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Abstract. This paper extends some prominent statistical results including Fisher Theorem and Wilks phenomenon to the penalized
maximum likelihood estimation with a quadratic penalization. It appears that sharp expansions for the penalized MLE θ̃G and
for the penalized maximum likelihood can be obtained without involving any asymptotic arguments, the results only rely on
smoothness and regularity properties of the of the considered log-likelihood function. The error of estimation is specified in terms
of the effective dimension pG of the parameter set which can be much smaller than the true parameter dimension and even allows
an infinite dimensional functional parameter. In the i.i.d. case, the Fisher expansion for the penalized MLE can be established under

the constraint “p2
G

/n is small” while the remainder in the Wilks result is of order
√
p3

G
/n.

Résumé. Cet article généralise certains résultats statistiques importants dont le Théorème de Fisher et le phénomène de Wilks à
l’estimation du maximum de vraisemblance pénalisée de façon quadratique. Il apparaît que des développements précis pour l’EMV
pénalisée θ̃G et le maximum de vraisemblance pénalisé peuvent être obtenus sans arguments asymptotiques, les résultats reposent
alors seulement sur la régularité et les propriétés de la fonction de log-vraisemblance. L’erreur d’estimation est spécifiée en fonction
de la dimension effective pG de l’ensemble des paramètres qui peut être beaucoup plus petite que la véritable dimension et permet
ainsi de considérer un cas infini dimensionnel. Dans le cas i.i.d., le développement de Fisher pour l’EMV pénalisée peut être établi

sous la contrainte « p2
G

/n est petit » tandis que le reste dans le résultat de Wilks est d’ordre
√
p3

G
/n.
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1. Introduction

The Fisher and Wilks theorems belong to the short list of most fascinating results in the statistical theory. In particular,
the Wilks result in its simple form claims that the likelihood ratio test statistic is close in distribution to the χ2

p

distribution as the sample size increases, where p means the parameter dimension. So, the limiting distribution of this
test statistic only depends on the dimension of the parameter space whatever the parametric model is. This explains
why this result is sometimes called the Wilks phenomenon. This paper aims at reconsidering the mentioned results
from different viewpoints. One important issue is that the presented results are stated for finite samples. There are
only few general finite-sample results in statistical inference; see Boucheron and Massart [7] and references therein
in context of i.i.d. modeling. The novel approach from Spokoiny [25] offered a general framework for a finite sample
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theory, and the present paper makes a further step in this direction: the classical large sample results are extended to
the finite sample case with explicit and sharp error bounds.

Another important point is a possible model misspecification. The classical parametric theory requires the paramet-
ric assumption to be exactly fulfilled. Any violation of the parametric specification may destroy the Fisher and Wilks
results; cf. Huber [13]. This study admits from the very beginning that the parametric specification is probably wrong.
This automatically extends the applicability of the proposed approach.

The further issue is the use of penalization for reducing the model complexity. If the parameter dimension is too
large, the classical statistical results become almost intractable because the corresponding error is proportional to the
dimension of parameter space. Sieve parametric approach is often used to replace the an infinite dimensional problem
with a finite dimensional one; see e.g. Shen and Wong [24], Shen [23], Van de Geer [29], Birgé and Massart [4],
Barron et al. [2], and references therein. Some asymptotic results for generalized regression models are available in
Fan et al. [8].

Another standard way of reducing the complexity of the model is by introducing some penalty in the likelihood
function. In this paper we focus on quadratic-type penalization. Roughness penalty approach provides a popular
example; cf. Green and Silverman [12]. Koenker et al. [16] explained how roughness penalty works in context of
quantile regression. Tikhonov regularization and ridge regression are the other examples which are often used in
linear inverse problems. It is well known that the use of a penalization in context of an inverse problem provides
regularization and uncertainty reduction at the same time. Our results show that the use of penalization indeed leads to
some improvement in the obtained error bounds. Namely, one can replace the original parameter dimension p by the
so called effective dimension pG which can be much smaller than p. Even the case of a functional parameter θ with
p = ∞ can be included. In this paper the penalty term is supposed to be given in advance. In general, a model selection
procedure based on a proper choice of penalization is a high topic, one of the central in nonparametric statistics. We
refer to Shen [23], Birgé and Massart [4], van de Geer [28] for the general models and to Birgé and Massart [5,6] for
Gaussian model selection where one can find an extensive overview of the vast literature on this problem.

The final issue is the critical parameter dimension which is measured by the effective dimension pG. The problem
of statistical inference for models with growing parameter dimension is quite involved. There are some specific issues
even if a simple linear or exponential model is considered, the results from Portnoy [19,20] requires “p2/n small”
for asymptotic normality of the MLE. Depending on the considered problem and the model at hand, the conditions
on the critical parameter dimension p may differ. For instance, Portnoy [22] obtained the Fisher and Wilks results for
a generalized linear model under p3/2/n → 0, Mammen [18] established similar results for high-dimensional linear
models. A general Wilks result can be stated under the condition that p3/n is small; see e.g. Belloni and Chernozhukov
[3]. Below we show that the conditions on the critical dimension in penalized ML estimation can be given in terms of
the effective dimension pG rather than the parameter dimension p. In particular, in the i.i.d. case, the Fisher expansion
can be stated under “p2

G/n small” and “p3
G/n small” is sufficient for the Wilks result.

First we specify our set-up. Let Y denote the observed data and P mean their distribution. A general parametric
assumption (PA) means that P belongs to p-dimensional family (Pθ , θ ∈ Θ ⊆ Rp) dominated by a measure μ0. This

family yields the log-likelihood function L(θ) = L(Y, θ)
def= log dPθ

dμ0
(Y). The PA can be misspecified, so, in general,

L(θ) is a quasi log-likelihood. The classical likelihood principle suggests to estimate θ by maximizing the function
L(θ):

θ̃
def= argmax

θ∈Θ

L(θ). (1.1)

If P /∈ (Pθ ), then the quasi MLE estimate θ̃ from (1.1) is still meaningful and it can be viewed as estimate of the value
θ∗ defined by maximizing the expected value of L(θ):

θ∗ def= argmax
θ∈Θ

EL(θ)

which is the true value in the parametric situation and can be viewed as the parameter of the best parametric fit in the
general case. The classical Fisher Theorem claims the expansion for the MLE θ̃ :

D
(̃
θ − θ∗) − ξ

P−→ 0,
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where D2 = −∇2EL(θ∗) and ξ
def= D−1∇L(θ∗). Under the correct model specification, D2 is the total Fisher infor-

mation matrix and the vector ξ is centered and standardized. So, it is asymptotically standard normal under general
CLT conditions.

It is well known that many important properties of the quasi MLE θ̃ like concentration or coverage probability

can be described in terms of the excess or quasi maximum likelihood L(̃θ , θ∗) def= L(̃θ) − L(θ∗) = maxθ∈Θ L(θ) −
L(θ∗), which is the difference between the maximum of the process L(θ) and its value at the “true” point θ∗. The
Wilks phenomenon claims that the distribution of the twice excess 2L(̃θ , θ∗) can be approximated by ‖ξ‖2 which is
asymptotically χ2

p , where p is the dimension of the parameter space:

2L
(̃
θ , θ∗) − ‖ξ‖2 P−→ 0, ‖ξ‖2 w−→ χ2

p.

This fact is very attractive and yields asymptotic confidence and concentration sets as well as the limiting critical
values for the likelihood ratio tests. However, practical applications of all mentioned results are limited: they require
true parametric distribution, large samples and a fixed parameter dimension.

Modern applications stimulate a further extension of the classical theory beyond the classical parametric assump-
tions. Spokoiny [25] offers a general approach which appears to be very useful for such an extension. The whole
approach is based on the following local bracketing result:

Lε

(
θ , θ∗) − ♦ε ≤ L(θ) − L

(
θ∗) ≤ Lε

(
θ , θ∗) + ♦ε, θ ∈ Θ0. (1.2)

Here Lε(θ , θ∗) and Lε(θ , θ∗) are quadratic in θ − θ∗ expressions and Θ0 is a local vicinity of the central point θ∗.
This result can be viewed as an extension of the famous Le Cam local asymptotic normality (LAN) condition. The
LAN condition considers just one quadratic process for approximating the log-likelihood L(θ). The use of bracketing
with two different quadratic expressions allows one to keep control of the error terms ♦ε,♦ε even for relatively large
neighborhoods Θ0 of θ∗ while the LAN approach is essentially restricted to a root-n vicinity of θ∗. It also allows to
incorporate a large parameter dimension and a model misspecification. However, the approach from Spokoiny [25]
has natural limitations: the parameter dimension p cannot be too large. For instance, in the i.i.d. case, the error terms
♦ε and ♦ε are of order

√
p3/n which destroys the Wilks result if p > n1/3.

A standard way of overcoming this difficulty is to impose a kind of smoothness assumption on the unknown
parameter value θ∗. Here we discuss one general way to deal with such smoothness assumptions using a quadratic
penalization. Section 2 offers a new approach to studying the properties of the penalized MLE which is based on
a linear approximation of the gradient of the log-likelihood process. Compared to the bracketing approach (1.2), it
allows to establish a Fisher type expansion for the penalized MLE under weaker conditions on the critical dimension
of the problem. Another important novelty of the approach is the systematic use of the effective dimension pG in place
of the original dimension p of the parameter space. Usually pG is much smaller than p. It is even possible to treat the
case of a functional parameter if the effective dimension of the parameter set remains finite. Our main results include
the Fisher and Wilks expansions for the penalized MLE. In the important special case of an i.i.d. model, the error term
in the Wilks expansion is of order p3

G/n, while the Fisher expansion requires p2
G/n small.

Also we discuss an implication of these results to the bias-variance decomposition of the squared risk of the
penalized MLE. In all our results, the error terms only depend on the effective dimension pG.

The paper is organized as follows. Section 2 states the analog of Fisher and Wilks results for the penalized MLE
procedure. Section 2.5 explains how the Fisher expansion can be used for obtaining the bias-variance decomposition of
the quadratic risk of the penalized MLE. Section 3 specifies the general conditions and results to i.i.d. and generalized
linear models. Appendix A collects some deviation bounds for general quadratic forms. Appendix B contains technical
results on the maximum of a stochastic process under exponential moment conditions.

2. Fisher and Wilks theorems under quadratic penalization

Let pen(θ) be a penalty function on Θ . A big value of pen(θ) corresponds to a large degree of roughness or a small
amount of smoothness of θ . The underlying assumption on the model is that the true value θ∗ is smooth in the sense
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that pen(θ∗) is relatively small. A penalized (quasi) MLE approach leads to maximizing the penalized log-likelihood:

θ̃ = argmax
θ∈Θ

{
L(θ) − pen(θ)

}
.

Below we discuss an important special case of a quadratic penalty pen(θ) = ‖Gθ‖2/2 for a given symmetric matrix
G; see e.g. Green and Silverman [12] or Koenker et al. [16] for particular examples. Denote

LG(θ)
def= L(θ) − ‖Gθ‖2/2,

θ̃G
def= argmax

θ∈Θ

LG(θ).

The use of a penalty changes the target of estimation which is now defined as

θ∗
G

def= argmax
θ∈Θ

ELG(θ). (2.1)

So, introducing a penalty leads to some estimation bias: the new target θ∗
G may be different from θ∗. At the same

time, similarly to linear modeling, the use of penalization reduces the variability of the estimate θ̃G and improves
its concentration properties. An interesting question is the total impact and a possible gain of using the penalized
procedure. A preliminary answer is that the penalty term ‖Gθ∗‖2 at the true point should not be too large relative to
the squared error of estimation for the penalized model. This rule is known under the name “bias-variance trade-off.”

Another important message of this study is that the use of penalization allows to reduce the parameter dimension
to the effective dimension which characterizes the entropy of the penalized parameter space. The resulting confidence
and concentration sets depend on the effective dimension rather than on the real parameter dimension and they can be
much more narrow than in the non-penalized case.

The principle steps of the study are as follows. The concentration step claims that the penalized MLE θ̃G is
concentrated in a local vicinity Θ0,G(rG) of the point θ∗

G. It is based on the upper function method which bounds
the penalized log-likelihood LG(θ) from above by a deterministic function. Theorem 2.1 states that θ̃G belongs to the
local set Θ0,G(rG) with a dominating probability, and this local set can be much smaller than the similar set for the
non-penalized results. As the next step, Spokoiny [25] applied the bracketing approach to bound from above and from
below the log-likelihood process L(θ) by two quadratic in θ − θ∗ expressions. Here the bracketing step is changed
essentially by using a local linear approximation of the vector gradient process ∇L(θ). This helps to get a sharper
bound on the error of approximation and improve the quality of the Fisher expansion. Similarly to Spokoiny [25],
the obtained results are stated for finite samples and do not involve any asymptotic arguments. An advantage of the
proposed approach is that it combines an accurate local approximation with rather rough large deviation arguments
and allows one to obtain usual asymptotic statements including asymptotic normality of the penalized MLE; see
Section 3.1 for the i.i.d. case.

2.1. Effective dimension

Let V 2 be the matrix shown in condition (E0G) in Section 2.2. Typically V 2 = Var{∇L(θ∗
G)} and this matrix measures

the local variability of the process LG(·). Let also D2
G be a penalized information matrix defined as

D2
G = −∇2ELG

(
θ∗

G

) = D2 + G2

with D2 = −∇2EL(θ∗
G). One can redefine D2 = −∇2EL(θ∗) under condition (L0G) below and the so called small

modeling bias condition; see Section 2.5. The effective dimension pG is defined as the trace of the matrix BG
def=

D−1
G V 2D−1

G :

pG
def= tr(BG). (2.2)
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Below we show that the use of penalization enables us to replace the original dimension p in our risk bounds with
the effective dimension pG which can be much smaller than p depending on relations between the matrices D2, V 2,
and G2.

In our results the value pG will be used via another quantity z(BG,x) which also depends on a fixed constant x
and for moderate values of x can be defined as

z(BG,x) = √
pG + √

2xλG, (2.3)

where λG
def= λmax(BG) is the largest eigenvalue of BG; see (A.4) for a precise definition.

Now we present a couple of typical examples of using the quadratic penalty: blockwise penalization and estimation
under a Sobolev smoothness constraint. For simplicity of presentation we assume that V 2 = D2 = nIp , while G2

is diagonal with non-decreasing eigenvalues g2
j . Then D2

G = D2 + G2 = diag{n + g2
1, . . . , n + g2

p}. It holds that

BG = diag{(1 + n−1g2
1)−1, . . . , (1 + n−1g2

p)−1}, and we apply (2.2) for computing the effective dimension pG.

Block penalization
Consider the case when G is of a simple two-block structure: G = diag{0,G1}. Many blocks can be considered in
the similar way. The first block of dimension p0 corresponds to the unconstrained part of the parameter vector while
the second block of dimension p1 corresponds to the low energy component. An interesting question is the minimal
penalization G1 making the impact of the low energy part inessential. Assume for simplicity that G1 = gIp1 . Then

pG = trBG = p0 + p1/
(
1 + n−1g2).

One can see that the impact of the second block G1 in the effective dimension is inessential if g2/n � p1/p0.

Sobolev smoothness constraint
Consider the case with D2 = V 2 = nIp and G2 = diag{g2

1, . . . , g2
p} with gj = Ljβ for β > 1/2. The value β is usually

considered as the Sobolev smoothness parameter. It holds

pG =
p∑

j=1

1

1 + L2j2β/n
.

Define also the index pe as the largest j satisfying L2j2β ≤ n. It is straightforward to see that β > 1/2 yields pG ≤
C(β,L)pe for a constant C(β,L) depending on β,L only.

Linear inverse problem
The next example corresponds to the case of a linear inverse problem. Assume for simplicity of notation the se-
quence space representation, the noise is inhomogeneous with increasing eigenvalues V 2 = diag{v2

1, . . . , v2
p} and the

information matrix D2 is proportional to identity, that is, D2 = nIp . Then the effective dimension is given by the sum

pG =
p∑

j=1

v2
j

n + g2
j

.

To keep the effective dimension small, one has to compensate the increase of the eigenvalues v2
j by the penalization g2

j .

2.2. Conditions

This section presents the list of conditions which are similar to ones from the non-penalized case in Spokoiny [25].
However, the use of penalization leads to some change in each condition. Most important fact is that the use of
penalization helps to state the large deviation (LD) result for much smaller local neighborhoods than in the non-
penalized case. Spokoiny [25] presented the LD result for local sets of the form Θ0(r) = {θ : ‖V (θ − θ∗)‖ ≤ r} with
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a proper r
 p1/2. Now we redefine this set by using D2
G in place of V 2 and θ∗

G in place of θ∗:

Θ0,G(r)
def= {

θ :
∥∥DG

(
θ − θ∗

G

)∥∥ ≤ r
}
.

Moreover, the radius r can be selected of order p1/2
G , which can be very useful for large or infinite p. Our conditions

mainly assume some regularity and smoothness of the penalized log-likelihood process LG(θ). The first condition
states some smoothness properties of the expected log-likelihood ELG(θ) as a function of θ in a vicinity Θ0,G(r) of
θ∗

G. More precisely, it effectively means that the expected log-likelihood EL(θ) is twice continuously differentiable
on the local set Θ0,G(r).

Below each condition is given in penalized and non-penalized form for the sake of comparison. Already now it is
worth saying that the use of penalization helps to relax most of conditions. Define

FG(θ)
def= −∇2ELG(θ) = −∇2EL(θ) + G2.

Then D2
G = FG(θ∗

G). The conditions involve a radius rG which separates the local zone and the zone of large devia-
tions. This value will be made precise in Theorem 2.1.

First we consider the stochastic component of the log-likelihood process LG(θ) which is the same as in the non-
penalized case:

ζ(θ)
def= LG(θ) −ELG(θ) = L(θ) −EL(θ).

We assume that it is twice differentiable and denote by ∇ζ(θ) its gradient and by ∇2ζ(θ) its Hessian matrix. The
next two conditions are to ensure that the random vector ∇ζ(θ∗

G) and the random processes ∇2ζ(θ) are stochastically
bounded with exponential moments. The conditions involve a p × p-matrix V which normalizes the vector ∇ζ(θ∗

G),
and a similar matrix V2 normalizing ∇2ζ(θ).

(E0G) There exist a positively semi-definite symmetric matrix V 2, and constants g > 0, ν0 ≥ 1 such that
Var{∇ζ(θ∗

G)} ≤ V 2 and

sup
γ∈Rp

logE exp

{
λ

γ �∇ζ(θ∗
G)

‖V γ ‖
}

≤ ν2
0λ2

2
, |λ| ≤ g.

(E2G) There exist a positively semi-definite symmetric matrix V 2
2 and a value ω > 0 such that it holds for any

θ ∈ Θ0,G(r0):

sup
γ 1,γ 2∈Rp

logE exp

{
λ

ω

γ �
1 ∇2ζ(θ)γ 2

‖V2γ 1‖ · ‖V2γ 2‖
}

≤ ν2
0λ2

2
, |λ| ≤ g.

Below we only need that the constant g(r) is larger than CpG for a fixed constant C. This allows to reduce the
condition to the case with a fixed g which does not depend on the distance r.

Their non-penalized versions are almost identical: one has to replace θ∗
G with θ∗ and Θ0,G(r) with Θ0(r).

(E0) sup
γ∈Rp

logE exp

{
λ

γ �∇ζ(θ∗)
‖V γ ‖

}
≤ ν2

0λ2

2
, |λ| ≤ g.

(E2) sup
γ 1,γ 2∈Rp

logE exp

{
λ

ω

γ �
1 ∇2ζ(θ)γ 2

‖V2γ 1‖ · ‖V2γ 2‖
}

≤ ν2
0λ2

2
, |λ| ≤ g(r).

The conditions (E0) and (E0G) are very similar while (E2G) is restricted to the vicinity Θ0,G(r) which can be much
smaller than Θ0(r).

The identifiability condition relates the matrices V 2 and V 2
2 and to D2

G.

(IG) There is a constant aG > 0 such that

a2
GD2

G ≥ V 2, a2
GD2

G ≥ V 2
2 .
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In the non-penalized case of Spokoiny [25], this condition reads as

(I) a2D2 ≥ V 2 with D2 = −∇2EL(θ∗).

Therefore, the use of regularization helps to improve the identifiability in the regularized problem relative to the
non-penalized one as D2 ≤ D2

G.
Finally, we consider the expected log-likelihood ELG(θ). The local condition requires that it is nearly quadratic in

the vicinity Θ0,G(rG) of θ∗
G while the global condition assumes a linear growth in the complement of this vicinity.

Here and below ‖A‖op means the operator norm of a matrix A.

(L0G) For each r≤ rG, there is a constant δG(r) ≤ 1/2 such that∥∥D−1
G FG(θ)D−1

G − Ip
∥∥

op ≤ δG(r), θ ∈ Θ0,G(r). (2.4)

Under condition (L0G), it follows from the second order Taylor expansion at θ∗
G:∣∣−2ELG

(
θ, θ∗

G

) − ∥∥DG

(
θ − θ∗

G

)∥∥2∣∣ ≤ δG(r)
∥∥DG

(
θ − θ∗

G

)∥∥2
, θ ∈ Θ0,G(r).

A non-penalized version of (2.4) claims a similar approximation of F(θ) = −∇2EL(θ) by D2 def= F(θ∗) in the vicinity
Θ0(r0) centered at θ∗ instead of θ∗

G:

(L0)
∥∥D−1F(θ)D−1 − Ip

∥∥
op ≤ δ(r0), θ ∈ Θ0(r0) = {

θ :
∥∥D

(
θ − θ∗)∥∥ ≤ r0

}
.

As the quadratic penalty ‖Gθ‖2 does not change the smoothness properties of the expected contrast ELG(θ), the
conditions (L0G) and (L0) are essentially equivalent provided that the points θ∗ and θ∗

G are not too far from each
others.

The local condition (L0G) describes the behavior of ELG(θ) within Θ0,G(rG). In particular, ELG(θ∗
G) −

ELG(θ) ≈ r2
G/2 on the boundary of this local set. The global condition means that ELG(θ∗

G) − ELG(θ) can be
lower bounded by a linear function on the complement of this set.

(LG) For each θ with r= ‖DG(θ − θ∗
G)‖ ≥ rG

ELG

(
θ∗

G

) −ELG(θ) ≥ (
1 − δ(rG)

)(
rGr− r2

G

2

)
+ C1r

2, (2.5)

for a small constant C1; see Theorem 2.1 below for a precise bound.

A non-penalized version of this condition is obtained by letting G2 = 0.

(L) EL
(
θ∗) −EL(θ) ≥ (

1 − δ(r0)
)(
r0r− r2

0/2
) + C1r

2 for r= ∥∥D
(
θ − θ∗)∥∥.

Remark 2.1. Conditions (L0G) and (LG) can be effectively checked if the function f (θ)
def= −ELG(θ) is smooth and

convex in θ . Continuity of the second derivative ∇2f (θ) in Θ0,G(rG) implies (L0G). Convexity of f implies for any
θ◦ = θ∗

G + ρ(θ − θ∗
G) with ρ = rG/‖DG(θ − θ∗

G)‖ ≤ 1

f (θ) ≥ f
(
θ◦) + (

θ − θ◦)�∇f
(
θ◦) ≥ f

(
θ◦) + {

DG

(
θ − θ◦)}�

D−1
G ∇f

(
θ◦).

Condition (L0G) implies in view of ‖DG(θ◦ − θ∗
G)‖ = rG that f (θ◦) ≥ (1 − δ)r2

G/2 and ∇2f (θ◦) ≥ (1 − δ)D2
G for

δ = δ(rG). As ‖DG(θ◦ − θ)‖ = r− rG, we conclude that

f (θ) ≥ (1 − δ)

{
r2

G

2
+ rG(r− rG)

}
and (2.5) follows for C1 = 0. The case C1 > 0 can be similarly checked under a strong convexity of −ELG(θ). In the
case of linear of generalized linear models, one can use C1 = 0, in regular situations, it suffices that (LG) holds with
C1 of order n−1/2.
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We briefly comment on examples for which the conditions can be easily verified. Conditions (E0G) and (E2G)

require some exponential moments of log-likelihood ratio and its derivatives. Usually one assumes some finite mo-
ments of the normalized increments of the likelihood function; cf. Ibragimov and Khas’minskij [14], Chapter 2. Our
conditions (E0G) and (E2G) a bit more restrictive but it allows one to obtain some finite sample bounds. Note that
majority of finite samples results are stated under Gaussian or sub-Gaussian stochastic errors. The sub-Gaussian case
corresponds to g= ∞ in (E0G) and (E2G). Our results apply for sub-exponential errors with g< ∞ as well. Con-
dition (L0G) only requires some regularity of the considered parametric family and is not restrictive. As already
mentioned, condition (LG) can be easily checked if EL(θ) is smooth and concave in θ . It is also easy to verify if
∇2ELG(θ) is bounded from below by a positive matrix.

The i.i.d. case will be considered in details below in Section 3.1. Section 3.6 demonstrates how the conditions can be
checked for generalized linear models in terms of design regularity, smoothness of the link function, and exponential
moment conditions on the errors. The regression and generalized regression models are included as well; cf. Ghosal
[9,10] or Kim [15]. Spokoiny [25], Section 5.2, argued that (E0G) and (E2G) are fulfilled when regression errors
fulfill some exponential moments condition. If this condition is too restrictive and a more stable (robust) estimation
procedure is desirable, one can apply the LAD-type contrast leading to median regression. Spokoiny [25], Section 5.3,
showed for the case of linear median regression that all the required conditions are fulfilled automatically if the sample
size n exceeds Cp for a fixed constant C. Spokoiny et al. [26] applied this approach for local polynomial quantile
regression. Zaitsev et al. [31] applied the approach to the problem of regression with Gaussian process where the
unknown parameters enter in the likelihood function in a rather complicated way. We conclude that the imposed
conditions are quite general and can be verified for many classical examples met in the statistical literature.

2.3. Concentration and a large deviation bound

This section demonstrates that the use of the penalty term helps to strengthen the concentration properties of the
penalized quasi maximum likelihood estimator (qMLE) θ̃G. Namely, we show that θ̃G belongs with a dominating
probability to a set Θ0,G(rG) which can be much smaller than a similar set from the non-penalized case; see Re-
mark 2.2. All our results involve a value x. We say that a generic random set Ω(x) is of a dominating probability if
P(Ω(x)) ≥ 1 − Ce−x for a fixed constant C like 1 or 2. We also use two growing functions z(BG,x) and zH(x) of
the argument x. The functions z(BG,x) already mentioned in (2.3) and it describes the quantiles of the norm of the
normalized score vector ξG; see (2.8) below. The formal definition of z(BG,x) is given in (A.4). The function zH(x)

is related to the penalized entropy of the parameter space and it is given by (B.3). In typical situations one can use the
upper bounds z2(BG,x) ≤ C(pG + x) and z2

H
(x) ≤ C(pG + x) for both functions.

Theorem 2.1. Let (E0G), (E2G), (IG), (L0G), and (LG) hold with{
1 − δ(rG)

}
rG ≥ 2z(BG,x), (2.6)

where z(BG,x) is from (A.4), and let the constant C1 in (LG) satisfy

C1 ≥ sup
r>rG

�G(r,x), with �G(r,x)
def= √

8ν0aGzH
(
x+ log(2r/rG)

)
ω

with the function zH(x) given by (B.3). Then

P
(̃
θG /∈ Θ0,G(rG)

) ≤ 3e−x. (2.7)

Remark 2.2. This result explains a proper rG ensuring (2.7). In the non-penalized case of Spokoiny [25], a similar
condition reads as r0 ≥ C(

√
p +√

2x), so the use of penalization helps to improve the concentration properties of the
penalized MLE. We conclude that the use of penalization leads to weaker conditions and to a stronger concentration
property. The only problem is that the corresponding estimate θ̃G concentrates around θ∗

G instead of θ∗. This can
yield a bias effect; see Section 2.5 below.
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Proof of Theorem 2.1. By definition supθ∈Θ0,G(rG) LG(θ , θ∗
G) ≥ 0. So, it suffices to check that LG(θ , θ∗

G) < 0 for
all θ ∈ Θ \ Θ0,G(rG). The proof is based on the following bound: for each r

P

(
sup

θ∈Θ0,G(r)

∣∣ζ (
θ , θ∗

G

) − (
θ − θ∗

G

)�∇ζ
(
θ∗

G

)∣∣ ≥ √
8ν0aGzH(x)ωr2

)
≤ e−x.

This bound follows from Theorem B.15; see (2.18) for more details. It implies by Theorem B.3 with ρ = 1/2 on a set
of dominating probability at least 1 − e−x that for all r≥ rG and all θ with ‖DG(θ − θ∗

G)‖ ≤ r∣∣ζ (
θ , θ∗

G

) − (
θ − θ∗

G

)�∇ζ
(
θ∗

G

)∣∣ ≤ �G(r,x)r2,

where �G(r,x) = ν0aGzH(x+ log(2r/rG))ω. The use of ∇ELG(θ∗
G) = 0 yields

sup
θ∈Θ0,G(r)

∣∣LG

(
θ , θ∗

G

) −ELG

(
θ , θ∗

G

) − (
θ − θ∗

G

)�∇LG

(
θ∗

G

)∣∣ ≤ �G(r,x)r2.

Also the vector ξG = D−1
G ∇LG(θ∗

G) = D−1
G ∇ζ(θ∗

G) can be bounded with a dominating probability: by Theorem A.1
P(‖ξG‖ ≥ z(BG,x)) ≤ 2e−x. We ignore here the negligible term Ce−xc . The condition ‖ξG‖ ≤ z(BG,x) implies for
each r≥ rG

sup
θ∈Θ0,G(r)

∣∣(θ − θ∗
G

)�∇LG

(
θ∗

G

)∣∣
≤ sup

θ∈Θ0,G(r)

∥∥DG

(
θ − θ∗

G

)∥∥ × ∥∥D−1
G ∇ζ

(
θ∗

G

)∥∥ = r‖ξG‖ ≤ z(BG,x)r.

Condition (LG) implies for each θ with ‖DG(θ − θ∗
G)‖ = r> r0 that

−ELG

(
θ , θ∗

G

)
> (1 − δ)

(
r0r− 1

2
r2

0

)
+ C1r

2 ≥ z(BG,x)r+ �G(r,x)r2

provided that r0 ≥ 2(1 − δ)−1z(BG,x) and C1 ≥ �G(r,x). This ensures that LG(θ , θ∗
G) < 0 for all θ /∈ Θ0,G(rG)

with a dominating probability. �

2.4. Wilks and Fisher expansions

This section collects the main results of the paper. Let θ∗
G be the point of concentration from (2.1) and let ζ(θ) =

LG(θ) −ELG(θ) = L(θ) −EL(θ). Define a random p-vector

ξG
def= D−1

G ∇ζ
(
θ∗

G

) = D−1
G

{∇L
(
θ∗

G

) − G2θ∗
G

}
. (2.8)

Theorem 2.2. Suppose that rG is selected to ensure (2.6). Suppose also that the conditions (E0G), (E2G), (IG)

hold. On a random set Ω(x) of a dominating probability at least 1 − 4e−x, it holds∥∥DG

(̃
θG − θ∗

G

) − ξG

∥∥ ≤ ♦G(x), (2.9)

where ♦G(x) is given by

♦G(x)
def= {

δG(rG) + √
8ν0aGzH(x)ω

}
rG (2.10)

for zH(x) given by (B.3).

The proof of this and the next result is based on a linear expansion of the gradient ∇LG(θ) and will be given in
Section 2.6.

Now we present a result on the excess LG(̃θG, θ∗
G) = LG(̃θG) − LG(θ∗

G). The classical Wilks result claims that
the twice excess is nearly χ2

p . Our result describes the quality of its approximation by a quadratic form ‖ξG‖2.
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Theorem 2.3. Suppose that (L0G), (E0G), and (E2G) hold. Suppose also that rG is selected to ensure (2.6). On a
random set Ω(x) of a dominating probability at least 1 − 5e−x, it holds with ♦G(x) from (2.10)∣∣2LG

(̃
θG, θ∗

G

) − ‖ξG‖2
∣∣ ≤ 2rG♦G(x) + ♦2

G(x), (2.11)∣∣∣√2LG

(̃
θG, θ∗

G

) − ‖ξG‖
∣∣∣ ≤ 3♦G(x). (2.12)

One can see that the Fisher expansion (2.9) and the square root Wilks expansion (2.12) require ♦G(x) small, while
the standard Wilks expansion (2.11) is accurate if rG♦G(x) is small. This makes some difference if the parameter
dimension is large. Below we address this question for the important special case of an i.i.d. likelihood.

The classical Fisher and Wilks results include some statements about the limiting behavior of the vector ξG and of
the quadratic form ‖ξG‖2. In the i.i.d. case, one can easily show that the vector ξG is asymptotically standard normal
as n → ∞; see Section 3.5 below. However, it is well known that the convergence of ‖ξG‖2 to the χ2-distribution
is quite slow even in the case of a fixed dimension p. For finite sample inference, we recommend to combine the
approximations (2.9) to (2.12) with any resampling technique which mimics the specific behavior of the quadratic
form ‖ξG‖2; see Spokoiny and Zhilova [27].

2.5. Quadratic risk bound and modeling bias

This section demonstrates the applicability of the obtained general results to bounding the quadratic risk of estimation.
For the penalized MLE θ̃G of the parameter θ , consider the quadratic loss of estimation ‖W(̃θG − θ∗)‖2 for a given
non-negative symmetric matrix W . A special case includes the usual quadratic loss ‖̃θG −θ∗‖2. Here the point θ∗ ∈ Θ

is a proxy for the true parameter value which describes the best parametric fit of the true measure P by the family
(Pθ ):

θ∗ def= argmax
θ∈Θ

EL(θ).

The use of penalization ‖Gθ‖2/2 introduces some estimation bias: the penalized MLE θ̃G estimates θ∗
G from (2.1)

rather than θ∗. The value ‖W(θ∗ − θ∗
G)‖2 is called the modeling bias and it describes the modeling error caused by

using the penalization. The variance term ‖W(̃θG − θ∗
G)‖2 describes the error within the penalized model, and it can

be studied with the help of the Fisher expansion of Theorem 2.2: ‖DG(̃θG − θ∗
G) − ξG‖ ≤ ♦G(x) on a set Ω(x) of

dominating probability for ξG = D−1
G ∇ζ(θ∗

G). This yields the following result on Ω(x):∥∥DG

(̃
θG − θ∗ − bG

) − ξG

∥∥ ≤ ♦G(x)

with the bias bG = θ∗
G − θ∗. For any positive symmetric p × p matrix W satisfying W 2 ≤ D2

G, it implies the proba-
bility bound for the squared loss∥∥W

(̃
θG − θ∗)∥∥ = ∥∥WbG + WD−1

G ξG

∥∥ ± ♦G(x).

One can see that analysis of the quadratic risk of the penalized MLE θ̃G can be reduced to the analysis of ‖WbG +
WD−1

G ξG‖2. Now we consider an implication of this bound to the squared risk E‖W(̃θG − θ∗)‖2. The use of the
identity E∇ζ(θ∗

G) = 0 and Var(∇ζ(θ∗
G)) ≤ V 2 yields

E
∥∥WbG + WD−1

G ξG

∥∥2 = ‖WbG‖2 +E
∥∥WD−2

G ∇ζ
(
θ∗

G

)∥∥2

= ‖WbG‖2 + tr
(
WD−2

G Var
{∇ζ

(
θ∗

G

)}
D−2

G W
)

≤ ‖WbG‖2 + tr
(
WD−2

G V 2D−2
G W

)
.

Denote XG
def= tr(WD−2

G V 2D−2
G W) and

RG
def= ‖WbG‖2 + XG = ‖WbG‖2 + tr

(
WD−2

G V 2D−2
G W

)
. (2.13)
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Theorem 2.4. Let (E0G), (E2G), (L0G), (IG), and (LG) hold. If W 2 ≤ D2
G, then it holds with RG from (2.13)

E
∥∥W

(̃
θG − θ∗)∥∥2 ≤ {

R
1/2
G + ♦∗

G

}2
, (2.14)

where

♦∗
G = 4

{
δG(rG)rG + 2ν0aGrG(H1 +H2/g+ 4)ω

}
.

Remark 2.3. If the error term ♦∗
G in (2.14) is relatively small, this result implies E‖W(̃θG − θ∗)‖2 ≈ RG =

‖DGbG‖2 + XG. This is the usual decomposition of the quadratic risk in term of the squared bias ‖W(θ∗
G − θ∗)‖2

and the variance term XG. The condition “‖WbG‖2/XG is small” yields RG ≈ XG. This condition can be naturally
called the small modeling bias (SMB) condition, often it is referred to as undersmoothing. The bias-variance trade-off
corresponds to the situation with ‖WbG‖2 
 XG. Oversmoothing means that the bias terms ‖WbG‖2 dominates.

Remark 2.4. As already mentioned, the result (2.14) is informative if the remainder ♦∗
G is relatively small and can be

ignored. For the special case W 2 = D2
G, it holds XG = pG 
 r2

G. In the i.i.d. situation (see Section 3.5 below)

r−1
G ♦∗

G ≤ C
√
pG/n

which yields a sharp risk bound E‖W(̃θG − θ∗)‖2 = RG(1 + o(1)) under “pG/n small.”

Remark 2.5. The bias induced by penalization can be measured in terms of the value ‖Gθ∗‖2. To be more precise,
consider the case with W 2 = D2, where D2 = −∇2EL(θ∗) is the non-penalized Fisher information matrix. The
definition of θ∗ and θ∗

G implies

EL
(
θ∗) − ∥∥Gθ∗∥∥2

/2 ≤ EL
(
θ∗

G

) − ∥∥Gθ∗
G

∥∥2
/2 ≤ EL

(
θ∗

G

)
.

Condition (L0G) implies EL(θ∗) −EL(θ∗
G) ≈ ‖D(θ∗ − θ∗

G)‖2/2 and∥∥D
(
θ∗ − θ∗

G

)∥∥2 ≤ ∥∥Gθ∗∥∥2 − ∥∥Gθ∗
G

∥∥2 ≤ ∥∥Gθ∗∥∥2
.

So, if the true point is “smooth” in there sense that ‖Gθ∗‖2 is small, then the squared bias ‖D(θ∗ − θ∗
G)‖2 caused by

penalization is small as well.

Proof of Theorem 2.4. The Fisher expansion from Theorem 2.2 can be written as

P
(∥∥DG

(̃
θG − θ∗) − DGbG − ξG

∥∥ ≥ ♦G(x)
) ≤ 4e−x.

The definition (2.10) of ♦G(x) and (B.4) of Theorem B.1 imply

E1/2
∥∥DG

(̃
θG − θ∗) − DGbG − ξG

∥∥2 ≤ 4
{
δG(rG)rG + 2ν0aGrG(H1 +H2/g+ 4)ω

}
.

By the result follows by the triangle inequality

E1/2
∥∥DG

(̃
θG − θ∗)∥∥2 ≤ E1/2

∥∥DG

(̃
θG − θ∗) − DGbG − ξG

∥∥2 +E1/2
∥∥DGbG + ξG

∥∥2
.

This yields the assertion of the theorem. �

2.6. Proofs of the Fisher and Wilks expansions

This section presents the proofs of the main results and some additional statements which can be of independent
interest. The principle step of the proof is a bound on the local linear approximation of the gradient ∇LG(θ). Below we
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study separately its stochastic and deterministic components coming from the decomposition L(θ) = EL(θ) + ζ(θ).
With D2

G = −∇2ELG(θ∗
G), this leads to the decomposition

χ
(
θ , θ∗

G

) def= D−1
G

{∇LG(θ) − ∇LG

(
θ∗

G

)} + DG

(
θ − θ∗

G

)
= D−1

G

{∇ζ(θ) − ∇ζ
(
θ∗

G

)}
+ D−1

G

{∇ELG(θ) − ∇ELG

(
θ∗

G

)} + DG

(
θ − θ∗

G

)
.

First we check the deterministic part. For any θ with ‖DG(θ − θ∗
G)‖ ≤ r and any unit vector u ∈Rp , it holds

u�Eχ
(
θ , θ∗

G

) = u�D−1
G

{∇ELG(θ) − ∇ELG

(
θ∗

G

) + D2
G

(
θ − θ∗

G

)}
= u�{

Ip − D−1
G FG

(
θ◦)D−1

G

}
DG

(
θ − θ∗

G

)
,

where θ◦ = θ◦(u) is a point on the line connecting θ∗
G and θ . This implies by (L0G)∥∥Eχ

(
θ , θ∗

G

)∥∥ ≤ ∥∥Ip − D−1
G FG

(
θ◦)D−1

G

∥∥
opr≤ δG(r)r. (2.15)

Now we study the stochastic part. Consider the vector process

U
(
θ , θ∗

G

) def= D−1
G

{∇ζ(θ) − ∇ζ
(
θ∗

G

)}
. (2.16)

Further, define υ = V2(θ − θ∗
G) and introduce a vector process Y(υ) with

Y(υ)
def= V −1

2

[∇ζ(θ) − ∇ζ
(
θ∗

G

)]
.

It obviously holds ∇Y(υ) = V −1
2 ∇2ζ(θ)V −1

2 . Moreover, for any γ 1,γ 2 ∈ Rp with ‖γ 1‖ = ‖γ 2‖ = 1, condition
(E2G) implies for |λ| ≤ g(r)

logE exp

{
λ

ω
γ �

1 ∇Y(υ)γ 2

}
= logE exp

{
λ

ω
γ �

1 V −1
2 ∇2ζ(θ)V −1

2 γ 2

}
≤ ν2

0λ2

2
.

Define Υ◦(r)
def= {υ:‖υ‖ ≤ r,‖Sυ‖ ≤ r} for S−2 = a

−2
G D−1

G V 2
2 D−1

G . Then

sup
θ∈Θ0,G(r)

∥∥U
(
θ , θ∗

G

)∥∥ ≤ sup
υ∈Υ◦(r)

∥∥AY(υ)
∥∥ (2.17)

for A = a
−1
G D−1

G V2. Theorem B.15 yields

sup
υ∈Υ◦(r)

∥∥AY(υ)
∥∥ ≤ √

8ν0zH(x)aGωr (2.18)

on a set of a dominating probability at least 1 − e−x, where the function zH(x) is given by (B.3). Putting together the
bounds (2.15) and (2.17) imply the following result.

Theorem 2.5. Suppose that the matrix FG(θ)
def= −∇2ELG(θ) fulfills the condition (L0G) and let (E0G) and (E2G)

be fulfilled on Θ0,G(r) for any fixed r≤ r∗. Then

P

{
sup

θ∈Θ0,G(r)

∥∥D−1
G

{∇LG(θ) − ∇LG

(
θ∗

G

)} + DG

(
θ − θ∗

G

)∥∥ ≥ ♦G(r,x)
}

≤ e−x,

where

♦G(r,x)
def= {

δG(r) + √
8ν0zH(x)aGω

}
r. (2.19)
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The result of Theorem 2.5 can be extended to the increments of the process U(θ): on a random set of probability
at least 1 − e−x, it holds for any θ , θ◦ ∈ Θ0,G(r) and χ(θ , θ◦) = D−1

G {∇LG(θ) − ∇LG(θ◦)} + DG(θ − θ◦)

E
[
χ

(
θ, θ◦)] ≤ δG(r)

∥∥DG

(
θ − θ◦)∥∥ ≤ 2rδG(r),

(2.20)∥∥χ
(
θ , θ◦)∥∥ ≤ 2♦G(r,x).

Now we present the proof of Theorem 2.2 about the Fisher expansion for the qMLE θ̃G defined by maximization
of LG(θ). Let rG be selected to ensure that P{̃θG /∈ Θ0,G(rG)} ≤ e−x. Furthermore, the definition of θ̃G yields
∇LG(̃θG) = 0 and

χ
(̃
θG, θ∗

G

) = −D−1
G ∇LG

(
θ∗

G

) + DG

(̃
θG − θ∗

G

)
.

By Theorem 2.5, it holds on a set of a dominating probability∥∥DG

(̃
θG − θ∗

G

) − ξG

∥∥ ≤ ♦G(x) (2.21)

as required.
As the next step, we apply the obtained results to evaluate the quality of the Wilks expansion 2LG(̃θ , θ∗

G) ≈ ‖ξG‖2.
For this we derive a uniform deviation bound on the error of a quadratic approximation

α
(
θ , θ◦) def= LG(θ) − LG

(
θ◦) − (

θ − θ◦)�∇LG

(
θ◦) + 1

2

∥∥DG

(
θ − θ◦)∥∥2

in all θ, θ◦ ∈ Θ0, where Θ0 is some vicinity of a fixed point θ∗
G. With θ◦ fixed, the gradient ∇α(θ , θ◦) def= d

dθ α(θ , θ◦)
fulfills

∇α
(
θ, θ◦) = ∇LG(θ) − ∇LG

(
θ◦) + D2

G

(
θ − θ◦) = DGχ

(
θ , θ◦);

cf. (2.16). This implies

α
(
θ , θ◦) = (

θ − θ◦)�∇α
(
θ ′, θ◦),

where θ ′ is a point on the line connecting θ and θ◦. Further,∣∣α(
θ , θ◦)∣∣ = ∣∣(θ − θ◦)�

DGD−1
G ∇α

(
θ ′, θ◦)∣∣ ≤ ∥∥DG

(
θ − θ◦)∥∥ sup

θ ′∈Θ0,G(r)

∣∣χ(
θ ′, θ◦)∣∣,

and one can apply (2.20). This yields the following result.

Theorem 2.6. Suppose (L0G), (E0G), and (E2G). For each r, it holds on a random set Ω(x) of a dominating
probability at least 1 − e−x, it holds with any θ , θ◦ ∈ Θ0,G(r) and ♦G(r,x) is from (2.19)

|α(θ , θ∗
G)|

‖DG(θ − θ∗
G)‖ ≤ ♦G(r,x),

∣∣α(
θ, θ∗

G

)∣∣ ≤ r♦G(r,x),

|α(θ∗
G, θ)|

‖DG(θ − θ∗
G)‖ ≤ 2♦G(r,x),

∣∣α(
θ∗

G, θ
)∣∣ ≤ 2r♦G(r,x),

|α(θ , θ◦)|
‖DG(θ − θ◦)‖ ≤ 2♦G(r,x),

∣∣α(
θ, θ◦)∣∣ ≤ 4r♦G(r,x).

The result of Theorem 2.6 for the special case with θ = θ∗
G and θ◦ = θ̃G yields in view of ∇LG(̃θG) = 0 for

r= rG and ♦G(x) = ♦G(rG,x) under the condition θ̃G ∈ Θ0,G(rG)∣∣LG

(̃
θG, θ∗

G

) − ∥∥DG

(̃
θG − θ∗

G

)∥∥2
/2

∣∣ = ∣∣α(
θ∗

G, θ̃G

)∣∣ ≤ 2rG♦G(x).
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Furthermore, with θ = θ̃G and θ◦ = θ∗
G∣∣LG

(̃
θG, θ∗

G

) − ξ�
GDG

(̃
θG − θ∗

G

) + ∥∥DG

(̃
θG − θ∗

G

)∥∥2
/2

∣∣ = ∣∣α(̃
θG, θ∗

G

)∣∣ ≤ rG♦G(x)

which implies∣∣L(̃
θG, θ∗

G

) − ‖ξG‖2 + ∥∥DG

(̃
θG − θ∗

G

) − ξG

∥∥2∣∣ ≤ 2rG♦G(x).

Now it follows by (2.21) that∣∣L(̃
θG, θ∗

G

) − ∥∥ξG

∥∥2
/2

∣∣ ≤ rG♦G(x) + ♦2
G(x)/2.

The error term can be improved if the squared root of the excess is considered. Indeed, if θ̃G ∈ Θ0,G(rG)

∣∣{2LG

(̃
θG, θ∗

G

)}1/2 − ∥∥DG

(̃
θG − θ∗

G

)∥∥∣∣ ≤ |2LG(̃θG, θ∗
G) − ‖DG(̃θG − θ∗

G)‖2|
‖DG(̃θG − θ∗

G)‖

≤ 2|α(̃θG, θ∗
G)|

‖DG(̃θG − θ∗
G)‖ ≤ sup

θ∈Θ0,G(rG)

2|α(θ , θ∗
G)|

‖DG(θ − θ∗
G)‖ ≤ 2♦G(x).

The Fisher expansion (2.21) allows to replace here the norm of the standardized error DG(̃θG − θ∗
G) with the norm of

the normalized score ξG. This completes the proof of Theorem 2.3.

3. Examples

This section illustrates the general results for two particularly important cases of i.i.d. and generalized linear models.
The primary focus of the study is to compare the penalized and non-penalized cases and to quantify the impact of
penalization.

3.1. I.i.d. case

The model with independent identically distributed (i.i.d.) observations is one of the most popular setups in statistical
literature and in statistical applications. The essential and the most developed part of the statistical theory is designed
for the i.i.d. modeling. Especially, the classical asymptotic parametric theory is almost complete including asymptotic
root-n normality and efficiency of the MLE and Bayes estimators under rather mild assumptions; see e.g. Chapter 2
and 3 in Ibragimov and Khas’minskij [14]. So, the i.i.d. model can naturally serve as a benchmark for any extension of
the statistical theory: being applied to the i.i.d. setup, the new approach should lead to essentially the same conclusions
as in the classical theory. Similar reasons apply to the regression model and its extensions. Below we try demonstrate
that the proposed non-asymptotic viewpoint is able to reproduce the existing brilliant and well established results of
the classical parametric theory. Surprisingly, the majority of classical efficiency results can be easily derived from the
obtained general non-asymptotic bounds.

3.2. Quasi MLE in an i.i.d. model

The basic i.i.d. parametric model means that the observations Y = (Y1, . . . , Yn) are independent identically distributed
from a distribution P from a given parametric family (Pθ , θ ∈ Θ) on the observation space Y1. Each θ ∈ Θ clearly
yields the product data distribution Pθ = P ⊗n

θ on the product space Y = Yn
1 . This section illustrates how the ob-

tained general results can be applied to this type of modeling under possible model misspecification. Different types
of misspecification can be considered. Each of the assumptions, namely, data independence, identical distribution,
parametric form of the marginal distribution can be violated. To be specific, we assume the observations Yi indepen-
dent and identically distributed. However, we admit that the distribution of each Yi does not necessarily belong to the
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parametric family (Pθ ). The case of non-identically distributed observations can be done similarly at cost of more
complicated notation.

In what follows the parametric family (Pθ ) is supposed to be dominated by a measure μ0, and each density
p(y, θ) = dPθ/dμ0(y) is two times continuously differentiable in θ for all y. Denote �(y, θ) = logp(y, θ). The
parametric assumption Yi ∼ Pθ∗ ∈ (Pθ ) leads to the log-likelihood

L(θ) =
∑

�(Yi, θ), (3.1)

where the summation is taken over i = 1, . . . , n. The quasi MLE θ̃ maximizes this sum over θ ∈ Θ :

θ̃
def= argmax

θ∈Θ

L(θ) = argmax
θ∈Θ

∑
�(Yi, θ).

The target of estimation θ∗ maximizes the expectation of L(θ):

θ∗ def= argmax
θ∈Θ

EL(θ) = argmax
θ∈Θ

∑
E�(Yi, θ).

Let ζi(θ)
def= �(Yi, θ) −E�(Yi, θ). Then ζ(θ) = ∑

ζi(θ). The equation E∇L(θ∗) = 0 implies

∇ζ
(
θ∗) =

∑
∇ζi

(
θ∗) =

∑
∇�i

(
θ∗). (3.2)

3.3. Conditions in the i.i.d. case

I.i.d. structure of the Yi ’s allows for rewriting the conditions (E0), (E2), (I), (L0), and (L) in terms of the marginal
distribution. In the following conditions the index i runs from 1 to n.

(ed0) There exists a positive symmetric matrix v0, such that for all |λ| ≤ g1

sup
γ∈Sp

logE exp

{
λ

γ �∇ζi(θ
∗)

‖v0γ ‖
}

≤ ν2
0λ2/2.

A natural candidate on v2
0 is given by the variance of the gradient ∇�(Y1, θ

∗), that is, v2
0 = Var∇�(Y1, θ) = Var∇ζ1(θ).

Note that (ed0) is automatically fulfilled if the model is correctly specified and P = Pθ∗ because Eθ∗ exp{�(Y1, θ) −
�(Y1, θ

∗)} ≡ 1.
Next consider the local sets

Θ0(r) = {
θ : ∥∥v0

(
θ − θ∗)∥∥ ≤ r/n1/2}.

The local smoothness conditions (E2) and (L0) require to specify the functions δ(r) and �(r). If the log-likelihood
function �(y, θ) is sufficiently smooth in θ , these functions can be selected proportional to r.

(ed2) There exist a value ω∗ > 0 and for each r> 0, a constant g(r) > 0 such that

sup
γ 1,γ 2∈Rp

logE exp

{
λ

ω∗
γ �

1 ∇2ζi(θ)γ 2

‖v0γ 1‖ · ‖v0γ 2‖
}

≤ ν2
0λ2

2
, |λ| ≤ g(r).

Further we restate the local regularity condition (L0) in terms of the expected value �̄(θ)
def= E�(Yi, θ) of each

�(Yi, θ). We suppose that �̄(θ) is two times differentiable and define the matrix function H(θ)
def= −∇2�̄(θ).

(�0) The function �̄(θ) is two times differentiable and the matrix function H(θ) = −∇2E�(Y1, θ) fulfills with H0
def=

H(θ∗) for some constant δ∗:

sup
θ∈Θ0(r)

∥∥H
−1/2
0 H(θ)H

−1/2
0 − Ip

∥∥
op ≤ δ∗r√

n
.
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In the regular parametric case with P ∈ (Pθ ), the matrices v2
0 and H0 coincide with the Fisher information matrix

H0 = H(θ∗) of the family (Pθ ) at the point θ∗.
The consistency result for θ̃ requires certain growth of the value �̄(θ∗) − �̄(θ) as ‖θ − θ∗‖ grows. The marginal

version of the global condition (L) reads as follows:

(�̄) There exists C1 ≥ 0 such that with δ = δ∗/
√

n and r= √
n‖H

1/2
0 (θ − θ∗)‖

n
{
�̄
(
θ∗) − �̄(θ)

} ≥ (1 − δ)
(
rr0 − r2

0/2
) − C1r

2.

Remark 3.1. If the parametric i.i.d. model is correct, then

�̄
(
θ∗) − �̄(θ) = K

(
θ∗, θ

) = Eθ∗ log
dPθ∗

dPθ
(Y1)

is the Kullback–Leibler divergence for the family (Pθ ). Condition (�̄) is fulfilled automatically if �̄(θ∗, θ) > 0 for
θ �= θ∗ and Θ is a compact set. Then

inf
θ∈Θ

�̄(θ∗) − �̄(θ)

‖H
1/2
0 (θ − θ∗)‖2

≥ b> 0.

This and (�0) imply (�̄).

The identifiability condition relates the matrices v2
0 and H0.

(ι) There is a constant a > 0 such that a2H0 ≥ v2
0.

Lemma 3.1. Let Y1, . . . , Yn be i.i.d. Then (ed0), (ed2), (�0), (�̄), and (ι) imply (E0), (E2), (L0), (L), (I), with

V 2 = nv2
0, D2 = nH0, ω = ω∗/

√
n, δ(r) = δ∗r/

√
n, and the same constants ν0, a, g

def= g1
√

n.

Proof. The identities V 2 = nv2
0, D2 = nH0 follow from the i.i.d. structure of the observations Yi . We briefly comment

on condition (E0). The use once again of the i.i.d. structure yields by (3.2) in view of V 2 = nv2
0

logE exp

{
λ

γ �∇ζ(θ∗)
‖V γ ‖

}
= nE exp

{
λ

n1/2

γ �∇ζ1(θ
∗)

‖vγ ‖
}

≤ ν2
0λ2/2

as long as λ ≤ n1/2g1 ≤ g. Similarly one can check (E2). The conditions (L0), (L), and (I) follow from (�0) and
(�̄), and (ι) due to D2 = nH0 and EL(θ) = n�̄(θ). �

Below we specify the obtained general results to the i.i.d. setup.

3.4. Results in the non-penalized i.i.d. case

Here we specify the general results of previous chapters to the i.i.d. case. In particular, we explicitly state the large
deviation bound and show that it yields a root-n consistency of the qMLE θ̃ . Then we comment on the Fisher and
Wilks theorems.

First we describe the large deviation probability for the event {̃θ /∈ Θ0(r0)} for a fixed r0. The next result specifies
the general large deviation statement of Theorem 2.1 to the finite dimensional non-penalized i.i.d. case and states the
inference results.

Theorem 3.2. Let (ed0), (ed2), (�0), (ι), and (�̄) hold with{
1 − δ(r0)

}
r0 ≥ 2z(B,x), C1 ≥ �(r,x), r> r0, (3.3)
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where B = H
−1/2
0 v2

0H
−1/2
0 = D−1V 2D−1, z(B,x) is given by (A.4), and

�(r,x)
def= ν0zH

(
x+ log(2r/r0)

)
ω∗/

√
n

with zH(x) ≤ C
√

p + x. Then it holds on a set Ω(x) with P(Ω(x)) ≥ 1 − 5e−x

√
n
∥∥H

1/2
0

(̃
θ − θ∗)∥∥ ≤ r0. (3.4)

Furthermore, on this set Ω(x), it holds

∥∥√
nH0

(̃
θ − θ∗) − ξ

∥∥ ≤ C
√

(p + x)2/n,∣∣√2L
(̃
θ , θ∗) − ‖ξ‖∣∣ ≤ C

√
(p + x)2/n,∣∣2L

(̃
θ , θ∗) − ‖ξ‖2

∣∣ ≤ C
√

(p + x)3/n.

The constant C here depends in an explicit way on the constants aG, g1, and ν0 from our conditions, and

ξ
def= (nH0)

−1/2
n∑

i=1

∇�
(
Yi, θ

∗). (3.5)

Proof. Condition (ι) implies B = H
−1/2
0 v2

0H
−1/2
0 ≤ a2Ip and thus, tr(B) ≤ a2p. Therefore, the value z(B,x) fulfills

z2(B,x) ≤ C(p + x). The same bound holds for z2
H
(x). Condition (3.3) with b(r0) ≈ 1 yields r2

0 ≈ 4z2(B,x) ≈
C(p + x). This yields in view of δ(r0) ≤ δ∗r0/

√
n and ω = ω∗n−1/2

♦(r0,x) ≤ {
δ(r0) + ν0zH(x)ω

}
r0 ≤ C(p + x)/

√
n.

Similarly

Δ(r0,x) ≤ {
δ(r0) + ν0zH(x)ω

}
r2

0 ≤ C
√

(p + x)3/n.

The results follow now from general theorems of Section 2. �

For the classical asymptotic setup when n tends to infinity, the random vector ξ from (3.5) fulfills Var(ξ) ≤
H

−1/2
0 v2

0H
−1/2
0 = B and by the central limit theorem ξ is asymptotically normal N (0,B). This yields by Theorem 3.2

that
√

nH0(̃θ − θ∗) is asymptotically normal N (0,B) as well. The correct model specification implies B ≡ Ip and
hence θ̃ is asymptotically efficient; see Ibragimov and Khas’minskij [14]. Also 2L(̃θ , θ∗) ≈ ‖ξ‖2 which is nearly χ2

r.v. with p degrees of freedom. This result is known as asymptotic Wilks theorem.
In the non-asymptotic framework of this paper, the error terms still depend on n and they can only be small if n

is large. However, we show in explicit way how these error terms depend on the parameter dimension. It appears that
the root-n consistency result (3.4) requires “p/n small.” The Fisher and square root Wilks results apply if “p2/n is
small.” Finally, the Wilks expansion is valid under “p3/n small.” Existing statistical literature addresses the issue of a
growing parameter dimension in different set-ups. The classical results by Portnoy [19–21] provide some constraints
on parameter dimension for consistency and asymptotic normality of the M-estimator for regression models. Our
results are consistent with the conclusion of that papers. We refer to Andresen and Spokoiny [1] for a version of such
result in context of semiparametric profile estimation. That paper also provides an example of an i.i.d. model in which
the Fisher expansion of Theorem 3.2 fails for p2 ≥ n. The next section demonstrates how these constraints on the
parameter dimension can be relaxed by using a penalization.
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3.5. Roughness penalization for an i.i.d. sample

This section discusses the impact of penalization in the case of an i.i.d. model with n observations. For penalty term
pen(θ) = ‖Gθ‖2/2, the penalized log-likelihood is given by LG(θ) = L(θ) + ‖Gθ‖2/2, where L(θ) is from (3.1).
With θ∗

G = argmaxθ∈Θ ELG(θ), define

D2
G = nH

(
θ∗

G

) + G2, V 2 = nv2
0, ξG = D−1

G

n∑
i=1

∇�
(
Yi, θ

∗
G

)
,

where H(θ) = −∇2E�(Y1, θ), v2
0 = Var{�(Y1, θ

∗
G)}. The value pG is defined as previously by (2.2).

Note that all the introduced quantities including the parameter set Θ , the parameter dimension p, and the effective
dimension pG, may depend on n. Here we also allow a functional parameter θ with p = ∞. The main goal is to show
that the presented general approach yields sharp results in this special case.

Suppose that the conditions of Section 3.3 are fulfilled. One can easily check the conditions from Section 2.2
with δG(r) = Cr/

√
n and ω = C/

√
n; cf. Lemma 3.1. The large deviation bound of Theorem 2.1 applies for rG ≈

2z(BG,x) 
 √
pG + x. The general statements of Theorems 2.2 and 2.3 apply with ♦G(x) ≤ C(pG +x)/

√
n yielding

the following expansions.

Theorem 3.3. Suppose also that the conditions (ed0), (ed2), (�0), (�̄), and (ι) are fulfilled, and rG and C1 fulfill{
1 − δG(rG)

}
rG ≥ 2z(BG,x), C1 ≥ �G(r,x), r> rG,

with BG = D−1
G V 2D

−1/2
G , then on a set of dominating probability 1 − 5e−x, it holds

∥∥DG

(̃
θG − θ∗

G

) − ξG

∥∥ ≤ C
√

(pG + x)2/n,∣∣∣√2LG

(̃
θG, θ∗

G

) − ‖ξG‖
∣∣∣ ≤ C

√
(pG + x)2/n,∣∣2LG

(̃
θG, θ∗

G

) − ‖ξG‖2
∣∣ ≤ C

√
(pG + x)3/n.

The constant C here depends in an explicit way on the constants aG, g1, and ν0 from our conditions.

A short look at the results for non-penalized and penalized estimates indicates that the quality of the penalized
MLE θ̃G improves relative to the non-penalized case because the matrix D2

G can be much larger than D2, the variance
of the stochastic term ξG is of order pG instead of p for the variance of ξ , and, simultaneously, the error terms in
the Fisher and Wilks expansions become smaller due to reduction of the effective dimension pG in place of the full
dimension p.

Andresen and Spokoiny [1] provides a simple example of estimating the squared norm ‖θ‖2 which shows that the
Fisher expansion fails if p/

√
n is not small. The result can be easily adjusted to the penalized case.

3.6. Generalized linear models (GLM)

Generalized linear models (GLM) are frequently used for modeling the data with special structure: categorical data,
binary data, Poissonian and exponential data, volatility models, etc. All these examples can be treated in a unified way
by a GLM approach. This section specifies the results and conditions to this case.

Let Y = (Y1, . . . , Yn)
� ∼ P be a sample of independent r.v.’s. The parametric GLM is given by Yi ∼ PΨ �

i θ ∈ (Pυ),
where Ψi are given factors in Rp , θ ∈ Rp is the unknown parameter in Rp , and (Pυ) is an exponential family with
canonical parametrization yielding the log-density �(y,υ) = yυ −g(υ) for a convex function g(υ). Below we suppose
that the function g(υ) is sufficiently smooth, in particular, three times differentiable.
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The (quasi) log-likelihood L(θ) can be represented in the form

L(θ) =
n∑

i=1

{
YiΨ

�
i θ − g

(
Ψ �

i θ
)} = S�θ − A(θ) (3.6)

with a random p-vector S and a function A(θ) given by

S
def=

n∑
i=1

YiΨi, A(θ)
def=

∑
i

g
(
Ψ �

i θ
)
.

The MLE θ̃ and the target θ∗ for this GLM read as

θ̃ = argmax
θ

L(θ) = argmax
θ

{
S�θ − A(θ)

}
,

(3.7)
θ∗ = argmax

θ

EL(θ) = argmax
θ

{
ES�θ − A(θ)

}
,

where

ES =
n∑

i=1

EYiΨi.

The definition of θ∗ implies the identity ∇EL(θ∗) = 0 which yields

ES = ∇A
(
θ∗).

An important feature of a GLM is that the stochastic component ζ(θ) of L(θ) is linear in θ : with εi = Yi −EYi

ζ(θ) = L(θ) −EL(θ) =
n∑

i=1

εiΨ
�
i θ ,

(3.8)

∇ζ(θ) = S −ES =
n∑

i=1

εiΨi.

In the contrary to the linear case, the Fisher information matrix D2 = F(θ∗) for

F(θ)
def= −∇2EL(θ) =

n∑
i=1

ΨiΨ
�
i g′′(Ψ �

i θ
)

(3.9)

depends on the true data distribution via the target θ∗. As g(·) is convex, it holds g′′(u) ≥ 0 for any u and thus
F(θ) ≥ 0.

Linearity in θ of the stochastic component ζ(θ) and concavity of the deterministic part EL(θ) allow for a simple
and straightforward proof of the result about concentration of the MLE θ̃ . Recall the definition of the local vicinity
Θ0(r) of θ∗:

Θ0(r)
def= {

θ :
∥∥D

(
θ − θ∗)∥∥ ≤ r

}
.

Also define

B
def= D−1 Var(S)D−1.
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Theorem 3.4. If for some r0 > 0, F(θ) from (3.9) fulfill for D2 = F(θ∗)

sup
θ∈Θ0(r0)

∥∥D−1F(θ)D−1 − Ip
∥∥

op ≤ δ(r0) (3.10)

with δ(r0) < 1, and if S from (3.8) follows for x> 0 the probability bound

P
(∥∥D−1(S −ES)

∥∥ > z(B,x)
) ≤ 2e−x, (3.11)

then the solution θ̃ of (3.7) satisfies

P
(̃
θ /∈ Θ0(r0)

) ≤ 2e−x

provided that

r0
{
1 − δ(r0)

} ≥ 2z(B,x).

Proof. The function L(θ) is concave in θ because

−∇2L(θ) = F(θ) ≥ 0. (3.12)

If θ̃ /∈ Θ0(r0), denote by θ̌ the point at which the line connecting θ∗ and θ̃ crosses the boundary of Θ0(r0). It is easy
to see that

θ̌ − θ∗ = ‖D(θ̌ − θ∗)‖
‖D(̃θ − θ∗)‖

(̃
θ − θ∗) = r0

‖D(̃θ − θ∗)‖
(̃
θ − θ∗).

Concavity of L(θ) implies for the point of maximum θ̃ that

L(̃θ) − L
(
θ∗) ≥ L(θ̌) − L

(
θ∗).

Therefore, it suffices to check that for each θ with ‖D(θ − θ∗)‖ = r0 that

L
(
θ∗) − L(θ) > 0

on a set Ω(x) of probability 1 − 2e−x. Then the event θ̃ /∈ Θ0(r0) is impossible on Ω(x). For any such θ , we apply
the second order Taylor expansion of L(θ) at θ∗. By definition of θ∗, it holds ∇EL(θ∗) = 0 and thus ∇L(θ∗) =
∇ζ(θ∗) = (S −ES). The use of (3.12), (3.10) yields now for ξ = D−1(S −ES) and for θ with ‖D(θ − θ∗)‖ = r0

L
(
θ∗) − L(θ) = (

θ − θ∗)�∇L
(
θ∗) + 1

2

∥∥√
F
(
θ◦)(θ − θ∗)∥∥2

≥ (S −ES)�
(
θ − θ∗) + 1 − δ(r0)

2

∥∥D
(
θ − θ∗)∥∥2

= ξ�D
(
θ − θ∗) + 1 − δ(r0)

2
r2

0 ≥ −‖ξ‖r0 + 1 − δ(r0)

2
r2

0.

Here θ◦ is a point from Ω(x) on the interval connecting θ and θ∗. If ‖ξ‖ ≤ r0{1 − δ(r0)}/2, then this implies
L(θ∗) − L(θ) > 0, and the result follows. �

As a corollary, we obtain Fisher and Wilks expansions for the quasi MLE θ̃ in a generalized linear model.

Theorem 3.5. Suppose the conditions of Theorem 3.4 for some r0. Then it holds on a set Ω(x) with P(Ω(x)) ≥
1 − 2e−x∥∥D

(̃
θ − θ∗) − ξ

∥∥ ≤ r0δ(r0),
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(̃
θ , θ∗) − ‖ξ‖2

∣∣ ≤ 2r2
0δ(r0) + r2

0δ
2(r0),∣∣√2L

(̃
θ , θ∗) − ‖ξ‖∣∣ ≤ 3r0δ(r0).

Proof. The large deviation bound of Theorem 3.4 allows to restrict the whole parameter space to the local vicinity
Θ0(r0). In this vicinity, the log-likelihood ratio L(θ , θ∗) = L(θ) − L(θ∗) can be well approximated by the quadratic
expansion L(θ , θ∗):

L
(
θ, θ∗) = (S −ES)�

(
θ − θ∗) +ES�(

θ − θ∗) − A(θ) + A
(
θ∗),

L
(
θ , θ∗) def= (S −ES)�

(
θ − θ∗) − 1

2

∥∥D
(
θ − θ∗)∥∥2

.

Lemma 3.6. Suppose (3.10) for some r0. The difference L(θ)−L(θ) is deterministic and it holds for each θ ∈ Θ0(r0)∣∣L(θ) − L
(
θ∗) −L

(
θ , θ∗)∣∣ ≤ δ(r0)

2

∥∥D
(
θ − θ∗)∥∥2 ≤ δ(r0)

2
r2

0,

(3.13)∥∥D−1{∇L(θ) − ∇L(θ)
}∥∥ ≤ r0δ(r0).

Proof. The linear stochastic terms (S −ES)�θ are the same for L(θ) and L(θ). For the deterministic terms ES�θ −
A(θ) we use the Taylor formula of the second order at θ∗, the extreme point equation ∇A(θ∗) = ES, and the definition
D2 = F(θ∗):∣∣EL(θ) −EL(θ)

∣∣ = ∣∣A(θ) − A
(
θ∗) − (

θ − θ∗)�∇A
(
θ∗) − ∥∥D

(
θ − θ∗)∥∥2

/2
∣∣

= 1

2

∣∣(θ − θ∗)�{
F
(
θ∗) − F

(
θ◦)}(θ − θ∗)∣∣,

where θ◦ is a point on the interval between θ and θ∗. Now the condition (3.10) implies∣∣EL(θ) −EL(θ)
∣∣ ≤ δ(r0)

2

(
θ − θ∗)�

D2(θ − θ∗) = δ(r0)

2

∥∥D
(
θ − θ∗)∥∥2 ≤ δ(r0)

2
r2

0

and the first assertion follows. The second one can be proved similarly. �

With the approximation (3.13), all the statements of the theorem follow from the general results of Theorem 2.6. �

To complete the study of a generalized linear model, we translate the general conditions of Theorem 3.4 into
conditions on the design Ψ and on individual errors εi .

• Design regularity is measured by the value

δΨ
def= max

i

∥∥D−1Ψi

∥∥.

In the case of a regular or random design, the Fisher design matrix D2 = F(θ∗) is proportional to the sample size
and thus, the value δΨ is of order n−1/2. Our results only apply if this value is small, in particular, the condition
δΨ < 1/2 has to be fulfilled.

• Exponential moments of the errors εi = Yi −EYi . Suppose that for some values si and fixed constants C0, λ0 > 0

E exp
(
λ0s

−1
i εi

) ≤ C0, i = 1, . . . , n. (3.14)

This condition means that the errors εi have exponential moments. In most of cases one can use s2
i = Var(Yi).

Condition (3.14) implies that there are another constants g1 ≤ λ0 and ν0 such that the following condition is
fulfilled:

E exp
(
λ0s

−1
i εi

) ≤ 1

2
ν2

0λ2, i = 1, . . . , n, |λ| ≤ g1. (3.15)
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This follows from the fact that each function logE exp(λ0s
−1
i εi) analytic in λ in a vicinity of the point zero and

can be well approximated by λ2/2; see Golubev and Spokoiny [11] for more details.
• Noise homogeneity is measured by the variability of the values si :

as
def= max

i,j=1,...,n
si/sj . (3.16)

• Smoothness of the link function g(υ) can be measured by its third derivative. It will be assumed that given r, there
is a constant ag(r)

|g′′′(Ψ �
i θ)|

g′′(Ψ �
i θ∗)

≤ ag(r), θ ∈ Θ0(r), i = 1, . . . , n. (3.17)

• Signal-to-noise ratio is measured by relationship between the matrices D2 and V 2, where the matrix V 2 defined as

V 2 def=
n∑

i=1

s2
i ΨiΨ

�
i . (3.18)

If the observation Yi follow the GLM assumption Pυi
for υi = Ψ �

i θ∗, that is, the model is correctly specified, then
Var(Yi) = g′′(υi) and the matrices V 2 and D2 coincide. In the general case under a possible model misspecification,
the matrices V 2 and D2 may be different. In this case we need an identifiability condition

V 2 ≤ a2D2 (3.19)

for some a> 0. This condition can be spelled out as

n∑
i=1

s2
i ΨiΨ

�
i ≤ a2

n∑
i=1

g′′(Ψ �
i θ∗)ΨiΨ

�
i .

First we discuss a deviation bound for the norm of the vector ξ given by

ξ = D−1(S −ES) = D−1
n∑

i=1

εiΨi.

The squared norm ‖ξ‖2 is a quadratic form of the εi ’s and one can directly apply general results for quadratic forms
from Appendix A.

Theorem 3.7. Suppose (3.15), (3.16), (3.17), and (3.19). For z(p,x) from (A.3) with z(p,x) ≤ √
p + √

2x, fix

r0 = 4ν0z(p,x), (3.20)

and suppose that δΨ is small enough to ensure

ag(r0)δΨr0 < 1/2. (3.21)

Then the conditions of Theorem 3.4 are fulfilled with δ(r0) ≤ ag(r0)δΨr0 and the results of this theorem continue to
apply.

Proof. Let r0 be fixed by (3.20). First we bound the value δ(r0).

Lemma 3.8. The condition (3.10) is fulfilled with δ(r0) = ag(r0)δΨ r0.
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Proof. For each θ ∈ Θ0(r0) and i ≤ n, it holds by (3.23)∣∣Ψ �
i θ − Ψ �

i θ∗∣∣ = ∣∣(D−1Ψi

)�
D

(
θ − θ∗)∣∣ ≤ ∥∥D−1Ψi

∥∥r0 ≤ δΨr0. (3.22)

This implies for the difference F(θ) − F(θ∗)

F(θ) − F
(
θ∗) =

n∑
i=1

{
g′′(Ψ �

i θ
) − g′′(Ψ �

i θ∗)}ΨiΨ
�
i .

Next, for each i ≤ n, there exists a point θ◦ on the interval between θ∗ and θ (possibly depending on i) such that

g′′(Ψ �
i θ

) − g′′(Ψ �
i θ∗) = g′′′(Ψ �

i θ◦)
g′′(Ψ �

i θ∗)
(
Ψ �

i θ − Ψ �
i θ

)
g′′(Ψ �

i θ∗).
Now (3.17) and (3.22) imply

max
i≤n

∣∣∣∣g′′′(Ψ �
i θ◦)

g′′(Ψ �
i θ∗)

(
Ψ �

i θ − Ψ �
i θ

)∣∣∣∣ ≤ ag(r0)δΨr0

and

±{
F(θ) − F

(
θ∗)} ≤ ag(r0)δΨ r0

n∑
i=1

g′′(Ψ �
i θ∗)ΨiΨ

�
i = ag(r0)δΨ r0D

2

yielding (3.10) in an obvious way. �

This lemma and (3.21) imply δ(r0) < 1/2. Now we show that (3.15) implies (3.11).

Lemma 3.9. Let the errors εi = Yi −EYi be independent and follow (3.15). Then

logE exp
{
u�V −1(S −ES)

} ≤ ν2
0

2
‖u‖2, ‖u‖ ≤ g

def= g1

δΨ as
, (3.23)

where V 2 is from (3.18) and as from (3.16).

Proof. The formula (3.8) and independence of the εi ’s imply for any vector u ∈Rp with ‖u‖ ≤ g

logE exp
{
u�V −1(S −ES)

} =
n∑

i=1

logE exp
(
λis

−1
i εi

)
,

where the definition (3.23) of g and condition (3.16) imply for λi = siu�V −1Ψi

|λi | =
∣∣u�V −1Ψi

∣∣si ≤ g
∥∥V −1Ψi

∥∥si ≤ g1.

Therefore, by (3.15) and the definition of V 2

logE exp
{
u�V −1(S −ES)

} ≤ ν2
0

2

n∑
i=1

λ2
i = ν2

0

2

n∑
i=1

u�V −1(ΨiΨ
�
i s2

i

)
V −1u = ν2

0

2
‖u‖2,

and the assertion follows. �
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The result of Lemma 3.9 provides exponential moments of ξ and one can apply Theorem A.1 from Appendix A
yielding the bound (3.11) under the condition

1 − δ(r0)

2
r0 ≥ ν0z(p,x)

which is obviously fulfilled for our choice of r0 = 4ν0z(p,x) in view of δ(r0) < 1/2. This will also provide (3.11).
All the conditions of Theorem 3.4 have been checked. �

3.7. Estimation for a penalized GLM

This section briefly discusses what will be changed if the GLM (3.6) is penalized by a roughness penalty term
‖Gθ‖2/2. The corresponding penalized log-likelihood LG(θ) reads as

LG(θ) = S�θ − A(θ) − ‖Gθ‖2/2.

The penalized MLE and its target are defined by maximizing LG(θ) and its expectation:

θ̃G
def= argmax

θ∈Θ

{
S�θ − A(θ) − ‖Gθ‖2/2

}
,

(3.24)
θ∗

G

def= argmax
θ∈Θ

{
ES�θ − A(θ) − ‖Gθ‖2/2

}
.

Further, define the matrix DG by D2
G = FG(θ∗

G) for

FG(θ)
def= F(θ) + G2 =

n∑
i=1

ΨiΨ
�
i g′′(Ψ �

i θ
) + G2. (3.25)

One can see that the use of penalization leads to a growth of the “information matrix” D2
G relative to the non-penalized

case. The stochastic term (S − ES)�θ of LG(θ) remains the same as in the non-penalized case, thus, the matrix V 2

from (3.18) can be used here as well and the identifiability condition (3.19) continues to hold.
The local vicinity Θ0,G(r) of θ∗

G is now defined as

Θ0,G(r)
def= {

θ :
∥∥DG

(
θ − θ∗

G

)∥∥ ≤ r
}
.

The concentration result for θ̃G can be easily extended to the penalized case.

Theorem 3.10. Let, for some rG > 0, the matrix function FG(θ) from (3.25) fulfill with D2
G = FG(θ∗

G)

sup
θ∈Θ0,G(r0)

∥∥D−1
G FG(θ)D−1

G − Ip
∥∥

op ≤ δ(rG)

for δ(rG) < 1. Let also S from (3.8) follow for x> 0 the probability bound

P
(∥∥D−1

G (S −ES)
∥∥ > z(BG,x)

) ≤ 2e−x.

If

rG

{
1 − δ(rG)

} ≥ 2z(BG,x),

with z(BG,x) ≤ √
pG + √

2x from (A.4), then the solution θ̃G of (3.25) satisfies

P
(̃
θ /∈ Θ0,G(rG)

) ≤ 2e−x.
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Then all the statements of Theorem 3.5 hold for the pair θ̃G, θ∗
G with ξG

def= D−1
G (S − ES). Then it holds on a set

ΩG(x) with P(ΩG(x)) ≥ 1 − 2e−x∥∥DG

(̃
θG − θ∗

G

) − ξG

∥∥ ≤ rGδ(rG),∣∣2LG

(̃
θG, θ∗

G

) − ‖ξG‖2
∣∣ ≤ 2r2

Gδ(rG) + r2
Gδ2(rG),∣∣∣√2LG

(̃
θG, θ∗

G

) − ‖ξG‖
∣∣∣ ≤ 3rGδ(rG).

The proof of the non-penalized case applies here with obvious changes in notation. However, at one place the
difference is essential. Namely, the radius rG can be much smaller and it depends on the effective dimension pG =
tr(BG) = tr(D−1

G V 2D−1
G ) rather than on the total dimension p.

Appendix A: Deviation bounds for quadratic forms

This section collects some probability bounds for non-Gaussian quadratic forms. The presented results can be viewed
as a slight improvement of the bounds from Spokoiny [25] using the deviation bound from Laurent and Massart [17].
The proofs are very similar to ones from Spokoiny [25] and are omitted by the space reasons.

Let a random vector ξ ∈Rp has some exponential moments. More exactly, suppose for some fixed g> 0 that

logE exp
(
γ �ξ

) ≤ ‖γ ‖2/2, γ ∈ Rp,‖γ ‖ ≤ g. (A.1)

For ease of presentation, assume below that g is sufficiently large, namely, 0.3g≥ √
p. In typical examples of an i.i.d.

sample, g
 √
n. Define

xc
def= g2/4,

z2
c

def= p +
√

pg2 + g2/2 = g2(1/2 +
√

p/g2 + p/g2),
gc

def= g(1/2 + √
p/g2 + p/g2)1/2

1 + √
p/g2

.

Note that with α = √
p/g2 ≤ 0.3, one has

z2
c = g2(1/2 + α + α2),
gc = g

(1/2 + α + α2)1/2

1 + α

so that z2
c/g

2 ∈ [1/2,1] and g2
c/g

2 ∈ [1/2,1].

Theorem A.1. Let (A.1) hold and 0.3g≥ √
p. Then for each x> 0

P
(‖ξ‖ ≥ z(p,x)

) ≤ 2e−x + 8.4e−xc1(x< xc), (A.2)

where z(p,x) is defined by

z(p,x)
def=

{
(p + 2

√
px+ 2x)1/2, x≤ xc,

zc + 2g−1
c (x− xc), x> xc.

(A.3)

Depending on the value x, we have two types of tail behavior of the quadratic form ‖ξ‖2. For x≤ xc = g2/4, we
have the same deviation bounds as in the Gaussian case with the extra-factor two in the deviation probability. Remind
that one can use a simplified expression (p + 2

√
px+ 2x)1/2 ≤ √

p + √
2x. For x > xc, we switch to the special
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regime driven by the exponential moment condition (A.1). Usually g2 is a large number (of order n in the i.i.d. setup)
and the second term in (A.2) can be simply ignored.

Next we present a bound for a quadratic form ξ�Bξ , where ξ satisfies (A.1) and B is a given symmetric positive
p × p matrix. Define

p
def= tr(B), v2 def= tr

(
B2), λ

def= λmax(B).

For ease of presentation, suppose that 0.3g≥ √
p so that α = √

p/g2 ≤ 0.3. The other case only changes the constants
in the inequalities. Define also

xc
def= g2/4,

z2
c

def= p+ vg+ λg2/2,

gc
def=

√
p/λ + gv/λ + g2/2

1 + v/(λg)
.

Theorem A.2. Let (A.1) hold and 0.3g≥ √
p/λ. Then for each x> 0

P
(∥∥B1/2ξ

∥∥ ≥ z(B,x)
) ≤ 2e−x + 8.4e−xc1(x< xc),

where z(B,x) is defined by

z(B,x)
def=

{√
p+ 2vx1/2 + 2λx, x≤ xc,

zc + 2λ(x− xc)/gc, x> xc.
(A.4)

Similarly to the case B = Ip , the upper quantile z(B,x) =
√
p+ 2vx1/2 + 2λx can be upper bounded by

√
p+√

2λx:

z(B,x) ≤
{√

p+ √
2λx, x≤ xc,

zc + 2λ(x− xc)/gc, x> xc.

Appendix B: Deviation bounds for random processes

This chapter presents some general results of the theory of empirical processes. We assume some exponential moment
conditions on the increments of the process which allow to apply the well developed chaining arguments in Orlicz
spaces; see e.g. van der Vaart and Wellner [30], Chapter 2.2. We state the results in a slightly different form and present
an independent and self-contained proof.

B.1. Chaining and covering numbers

An important step in the whole construction is an exponential bound on the maximum of a random process U(υ)

under the exponential moment conditions on its increments. Let d(υ,υ ′) be a semi-distance on Υ . We suppose the
following condition to hold:

(Ed) There exist g> 0, r0 > 0, ν0 ≥ 1, such that for any λ ≤ g and υ,υ ′ ∈ Υ with d(υ,υ ′) ≤ r0

logE exp

{
λ

U(υ) − U(υ ′)
d(υ,υ ′)

}
≤ ν2

0λ2/2.

By Br(υ) we denote the d-ball centered at υ of radius r:

Br(υ)
def= {

υ ′ ∈ Υ :d
(
υ,υ ′) ≤ r

}
.
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Let Υ ◦ be a subset of a ball in Υ with center at υ∗ and radius r0, and let a sequence rk be fixed with rk = r02−k .
For each k, by Mk we denote a rk-net in Υ ◦, so that

Υ ◦ ⊆
⋃

υ∈Mk

Brk
(υ).

Let also Πkυ be the closest to υ point from Mk , so that d(υ,Πkυ) ≤ rk . We assume that M0 consists of one point

υ∗, that is, Π0υ = υ∗. Let Nk
def= |Mk| denote the cardinality of Mk . Finally set ck = 2−k for k ≥ 1, and define the

values Q1(Υ
◦) and Q2(Υ

◦) by

Q1
(
Υ ◦) def=

∞∑
k=1

ck

√
2 log(2Nk) =

∞∑
k=1

2−k
√

2 log(2Nk),

(B.1)

Q2
(
Υ ◦) def=

∞∑
k=1

2ck log(2Nk) =
∞∑

k=1

2−k+1 log(2Nk).

By the Cauchy–Schwarz inequality Q2
1(Υ

◦) ≤ Q2(Υ
◦). The inverse relation is not generally true and one can build

some examples with Q1(Υ
◦) finite and Q2(Υ

◦) infinite. If the process U(υ) is sub-Gaussian and (Ed) is fulfilled
with g= ∞, then one can only operate with Q1(Υ

◦) which is equivalent to the Dudley integral.

Theorem B.1. Let U be a separable process and Υ ◦ be a ball in Υ with center υ◦ and radius r0 for the distance
d(·, ·), i.e. d(υ,υ◦) ≤ r0 for all υ ∈ Υ ◦. If (Ed) holds with g= ∞ then for any x≥ 1/2, it holds with Q1 = Q1(Υ

◦)
and Q2 =Q2(Υ

◦)

P

(
1

ν0r0
sup

υ∈Υ ◦
U

(
υ,υ∗) ≥ zH(x)

)
≤ e−x (B.2)

with

zH(x)
def= 2Q1 + √

8x.

If g< ∞ in (Ed) then (B.2) holds with zH(x) given by one of the following rules:

zH(x) = 2Q1 + √
8x+ 2g−1(g−2x+ 1

)
Q2,

(B.3)

zH(x) =
{

2
√
Q2 + 2x, if Q2 + 2x≤ g2,

2g−1x+ g−1Q2 + g, if Q2 + 2x> g2.

Moreover, the r.v. U∗(r0)
def= supυ∈Υ ◦ U(υ,υ∗) fulfills

EU∗(r0) ≤ 2ν0r0(Q1 +Q2/g+ 3),
(B.4){

E
∣∣U∗(r0)

∣∣2}1/2 ≤ 2ν0r0(Q1 +Q2/g+ 4).

Proof. We start the proof by stating some general facts for a convex combinations of sub-exponential r.v.’s ζk such
that

logE exp(λζk) ≤ (
q2
k + λ2)/2, |λ| ≤ g, k = 0,1,2, . . . , (B.5)

where qk ≥ 1 are fixed numbers, and g is some positive value or infinity. We aim at bounding a sum S of the form
S = ∑

k ckζk for a sequence of positive weights ck satisfying
∑

k ck = 1. We implicitly assume that the numbers qk

grow with k in a way that
∑

k exp(−qk) ≤ 1. Define

H1
def=

∑
k

ckqk, H2
def=

∑
k

ckq
2
k .



416 V. Spokoiny

Lemma B.2. Suppose that random variables ζk follow (B.5) with g= ∞ and
∑

k exp(−qk) ≤ 1. Let also
∑

k ck = 1.
Then it holds for the sum S = ∑

k ckζk and x≥ 1/2

logE exp(S) ≤H1,
(B.6)

P(S ≥ H1 + √
2x) ≤ e−x.

If (B.5) holds for g< ∞, then for each λ > 0 with |λ| ≤ g and x≥ 1/2

logE exp(λS) ≤ (
H2 + λ2)/2, (B.7)

P
{
S ≥ zH(x)

} ≤ e−x, (B.8)

where zH(x) is given by (B.3). Moreover, if g2 ≥H2 + 1, then

ES ≤H1 +H2/g+ 3,
{
ES2}1/2 ≤ H1 +H2/g+ 4.

Proof. Consider first the sub-Gaussian case with g= ∞. Define αk = ck/qk . Obviously
∑

k αk ≤ ∑
k ck = 1. By the

Hölder inequality and (B.5), it holds

logE exp

(∑
k

ckζk

)
= logE exp

(∑
k

αkqkζk

)
≤

∑
k

αk logE exp(qkζk)

≤ 1

2

∑
k

αk

(
q2
k + q2

k

) ≤
∑

k

ckqk.

Further, by the same arguments, it holds

logE exp(λS) ≤
∑

k

ck logE exp(λζk) ≤ 1

2

∑
k

ck

(
q2
k + λ2)

and the assertion (B.7) follows as well.
Let x≥ 1/2 be fixed. With zk = qk + √

2x, it follows by (B.5) for λk = zk in view of
∑

k e−qk ≤ 1

P

(∑
k

ck(ζk − zk) ≥ 0

)
≤

∑
k

P(ζk − zk ≥ 0) ≤
∑

k

E exp
{
λk(ζk − zk)

}
≤

∑
k

exp

(
−λkzk + λ2

k

2
+ q2

k

2

)
=

∑
k

exp

(
−z2

k

2
+ q2

k

2

)
=

∑
k

e−x−qk

√
2x ≤ e−x. (B.9)

This implies (B.6) by∑
k

ckzk =
∑

k

ck(qk + √
2x) =H1 + √

2x. (B.10)

Now we briefly discuss how the condition (B.5) can be relaxed to the case of a finite g. Suppose that (B.5) holds for
all λ ≤ g< ∞. Define k(x) as the largest index k, for which λk = qk + √

2x≤ g. For k > k(x), define λk = g and

zk = x+ qk

g
+ g

2
+ q2

k

2g
. (B.11)
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The above arguments yield for k > k(x)

P(ζk ≥ zk) ≤ exp
{−gzk + (

q2
k + g2)/2

} = exp(−x− qk).

This and (B.9) yield∑
k

P(ζk ≥ zk) ≤
∑

k≤k(x)

e−x−qk

√
2x +

∑
k>k(x)

e−x−qk ≤
∑

k

e−x−qk ≤ e−x.

Further, as qk > g for k > k(x), it follows from the definition (B.11)

∑
k>k(x)

ckzk = 1

g

∑
k>k(x)

ck(x+ qk) + g

2

∑
k>k(x)

ck + 1

2g

∑
k>k(x)

ckq
2
k

≤ 1

g

∑
k>k(x)

ckqk +
(
x

g3
+ 1

g

) ∑
k>k(x)

ckq
2
k .

This and (B.10) imply due to g≥ 1

∑
k

ckzk ≤
∑

k

ckqk +
(
x

g3
+ 1

g

)∑
k

ckq
2
k + √

2x≤ H1 +
(
x

g3
+ 1

g

)
H2 + √

2x.

In particular, if x≤ g2, then

∑
k

ckzk ≤ H1 + 2

g
H2 + √

2x.

Now (B.8) with z(x) =H1 + √
2x+ g−1(g−2x+ 1)H2 follows similarly to (B.6). Further, if z(x) = √

H2 + 2x≤ g,
then (B.7) with λ = z(x) and the exponential Chebyshev inequality implies again

P
(
S ≥ z(x)

) ≤ exp

(
−λz(x) + H2 + λ2

2

)
= exp

(−z2(x) +H2

2

)
= exp(−x).

Similarly one can check the case with λ = g and z(x) = x/g+ (H2/g+ g)/2 > g.
To bound the moments of S, we apply the following technical result: if P(S ≥ z(x)) ≤ e−x for all x ≥ x0 and if

z(·) is absolutely continuous, then

ES ≤ z(x0) +
∫ ∞

x0

z′(x)e−x dx, ES2 ≤ z2(x0) + 2
∫ ∞

x0

z(x)z′(x)e−x dx.

For z(x) =H1 + √
2x+ g−1(g−2x+ 1)H2, it holds z′(x) ≤ 1 + g−3. In view of g2 ≥ H2 + 1

ES ≤H1 + 1 + (H2 + 1/2)/g+
∫ ∞

1/2

(
1 + g−3)e−x dx≤ H1 +H2/g+ 3.

Similarly one can bound

ES2 ≤ (H1 +H2/g+ 3/2)2 + 2
∫ ∞

1/2

(
1√
2x

+ g−3
)
z(x)e−x dx≤ (H1 +H2/g+ 4)2

as required. �
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Now we show how the statement of the theorem can be reduced to the bounds of Lemma B.2. Denote for i < k by
Πk

i the product Πk
i = ΠiΠi+1 · · ·Πk . As Π0υ ≡ υ∗, the telescopic sum devices yields

∣∣U(Πkυ) − U
(
υ∗)∣∣ ≤

k∑
i=1

∣∣U(
Πk

i−1υ
) − U

(
Πk

i υ
)∣∣.

Separability of U(·) implies that limk→∞ U(Πkυ) = U(υ). Therefore, for any υ ∈ Υ ◦

∣∣U(υ) − U
(
υ∗)∣∣ = lim

k→∞
∣∣U(Πkυ) − U

(
υ∗)∣∣ ≤

∞∑
k=1

ξ∗
k ,

where

ξ∗
k

def= max
υ∈Mk

∣∣U(υ) − U(Πk−1υ)
∣∣.

For each υ ∈ Mk , it holds d(υ,Πk−1υ) ≤ rk−1 and

∣∣U(υ) − U(Πk−1υ)
∣∣ ≤ rk−1

|U(υ) − U(Πk−1υ)|
d(υ,Πk−1υ)

.

This implies by the Jensen inequality and (Ed) in view of e|x| ≤ ex + e−x for each k ≥ 1 and |λ| ≤ g

E exp

(
λ

rk−1
ξ∗
k

)
≤ 2

∑
υ∈Mk

E exp

(
λ

|U(υ) − U(Πk−1υ)|
d(υ,Πk−1υ)

)
≤ 2Nk exp

(
λ2/2

)
. (B.12)

For k ≥ 1, define q2
k /2 = log(2Nk), ck = 2−k , and ζk = ξ∗

k /rk−1 = c−1
k ξ∗

k /(2r0). Then (B.12) implies by rk−1 =
2−k+1r0

logE exp(λζk) ≤ log(2Nk) + λ2/2 = (
q2
k + λ2)/2.

Now we apply Lemma B.2 with ck = 2−k . By construction

∞∑
k=1

ckζk = 1

2r0

∞∑
k=1

ξ∗
k

and the results follow with H1 =Q1(Υ
◦), H2 =Q2(Υ

◦). �

B.2. A large deviation bound

Due to the result of Theorem B.1, the bound for the maximum of U(υ,υ∗) over υ ∈ Br(υ
∗) grows linearly in r.

So, its applications to situations with r�Q1(Υ
◦) are limited. The next result shows that introducing a negative drift

helps to state a uniform in r local probability bound. Namely, the bound for the process U(υ,υ∗) − f (d(υ,υ∗))
for some function f (r) over a ball Br(υ

∗) around the point υ∗ does not depend on r. Here the generic chaining
arguments are accomplished with the slicing technique. The idea is for a given r∗ > 1 to split the ball Br∗(υ∗) into
the slices Brk

(υ∗) \ Brk−1(υ
∗) and to apply Theorem B.1 to each slice separately.

Theorem B.3. Let r∗ be such that (Ed) holds on Br∗(υ∗). Let also Q1(Br(υ
∗)) ≤ H1 and Q2(Br(υ

∗)) ≤ H2 for
r≤ r∗. Given r0 < r∗, let a monotonous function f (r,r0) fulfill for some ρ < 1

f (r,r0) ≥ ν0rzH
(
x+ log(r/r0)

)
, r0 ≤ r≤ r∗, (B.13)
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where the function zH(·) is given by (B.3). Then it holds

P

(
sup

r0≤r≤r∗
sup

υ∈Br(υ∗)

{
U

(
υ,υ∗) − f

(
ρ−1r,r0

)} ≥ 0
)

≤ ρ

1 − ρ
e−x.

Remark B.1. Formally the bound applies even with r∗ = ∞ provided that (Ed) is fulfilled on the whole set Υ ◦.

Remark B.2. If g= ∞, then zH(x) = 2H1 + √
8x and the condition (B.13) on the drift simplifies to (2ν0r)−1f (r,

r0) ≥ H1 + √
2x+ 2 log(r/r0).

Proof of Theorem B.3. By (B.13) and Theorem B.1 for any r> r0

P

(
sup

υ∈Br(υ∗)\Bρr(υ∗)

{
U

(
υ,υ∗) − f (r,r0)

} ≥ 0
)

≤ P

(
1

ν0r
sup

υ∈Br(υ∗)
U

(
υ,υ∗) ≥ z

(
x+ log(r/r0)

)) ≤ r0

r
e−x. (B.14)

Now defined rk = r0ρ
−k for k = 0,1,2, . . . . Define also k∗ def= log(r∗/r0) + 1. It follows from (B.14) that

P

(
sup

υ∈Br∗ (υ∗)\Br0 (υ∗)

{
U

(
υ,υ∗) − f

(
ρ−1d

(
υ,υ∗),r0

)} ≥ 0
)

≤
k∗∑

k=1

P

(
1

rk

sup
υ∈Brk

(υ∗)\Brk−1 (υ∗)

{
U

(
υ,υ∗) − f (rk,r0)

} ≥ 0

)
≤ e−x

k∗∑
k=1

ρk ≤ ρ

1 − ρ
e−x

as required. �

B.3. Finite-dimensional smooth case

Here we discuss the special case when Υ is an open subset in Rp , the stochastic process U(υ) is Fréchet differentiable

and its gradient ∇U(υ)
def= dU(υ)/dυ has bounded exponential moments.

(ED) There exist g> 0, ν0 ≥ 1, and for each υ ∈ Υ , a symmetric non-negative matrix V(υ) such that for any λ ≤ g
and any unit vector γ ∈Rp , it holds

logE exp

{
λ

γ �∇U(υ)

‖V(υ)γ ‖
}

≤ ν2
0λ2

2
.

A natural candidate for V2(υ) is the covariance matrix Var(∇U(υ)) provided that this matrix is well posed. Then
the constant ν0 can be taken close to one by reducing the value g.

In what follows we fix a subset Υ ◦ of Υ and establish a bound for the maximum of the process U(υ,υ◦) =
U(υ) − U(υ◦) on Υ ◦ for a fixed point υ◦. We assume existence of a matrix V = V(Υ ◦) such that V(υ) � V for all
υ ∈ Υ ◦. We also assume that π is the Lebesgue measure on Υ . First we show that (ED) implies (Ed).

Lemma B.4. Assume that (ED) holds with some g and V(υ) � V for υ ∈ Υ ◦. Consider any υ,υ◦ ∈ Υ ◦. Then it
holds for |λ| ≤ g

logE exp

{
λ

U(υ,υ◦)
‖V(υ − υ◦)‖

}
≤ ν2

0λ2

2
.
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Proof. Denote δ = ‖υ − υ◦‖, γ = (υ − υ◦)/δ. Then

U
(
υ,υ◦) = δγ �

∫ 1

0
∇U

(
υ◦ + tδγ

)
dt

and ‖V(υ − υ◦)‖ = δ‖Vγ ‖. Now the Hölder inequality and (ED) yield

E exp

{
λ

U(υ,υ◦)
‖V(υ − υ◦)‖ − ν2

0λ2

2

}
= E exp

{∫ 1

0

[
λ

γ �∇U(υ◦ + tδγ )

‖Vγ ‖ − ν2
0λ2

2

]
dt

}

≤
∫ 1

0
E exp

{
λ

γ �∇U(υ◦ + tδγ )

‖Vγ ‖ − ν2
0λ2

2

}
dt ≤ 1

as required. �

The result of Lemma B.4 enables us to define d(υ,υ ′) = ‖V(υ − υ ′)‖ so that the corresponding d-ball coincides
with the following ellipsoidal set B(r,υ◦):

B
(
r,υ◦) def= {

υ:
∥∥V(

υ − υ◦)∥∥ ≤ r
}
.

Now we bound the value Q(Υ ◦) for Υ ◦ = B(r,υ◦). Note that by change of variable one can reduce the study to
the case V = Ip and consider the entropy of the unit ball in Rp w.r.t. the Euclidean distance. We use the following
general result which allows to upperbound the covering number of a convex set in Rp for the Euclidean metric.

Lemma B.5. Let Υ ◦ be a convex set in Rp , δ > 0, and B be the unit ball in Rp . Then the covering number N(Υ ◦, δ)
fulfills

N
(
Υ ◦, δ

) ≤ vol(Υ ◦ + (δ/2)B)

vol(B)
(2/δ)p.

Proof. Let (υ(i), i = 1, . . . ,N) be a maximal subset of Υ ◦ such that ‖υ(i) − υ(j)‖ ≥ δ for all i �= j . By maximality,
(υ(i)) is a δ-net of Υ ◦. Let also B be the unit ball in Rp . Note that the balls υ(i) + (δ/2)B are disjoint and included in
Υ ◦ + (δ/2)B . Therefore,

∑
i≤N

vol

(
υ(i) + δ

2
B

)
≤ vol

(
Υ ◦ + δ

2
B

)
,

where vol(A) means the Lebesgue measure of the set A. This yields

N(δ/2)p vol(B) ≤ vol
(
Υ ◦ + (δ/2)B

)
and the claim of the lemma follows. �

Lemma B.6 (Entropy of a ball). Let Υ ◦ = B(r◦,υ∗) and rk = 2−kr◦. Then the covering numbers Nk fulfill with
δ = rk/r◦ = 2−k

Nk ≤ (1 + 2/δ)p = (
1 + 2k+1)p

.

Moreover, with c2 = 4.67,

Q2
(
Υ ◦) ≤ 2 log 2 + c2p ≤ 6p,

(B.15)
Q1

(
Υ ◦) ≤ √

2 log 2 + c2p ≤ √
6p.
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Proof. A change of variable reduces the statement to the case V = Ip and r◦ = 1. For δ = 2−k , this implies by
Lemma B.5 in view of Υ ◦ = B

vol

(
Υ ◦ + δ

2
B

)
= (1 + δ/2)p vol(B),

that Nk ≤ (1 + 2/δ)p as claimed. Now we derive

Q2
(
Υ ◦) ≤

∞∑
k=1

2−k+1 log(2Nk) ≤
∞∑

k=1

2−k+1{log 2 + 2p log
(
1 + 2k+1)}

≤ 2 log 2 + p

∞∑
k=0

2−k+1 log
(
1 + 2k

) ≤ 2 log 2 + c2p

as required. �

Now we specify the local bounds of Theorem B.1 to the smooth case. We consider the local sets of the elliptic form

Υ◦(r)
def= {υ : ‖V(υ − υ∗)‖ ≤ r}, where V dominates V(υ) on this set: V(υ) � V.

Theorem B.7. Let (ED) hold with some g > 0, and matrices V(υ) such that V(υ) � V for all υ ∈ Υ◦(r) and a
fixed r. For any x≥ 1/2

P

{
1

ν0r
sup

υ∈Υ◦(r)

∣∣U(
υ,υ∗)∣∣ ≥ zH(x)

}
≤ e−x,

where zH(x) is given by (B.3) with Q1(Υ
◦) and Q2(Υ

◦) from (B.15).

Proof. Lemma B.6 implies (Ed) with d(υ,υ∗) = ‖V(υ − υ∗)‖. Now the result follows from Theorem B.1. �

B.4. Entropy of an ellipsoid

Let H be a positive self adjoint operator in R∞. We are interested to describe the entropy of the elliptic set

EH (r◦)
def= {

υ:
∥∥H

(
υ − υ◦)∥∥ ≤ r◦

}
(B.16)

for given υ◦ ∈ R∞ and r◦ > 0 with respect to the usual Euclidean distance in R∞. Below we evaluate the entropy of
this set assuming that ‖H−1‖op = 1 and H−2 is a trace operator, i.e., h1 = 1 and

pH
def= tr

(
H−2) =

∞∑
j=1

h−2
j < ∞, (B.17)

where h1 ≤ h2 ≤ · · · are the ordered eigenvalues of H .

Theorem B.8. Suppose that for some α > 1

pH (α)
def=

∞∑
j=1

h−2
j logα

(
h2

j

)
< ∞. (B.18)

Then for E = EH (r◦)

Q1(E) ≤ C(α − 1)−1/2
√
pH (α), (B.19)
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where C is an absolute constant. Furthermore,

Q2(E) ≤ Cp∗
H = C

∞∑
j=1

h−1
j .

Remark B.3. The log-factor in the definition of pH (α) can be removed by using a more advanced generic chaining
and majorising measure technique. However, in most of situations, the bound in terms of pH (α) is also sharp.

The term p∗
H only appears in the sub-exponential case when g< ∞. In this case we need the condition p∗

H < ∞
which requires

∑
j h−1

j < ∞, that is, a more rapid growth of the values hj is necessary than in (B.18).

Proof of Theorem B.8. We begin by a general lemma which bounds the covering numbers for the elliptic set E for
the Euclidean distance.

Lemma B.9 (Entropy of the ellipsoid). Let E = EH (r◦) be an elliptic set from (B.16) with ‖H−1‖op = 1 and
tr(H−2) < ∞. Let also d(υ,υ ′) = ‖υ − υ ′‖. Then for rk = 2−kr◦, the value Q1(E) from (B.1) satisfies

Q1(E) ≤
∞∑

k=1

2−k
√

log 2 + 2LH (mk), (B.20)

where mk is the index j for which h2
mk

= 22k+1 and hence,

h2
j ≤ 22k+1, j ≤ mk, (B.21)

and

LH (m)
def=

m∑
j=1

log(3hm/hj ).

Remark B.4. For the ease of presentation, we supposed in the lemma that for each k ≥ 1, there exists some mk with
hmk

= 2k+1/2. The results easily extend to the case when this equality is approximate.

Proof of Lemma B.9. Without loss of generality assume υ◦ = 0. A basis transform reduces the study to the case
when H is diagonal: H = diag{h1, h2, . . .}. We only have to evaluate the covering numbers Nk . Let us fix k ≥ 1 and
let mk be given by (B.21). For any point υ = (υ1,υ2, . . .)

� in E , it holds

∞∑
j=mk+1

υ2
j =

∞∑
j=mk+1

h−2
j h2

jυ
2
j ≤ h−2

mk+1

∞∑
j=mk+1

h2
jυ

2
j

≤ h−2
mk+1

∞∑
j=1

h2
jυ

2
j ≤ 2−2k−1r2◦ ≤ r2

k/2. (B.22)

Consider the elliptic set Ek in Rmk obtained by projection Πk of E on the first mk coordinates:

Ek
def=

{
(υ1, . . . ,υmk

)�:
mk∑
j=1

h2
jυ

2
j ≤ r2◦

}
.

Let Mk be a εk-net in Ek for ε2
k = r2

k/2. A rk-net in E can be constructed from Mk in a simple way: just fix to zero
the remaining coordinates υj = 0 for j > mk . If υ◦ is constructed in this way, then ‖Hυ◦‖ = ‖HΠkυ

◦‖ ≤ 1, that
is, υ◦ ∈ E . Moreover, for any other point υ ∈ E , take υ◦ such that their projections satisfy ‖Πk(υ − υ◦)‖ ≤ εk . Then
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by (B.22)∥∥υ − υ◦∥∥2 = ∥∥Πk

(
υ − υ◦)∥∥2 + ∥∥(I− Πk)υ

∥∥2 ≤ r2
k/2 + r2

k/2 = r2
k.

Therefore, the covering number N(E ,rk) of the infinite dimensional elliptic set E does not exceed the covering
number N(Ek, εk) for the mk-dimensional ellipsoid Ek . By Lemma B.5 with δ = εk ,

N(Ek, εk) ≤ vol(Ek + (εk/2)Bk)

vol(Bk)
(2/εk)

mk ,

where Bk is the unit ball in Rmk . The bound h−2
j ≥ 2−2k−1 for j ≤ mk implies that Ek + (εk/2)Bk is contained in the

elliptic set (3/2)Ek .
The definition implies due to h2

mk
= 22k+1

N(E ,rk) ≤ log
vol((3/2)Ek)

(εk/2)mk vol(Bk)
≤

mk∑
j=1

log
3h−1

j

εk

≤
mk∑
j=1

log

(
3hmk

hj

)
= LH (mk). (B.23)

Now the result (B.20) follows by the definition of Q1(E). �

Denote Nk = N(E ,rk). By the Cauchy–Schwarz inequality for α > 1

Q1(E) =
∞∑

k=1

2−k
√

2 log(2Nk) ≤
{ ∞∑

k=1

k−α

∞∑
k=1

kα2−2k2 log(2Nk)

}1/2

. (B.24)

The use of h−2
m�

= 22�+1 and h2
j ≥ 4h2

m�−1
for j ∈ (m�−1,m�] yields by (B.23) with n�

def= m� − m�−1

2 log(2Nk) =
k∑

�=1

m�∑
j=m�−1+1

log
9h2

mk

h2
j

≤
k∑

�=1

{
k − � + log(36)

}
n�.

Further, in view of hmk
= 2k

∞∑
k=1

kα2−2k2Nk ≤
∞∑

k=1

kα2−2k

k∑
�=1

{
k − � + log(36)

}
n� =

∞∑
�=1

∑
k≥�

kα2−2k
{
k − � + log(36)

}
n�

=
∞∑

�=1

n�2−2�
∑
k≥�

kα2−2(k−�)
{
k − � + log(36)

} = C
∞∑

�=1

n�2−2��α.

It remains to note that 22�−1 ≤ h2
j ≤ 22�+1 for m�−1 < j ≤ m� and

∞∑
�=1

n�2−2��α ≤
∞∑

�=1

m�∑
j=m�−1+1

h−2
j logα

(
h2

j

) =
∞∑

j=1

h−2
j logα

(
h2

j

) = pH (α). (B.25)

The assertion (B.19) now follows from (B.24) in view of
∑

k≥1 k−α ≤ C(α − 1)−1.
The result on Q2(E) requires to bound the sum of 2−k logNk . Similarly to the above, one easily derives

∞∑
k=1

2−kNk ≤
∞∑

k=1

2−k
k∑

�=1

{
k − � + log(36)

}
n� =

∞∑
�=1

∑
k≥�

2−k
{
k − � + log(36)

}
n�

=
∞∑

�=1

n�2−�
∑
k≥�

2−(k−�)
{
k − � + log(36)

} = C
∞∑

�=1

n�2−� ≤ C
∞∑

j=1

h−1
j = Cp∗

H .



424 V. Spokoiny

Theorem is proved. �

Now we present a special case for which the entropy can be bounded via the effective dimension pH of Υ ◦ defined
in (B.17).

Theorem B.10. Let h2
j = f (j) for a monotonously increasing smooth function f (x) > 0. If xf ′(x)/f (x) ≤ β , then

Q2(E) ≤ CβpH ,
(B.26)

Q1(E) ≤ C
√

βpH ,

where the effective dimension pH is defined in (B.17).

Proof. Obviously

m∑
j=1

log

(
h2

m

h2
j

)
≤

∫ m

0
log

(
f (m)

f (t)

)
dt.

Now we note that the function

F(x)
def=

∫ x

0
log

(
f (x)

f (t)

)
dt

fulfills F(0) = 0 and F ′(x) = xf ′(x)/f (x) yielding

m∑
j=1

log

(
h2

m

h2
j

)
≤

∫ m

0
log

(
f (m)

f (t)

)
dt =

∫ m

0

xf ′(x)

f (x)
dx.

Moreover, in particular, if F ′(x) ≤ β , then F(x) ≤ βx and thus, LH (mk) ≤ βmk . Now it holds similarly to (B.25)

∞∑
k=1

2−kmk =
∞∑

k=1

2−k

k∑
�=1

n� ≤
∞∑

�=1

n�

∞∑
k≥�

2−k =
∞∑

�=1

n�2−� ≤ 2
∞∑

j=1

h−2
j = 2pH ,

and the statement (B.19) follows. �

Now we evaluate the entropy for the cases when hj grow polynomially.

Theorem B.11. Let h2
j = 1 +κ2j2β for β > 1/2 and some small value κ. Then

Q1(E) ≤ C(2β − 1)−1/2κ−1/(2β),

Q2(E) ≤ C(2β − 1)−1κ−1/β,

where C is an absolute constant.

Proof. For f (x) = 1 + κ2x2β , it holds xf ′(x)/f (x) ≤ 2β and we can apply the result of Theorem B.10. With β >

1/2, the effective dimension pH from (B.17) fulfills

pH ≤
∞∑

j=1

h−2
j =

∞∑
j=1

1

1 +κ2j2β
≤

∫ ∞

0

1

1 +κ2x2β
dx = Cκ−1/β 1

2β − 1

and the result follows by (B.26). �
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B.5. Roughness constraints for dimension reduction

The local bounds of Theorems B.1 and B.3 can be extended in several directions. Here we briefly discuss one extension
related to the use of a smoothness condition on the parameter υ . Let pen(υ) be a non-negative penalty function on Υ .
A particular example of such penalty function is the roughness penalty pen(υ) = ‖Gυ‖2 for a given p-matrix G2. Let
r be fixed. Consider the intersection of the ball Br(υ

◦) with the set Υ given by the constraint pen(υ) ≤ 1:

Υpen(r) = {
υ ∈ Υ :d

(
υ,υ◦) ≤ r;pen(υ) ≤ 1

}
,

for a fixed central point υ◦ and the radius r. Here and below we assume that the central point υ◦ is “smooth” in the
sense that pen(υ◦) < 1. One can easily check that the results of Theorems B.1 and B.3 and their corollaries extend
to this situation without any change. The only difference is in the definition of the values Q1(Υ◦) and Q2(Υ◦) for
Υ◦ = Υpen(r). Examples below show that the use of the penalization can substantially reduce these values relative to
the non-penalized case.

We consider the case of a smooth process U given on a local set ΥG(r) of the form

ΥG(r) = {
υ ∈ Υ :

∥∥V(
υ − υ◦)∥∥ ≤ r; ‖Gυ‖ ≤ 1

}
, (B.27)

with the distance d(υ,υ◦) = ‖V(υ − υ◦)‖ and a smoothness constraint ‖Gυ‖2 ≤ 1. Then the set ΥG(r) is contained
in an elliptic set

Υ◦
def= {

θ :‖Gυ‖2 + ∥∥V(
υ − υ◦)∥∥2 ≤ 1 + r2}. (B.28)

Define

V2
G =V2 + G2, υG =V−2

G V2υ◦.

Then υ◦ − υG = (Ip −V−2
G V2)υ◦ =V−2

G G2υ◦ and one can get by simple algebra

‖Gυ‖2 + ∥∥V(
υ − υ◦)∥∥2 = ∥∥VG(υ − υG)

∥∥2 + ‖GυG‖2 + ∥∥V(
υG − υ◦)∥∥2

= ∥∥VG(υ − υG)
∥∥2 + υ◦�G2V−2

G V2υ◦ = ∥∥VG

(
υ − υ◦)∥∥2 + dG

with dG = υ◦�G2V−2
G V2υ◦ ≤ ‖Gυ◦‖2 < 1. A change of variables υ → V(υ − υG) allows us to reduce the study

to the case of an ellipsoid considered in Section B.4. For H defined by H−2 = VV−2
G V, the set Υ◦ from (B.28) is

transferred into the elliptic set

ΥH (r) = {
υ:‖Hυ‖2 ≤ 1 + r2 − dG

}
,

whose entropy for the Euclidean distance is given via the trace pH = tr(H−2).
Now we are prepared to state the penalized bound for the process U(·) over Υ◦ which naturally generalizes the

result of Theorem B.7 to the non-penalized case.

Theorem B.12. Let Υ◦ = Υpen(r) be given by (B.27) and ‖Gυ◦‖ ≤ 1. Let also (ED) hold with some g and a matrix
V(υ) � V for all υ ∈ Υ◦. For H defined by H−2 =VV−2

G V, let the entropy values Q1(Υ
◦) and Q2(Υ

◦) for the elliptic
set ΥH (r) from (B.28) be given in Section B.4. Then for any x≥ 1/2

P

{
1

ν0r
sup

υ∈Υpen(r)

∣∣U(
υ,υ◦)∣∣ ≥ zH(x)

}
≤ e−x,

where zH(x) is from (B.3) with these values Q1(Υ
◦) and Q2(Υ

◦).
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B.6. Bound for a bivariate process

Consider a smooth bivariate process U(υ) = U(υ1,υ2) over a product set Υ = Υ1 ×Υ2, where Υj ⊆Rpj for j = 1,2.
We suppose that partial derivatives of U have uniform exponential moments.

(EDp) There exist g > 0, ν0 ≥ 1, and for each υ = (υ1,υ2) ∈ Υ = Υ1 × Υ2, symmetric non-negative pj × pj

matrices Vj , j = 1,2, such that for any λ ≤ g and any unit vector γ ∈Rp , it holds

logE exp

{
λ

γ �∇jU(υ)

‖Vj γ ‖
}

≤ ν2
0λ2

2
, j = 1,2.

Here ∇jU denotes the partial derivative ∂U/∂υj for j = 1,2.

This allows to establish an exponential bound for the process U(υ). Let us fix the central point υ◦ = (υ◦
1,υ

◦
2) and

a radius r. As usual,

Υj (r) = {
υj ∈ Υj :

∥∥Vj

(
υj − υ◦

j

)∥∥ ≤ r
}

denotes the ball in Υj with this radius.

Theorem B.13. Let a bivariate random process U(υ) on Υ = Υ1 × Υ2 satisfy (EDp). Then for any r◦ and x≥ 1/2,
it holds on the product set Υ◦ = Υ1(r◦) × Υ2(r◦)

P

{
1√

8ν0r◦
sup
υ∈Υ◦

∣∣U(
υ,υ◦)∣∣ ≥ zH(x)

}
≤ e−x,

with zH(x) from (B.3) for Q1(Υ
◦) =Q1(Υ1) +Q1(Υ2) and Q2(Υ

◦) =Q2(Υ1) +Q2(Υ2).

Proof. By the Hölder inequality, (B.31), and (B.30), it holds for ‖γ 1‖ = ‖γ 2‖ = 1 and υ ∈ Υ◦

logE exp

{
λ

2
(γ 1,γ 2)

�∇U(υ)

}
≤ 1

2
logE exp

{
λγ �

1 ∇1U(υ)
} + 1

2
logE exp

{
λγ �

2 ∇2U(υ)
}

≤ 1

2
logE exp

{
λγ �

1 ∇1U(υ)
} + 1

2
logE exp

{
λγ �

2 ∇2U(υ)
} ≤ ν2

0λ2

2
, |λ| ≤ g.

This means that the bivariate process U(υ)/2 fulfills the full dimensional condition (ED) with V = block(V1,V2).
Let υ = (υ1,υ2) and υ◦ = (υ◦

1,υ
◦
2) be a couple of points in Υ such that ‖Vj (υj − υ◦

j )‖ ≤ ε for j = 1,2. Then
obviously∥∥V(

υ − υ◦)∥∥2 ≤ 2ε2. (B.29)

Therefore, the direct product of two ε-nets Mj (ε) in Υj for j = 1,2 yield a
√

2ε-net M(ε) = M1(ε) × M2(ε) in the
product space Υ .

Due to (B.29), the product set Υ◦
def= Υ1(r◦) × Υ2(r◦) has the radius r◦. Now we can easily bound the entropy of

the product set Υ◦ via the entropy of Υ1 and Υ2. Indeed, with rk = 2−kr◦, the cardinality Nk of Mk = M(rk) fulfills
Nk =Nk(Υ1)Nk(Υ2) and

Q2(Υ◦) ≤
∞∑

k=1

2−k+1 log(2Nk)

≤
∞∑

k=1

2−k+1 log
(
2Nk(Υ1)

) +
∞∑

k=1

2−k+1 log
(
2Nk(Υ2)

) ≤Q2(Υ1) +Q2(Υ2).
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Similarly

Q1(Υ◦) ≤
∞∑

k=1

2−k
√

2 log(2Nk)

≤
∞∑

k=1

2−k
√

2 log
(
2Nk(Υ1)

) + 2 log
(
2Nk(Υ2)

) ≤Q1(Υ1) +Q1(Υ2).

Now we just apply the assertion of Theorem B.7 to the process U(υ)/2 and account for the fact that by (B.29) the
radius of Υ◦ is

√
2r◦. �

B.7. A bound for the norm of a vector random process

Let Y(υ), υ ∈ Υ , be a smooth centered random vector process with values in Rq , where Υ ⊆Rp . Let also Y(υ∗) = 0
for a fixed point υ∗ ∈ Υ . Without loss of generality assume υ∗ = 0. We aim to bound the maximum of the norm
‖Y(υ)‖ over a vicinity Υ◦ of υ∗. By ∇U(υ) we denote the p × q matrix with entries ∇υi

Uj , i ≤ p, j ≤ q . Suppose
that Y(υ) satisfies for each γ 1 ∈Rp and γ 2 ∈ Rq with ‖γ 1‖ = ‖γ 2‖ = 1

sup
υ∈Υ

logE exp
{
λγ �

1 ∇Y(υ)γ 2
} ≤ ν2

0λ2

2
, |λ| ≤ g. (B.30)

Condition (B.30) implies for any υ ∈ Υ◦ with ‖υ‖ ≤ r and γ ∈Rq with ‖γ ‖ = 1 in view of Y(υ∗) = 0 by Lemma B.4

logE exp

{
λ

r
Y(υ)�γ

}
≤ ν2

0λ2‖υ‖2

2r2
, |λ| ≤ g. (B.31)

In what follows, we use the representation

∥∥Y(υ)
∥∥ = sup

‖u‖≤r
1

r
u�Y(υ). (B.32)

This implies for Υ◦(r) = {υ ∈ Υ :‖υ − υ∗‖ ≤ r}

sup
υ∈Υ◦(r)

∥∥Y(υ)
∥∥ = sup

υ∈Υ◦(r)

sup
‖u‖≤r

1

r
u�Y(υ).

Consider a bivariate process u�Y(υ) of u ∈ Rq and υ ∈ Υ ⊂ Rp . By definition Eu�Y(υ) = 0. Further,
∇u[u�Y(υ)] = Y(υ) while ∇υ [u�Y(υ)] = u�∇Y(υ) = ‖u‖γ �∇Y(υ) for γ = u/‖u‖. Suppose that u ∈ Rq and
υ ∈ Υ are such that ‖u‖ ≤ r and ‖υ‖ ≤ r. By (B.30), it holds for γ ∈Rp with ‖γ ‖ = 1 and υ ∈ Υ◦(r)

logE exp

{
λ

r
∇υ

[
u�Y(υ)

]
γ

}
≤ logE exp

{
λ

r
u�∇Y(υ)γ

}
≤ ν2

0λ2

2
,

and by (B.31) for a unit vector γ ∈Rq

logE exp

{
λ

r
∇u

[
u�Y(υ)

]
γ

}
≤ logE exp

{
λ

r
Y(υ)γ

}
≤ ν2

0λ2

2
.

Therefore, (EDp) is fulfilled for u�Y(υ) and Theorem B.7 applies. We summarize our findings in the following
theorem.
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Theorem B.14. Let a random p-vector process Y(υ) for υ ∈ Υ ⊆Rp fulfill Y(υ∗) = 0, EY(υ) ≡ 0, and the condition
(B.30) be satisfied. Then for each r and any x≥ 1/2, it holds for Υ◦ = Υ◦(r)

P

{
sup

υ∈Υ◦(r)

∥∥Y(υ)
∥∥ ≥ √

8ν0rzH(x)
}

≤ e−x, (B.33)

where zH(x) is given by (B.3) with Q1 =Q1(Υ◦) + √
6q and Q1 =Q1(Υ◦) + 6q .

B.8. A bound for a family of quadratic forms

Now we consider an extension of the previous result with a quadratic form ‖AY(υ)‖2 to be bounded under the
conditions (B.30) and (B.31) on Y(υ) for υ ∈ Υ ⊂ Rp . Here Y(·) is a vector process with values in Rq and A is a
q × q matrix with ‖A�A‖op ≤ 1. The idea is to use the representation (B.32) in which we replace u with Au. The
bound (B.33) implies for any r

P

{
sup

υ∈Υ◦(r),‖Au‖≤r
u�AY(υ) >

√
8ν0rzH(x)

}
≤ e−x,

where zH(x) corresponds to Q1 = √
Q2 = √

6p +Q2(Υ◦).
Now we discuss how this bound can be refined if A is a smoothing operator. For simplicity assume that A fulfills

the condition of Theorem B.10. One can expect that the dimension q can be replaced by the effective dimension pA.
The arguments similar to the above yield

∥∥AY(υ)
∥∥ = sup

u∈Rq :‖u‖≤r
1

r
u�AY(υ),

and we again consider a bivariate process u�AY(υ) of u ∈ Rq and υ ∈ Υ ⊂ Rp . The conditions (B.30) and (B.31)
imply for any two unit vectors γ 1 ∈Rq and γ 2 ∈ Rp and any points u ∈Rq with ‖Au‖ ≤ r and υ ∈ Υ◦(r), it holds

logE exp

{
λ

r
∇υ

[
u�AY(υ)

]
γ 2

}
= logE exp

{
λ

r
u�A∇Y(υ)γ 2

}
≤ ν2

0λ2

2
,

and by (B.31) with V2
1 = A�A

logE exp

{
λ

‖V1γ 1‖
γ �

1 ∇u
[
u�AY(υ)

]} ≤ logE exp

{
λ

‖V1γ 1‖
(Aγ 1)

�Y(υ)

}
≤ ν2

0λ2

2
.

Therefore, (EDp) is fulfilled for u�AY(υ). Now we apply the bound from Theorem B.13 and the entropy bound for
the elliptic set ‖Au‖ ≤ r from Theorem B.10.

Theorem B.15. Let a random vector process Y(υ) ∈ Rq for υ ∈ Υ ⊆ Rp fulfill Y(υ∗) = 0, EY(υ) ≡ 0, and the
condition (B.30) be satisfied. Let A fulfill 1/2 ≤ ‖AA�‖op ≤ 1. Then for each r, it holds

P

{
sup

υ∈Υ◦(r)

∥∥AY(υ)
∥∥ >

√
8ν0rzH(x)

}
≤ e−x,

where zH(x) is given by (B.3) with Q2 = CpA +Q2(Υ◦(r)) and Q1 = C
√
pA +Q1(Υ◦(r)).

References

[1] A. Andresen and V. Spokoiny. Critical dimension in profile semiparametric estimation. Electron. J. Stat. 8 (2) (2014) 3077–3125. MR3301302
[2] A. Barron, L. Birgé and P. Massart. Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (3) (1999) 301–413.

MR1679028

http://www.ams.org/mathscinet-getitem?mr=3301302
http://www.ams.org/mathscinet-getitem?mr=1679028


Penalized MLE and effective dimension 429

[3] A. Belloni and V. Chernozhukov. On the computational complexity of MCMC-based estimators in large samples. Ann. Statist. 37 (4) (2009)
2011–2055. MR2533478

[4] L. Birgé and P. Massart. Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (3) (1998) 329–
375. MR1653272

[5] L. Birgé and P. Massart. Gaussian model selection. J. Eur. Math. Soc. (JEMS) 3 (3) (2001) 203–268. MR1848946
[6] L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138 (1–2) (2007) 33–73. MR2288064
[7] S. Boucheron and P. Massart. A high-dimensional Wilks phenomenon. Probab. Theory Related Fields 150 (2011) 405–433. MR2824862
[8] J. Fan, C. Zhang and J. Zhang. Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 (1) (2001) 153–193.

MR1833962
[9] S. Ghosal. Asymptotic normality of posterior distributions in high-dimensional linear models. Bernoulli 5 (2) (1999) 315–331. MR1681701

[10] S. Ghosal. Asymptotic normality of posterior distributions for exponential families when the number of parameters tends to infinity. J. Multi-
variate Anal. 74 (1) (2000) 49–68. MR1790613

[11] Y. Golubev and V. Spokoiny. Exponential bounds for minimum contrast estimators. Electron. J. Stat. 3 (2009) 712–746. MR2534199
[12] P. J. Green and B. W. Silverman. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman &

Hall, London, 1994. MR1270012
[13] P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. 5th Berkeley Symp. Math. Stat. Probab.,

Univ. Calif. 1965/66, 1 221–233. Univ. California Press, Berkeley, CA, 1967. MR0216620
[14] I. A. Ibragimov and R. Z. Khas’minskij. Statistical Estimation. Asymptotic Theory. Springer, New York, 1981. Transl. from the Russian by

Samuel Kotz. MR0620321
[15] Y. Kim. The Bernstein–von Mises theorem for the proportional hazard model. Ann. Statist. 34 (4) (2006) 1678–1700. MR2283713
[16] R. Koenker, P. Ng and S. Portnoy. Quantile smoothing splines. Biometrika 81 (4) (1994) 673–680. MR1326417
[17] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (5) (2000) 1302–1338.
[18] E. Mammen. Empirical process of residuals for high-dimensional linear models. Ann. Statist. 24 (1) (1996) 307–335. MR1389892
[19] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p2/n is large. I. Consistency. Ann. Statist. 12 (4) (1984)

1298–1309. MR0760690
[20] S. Portnoy. Asymptotic behavior of M estimators of p regression parameters when p2/n is large. II. Normal approximation. Ann. Statist. 13

(4) (1985) 1403–1417. MR0811499
[21] S. Portnoy. Asymptotic behavior of the empiric distribution of M-estimated residuals from a regression model with many parameters. Ann.

Statist. 14 (1986) 1152–1170. MR0856812
[22] S. Portnoy. Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity. Ann. Statist.

16 (1) (1988) 356–366. MR0924876
[23] X. Shen. On methods of sieves and penalization. Ann. Statist. 25 (6) (1997) 2555–2591. MR1604416
[24] X. Shen and W. H. Wong. Convergence rate of sieve estimates. Ann. Statist. 22 (2) (1994) 580–615. MR1292531
[25] V. Spokoiny. Parametric estimation. Finite sample theory. Ann. Statist. 40 (6) (2012) 2877–2909. MR3097963
[26] V. Spokoiny, W. Wang and W. Härdle. Local quantile regression (with rejoinder). J. Statist. Plann. Inference 143 (7) (2013) 1109–1129.

MR3049611
[27] V. Spokoiny and M. Zhilova. Bootstrap confidence sets under model misspecification. Ann. Statist. 43 (2015) 2653–2675. MR3405607
[28] S. van de Geer. M-estimation using penalties or sieves. J. Statist. Plann. Inference 108 (1–2) (2002) 55–69. MR1947391
[29] S. A. Van de Geer. Applications of Empirical Process Theory. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge

University Press, Cambridge, 2000. MR1739079
[30] A. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. With Applications to Statistics. Springer Series in Statistics.

Springer, New York, 1996. MR1385671
[31] A. Zaitsev, E. Burnaev and V. Spokoiny. Properties of the posterior distribution of a regression model based on Gaussian random fields.

Autom. Remote Control 74 (10) (2013) 1645–1655. MR3219856

http://www.ams.org/mathscinet-getitem?mr=2533478
http://www.ams.org/mathscinet-getitem?mr=1653272
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2288064
http://www.ams.org/mathscinet-getitem?mr=2824862
http://www.ams.org/mathscinet-getitem?mr=1833962
http://www.ams.org/mathscinet-getitem?mr=1681701
http://www.ams.org/mathscinet-getitem?mr=1790613
http://www.ams.org/mathscinet-getitem?mr=2534199
http://www.ams.org/mathscinet-getitem?mr=1270012
http://www.ams.org/mathscinet-getitem?mr=0216620
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=2283713
http://www.ams.org/mathscinet-getitem?mr=1326417
http://www.ams.org/mathscinet-getitem?mr=1389892
http://www.ams.org/mathscinet-getitem?mr=0760690
http://www.ams.org/mathscinet-getitem?mr=0811499
http://www.ams.org/mathscinet-getitem?mr=0856812
http://www.ams.org/mathscinet-getitem?mr=0924876
http://www.ams.org/mathscinet-getitem?mr=1604416
http://www.ams.org/mathscinet-getitem?mr=1292531
http://www.ams.org/mathscinet-getitem?mr=3097963
http://www.ams.org/mathscinet-getitem?mr=3049611
http://www.ams.org/mathscinet-getitem?mr=3405607
http://www.ams.org/mathscinet-getitem?mr=1947391
http://www.ams.org/mathscinet-getitem?mr=1739079
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=3219856

	Introduction
	Fisher and Wilks theorems under quadratic penalization
	Effective dimension
	Block penalization
	Sobolev smoothness constraint
	Linear inverse problem

	Conditions
	Concentration and a large deviation bound
	Wilks and Fisher expansions
	Quadratic risk bound and modeling bias
	Proofs of the Fisher and Wilks expansions

	Examples
	I.i.d. case
	Quasi MLE in an i.i.d. model
	Conditions in the i.i.d. case
	Results in the non-penalized i.i.d. case
	Roughness penalization for an i.i.d. sample
	Generalized linear models (GLM)
	Estimation for a penalized GLM

	Appendix A: Deviation bounds for quadratic forms
	Appendix B: Deviation bounds for random processes
	Chaining and covering numbers
	A large deviation bound
	Finite-dimensional smooth case
	Entropy of an ellipsoid
	Roughness constraints for dimension reduction
	Bound for a bivariate process
	A bound for the norm of a vector random process
	A bound for a family of quadratic forms

	References

