the most appropriate response distribution. Based on efficient
MCMC simulation techniques, we developed a generic framework for inference
in Bayesian structured additive distributional regression relying on distribution-
specific iteratively weighted least squares proposals as a core feature of the algo-
rithms.

Concerning the specific application of distributional regression to conditional
income distributions, there are significant differences between men with similar
age, work experience and education levels between East and West which go be-
yond the mean income. Taking the Gini coefficient as an indicator for inequality,
income inequality among these men is larger in the East than it is in the West,
further deepening differences in well-being. While this study highlights the scope
of the new methodology to an application of income analysis and beyond, much
work remains to be done on the application of distributional regression techniques.

Despite the practical solutions outlined in this paper, model choice and variable
selection remain relatively tedious and more automatic procedures would be highly
desirable. Suitable approaches may be in the spirit of Belitz and Lang (2008) in
a frequentist setting or based on spike and slab priors for Bayesian inference as
developed in Scheipl, Fahrmeir and Kneib (2012) for mean regression.

It will also be of interest to extend the distributional regression approach to the
multivariate setting. For example, in the case of multivariate Gaussian responses,
covariate effects on the correlation parameter may be very interesting in specific
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applications. Similarly, multivariate extensions of beta regression lead to Dirichlet
distributed responses representing multiple percentages that sum up to one; see
Klein et al. (2015a) for a first attempt in this direction.

In the context of economic applications, it should be noted that, analogously
to generalised linear models, the additive impact of explanatory variables on the
economic measure of interest, like the Gini coefficient, is generally not attained.
Consequently, the size, and possibly also the direction of the estimated spatial ef-
fect, may well be very different for different points in the covariate space. While it
is straightforward to calculate these differences with corresponding credible inter-
vals for any desired combination of other covariates to give a more comprehensive
assessment of differences in inequality, further work needs to be done to facilitate
the interpretation of results.

In addition, in-depth-testing is required to find adequate parametric forms for
conditional income distributions, as the application of structured additive distribu-
tional regression crucially rests on the assumption that the parametric distribution
fits the data. While for the case of full-time working men the Dagum distribu-
tion indeed seems to provide a decent fit, further work must be done to allow for
an analysis with a less restricted covariate space and thus a more comprehensive
analysis of income distributions in Germany and beyond.

Yet, this paper demonstrates that structured additive distributional regression
offers a statistical framework addressing the challenge to assess entire conditional
distributions [Fortin, Lemieux and Firpo (2011), page 56] by broadening the class
of potential response distributions beyond simple exponential families and thus
offers additional scope for applied statistical analyses on the problem of income
inequality and beyond.
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SUPPLEMENTARY MATERIAL

Supplement A: Case studies (DOI: 10.1214/15-AOAS823SUPPA; .pdf). Ad-
ditional material on the application to regional income inequality in Germany is
provided in Section A.1. A second case study on the proportion of farm outputs
achieved by cereals is treated in Section A.2.

Supplement B: Methodology (DOI: 10.1214/15-AOAS823SUPPB; .pdf). This
supplement comprises details on Bayesian inference, derivations of required quan-
tities for the iteratively weighted least squares proposals and simulation studies.

REFERENCES

ARNOLD, B. C. (2008). Pareto and generalized Pareto distributions. In Modeling Income Distribu-
tions and Lorenz Curves (D. Chotikapanich, ed.) 119–145. Springer, New York.

http://dx.doi.org/10.1214/15-AOAS823SUPPA
http://dx.doi.org/10.1214/15-AOAS823SUPPB


BAYESIAN STRUCTURED ADDITIVE DISTRIBUTIONAL REGRESSION 1049

ATKINSON, A. B. (1975). The Economics of Inequality. Clarendon Press, Oxford.
AUTOR, D. H., KATZ, L. F. and KEARNEY, M. S. (2008). Trends in U.S. wage inequality: Revising

the revisionists. Rev. Econ. Stat. 28 300–323.
BACH, S., CORNEO, G. and STEINER, V. (2009). From bottom to top: The entire income distribution

in Germany, 1992–2003. Rev. Income Wealth 55 303–330.
BELITZ, C. and LANG, S. (2008). Simultaneous selection of variables and smoothing parameters in

structured additive regression models. Comput. Statist. Data Anal. 53 61–81. MR2528592
BELITZ, C., BREZGER, A., KLEIN, N., KNEIB, T., LANG, S. and UMLAUF, N. (2015). BayesX-

software for Bayesian inference in structured additive regression models. Version 3.0. Available
at http://www.bayesx.org.

BIEWEN, M. (2000). Income inequality in Germany during the 1980s and 1990s. Rev. Income Wealth
46 1–19.

BIEWEN, M. and JENKINS, S. P. (2005). A framework for the decomposition of poverty differences
with an application to poverty differences between countries. Empir. Econ. 30 331–358.

BREZGER, A. and LANG, S. (2006). Generalized structured additive regression based on Bayesian
P-splines. Comput. Statist. Data Anal. 50 967–991. MR2210741

CARD, D. E., HEINING, J. and KLINE, P. (2013). Workplace heterogeneity and the rise of German
wage inequality. Q. J. Bus. Econ. 128 967–1015.

DAGUM, C. (1977). A new model of personal income distribution: Specification and estimation.
Economie Applicée 30 413–437.

DAGUM, C. (2008). A new model of personal income distribution: Specification and estimation. In
Modeling Income Distributions and Lorenz Curves (D. Chotikapanich, ed.) 3–25. Springer, New
York.

DINARDO, J., FORTIN, N. M. and LEMIEUX, T. (1996). Labor market institutions and the distribu-
tion of wages, 1973–1992: A semiparametric approach. Econometrica 64 1001–1044.

DONALD, S. G., GREEN, D. A. and PAARSCH, H. J. (2000). Differences in wage distributions
between Canada and the United States: An application of a flexible estimator of distribution
functions in the presence of covariates. Rev. Econ. Stud. 67 609–633.

DUCLOS, J.-Y., ESTEBAN, J. and RAY, D. (2004). Polarization: Concepts, measurement, estima-
tion. Econometrica 72 1737–1772. MR2095531

DUNN, P. K. and SMYTH, G. K. (1996). Randomized quantile residuals. J. Comput. Graph. Statist.
5 236–245.

DUSTMANN, C., LUDSTECK, J. and SCHÖNBERG, U. (2009). Revisiting the German wage struc-
ture. Q. J. Econ. 124 843–881.

EILERS, P. H. C. and MARX, B. D. (1996). Flexible smoothing with B-splines and penalties. Statist.
Sci. 11 89–121. MR1435485

FAHRMEIR, L., KNEIB, T. and LANG, S. (2004). Penalized structured additive regression for space-
time data: A Bayesian perspective. Statist. Sinica 14 731–761. MR2087971

FAHRMEIR, L., KNEIB, T., LANG, S. and MARX, B. (2013). Regression: Models, Methods and
Applications. Springer, Heidelberg. MR3075546

FORTIN, N. M., LEMIEUX, T. and FIRPO, S. (2011). Decomposition methods in economics. In
Handbook of Labor Economics (O. Ashenfelter and D. E. Card, eds.) 4A 1–102. North-Holland,
Amsterdam.

FUCHS-SCHÜNDELN, N., KRUEGER, D. and SOMMER, M. (2010). Inequality trends for Germany
in the last two decades: A tale of two countries. Rev. Econ. Dyn. 13 103–132.

GALVAO, A. F., LAMARCHE, C. and LIMA, L. R. (2013). Estimation of censored quantile regres-
sion for panel data with fixed effects. J. Amer. Statist. Assoc. 108 1075–1089. MR3174685

GAMERMAN, D. (1997). Sampling from the posterior distribution in generalized linear mixed mod-
els. Stat. Comput. 7 57–68.

http://www.ams.org/mathscinet-getitem?mr=2528592
http://www.bayesx.org
http://www.ams.org/mathscinet-getitem?mr=2210741
http://www.ams.org/mathscinet-getitem?mr=2095531
http://www.ams.org/mathscinet-getitem?mr=1435485
http://www.ams.org/mathscinet-getitem?mr=2087971
http://www.ams.org/mathscinet-getitem?mr=3075546
http://www.ams.org/mathscinet-getitem?mr=3174685


1050 KLEIN, KNEIB, LANG AND SOHN

GNEITING, T. (2011a). Making and evaluating point forecasts. J. Amer. Statist. Assoc. 106 746–762.
MR2847988

GNEITING, T. (2011b). Quantiles as optimal point forecasts. Int. J. Forecast. 27 197–207.
GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.

J. Amer. Statist. Assoc. 102 359–378. MR2345548
GNEITING, T. and RANJAN, R. (2011). Comparing density forecasts using threshold- and quantile-

weighted scoring rules. J. Bus. Econom. Statist. 29 411–422. MR2848512
GRADÍN, C. (2000). Polarization by sub-populations in Spain, 1973–1991. Rev. Income Wealth 46

457–474.
GREENE, W. H. (2008). Econometric Analysis, 6th ed. Pearson Prentice Hall, Upper Saddle River.
HASTIE, T. and TIBSHIRANI, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55

757–796. MR1229881
HELLER, G., STASINOPOULOS, D. and RIGBY, R. (2006). The zero-adjusted inverse Gaussian dis-

tribution as a model for insurance data. In Proceedings of the 21th International Workshop on
Statistical Modelling (J. Hinde, J. Einbeck and J. Newell, eds.) 226–233.

KLASEN, S. (2008). The efficiency of equity. Rev. Polit. Econ. 20 257–274.
KLEIBER, C. (1996). Dagum vs. Singh–Maddala income distributions. Econom. Lett. 57 39–44.
KLEIBER, C. and KOTZ, S. (2003). Statistical Size Distributions in Economics and Actuarial Sci-

ences. Wiley, Hoboken, NJ. MR1994050
KLEIN, N., DENUIT, M., LANG, S. and KNEIB, T. (2014). Nonlife ratemaking and risk manage-

ment with Bayesian generalized additive models for location, scale, and shape. Insurance Math.
Econom. 55 225–249. MR3179814

KLEIN, N., KNEIB, T. and LANG, S. (2015). Bayesian generalized additive models for location,
scale and shape for zero-inflated and overdispersed count data. J. Amer. Statist. Assoc. 110 405–
419. MR3338512

KLEIN, N., KNEIB, T., KLASEN, S. and LANG, S. (2015a). Bayesian structured additive distribu-
tional regression for multivariate responses. J. R. Stat. Soc. Ser. C. Appl. Stat. To appear.

KLEIN, N., KNEIB, T., LANG, S. and SOHN, A. (2015b). Supplement to “Bayesian structured
additive distributional regression with an application to regional income inequality in Germany.”
DOI:10.1214/15-AOAS823SUPPA.

KLEIN, N., KNEIB, T., LANG, S. and SOHN, A. (2015c). Supplement to “Bayesian structured ad-
ditive distributional regression with an application to regional income inequality in Germany.”
DOI:10.1214/15-AOAS823SUPPB.

KOENKER, R. (2005). Quantile Regression. Econometric Society Monographs 38. Cambridge Univ.
Press, Cambridge. MR2268657

KOENKER, R. and BASSETT, G. JR. (1978). Regression quantiles. Econometrica 46 33–50.
MR0474644

KOHN, K. and ANTONCZYK, D. (2011). The aftermath of reunification: Sectoral transition, gender,
and rising wage inequality in East Germany. IZA Discussion paper series No. 5708. Available at
http://hdl.handle.net/10419/51717.

LAIO, F. and TAMEA, S. (2007). Verification tools for probabilistic forecasts of continuous hydro-
logical variables. Hydrol. Earth Syst. Sci. 11 1267–1277.

LANG, S. and BREZGER, A. (2004). Bayesian P-splines. J. Comput. Graph. Statist. 13 183–212.
MR2044877

LANG, S., UMLAUF, N., WECHSELBERGER, P., HARTTGEN, K. and KNEIB, T. (2014). Multilevel
structured additive regression. Stat. Comput. 24 223–238. MR3165550

LEMIEUX, T. (2006). The “Mincer equation.” Thirty years after Schooling, Experience, and Earn-
ings. In Jacob Mincer: A Pioneer of Modern Labor Economics (S. Grossbard, ed.) 127–145.
Kluwer Academic, Boston.

MINCER, J. (1974). Schooling, Experience, and Earnings. Columbia Univ. Press, New York.

http://www.ams.org/mathscinet-getitem?mr=2847988
http://www.ams.org/mathscinet-getitem?mr=2345548
http://www.ams.org/mathscinet-getitem?mr=2848512
http://www.ams.org/mathscinet-getitem?mr=1229881
http://www.ams.org/mathscinet-getitem?mr=1994050
http://www.ams.org/mathscinet-getitem?mr=3179814
http://www.ams.org/mathscinet-getitem?mr=3338512
http://dx.doi.org/10.1214/15-AOAS823SUPPA
http://dx.doi.org/10.1214/15-AOAS823SUPPB
http://www.ams.org/mathscinet-getitem?mr=2268657
http://www.ams.org/mathscinet-getitem?mr=0474644
http://hdl.handle.net/10419/51717
http://www.ams.org/mathscinet-getitem?mr=2044877
http://www.ams.org/mathscinet-getitem?mr=3165550


BAYESIAN STRUCTURED ADDITIVE DISTRIBUTIONAL REGRESSION 1051

MISZTAL, B. (2013). Trust in Modern Societies: The Search for the Bases of Social Order. Wiley,
Hoboken.

MORDUCH, J. and SICULAR, T. (2002). Rethinking inequality decomposition, with evidence from
rural China. Econ. J. 112 93–106.

NEWEY, W. K. and POWELL, J. L. (1987). Asymmetric least squares estimation and testing. Econo-
metrica 55 819–847. MR0906565

OSBAND, K. and REICHELSTEIN, S. (1985). Information-eliciting compensation schemes. J. Public
Econ. 27 107–115.

PIKETTY, T. and SAEZ, E. (2007). Income and wage inequality in the United States, 1913–2002. In
Top Incomes Over the Twentieth Century (A. B. Atkinson and T. Piketty, eds.) 141–225. Oxford
Univ. Press, Oxford.

PUDNEY, S. (1999). On some statistical methods for modelling the incidence of poverty. Oxf. Bull.
Econ. Stat. 61 385–408.

RIGBY, R. A. and STASINOPOULOS, D. M. (2005). Generalized additive models for location, scale
and shape. J. Roy. Statist. Soc. Ser. C 54 507–554. MR2137253

RUE, H. and HELD, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Mono-
graphs on Statistics and Applied Probability 104. Chapman & Hall/CRC, Boca Raton, FL.
MR2130347

RUPPERT, D., WAND, M. P. and CARROLL, R. J. (2003). Semiparametric Regression. Cambridge
Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge.
MR1998720

SALEM, A. B. Z. and MOUNT, T. D. (1974). A convenient descriptive model of income distribution.
Econometrica 42 1115–1127.

SARABIA, J. M. (2008). Parametric Lorenz curves: Models and applications. In Modeling Iincome
Distributions and Lorenz Curves (D. Chotikapanich, ed.) 167–190. Springer, New York.

SCHEIPL, F., FAHRMEIR, L. and KNEIB, T. (2012). Spike-and-slab priors for function selection in
structured additive regression models. J. Amer. Statist. Assoc. 107 1518–1532. MR3036413

SCHNABEL, S. K. and EILERS, P. H. C. (2009). Optimal expectile smoothing. Comput. Statist. Data
Anal. 53 4168–4177. MR2744314

SILBER, J. (1999). Introduction—thirty years of intensive research on income inequality measure-
ment. In Handbook of Income Inequality Measurement (J. Silber, ed.) 1–18. Kluwer Academic,
Boston.

SKIDELSKY, R. (2010). Keynes: The Return of the Master, 1st ed. Public Affairs, New York.
SOBOTKA, F. and KNEIB, T. (2012). Geoadditive expectile regression. Comput. Statist. Data Anal.

56 755–767. MR2888723
SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P. and VAN DER LINDE, A. (2002). Bayesian

measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 583–639.
MR1979380

STATISTISCHES BUNDESAMT (2012). Verbraucherpreisindizes für Deutschland—Lange Reihen ab
1948, Preise.

UMLAUF, N., KLEIN, N., LANG, S. and ZEILEIS, A. (2014). bamlss: Bayesian additive models
for location scale and shape (and beyond). R package Version 0.1-1. Available at http://bayesr.r-
forge.r-project.org.

WAGNER, G. G., FRICK, J. R. and SCHUPP, J. (2007). The German socio-economic panel study
(SOEP)—scope, evolution and enhancements. Schmollers Jahrbuch 127 139–169.

WOLFSON, M. C. (1994). When inequalities diverge. Am. Econ. Rev. 84 353–358.
WOOD, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for generalized

additive models. J. Amer. Statist. Assoc. 99 673–686. MR2090902
WOOD, S. N. (2008). Fast stable direct fitting and smoothness selection for generalized additive

models. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 495–518. MR2420412

http://www.ams.org/mathscinet-getitem?mr=0906565
http://www.ams.org/mathscinet-getitem?mr=2137253
http://www.ams.org/mathscinet-getitem?mr=2130347
http://www.ams.org/mathscinet-getitem?mr=1998720
http://www.ams.org/mathscinet-getitem?mr=3036413
http://www.ams.org/mathscinet-getitem?mr=2744314
http://www.ams.org/mathscinet-getitem?mr=2888723
http://www.ams.org/mathscinet-getitem?mr=1979380
http://bayesr.r-forge.r-project.org
http://www.ams.org/mathscinet-getitem?mr=2090902
http://www.ams.org/mathscinet-getitem?mr=2420412
http://bayesr.r-forge.r-project.org


1052 KLEIN, KNEIB, LANG AND SOHN

YU, K. and MOYEED, R. A. (2001). Bayesian quantile regression. Statist. Probab. Lett. 54 437–447.
MR1861390

N. KLEIN

T. KNEIB

A. SOHN

GEORG-AUGUST-UNIVERSITY GÖTTINGEN

CHAIR OF STATISTICS

PLATZ DER GÖTTINGER SIEBEN 5
37073 GÖTTINGEN

GERMANY

E-MAIL: nklein@uni-goettingen.de

S. LANG

UNIVERSITY OF INNSBRUCK

DEPARTMENT OF STATISTICS

UNIVERSITÄTSSTRASSE 15
6020 INNSBRUCK

AUSTRIA

http://www.ams.org/mathscinet-getitem?mr=1861390
mailto:nklein@uni-goettingen.de

	Introduction
	Distributional regression
	German labour income data
	Potential response distributions
	Structured additive predictors and associated priors
	Generic representation
	Linear effects
	Continuous covariates
	Random effects
	Spatial effects

	Bayesian inference
	IWLS proposals for regression coefﬁcients
	Updates for the smoothing variances
	Working weights
	Propriety of the posterior
	Software
	Empirical evaluation


	Model choice
	Deviance information criterion
	Quantile residuals
	Proper scoring rules

	Regional disparities of the distribution of labour income in Germany
	The spatial effect on conditional means and standard deviations
	The spatial effect on the conditional income inequality
	Further analysis of the conditional income distribution
	The effect of varying age and experience
	Other quantities derived from conditional income distributions

	Economic consequences

	Conclusion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

