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To study how a zygote develops into an embryo with different tissues,
large-scale 4D confocal movies of C. elegans embryos have been produced
recently by experimental biologists. However, the lack of principled statisti-
cal methods for the highly noisy data has hindered the comprehensive anal-
ysis of these data sets. We introduced a probabilistic change point model
on the cell lineage tree to estimate the embryonic gene expression onset
time. A Bayesian approach is used to fit the 4D confocal movies data to the
model. Subsequent classification methods are used to decide a model selec-
tion threshold and further refine the expression onset time from the branch
level to the specific cell time level. Extensive simulations have shown the
high accuracy of our method. Its application on real data yields both previ-
ously known results and new findings.

1. Introduction. The process of how a single-cell zygote develops into an
embryo with different tissues is still a fundamental but open problem in biology.
Undoubtedly, gene expression dynamics plays a key role in this procedure. Un-
derstanding when and where a gene starts expression in the embryo, that is, the
embryonic gene expression onset, is a crucial step for solving this puzzle.

Modern high throughput experimental techniques, such as microarray experi-
ments and time-lapse confocal microscopy, can produce gene expression data with
high spatial and temporal resolution, which is necessary for the study of embryo-
genesis. C. elegans is often used as the model organism for embryogenesis study
due to its transparency and invariant cell lineage from zygote to adult [Sulston
et al. (1983)]. Bao et al. (2006) and Murray et al. (2008) introduced a system to
automatically analyze the continuous reporter gene expression in C. elegans with
cellular resolution from zygote to embryo using the confocal laser microscope.
With this automatic system, Murray et al. (2012) analyzed the expression patterns
of 127 genes and provided a compendium of gene expression dynamics. Long et al.
(2009) and Liu et al. (2009) also developed an analyzer to convert high-resolution
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confocal laser microscope images into data tables and then analyzed cell fate from
gene expression profiles. Later Spencer et al. (2011) took advantage of a spatial
and temporal map of C. elegans gene expression to provide a basis for establishing
the roles of individual genes in cellular differentiation.

The aforementioned confocal microscopy on C. elegans embryogenesis is for
tracing the expression of one specific target gene on an individual embryo. Due to
strain differences (such as the insertion of green fluorescent protein DNA sequence
into different locations of the C. elegans genome) and variability in experimental
and environmental factors, even data sets for measuring the same gene show high
quantitative variation, indicating considerable noise. Furthermore, the expression
change on the embryonic cell lineage poses a change point problem on a binary
tree, which is a nonlinear problem rarely studied by current literatures. The lack
of principled statistical methods makes the comprehensive understanding of these
data sets too crude to be convincing. For example, Murray et al. (2012) used an
ad hoc threshold to report the expression onset among all the data sets, which ig-
nored the variation among different runs of confocal microscopy. Here, we apply
a Bayesian method for automatic detection of gene expression onset from the 4D
confocal microscopy data by introducing experiment-specific background and sig-
nal distributions, which in turn can benefit downstream analysis, such as gene net-
work inference based on such high spatial and temporal data [ Yalamanchili et al.
(2013)].

Our real data application is based on the data provided by Murray et al. (2012),
which is downloadable from http://epic.gs.washington.edu/. Figure 1 shows the
confocal fluorescent images of two stages of an embryo. The green fluorescent
protein labels the expression product of the gene PHA-4, which appears in the

(A) 150-cell stage (B) 550-cell stage

F1G. 1. Confocal fluorescent images of a C. elegans embryo. (A) The embryo at the 150-cell stage,
with ubiquitous labeling of nuclei by red fluorescent protein mCherry; (B) The embryo at the 550-cell
stage, with ubiquitous labeling of nuclei by red fluorescent protein mCherry and specific labeling
of the gene expression product of PHA-4 by green fluorescent protein. The expression cells are in
pharynx and intestine.
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FIG. 2. An example of data. The figure shows a part of a cell lineage tree for one data file, which
represents the measured fluorescent intensity from one time-lapse confocal microscopy experiment
on C. elegans. The cell lineage and cell nomenclature are from Sulston et al. (1983).

550-cell stage but not in the 150-cell stage. Figure 2 shows a part of a cell lineage
tree from one data file, which corresponds to one run of the confocal microscopy
on one embryo. Each horizontal line represents a cell division event. Each verti-
cal line represents a cell with the length proportional to its lifetime (i.e., how long
a cell lived). The color at each point of the vertical line represents the measured
fluorescent intensity at the corresponding time, which gradually increases with the
color changing from purple to red as the rainbow color order. (In the later content,
we use figures with gray scales to represent tree structures and measured fluores-
cent intensity gradually increases with the color changing from white to black.)
The blue and green cells in Figure 2 form a cluster whose fluorescence level is
significantly higher than the overall background, which indicates that they may
express the target gene. Thus, estimating expression onset is actually a change
point detection problem. However, methods used to detect change points in reg-
ular one-dimensional time series, such as Guralnik and Srivastava (1999), Picard
(1985) and Perreault et al. (2000), cannot handle the tree structure in our case.

In Section 2 we present a four-step method to detect the onset time, where the
key step is a Bayesian algorithm to fit a change point model to the tree data. We
apply this method on both synthesized data and real data and show the estima-
tion results in Section 3. Section 4 concludes the paper. Other details of the algo-
rithm and the model diagnosis are provided in supplemental materials [Hu et al.

(2019)].
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2. Methods. We introduce the following four-step method for the Detection
of Embryonic Gene Expression Onset (DEGEQO), where the key step features a
probabilistic change point model on the cell lineage tree and a full Bayesian ap-
proach to infer the cell where a gene starts expressing:

e Step 1: summarize the measured fluorescent intensity of each cell to a single cell
score.

e Step 2: fit the tree of cell scores to a change-point-in-tree model in order to detect
an expression branch, where a Markov chain Monte Carlo (MCMC) algorithm
is used to estimate the change point and the other model parameters.

e Step 3: use Support Vector Regression (SVR) to decide when to stop detecting
extra expression branches.

e Step 4: refine the onset detection by detecting the specific onset time on the
reported expression branches.

2.1. Experiment and data. For each 4D confocal laser scanning microscope
experiment performed by Murray et al. (2012), we have a data file containing a
time series for each embryonic cell from its birth to its division or death. Each
measurement is a fluorescent intensity at each time point (on average, one data
value per minute) over the duration of the cell’s life. We use the time series data of
Column “blot” in the data files downloaded from http://epic.gs.washington.edu/,
which has been normalized in order to reduce the influence of background noise.
We represent this measured fluorescent intensity data of the ith cell at the jth time
point by y;;. Other details about the real data are provided in the Appendix.

2.2. Assumptions. During the embryogenesis process, once a cell initializes
the expression of a gene, its descendants will inherit some of this gene’s products
and may also continue expressing this gene. Thus, a positive correlation between
relatives is expected. Therefore, we make a transitivity assumption by assuming
the following: if a cell expresses a gene, its child cells will also express the corre-
sponding gene and the gene expression values of the two sibling cells are positively
correlated. This assumption is justified by the data as shown in Supplement A.

Experimenters have two methods to mark an expressed gene, namely, promoter
fusion and protein fusion [Murray et al. (2008)]. A special characteristic of the data
from promoter fusion is that the fluorescent protein degrades much more slowly
than that of protein fusion. Thus, once a cell initializes a gene’s expression, the
resulting fluorescent intensity will be inherited by its descendants and seldom de-
creases. If the child cells continue expressing this gene, the fluorescent intensity
will increase due to the accumulation of the fluorescent protein. Since most ex-
periments are based on promoter fusion, we assume a general nondecreasing trend
for the fluorescent intensities along the paths from ancestors to descendants on an
expression branch. Again, we use the data to justify this assumption as shown in
Supplement A. This paper focuses on data from promoter fusion.
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Furthermore, we assume that when a gene is not expressed in a cell, its cell
score, which is defined in Section 2.3.1, follows a normal distribution with param-
eters u and 012. And the histogram of two control files are listed in Supplement A.

2.3. The DEGEO procedure.

2.3.1. Step 1: Summarize the time series of a cell into one cell score. Due to
the abnormal fluctuation of y;; right before and after the cell division time, we
truncate the first two and last two data points for all cells whose lifetimes are more
than 8 time points (96.2% of the cells belong to this group). Cells with fewer data
points are truncated less. The remaining data points are called the valid data. We
define the cell score for each cell as

0.05 0.95
00 099

Xi f’

where y-(O'OS)

; and yi(o.95) denote the 5% and 95% quantiles of the time series {y;;}
of the ith cell, respectively. The cell score is designed in this way such that a true
expression signal (which should last longer than 5% of the cell’s lifetime) could
be captured even if the expression lasts shorter than half of the cell’s lifetime (in
this case, taking median may not discover the expression). On the other time, rare
outlier values (which should not occupy more than 5% of the cell’s lifetime) can be
filtered out from the cell score. In contrast, a median will miss short trends while
a mean will be too sensitive to outliers. Thus, a 4D confocal movie data file is
transformed to a tree of cell scores. The cell scores X, together with the lifetimes
T and their family relationships, will be used in step 2 to detect the cells where the

target gene start expressing.

2.3.2. Step 2: Fit a change-point-in-tree model. Let x;; and x;, be the cell
scores of a pair of sibling cells while x;, indicates that of their mother cell. Let #;,
and f;, be the lifetimes of the cells corresponding to x;, and x;,. M indicates the
change point, that is, the cell where the target gene starts expressing. Therefore, all
descendant cells of the cell M form a branch, which we call an expression branch.
In the case that cells with close kinship are expression onsets simultaneously, the
change point may be the most recent common ancestor cell of all expression cells.
In this case, the expression branch may contain cells which have not expressed the
target gene. For example, in Figure 5, the exact expression onset cells are Exxx,
but our algorithm reports the cell E as change point in step 2. Nevertheless, our
algorithm will refine it to Exxx in step 4.

Denote A(x;) as the set of all ancestor cells of the cell corresponding to the cell
score x;. If a cell corresponding to the cell score x; is not within the expression
branch, that is, M ¢ A(x;), we assume its cell score is independent and identi-
cally distributed (i.i.d.) Gaussian noise. For a cell in the expression branch, its cell
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score is assumed to be associated with its mother, its sibling and its lifetime. More
specifically, the two kinds of cell scores are modeled by a change-point-in-tree
model as follows:

xi|M ¢ A(xi) ~ N(p, of),
Xi
2 ()
() (7 7))
xio + Bti, )’ pazz 022
The above change-point-in-tree model contains one unknown change point M
and five unknown parameters. We will use a Bayesian approach to estimate them

from a data file. To facilitate Bayesian computing, we use conjugate prior distribu-
tions for unknown parameters. Detail prior distributions are as follows:

ol ~T7 g, b,
of ~T 7 Ya,b),

B~ N(rs),

xi()a M E A(-xil ’ xlz)

u~N(p,q),
o ~ Beta(u, v),
M ~ Uniform over all cells in the candidate set.

Settings of the hyperparameters in the above prior distributions and the sensitivity
analysis are listed in Supplement B. The candidate set contains all cells on the cell
lineage tree which may initialize a gene’s expression. Here we exclude boundary
cells of the tree from the candidate set because an expression pattern changing
at the boundary is either false positive or a signal too weak to be significantly
different from the background. More specifically, considering the situation of the
C. elegans embryo, only cells whose number of descendants is between 6 and
30 are put in the candidate set, while for a large expression branch, the DEGEO
algorithm will divide it into several small expression branches and detect them one
by one. The joint posterior distribution is as follows:

flof.03.B. . p. M|X,T)
o« f(of.03.B.1t.p. M) - f(X.T|o},03. B. . p. M)
o (02) "¢ eIt (g2) T4 bl | o= (B=)?/29)
x e~ =P?/Ca) | pu=l(q _ pyv-l

1 e—(l/(2012))ZNM(xi—u)2 ] 1 o—J/C1=pHad)

N p—
o) (/1= p2 @)Vl
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The conditional posterior distributions of all parameters can then be deduced as
follows:

012|o’22,ﬁ,ﬂ’p,M,X,TNF_1<g—|——h—|— Z(xl )a

) _ J
oflod, B, p M, X, T ~T 1<a+|NM|’b+ 201 —p2)>’

Blot,of, . p, M, X, T

K
~N ,
<1/s +(1/((1 = p2)o) X, @7 + 1 — 2pti 1iy)

1 )
/s +(1/(1 - p2)0'22)) ZNM (tl% + tizz _ 2/0tilti2) s
p/a+ YN, xi/ot 1
M|0’12,O’22,,8,p,M,X,T~N(  Xi 21’ 2)
1/q +I|Nul/of  1/q +INuml/oj
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where
1

K= m[vz]w[(til - ptiz)(-xil - xi()) + (tiz - ptil)(-xiz _-xi())] +

J =Y "[(xi; — xip — Bti))* + (xiy — xip — Bti)*

- 2p(-xi] — Xip — ,Bth)(-xiz — Xipg — ﬂtiz)]’
Ny :set of cells inside the expression branch with change point M,

Ny : set of cells outside the expression branch with change point M.

To fit the change-point-in-tree model in equation (1) to a tree of cell scores,
we use an MCMC algorithm, which iteratively updates each parameter from its
conditional posterior distribution until converging, as judged by the potential scale
reduction factor (or I§) [Gelman and Rubin (1992)]. More specifically, an MCMC
chain is said to have converged if IR — 1] < 0.2 holds for all parameters. As shown
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in Supplement D, this MCMC algorithm converges fast. The output of the algo-
rithm is a sample from the converged joint posterior distribution of the change
point and all parameters, from which we can get both the point estimates and the
uncertainty measures of all parameters. More specifically, we regard the change
point value with the highest posterior probability M* as the MCMC detected
branch, and the conditional posterior mean values (conditional on the reported
M = M™) of other parameters as fitted parameters.

2.3.3. Step 3: Use SVR to classify an MCMC detected branch. The above
MCMC algorithm forces the fitting of a tree of cell scores to the model in equa-
tion (1), which assumes a single expression branch. Since a target gene may ex-
press in zero or multiple branches in the embryo, the detected expression branch
may be false positive or a nonunique true positive. To deal with this issue, we feed
some features of an MCMC detected branch to a trained SVR to further decide
whether we shall report the corresponding branch as expressing. SVR is a version
of Support Vector Machine and has been proposed by Harris et al. (1997). The
used features are provided in Supplement C. The training of SVR is explained in
Section 3.1.1.

If the trained SVR classifies the MCMC detected branch as expressing, we
delete the branch from the tree and run the MCMC algorithm to fit the change-
point-in-tree model again. This procedure is iterated until an MCMC detected
branch is classified as nonexpression. That is, the trained SVR serves as a criterion
to stop searching more expression branches from the tree of cell scores.

2.3.4. Step 4: Find the detailed onset time within a cell. Steps 2 and 3 report
expression at the level of branches in the tree with cell scores x;. Some cells in
the SVR reported branches may not express the target gene. For the cell where the
target gene initiates expressing, the detailed onset time may not be the birth time of
the cell. In step 4, we will further detect expression onset cells and corresponding
times, that is, which data point y;;.

For each 4D confocal movie data file, we make use of the sample mean /& and
sample variance 62 of the valid data points except those belonging to expression
branches detected at step 3, which provide the most accurate estimation of back-
ground noise in case the tree contains multiple expression branches. Valid data
points which are greater than the 97.5% quantile of the noise distribution N ({1, 52)
are regarded as extreme values. We then search along all paths from the change
point M to all leaf cells inside the SVR reported branch to identify all expres-
sion segments which satisfy the following: (a) the time series segment (a block
of neighboring data points) along the path contains at least 10 valid data points;
and (b) at least 97.5% percent of the valid data points in the segment are extreme
values. We define a valid data point as an expression onset if it is the earliest ex-
pression segment time point on a path from the change point M to a leaf cell inside
a SVR reported branch, and define a valid data point as an expression end if it is
the last one on a path.
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3. Results and discussion. We use synthesized data, where the background
truth is known, to train SVR and test the performance of our method and compare
it with that of Murray et al. (2012). We also apply our method on a real data set.

3.1. Synthesized data. Three synthesized data sets are generated for simula-
tion studies.

3.1.1. Synthesized data set 1. The first data set is synthesized to mimic the
real data. To create a mimic tree of cell scores, we first randomly pick one well-
annotated real tree of cell scores whose expression branches have been reliably
labeled, then use the cell scores of its nonexpression cells as the background noise
distribution to generate a whole tree of noise cell scores, and finally replace a ran-
dom set of branches with real expression branches with the same branch structures.
The above mimicking procedure is repeated to generate 120 trees of cell scores in
synthesized data set 1. Each of the mimic trees of cell scores shares the same noise
and expression cell score distribution as a real data file, and we know which cells
are really expressing.

The MCMC algorithm in step 2 is run on each of the 120 trees. Once it con-
verges, the detected branch is deleted and the MCMC algorithm is run again on
the remaining tree, until the MCMC detected branch no longer contains any really
expression cell. In 116 of the 120 trees, the MCMC algorithm precisely detects all
true expression branches first before finally detecting a nonexpression branch as
expressing. It shows that the MCMC algorithm alone can accurately detect expres-
sion branches from this mimic data set.

By repeatedly running the above MCMC algorithm on the 120 mimic trees, the
detected branches contain many true expression branches (code as output = 1 for
SVR) and some false expression branches (code as output = 0 for SVR). Since we
know the true expression status of these MCMC detected branches, we use selected
features (see Supplement C) of these branches as the training data set to fita SVR
classifier. Figure 3 shows the fitted output values of all branches in the training data
set. The true expression branches and false expression ones can be fairly separated
by a threshold for the SVR output value. As shown in Supplement C, the best
threshold is 0.15 because its mean false classification rate is minimized in this
training data set.

To test the accuracy of the trained SVR on independent data, we synthesize an-
other set of 120 mimic trees and run the MCMC algorithm using the above same
procedure. The trained SVR is used to classify the MCMC detected branches. Ta-
ble 1 shows the results, where the false classifications are grouped by the number of
true expression branches in the corresponding trees. Detailed figures are provided
in Supplement C and the mean rate of false classifications is minimized when the
threshold is 0.15, which agrees with the threshold from the training data. As we
can see, the trained SVR performs very well on this test data.
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F1G. 3. Fitted SVR output values of the training branches. Each point represents a branch, where
the horizontal coordinate shows the branch index and the vertical coordinate shows the SVR output
value. True expression branches are denoted as circles, while false ones are denoted as triangles.
The horizontal line shows the classification boundary with SVR output threshold at 0.15.

3.1.2. Synthesized data set 2. The second synthesized data set is generated
from the model in equation (1), therefore, it fully satisfies all model assumptions.
Using a true data file’s lifetime and tree structure as template, we first randomly
select 0 to 10 cells as the roots of expression branches, then generate true val-
ues of parameters by sampling from their prior distributions, and finally generate
all cell scores according to equation (1). This procedure is repeated to generate
110 synthesized trees, with 10 trees for each of the 11 kinds of expression branch
numbers.

TABLE 1
No. of misclassified branches when applying the trained SVR on MCMC detected branches from
testing mimic trees

No. of true expression branches

contained in corresponding trees None One Two Three Four Overall
No. of MCMC detected branches 30 56 81 80 40 287
SVR false positive 1 0 0 1 0 2
SVR false negative 0 0 0 0 0 0
SVR false classifications 1 0 0 1 0 2
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FI1G. 4. Predicted SVR output values for MCMC detected branches from the second synthesized
data set. Triangles indicate true expression branches, while circles indicate false. The horizontal line
shows the SVR threshold 0.15.

For each of the synthesized trees, we run the MCMC algorithm and use the
trained SVR from Section 3.1.1 to decide when to stop as described in Sec-
tions 2.3.2 and 2.3.3. When an MCMC detected branch is classified as nonexpres-
sion by the trained SVR, the tree is no further fitted by the MCMC algorithm. Fig-
ure 4 shows the SVR output values of all SVR reported branches (triangles above
the horizontal threshold line) and the MCMC detected branches which are classi-
fied as nonexpression by the trained SVR (circles below the horizontal threshold
line). It shows that all true expression branches are correctly reported. Only three
false branches are reported by the trained SVR.

3.1.3. Synthesized data set 3. The third data set is used to compare the perfor-
mance of the DEGEO algorithm and the method proposed by Murray et al. (2012)
(denoted as APM) in detecting expression onset cells. The data set is synthesized
by mimicking the trees of original data files. More specifically, we first pick one
well-annotated real tree whose expression onset cells have been reliably labeled,
then use the data points y;; of its nonexpression branches as the background noise
distribution to generate a whole tree of noise data points, and then insert the data
points y;; of a random set of real expression branches. The above procedure is re-
peated to generate 120 trees for the synthesized data set 3. Each of the mimic trees
shares the same noise and expression distribution as a real data file, and we know
which cells are expression onsets. Table 2 shows True Positive Rate (TPR), False
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TABLE 2

Performance comparison between DEGEO and APM. Standard errors for APM proportions are
approximately 0.034-0.054 for TPR, 0.001-0.002 for FPR, 0.006-0.022 for PPV

TPR FPR PPV
No. of expression branches DEGEO APM DEGEO APM DEGEO APM

0 - - 0 0.058 - 0

1 1 0.500 0 0.048 1 0.040
2 1 0.528 0 0.047 1 0.086
3 1 0.602 0 0.051 1 0.140
4 1 0.567 0 0.035 1 0.206

Positive Rate (FPR) and Positive Predictive Value (PPV) of the two methods at the
cell level. The estimated probabilities under DEGEO have much higher accuracies
than those of Murray et al. (2012).

3.2. Real data. For the real promoter fusion data from Murray et al. (2012),
the four-step DEGEO procedure in Section 2 is used to find all expression onset
time points.

To evaluate the performance of our method on the real data, we compile a bench-
mark real data set by manually annotating expression branches on 20 real data
files. For a comparison with the SVR stopping criterion on detecting the expres-
sion branches, we also test another intuitive stopping criterion based on the pa-
rameter . More specifically, we stop further MCMC searching if the 8 of a new
MCMC detected branch is less than one third of the mean values of 8’s of all pre-
viously detected branches. Table 3 compares the performances of the two stopping
criteria on the benchmark real data set in terms of detecting expression branches.
It shows that SVR is far better that the §-based stopping criterion, because it re-
ports most of the true expression branches with an acceptable false negative rate.
Detailed results on the benchmark set are provided in Supplement C.

We run DEGEO for each of the real promoter fusion data files from Murray
et al. (2012). The detailed results for each data file are provided in Supplement F,
which includes all SVR reported expression branches, all exact expression onset

TABLE 3
Performances of the 2 stopping criteria on the benchmark real data set in terms of the number of
wrongly or correctly reported branches

Stopping criterion False positive True positive False negative

B-based 31 143 69
SVR(0.15) 15 185 27
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TABLE 4
Comparison of expression onset estimation with current literatures and Murray et al. (2008). The
“Onset” columns list the embryonic stage (in terms of the number of cells at the onset time) and the
cell [named according to the nomenclature in Sulston et al. (1983)] containing the expression onset.
The “Expression” columns show which tissues are expressing the target gene. The x in cell names
works as a wildcard character. The cited papers in the third column provide the source of the

information
Onset (cells stage) Expression (cells)
Gene Literature DEGEO ROM Literature DEGEO ROM
end-3 28 26-28 <200 Intestine 16 intestine 20 intestine
Ex Ex [Maduroa et al. (2005)]
hlh-1 90+ 133-140, 90 Muscle precursors 16 muscle and Muscle
C 161-171 [Krause (1995)] 1 ganglion
Cxpx  Cxpx
178-190 180 8 muscle cells Muscle
Dxx Dxx
12-24 51-87 24 Transiently in MS 22 muscle, Muscle and
MS Msxxx MSxx [Krause (1995)] 3 ganglion, pharynx
2 coelomocyte
1 mesoderm
and 21 pharynx
isw-1 Every 87-350 350 Most Most Most but not all
stage [Andersen, Lu and Horvitz (2006)]
tbx-38 24 45-51 Descendants of ABa 9 connective tissue, ABa descendents
ABaxxx ABaxxxx [Good et al. (2004)] 27 hypodermis,
97 nerve tissue,
48 pharynx

time points and all expression segments. Two expression segments are merged if
they are separated by no more than two data points.

DEGEQO reports no false positive from the 6 negative control data files, indi-
cating the good specificity of our method. For other data files, we try to compare
our results with available results in current literatures. Table 4 shows our results of
several genes together with supporting evidences in current literatures and results
obtained by Murray et al. (2008) (denoted by ROM), which used an ad hoc thresh-
old to report the expression onset among all the data sets. It shows that the onset
reported in current literatures and Murray et al. (2008) are also detected by DE-
GEO, but DEGEO detects more exact onset times and more onset locations. Note
that Krause (1995) detected disparate onset times in various expression branches
of gene hlh-1, which suggests that iterative runs of step 2 and estimating exact
onset for different paths in step 4 are necessary.

The real data results also show that DEGEO has the capability to handle the case
where the tree contains no expression branch or more than one expression branch,
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FIG. 5. The E branch detected from CD20070319_pha4_I11LBBB.csv. The expression of the target
gene is found in every path of this expression branch, and the expression increases faster to high
values.

although the change-point-in-tree model assumes that the tree contains exactly one
expression branch. DEGEO finds the expression branches one by one, and tends
to first detect the more outstanding expression branch, which contains more cells
and whose expression grows faster to high values, with a bigger SVR output value.
Using the data file CD20070319_pha4_I1LBBB.csv as an example, the E branch
shown in Figure 5 is detected with a SVR output value of 0.87 before the ABarapa
branch is detected with a SVR output value of 0.33. This tendency is also shown
in Supplement D, where branches with bigger 8 values are detected earlier.

After the expression branches are detected, DEGEO moves to estimate the exact
expression onset time. For example, DEGEO reports the cells Exxx and ABarapaxx
as expression onset in Figures 5 and 6, respectively. Here the x in cell names works
as a wildcard character.

DEGEO also seems resistant to the false expression phenomenon which may
result from noise fluctuation or fluorescent absorption. For example, as shown in
Figure 7, the MSap branch from CD20060627_cnd1_4-2.csv and the ABpraapp
branch from CD20080128_elt-1_3.csv are correctly classified as false expression
branches by DEGEO.

DEGEO may perform poorly if almost all paths in a tree show increasing trends,
such as in CD20080504_C01B7_1_6.csv. This is because DEGEO assumes all
cells outside the selected expression branch follow a normal distribution, which is
invalid if most of these cells are actually from expression branches. As a result,
the MCMC algorithm will report many expression branches, but may report rela-
tively weaker expression branches earlier before stronger expression branches. In



964 J.HU ET AL.
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F1G. 6. The ABarapa branch detected from CD20070319_pha4_I1LBBB.csv. The expression of
the target gene is found in every path of this expression branch, but the expression only increases
slowly to relatively low values.

this case, we can actually use step 4 of the DEGEO procedure to directly detect
expression onset on each path without the need to sort out expression branches in
steps 2 and 3.

4. Conclusion. We provide a principled automatic procedure to detect ex-
pression onset from 4D confocal data of C. elegans embryos. Both simulation
studies and real data examples show that our method can detect both fast and
slow expression lineages. On the other hand, it efficiently excludes false posi-

MSappp MSapppp:
MSapp MSapppa:
MSappa MSappap:
MSappaa:
MSap MSapapp MSapappp
MSapap MSapappa
MSapapa MSapapap
MSapa MSapapaa ABpraappp {- ..... —— ABpraapppa
MSapaa MSapaap: ABpraapp = ABpTaapppa
MSapaaa MSapaaap ABpraappa e ABpraappap
MSapaaaa ] l I ------ — ABpraappaa
(A) Msap branch (B) ABpraapp branch

FIG. 7. Examples of false expression phenomenon. (A) The MSap branch from
CD20060627_cnd1_4-2.csv. Its values show a weak uptrend which probably results from flu-
orescent absorption. This branch is classified as a false expression branch by the trained SVR,
(B) The ABpraapp branch from CD20080128_elt-1_3.csv. Its values show a weak uptrend which
probably results from noise fluctuation. This branch is classified as a false expression branch by the
trained SVR.
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tive ones. Along the paths of detected expression lineages, we detect exact on-
set times of the target gene’s expression. Meanwhile, we are able to estimate the
parameters of data files, such as expression rate and distribution of background
noise.

In general, our algorithm can handle most cases well except for the case where
a gene is expressed in almost all cells, because this case does not fit our model
assumption. Extending our model for multiple change points is a natural choice,
but the unknown number of change points may make the problem computationally
very hard. In this paper, we stick to the assumption of one change point and test its
detection power on the data with multiple change points. For cases when the gene
is not widely expressed, DEGEO can accurately detect all change points one by
one, while for broadly expressed genes, we come up with a solution by construct-
ing the background noise distribution from early expression values instead of all
values outside the selected expression branch.

Except for the embryonic gene onset problem on the cell lineage tree, our
algorithm can also be applied on other change point problems as long as the
data points form a known tree structure. For example, the information flow on
social networks may form such a lineage tree, thus our algorithm can be used
to detect information change points, such as sentiment formation and propaga-
tion [Liben-Nowell and Kleinberg (2008)]. The propagation of contagious disease
may also form a lineage tree, and we can detect the virus mutation on the lin-
eage.

APPENDIX: DETAILED DESCRIPTION OF THE REAL DATA

One fundamental question in biology is how a zygote develops into an embryo
with different tissues. To approach this question, large-scale 4D confocal movies of
C. elegans embryos have been produced by experimental biologists. The first ob-
jective is to detect when and where a gene is expressed in an embryo. Our real data
files are obtained by automated analysis of reporter gene expression in C. elegans
with cellular resolution during embryogenesis [Murray et al. (2012)]. Basically,
an embryo is measured once per minute to report simultaneously the fluorescence
intensity of each cell which is living in the embryo at that time. Each real data file
can be viewed as a binary tree, where each node is a cell represented by a time
series and each branch indicates a parent—child relationship during cell division.
Since the cell lineage is invariant for all C. elegans embryos, the binary trees from
different data files have the same topology. But a cell’s lifetime may vary across
different embryos. Overall, the real data set contains 201 real data files. 5 of them
are negative control files, and each of the remaining files measures an individual
gene’s expression during embryogenesis. In total, 111 genes are measured, and
51 genes are measured by replicated embryos. The 25% quantile, mean, median,
75% quantile and standard deviation of the distribution of all cell lifetimes are 20,
28.55, 27, 35 and 12.85 minutes, respectively. Some characteristics of the real data
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TABLE 5
Distributions of some statistics across the 201 real data files

Distribution summary  25% quantile Mean Median 75% quantile Standard deviation

No. of data points 14,369 17,210.4 16,425 20,032 4424 .4
Observation time (min) 144 173 159 199 39

No. of observed cells 708 697.7 713 726 101.5
Mean fluorescent intensity 516 7260.2 1834.3 6444.4 13,328.2
SD of fluorescent intensity 1714.4 9207 4780.3 12,201.2 10,813.5

files are summarized in Table 5. For more details about the experiment and the
data, please refer to Bao et al. (2006) and Murray et al. (2008, 2012).

Acknowledgment. We thank two anonymous reviewers, the Associate Edi-
tor and the area Editor for their very helpful comments. Supplemental materials
are available online and the R code for the DEGEO algorithm is available upon
request.

SUPPLEMENTARY MATERIAL

Supplement A: Model checking (DOI: 10.1214/15-A0AS820SUPPA; .pdf).
We provide the justification of our 3 model assumptions in Section 2.2.

Supplement B: Hyperparameters of prior distributions (DOI: 10.1214/15-
AOASS820SUPPB; .pdf). The settings and the sensitivity analysis of hyperparame-
ters are shown in detail.

Supplement C: Classification and stopping criterion based on SVR (DOI:
10.1214/15-A0OAS820SUPPC; .pdf). We provide plots and tables to demonstrate
the good performance of the SVR method in classifying expression and nonex-
pression branches.

Supplement D: Convergence diagnosis and parameter estimation (DOI:
10.1214/15-AOAS820SUPPD; .pdf). Proofs of successful convergence and good
parameter estimation are provided in additional figures and table.

Supplement E: Detection of size-biased sampling (DOI: 10.1214/15-
AOAS820SUPPE; .pdf). We supply some details in detection of the size-biased
sampling problem.

Supplement F: Detection results of real data files (DOI: 10.1214/15-
AOASS820SUPPF; .zip). All SVR reported expression branches, all exact expres-
sion onset time points and all expression segments in real data files are listed in a
folder.
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