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Abstract. We present a new construction of a Skorokhod embedding, namely, given a probability measure μ with zero expectation
and finite variance, we construct an integrable stopping time T adapted to a filtration Ft , such that WT has the law μ, where Wt

is a standard Wiener process adapted to the same filtration. We find several sufficient conditions for the stopping time T to be
bounded or to have a sub-exponential tail. In particular, our embedding seems rather natural for the case that μ is a log-concave
measure and T satisfies several tight bounds in that case. Our embedding admits the property that the stochastic measure-valued
process {μt }t≥0, where μt is as the law of WT conditioned on Ft , is a Markov process. In view of this property, we will consider
a more general family of Skorokhod embeddings which can be constructed via a kernel generating a stochastic flow on the space
of measures. This family includes existing constructions such as the ones by Azéma–Yor (In Séminaire de Probabilités XIII (1979)
90–115 Springer) and by Bass (In Séminaire de Probabilités XVII (1983) 221–224 Springer), and thus suggests a new point of
view on these constructions.

Résumé. Nous proposons une nouvelle construction d’un plongement de Skorokhod: étant donnée une mesure de probabilité μ

avec espérance nulle et variance finie, nous construisons un temps d’arrêt intégrable T adapté à la filtration Ft , tel que WT possède
la loi μ et W est un processus de Wiener standard adapté à la même filtration. Nous trouvons plusieurs conditions suffisantes
pour que le temps d’arrêt T soit borné ou ait des queues sous-exponentielles. En particulier, notre plongement semble assez
naturel dans le cas où μ est log-concave et T satisfait plusieurs estimations fortes. Notre plongement a la propriété suivante : le
processus stochastique à valeur dans les mesures {μt }t≥0, où μt est la loi de WT conditionnée par Ft , est un processus de Markov.
Compte tenu de cette propriété, nous allons considérer une famille plus générale de plongements de Skorokhod qui peuvent être
construits à l’aide d’un noyau générant un flot stochastique sur l’espace des mesures. Cette famille inclut des constructions déjà
existantes comme celle d’Azéma–Yor (In Séminaire de Probabilités XIII (1979) 90–115 Springer) et celle de Bass (In Séminaire
de Probabilités XVII (1983) 221–224 Springer), suggérant ainsi un point de vue nouveau sur ces constructions.
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1. Introduction

The Skorokhod embedding problem, first presented by Skorokhod in [16], was originally formulated as follows: Given
a prescribed centered probability measure μ whose second moment is finite and a standard Wiener process Wt adapted
to a filtration Ft , can one find an integrable stopping time T , such that WT has the law μ?

This problem has encouraged rather extensive research in the past 50 years (e.g., by Azéma, Bass, Dubins, Monroe,
Obłój, Root, Rost, Yor and many others), some of which is devoted to constructing new solutions, some to formulating
and proving more general cases of this problem, and some to establishing certain properties of the existing solutions.
A few examples of properties one would be interested to establish about a solution are bounds on moments of the
stopping time T given information about the measure μ, monotonicity of T with respect to quantities related to this
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measure and bounds related to the set {Wt,0 ≤ t ≤ T }. For an extensive review of many of these results, the reader is
referred to [12]. See also [1] for a more recent construction of a solution.

The main contribution of the present note is to introduce a new solution to the Skorokhod embedding problem,
based on the construction of a stochastic flow on the space of Gaussian measures. In addition, we will present several
properties that this solution admits, mainly concerning bounds on the stopping time T given additional assumptions
on μ. One of the advantages of this new solution is the existence of a formula with which the behaviour of T can be
analysed in many cases. In particular, this solution seems rather natural for log-concave measures, in which case we
will derive sharp bounds for the moments of T .

The construction has another property that may be notable: consider the measures μt defined to be the law of WT

conditioned on Ft . The process {μt }t≥0 is, in some sense, a Markov process whose “transition kernel” does not depend
on the initial measure μ. In view of this property, we will be able to relate our construction to other constructions in
the literature and consider a more general framework for solutions to the Skorokhod problem.

Our construction is somewhat similar to the localization described in [7] in the sense that the main mechanism
behind it construction is a certain flow on the space of densities on R, defined by a system of stochastic differential
equations. The central ideas behind it are described briefly in the beginning of Section 2.

Let us formulate our theorems. Throughout this note, μ will denote some fixed Borel probability measure on R.
The only assumptions we will need for the construction of the Skorokhod embedding are that μ has expectation zero
and a finite second moment:∫

R

x2μ(dx) < ∞ and
∫
R

xμ(dx) = 0. (1)

Let Wt be a standard Wiener process adapted to a filtration Ft . Our first goal will be to construct a stopping time Tμ.
The main properties of this stopping time are described in the following theorem, whose point is that Tμ induces a
Skorokhod embedding of μ into the probability space of {Wt }. The actual definition of Tμ is postponed to the next
section.

Theorem 1.1. Let μ be a measure on R satisfying (1). Then the stopping time Tμ satisfies the following properties:

(i) The event {Tμ ≤ t} is measurable with respect to the σ -algebra generated by {Ws}s≤t .
(ii) The random variable WTμ is distributed according to the law μ.

(iii) One has E[Tμ] = Var[μ].

The next theorems in this note establish bounds on the distribution of Tμ given that μ satisfies additional assump-
tions. Several estimates resembling some of our bounds have been established in [2] for a Skorokhod embedding
based on the solution of a backwards stochastic differential equation.

A measure μ is said to be log-concave if it is either a Dirac δ-measure or has a density f (x) with respect to the
Lebesgue measure of the form f (x) = e−Φ(x) where Φ : R → R ∪ {+∞} is a convex function. When the measure μ

is log-concave, the stopping time Tμ admits a sub-exponential tail behaviour, namely we have the following.

Theorem 1.2. There exist universal constants c,C > 0 such that, if μ is a log-concave measure with E[μ] = 0 and
Var[μ] = 1, then

P(Tμ > t) < Ce−ct .

Remark 1.3. The above result is tight up to the constants c,C. To see this, let μ be the measure whose density is
1

2
√

2
e−|x|/√2, and let X have the law μ. Then one has

P
(|X| > x

)
> 0.5e−c1x

for some c1 > 0. For each x, t > 0 define the events

At = {Tμ > t}, Bt,x = {∃s < t such that |Ws | > x
}
.
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By combining the sub-Gaussian tail decay of the distribution of Wt with Doob’s martingale inequality (see [15],
Theorem II.1.7), we have

P(Bt,x) < C2e
−c2x

2/t

for some C2, c2 > 0. Using a union bound, we have for all t > 0,

P
(|X| > x

) = P
(|WTμ | > x

) ≤ P(At ) + P(Bt,x)

and therefore

P(At ) ≥ 0.5e−c1x − C2e
−c2x

2/t .

By optimizing over x we get

P(Tμ > t) ≥ C′e−c′t , ∀t > 0

for some constants C′, c′.

For log-concave measures whose modulus of log-concavity is bounded from below, the stopping time will be
bounded according to the following tight estimate:

Theorem 1.4. Let σ > 0. Let μ be a centered probability measure which admits a density satisfying

μ(dx)

dx
= e−x2/(2σ 2)−Φ(x),

where Φ : R→R∪ {+∞} is a convex function. Then one has almost surely,

Tμ ≤ σ 2.

Remark 1.5. The above bound is tight, as demonstrated by the case that μ is a Gaussian measure whose variance
is σ 2.

For a Borel measure μ on R, we denote by Supp(μ) the support of μ which is the minimal closed set of full
measure. Our next task is to address measures whose support is a compact set. For such measures we can give
deterministic bounds on the stopping time if the measure is either log-concave or absolutely continuous with respect
to the Lebesgue measure with density bounded between two constants in an interval. This is summarized in the next
two theorems:

Theorem 1.6. Let μ be a measure on R which satisfies:

(i) Supp(μ) is an interval contained in [−L,L] for some L > 0.
(ii) μ is absolutely continuous with respect to the Lebesgue measure and α ≤ μ(dx)

dx
≤ β for all x ∈ Supp(μ). Then,

Tμ ≤ 2L2 β

α

almost surely.

Theorem 1.7. Let μ be a log concave measure on R with Supp(μ) ⊆ [−L,L] for some L > 0. Then,

Tμ ≤ 2L2.

almost surely.
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Remark 1.8. The bound of the above theorem is tight up to the constant 2. Indeed, let μ be the uniform measure over

an interval of length 2L. Then we have E[Tμ] = Var[μ] = L2

3 , therefore it cannot be the case that Tμ < L2

3 almost
surely.

The structure of the remainder of this note is the following: In Section 2 we construct the stopping time Tμ and
prove Theorem 1.1. Section 3 deals with log-concave measures, in this section we prove Theorems 1.2 and 1.4. In
Section 4 we prove Theorems 1.6 and 1.7. In Section 5, we define the “Markov property” satisfied by our construction
and relate our construction to existing constructions of Skorokhod embeddings in the context of this definition. In the
Appendix, we fill in some missing details left open in the construction of Tμ.

Throughout this note, we use the following notation: for an Itô process Xt , we denote by dXt the differential of Xt ,
and by [X]t the quadratic variation of Xt . For a pair of continuous time stochastic processes Xt,Yt , the quadratic
covariation will be denoted by [X,Y ]t . For a measure μ on R, we denote by E[μ] and Var[μ] its expectation and
variance respectively. By μ(dx)

dx
we denote the Radon–Nikodym density of μ with respect to the Lebesgue measure at

the point x and likewise by μ(dx)
ν(dx)

we denote the density of μ with respect to ν at x. When we write X ∼ μ we mean
that the random variable X is distributed according to the law of the measure μ. As a convention, when stating that
a relation between two random variables (e.g., equality or inequality) holds, we mean that this relation holds almost
surely unless stated otherwise.

2. Construction of the embedding

The goal of this section is to construct the stopping time Tμ and to establish some of its basic properties.
Let us briefly describe the idea behind our construction. Given a measure μ, we will construct a random one-

parameter family of measures, {μt }t≥0 such that μ0 = μ, and for which there exists some random time T > 0 with
E[T ] < ∞ such that the density μt (dx)

μ(dx)
is a Gaussian density for all 0 ≤ t < T and μt is a Dirac δ-measure for t ≥ T .

Moreover,

(i) For any measurable A ⊂R, the process μt∧T (A) is a martingale.
(ii) The process W = {∫

R
xμt (dx)}t≥0 is a Brownian motion for 0 ≤ t < T .

(iii) μt converges (in L2) to a Dirac δ-measure μT as t → T .
(iv) The process {μt } is an adapted process with respect to the filtration generated by the Brownian motion W .

By properties (i), (iii) and with the help of the optional stopping theorem we will deduce that for a measurable
set A, one has E[μT (A)] = μ(A). Recall that T is the time in which μt becomes a Dirac measure which in turn tells
us that P(

∫
R

xμT (dx) ∈ A) = E[μT (A)]. In other words,
∫
R

xμT (dx) will have the law μ. Property (ii) will ensure
us that this quantity is, in fact, a Brownian motion taken at time T , and property (iv) will ensure us that no “extra
randomness” is used. The construction of the densities Ft(x) = μt (dx)

μ(dx)
is best described in formula (5) below, and the

time T = Tμ will be defined as the time in which the solution “explodes” (hence, the solution ceases to exist).
The measure-valued process μt will be a essentially continuous time Markov process (see Section 5 for details).

Loosely speaking, the transition rule of this Markov process will be such that given the measure μt and the Brow-
nian increment dWt , μt+dt will be the unique measure whose density with respect to μt is a linear function whose
coefficients are chosen so that μt+dt is a probability measure and so that E[μt+dt ] = E[μt ] + dWt .

We begin with some definitions. Let μ be a probability measure on R, satisfying (1). For c ∈ R and b ≥ 0, we write

Vμ(b, c) =
∫
R

ecx−(bx2)/2μ(dx)

and define two functions,

aμ(b, c) = V −1
μ (b, c)

∫
R

xecx−(bx2)/2μ(dx),

and

Aμ(b, c) = V −1
μ (b, c)

∫
R

(
x − aμ(b, c)

)2
ecx−(bx2)/2μ(dx).



Skorokhod embeddings 1263

Note that aμ(0,0) = ∫
R

xμ(dx) = 0 and Aμ(0,0) = ∫
R

x2μ(dx). It is easy to verify that the assumption (1) implies
that the functions Vμ, aμ and Aμ are smooth functions in the domain (b, c) ∈ (0,∞) ×R.

Let Wt be a standard Wiener process and consider the following system of stochastic differential equations:

c0 = 0, dct = A−1
μ (bt , ct ) dWt + A−2

μ (bt , ct )aμ(bt , ct ) dt,

b0 = 0, dbt = A−2
μ (bt , ct ) dt. (2)

First, we will explain why the solution exists under a stronger assumption, namely, that μ has some finite expo-
nential moment. The proof for the more general case, assuming only that the second moment exists, is left for the
Appendix. Assume that there exists a constant δ > 0 such that

∫
R

(
eδx + e−δx

)
μ(dx) < ∞.

Under this assumption, it is not hard to check that the functions A−2
μ (b, c) and aμ(b, c) are smooth functions on the

set

(b, c) ∈ (
(0,∞) ×R

) ∪ ({0} × [−δ/2, δ/2]).
Since d

dt
bt |t=0 > 0, these functions can be modified so that they are smooth on the set [0,∞)×R without affecting the

solution. In this case, we can use a standard existence and uniqueness theorem (see e.g., [13], Section 5.2) to ensure the
existence and uniqueness of a solution on some interval [0, t0) where t0 is an almost-surely positive random variable.

Remark 2.1. Note that the fact that δ > 0 is crucial for this argument, and the existence would not generally be true if
δ = 0. In general, the functions Aμ,aμ may not be defined in any neighbourhood of (0,0) of the form [0, ε]× (−ε, ε),
and are only bounded in parabolic sets the form {(b, c); εc2 < b}. A-priori, in order to ensure the existence of the
solution, one has to prove that (bt , ct ) remain in such a set. This will be done in the Appendix in an indirect fashion.

We are now ready to define our stopping time Tμ: it will be defined as the supremum over the set of times in
which the solution to (2) exists (and define Tμ = ∞ if the solution exists for all t ≥ 0). It is not hard to verify that
the functions A−2

μ (b, c) and aμ(b, c) are smooth functions on any set in which b is bounded away from zero. Since bt

is increasing and since d
dt

bt |t=0 > 0, it follows that for any point t in which A−2
μ (bt , ct ) > 0 there exists some ε > 0

such that the solution may be continued in the interval [t, t + ε]. Consequently, we see that if one defines

Tμ = sup
{
t ≥ 0;Aμ(bt , ct ) > 0

}
, (3)

then almost surely, the solution of (2) exists exactly in the interval [0, Tμ). Our next main goal is to show that WTμ

has the law μ. We abbreviate T = Tμ.
We begin with the construction a 1-parameter family of measures μt by writing

Ft(x) = V −1
μ (bt , ct )e

ct x−(bt x
2)/2 (4)

and defining the measure μt by,

μt(dx)

μ(dx)
= Ft(x)

for all 0 ≤ t < T . Note that, by the above definitions, we have

μt(R) =
∫
R

Ft (x)μ(dx) = V −1
μ (bt , ct )

∫
R

ect x−(bt x
2)/2μ(dx) = 1

hence μt is a probability measure. Also, abbreviate

at = aμ(bt , ct ), At = Aμ(bt , ct ), Vt = Vμ(bt , ct ).
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This gives by definition

at =
∫
R

xμt (dx), At =
∫
R

(x − at )
2μt(dx)

hence at and At are respectively the expectation and the variance of the measure μt .
The following lemma may shed some light on this construction.

Lemma 2.2. For all t ∈ [0, T ) and for all x ∈ R, the process Ft(x) satisfies the following set of equations:

F0(x) = 1, dFt (x) = (x − at )A
−1
t Ft (x) dWt ,

at =
∫
R

xFt (x)μ(dx), At =
∫
R

(x − at )
2Ft(x)μ(dx), (5)

moreover, if ξ(x) is a function satisfying |ξ(x)| ≤ C|x|p for some constants C,p > 0 then one has for all t > 0,

d

∫
R

ξ(x)μt (dx) =
∫
R

ξ(x) dFt (x)μ(dx). (6)

Proof. Fix x ∈ R. We will show that dFt (x) = (x − at )A
−1
t Ft (x) dWt . The correctness of the other equations is

obvious. Define,

Gt(x) = VtFt (x) = ect x−(bt x
2)/2.

Equation (2) clearly implies that [b]t = 0. Moreover,

dct = A−1
t dWt + A−2

t at dt.

It follows that,

d[c]t = A−2
t dt.

Using Itô’s formula, we calculate

dGt(x) =
(

x dct − 1

2
dbtx

2 + 1

2
x2 d[c]t

)
Gt(x)

=
(

xA−1
t dWt + xA−2

t at dt − 1

2
A−2

t x2 dt + 1

2
A−2

t x2 dt

)
Gt(x)

= x
(
A−1

t dWt + A−2
t at dt

)
Gt(x).

Next, we claim that we may apply a stochastic Fubini theorem to get

d

∫
R

Gt(x)μ(dx) =
∫
R

dGt(x)μ(dx).

Indeed, since Gt(x)2 ≤ 1 almost surely for all x, t , it is easy to verify that the conditions of [18], Theorem 2.2, hold
and the last equation follows. Therefore, we can calculate

dVt = d

∫
R

ect x−(bt x
2)/2μ(dx)

=
∫
R

dGt(x)μ(dx) =
∫
R

x
(
A−1

t dWt + A−2
t at dt

)
Gt(x)μ(dx)

= Vtat

(
A−1

t dWt + A−2
t at dt

)
.
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So, using Itô’s formula again,

dV −1
t = −dVt

V 2
t

+ d[V ]t
V 3

t

= −V −1
t at

(
A−1

t dWt + A−2
t at dt

) + V −1
t A−2

t a2
t dt.

Applying Itô’s formula one last time yields,

dFt (x) = d
(
V −1

t Gt (x)
)

= Gt(x)dV −1
t + V −1

t dGt (x) + d
[
V −1,G(x)

]
t

= −V −1
t at

(
A−1

t dWt + A−2
t at dt

)
Gt(x) + V −1

t A−2
t a2

t Gt (x) dt

+ V −1
t x

(
A−1

t dWt + A−2
t at dt

)
Gt(x) − A−2

t at xV −1
t Gt (x) dt

= A−1
t dWt (x − at )Ft (x).

This finishes the proof of formula (5). In order to prove (6), we recall that for any t > 0 one has bt > 0. Consider the
expression

ψt(x) := ξ(x)A−1
t (x − at )Ft (x)

and fix some t0 > 0. Clearly, since |ξ(x)| < C|x|p and since Ft0 has a sub-Gaussian tail, we have that ψt0(·) is bounded
by some constant, say M . Define the stopping time

τ = inf
{
s > t0; ∃x0 such that ψt(x0) ≥ 10M

}
.

By definition, ψt(x) is bounded in the interval t0 < t < τ , and we can invoke a standard stochastic Fubini theorem
(e.g., [18], Theorem 2.2) to get

∫ τ∧s

t0

∫
R

ψt(x)μ(dx)dWt =
∫
R

∫ τ∧s

t0

ψt(x) dWtμ(dx).

By continuity we have τ > t0 almost surely, so by taking the limit s → t0 we conclude that for all t > 0 one has

d

∫
R

ξ(x)Ftμ(dx) =
∫
R

ξ(x) dFt (x)μ(dx)

and equation (6) follows. The lemma is complete. �

At this point, we would like to formally extend the definition of μt to t ≥ T . To that end, fix a measurable set
B ⊂R and consider the process μt(B). According to the above lemma we have

dμt(B) =
∫

B

dFt (x)μ(dx) = A−1
t

∫
B

(x − at )Ft (x)μ(dx)dWt

hence, this process is a local martingale. Recall that μt is almost surely a probability measure, which implies that
μt(B) ∈ [0,1]. The martingale convergence theorem thus implies that the limit

μT (B) := lim
t→T − μt(B)

almost surely exists. Finally, we define for all t > T , μt := μT . Note that, at this point, μT is a set function defined
on measurable sets (later on we will establish that it is a measure). Now, since every bounded local martingale is also
a martingale, we establish the following result:

Lemma 2.3. Let B ⊂R
n be measurable. Then μt∧T (B) is a martingale.
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The next lemma is a simple calculation that extracts one of the main points of the construction: the process of the
centers of mass of μt is a Brownian motion.

Lemma 2.4. For all 0 ≤ t < T , one has at = Wt .

Proof. Using formulas (5) and (6), we calculate

dat = d

∫
R

xFt (x)μ(dx) =
∫
R

x dFt (x)μ(dx)

=
(∫

R

x(x − at )A
−1
t Ft (x)μ(dx)

)
dWt .

Now, by the definition of at , one has
∫
R

at (x − at )A
−1
t Ft (x)μ(dx) = A−1

t

(
atμt (R) −

∫
R

xμt (dx)

)
= 0.

Joining the two previous equations together gives

dat =
(∫

R

(x − at )
2A−1

t Ft (x)μ(dx)

)
dWt

= A−1
t

(∫
R

(x − at )
2Ft(x)μ(dx)

)
dWt = dWt . (7)

�

Next, we prove:

Lemma 2.5. One has for all 0 < t < T ,

dAt =
(∫

R

(x − Wt)
3μt(dx)

)
A−1

t dWt − dt. (8)

Moreover, T is almost-surely finite.

Proof. Using formulas (5) and (6), we have for all t > 0,

dAt = d

(∫
R

x2Ft(x)μ(dx) − a2
t

)
= d

(∫
R

x2Ft(x)μ(dx) − W 2
t

)

=
(∫

R

x2A−1
t (x − Wt)μt (dx)

)
dWt − 2Wt dWt − dt

(
by definition of At and since

∫
Wt(x − Wt)μt (dx) = 0

)

=
(∫

R

x2(x − Wt)μt (dx)

)
A−1

t dWt − 2Wt

(∫
R

x(x − Wt)μt (dx)

)
A−1

t dWt − dt

=
(∫

R

(
x2 − 2Wtx + W 2

t

)
A−1

t (x − Wt)μt (dx)

)
dWt − dt

=
(∫

R

(x − Wt)
3μt(dx)

)
A−1

t dWt − dt

which settles (8).
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To see that T is almost surely finite, write Xt = At + t and XT = T . The above equation, along with the fact that
limt→T − At = 0, suggests that Xt∧T is a local-martingale, and since it is bounded from below, it is also a supermartin-
gale. Suppose by contradiction that with positive probability, a solution exists for all t > 0. This implies that At exists
and is positive for all t > 0. By the martingale convergence theorem, we have

P

(
lim

t→∞Xt exists
∣∣|∀t > 0,Xt ≥ 0

)
= 1,

but observe that when limt→∞ Xt exists then limt→∞ At = −∞ which is clearly impossible. The lemma is com-
plete. �

We are finally ready to prove that Tμ is a Skorokhod embedding.

Proof of Theorem 1.1. Part (i) of the theorem is obvious from the definition of T . To prove part (ii), let ϕ(x) be a
smooth, compactly supported function. We have for all 0 ≤ t < T ,

∣∣∣∣
∫
R

ϕ(x)μt (dx) − ϕ(Wt)

∣∣∣∣ =
∣∣∣∣
∫
R

(
ϕ(x) − ϕ(at )

)
μt(dx)

∣∣∣∣
≤ sup

x∈R

∣∣ϕ′(x)
∣∣ ∫

R

|x − at |μt(dx) ≤ sup
x∈R

∣∣ϕ′(x)
∣∣A1/2

t ,

where in the first passage we used Lemma 2.4 and in the last passage we used the Cauchy–Schwarz inequality and the
fact that Var[μt ] = At . Since limt→T − At = 0, it follows that

lim
t→T −

∫
ϕ(x)μt (dx) = ϕ(WT ). (9)

Therefore μT is a Dirac probability measure with an atom at WT (and as promised above, we have established that it
is a measure). Recall that for a measurable set B , μt∩T (B) is a martingale (Lemma 2.3). It follows that

∫
ϕ(x)μt (dx)

is also a martingale. By the optional stopping theorem,

E

[∫
R

ϕ(x)μT ∧t (dx)

∣∣∣Fs∧T

]
=

∫
R

ϕ(x)μT ∧s(dx), ∀t > s ≥ 0. (10)

Now, since ϕ is bounded and since μt∧T is a probability measure, one has

∫
R

∣∣ϕ(x)
∣∣μT ∧t (dx) ≤ sup

x∈R

∣∣ϕ(x)
∣∣, ∀t ≥ 0

and the dominated convergence theorem implies that

lim
t→∞E

[∫
R

ϕ(x)μT ∧t (dx)

∣∣∣Fs∧T

]
= E

[
lim

t→T −

∫
R

ϕ(x)μt (dx)

∣∣∣Fs∧T

]

= E

[∫
R

ϕ(x)uT (dx)

∣∣∣Fs∧T

]

for all s ≥ 0 where we used the fact that T is almost surely finite, proven in Lemma 2.5, with formula (9). Combining
the last equality with (10) gives,

E

[∫
R

ϕ(x)uT (dx)

∣∣∣Fs∧T

]
=

∫
R

ϕ(x)μs∧T (dx) (11)

for all s ≥ 0. Taking s = 0 proves part (ii) of the theorem.
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To prove part (iii) of the theorem, observe that it follows from the optional stopping theorem that

E
[
W 2

T ∧t

] = E[T ∧ t], ∀t > 0. (12)

By taking the limit t → ∞ on both sides, we see that it suffices to show that

lim
t→∞E

[
W 2

T ∧t

] = E
[
W 2

T

] = Var[μ]. (13)

To that end, for all t > 0 define Xt = WT −Wt∧T . Equation (11) implies that for any compactly supported continuous
test function ϕ, one has

E
[
ϕ(Xs)|Fs∧T

] =
∫
R

ϕ(x − Ws∧T )us∧T (dx), ∀s ≥ 0,

where we used the fact that Ws∧T is Fs -measurable. By considering a monotone increasing sequence ϕn(x) of posi-
tive, compactly supported functions satisfying limn→∞ ϕn(x) = x2 for all x ∈ R, the monotone convergence theorem
together with the last equation yield

Var[Xs |Fs∧T ] = lim
n→∞E

[
ϕn(Xs)|Fs∧T

]

= lim
n→∞

∫
R

ϕn(x − Ws∧T )us∧T (dx) = As∧T , ∀s ≥ 0

(where we define AT = 0). Moreover, since
∫
R

xus∧T (dx) = Ws∧T , it follows that Cov(Xs,Ws∧T ) = 0 for all s ≥ 0,
which gives

Var[Xs] + Var[Ws∧T ] = Var[μ]
for all s ≥ 0. Consequently,

Var[Wt∧T ] ≤ Var[μ], ∀t ≥ 0

which implies that

lim
t→∞E

[
W 2

T ∧t

] ≤ Var[μ],

where the fact that the limit exists follows from the fact that the limit of the right hand side of formula (12) exists. We
conclude that

E[T ] = lim
t→∞E[T ∧ t] ≤ Var[μ].

Now, since T has a finite first moment, we can use the optional stopping theorem once again with the martingale
W 2

t − t to get

E
[
W 2

T

] = E[T ] (14)

and the theorem is complete. �

3. Log concave measures

We begin by recalling a few basic things about log-concave measures. A log concave measure μ on R is either a Dirac
measure or is absolutely continuous with respect to the Lebesgue measure.

A central tool we will use will be the following well-known estimate, proven via integration by parts:
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Theorem 3.1. Let V : R → R be a strictly convex function, such that
∫
R

e−V (x) dx = 1. Let μ be a probability

measure on R defined by μ(dx)
dx

= e−V (x). Then for every smooth function f :R→ R,

∫
R

(
f (x) −

∫
R

f (x)μ(dx)

)2

μ(dx) ≤
∫
R

(
V ′′(x)

)−1(
f ′(x)

)2
μ(dx).

Remark 3.2. The above theorem is merely the one-dimensional version of a theorem of Brascamp–Lieb from [5].

An application of this theorem with the function f (x) = x gives,

Proposition 3.3. Let φ : R→R∪ {∞} be a convex function and let σ > 0. Suppose that μ is a measure satisfying

μ(dx) = Ze−φ(x)−|x|2/(2σ 2) dx

with Z > 0 being a normalizing constant so that μ is a probability measure. Then one has,

Var[μ] ≤ σ 2.

As a corollary, we have the following:

Corollary 3.4. If μ is a log-concave measure then

At ≤ b−1
t (15)

for all 0 ≤ t < T .

Proof. Recall the formula (4), and apply Proposition 3.3 with σ 2 = 1
bt

. �

Recall that dbt = A−2
t dt . In light of this equation, and with the help of the above corollary, we have the following

bound for T :

Lemma 3.5. There exists a universal constant C > 0 such that the following holds whenever μ is a log-concave
measure: define the stopping time

τ = min
(
inf{t;At ≥ 2},1

)
.

One has almost surely,

T ≤ C + C

τ
.

Proof. If T ≤ 1 then we’re done. Otherwise, recall that

dbt = A−2
t dt (16)

we note that by the definition of τ and by this equation,

bτ =
∫ τ

0
dbt =

∫ τ

0
A−2

t dt ≥
∫ τ

0

1

4
dt ≥ τ

4
.

Combine (16) with equation (15) to get,

d

dt
bt = A−2

t ≥ b2
t .
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Consequently, for all τ < t < T ,

1

bt

= 1

bτ

−
∫ t

τ

(d/(dt))bt

b2
t

dt ≤ 1

bτ

− (t − τ) ≤ 4

τ
− (t − τ)

and since 1
bt

≥ 0, we conclude that

T ≤ τ + 4

τ
≤ 1 + 4

τ
. �

We are now ready to prove that when μ is log-concave, Tμ has a sub-exponential tail.

Proof of Theorem 1.2. Recall equation (8),

dAt =
(∫

R

(x − Wt)
3μt(dx)

)
A−1

t dWt − dt. (17)

Define St = (
∫
R
(x − Wt)

3μt(dx))A−1
t . A well-known fact about isotropic log-concave measures (see for example

[10], Lemma 5.7) is that for every p ≥ 2 there exists a constant c(p) such that for every log-concave measure ν on R,
∫
R

∣∣x −E[ν]∣∣pν(dx) ≤ c(p)Var[ν]p/2.

Using the above with the measure μt and with p = 3 gives |St | ≤ C1A
1/2
t for some universal constant C1 > 0 and for

all t > 0. With the definition of τ , this gives

St < 2C1, ∀0 ≤ t < min(τ, T ). (18)

Next, define Yt = At + t − 1. By (8), we learn that Yt is a martingale. By the Dambis/Dubins–Schwarz theorem,
there exists a monotone time change Θ(t) such that YΘ(t) ∼ W̃t where W̃t is a standard Wiener process defined in the
interval [0,Θ−1(T )). Moreover,

Θ ′(t) =
(

d

dt
[Y ]t

)−1

= S−2
t .

Equation (18) implies,

Θ(t) ≥ c2t, ∀0 ≤ t ≤ min(τ, T ) (19)

for some universal constant c2 > 0. An application of the so-called reflection principle now gives,

P

(
max

t∈[0,p]
W̃t ≥ 2

)

= 2P(W̃p ≥ 2) < C3e
−1/p

for some universal constant C3 > 0, which implies that

P

(
1

τ
> s

)
≤ P

(
max

0≤t≤s−1
Yt > 2

)

≤ P

(
max

0≤c2t≤s−1
YΘ(t) > 2

)
< C3e

−c2s .

Combining the last equation with Lemma 3.5 finishes the proof. �



Skorokhod embeddings 1271

We move on to proving Theorem 1.4, which states that if the density of μ with respect to some Gaussian measure
is a log-concave function, then T is bounded by the variance of this Gaussian measure.

Proof of Theorem 1.4. Thanks to the assumption of the theorem and to equation (4), we know that for all 0 ≤ t < T ,
μt has the form

μt(dx)

dx
= e−(bt /2+1/(2σ 2))x2−Φt (x)

for some Φt :R→ R∪ {∞} convex. Along with Proposition 3.3, this gives

A−1
t ≥ σ−2 + bt , ∀0 ≤ t < T .

Define et = σ−2 + bt . Combine this with the equation defining bt , dbt = A−2
t dt and with equation (15) to get,

d

dt
et = A−2

t ≥ e2
t .

Therefore, for all t < T one has

1

et

= 1

e0
−

∫ t

0

(d/(dt))et

e2
t

dt ≤ 1

σ 2
− t.

Since 1
et

> 0 for all t < T , this implies

T ≤ σ 2. �

4. Measures with bounded support

Let μ be a measure supported in the interval [−L,L]. Our main mean of using this fact will be the obvious observation
that

At ≤ L2, ∀0 ≤ t < T . (20)

The next lemma will be the main ingredient allowing us to take advantage of the fact that a measure has a density
bounded between two constants on its support:

Lemma 4.1. Suppose that μ is absolutely continuous with respect to the Lebesgue measure on R supported on some
interval I and suppose that f (x) = μ(dx)

dx
satisfies

0 < α ≤ f (x) ≤ β, ∀x ∈ I.

Let a ∈ R and b > 0 and let ν be a probability measure defined by the equation

ν(dx)

μ(dx)
= Z−1e−(b/2)(x−a)2

,

where Z > 0 is the normalizing constant. Then

Var[ν] ≤ β

αb
.

Proof. Define

x0 =
∫
I
xe−(b/2)(x−a)2

dx∫
I
e−(b/2)(x−a)2

dx
.
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An application of Proposition 3.3 with the function 1{x∈I }e−(b/2)(x−a)2
gives

∫
I
(x − x0)

2e−(b/2)(x−a)2
dx∫

I
e−(b/2)(x−a)2

dx
≤ 1

b
.

Now, we have

Var[ν] ≤
∫

I

(x − x0)
2ν(dx) =

∫
I
(x − x0)

2e−(b/2)(x−a)2
μ(dx)∫

I
e−(b/2)(x−a)2

μ(dx)

≤ β

α

∫
I
(x − x0)

2e−(b/2)(x−a)2
dx∫

I
e−(b/2)(x−a)2

dx
≤ β

αb
.

�

By combining the above lemma with equation (20), we establish the bound for measures supported on an interval
whose density is bounded between two constants:

Proof of Theorem 1.6. We conclude from the previous lemma that for all 0 ≤ t < T ,

At ≤ β

α
b−1
t . (21)

Using this estimate and the estimate (20) with the equation (2) for dbt

d

dt
bt = A−2

t ≥ max

(
α2

β2
b2
t ,

1

L4

)
. (22)

Let g(x) be a function satisfying

g′(0) = 1

L4
, g′(x) = α2

β2
g(x)2.

Then,

g(x) = 1

(L2α)/β − (α2/β2)x
.

Define t0 = L2β
α

and note that, by (22),

bt0 ≥ β

αL2
= g(0).

By a standard comparison theorem

bt+t0 ≥ g(t), ∀0 ≤ t < T ,

which implies that for some t1 ≤ 2L2 β
α

, one has

lim
t→t1

bt = +∞.

In light of formula (21), this implies that

T ≤ 2L2 β

α

and the proof is complete. �
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The proof of Theorem 1.7 follows the same lines, only Lemma 4.1 is replaced by Proposition 3.3:

Proof of Theorem 1.7. Using Corollary 3.4 and equation (20) gives,

A−2
t ≥ max

(
b2
t ,

1

L4

)
.

Plugging this into the formula for dbt , equation (2), gives

d

dt
bt ≥ max

(
b2
t ,

1

L4

)
,

now follow the proof of Theorem 1.6, noting that equation (22) holds with α
β

= 1. �

5. Embeddings with a Markov property

The goal of this section is to suggest a new point of view on some existing solutions to the Skorokhod embedding
problem, including our solution. This point of view is related to another notable property admitted by our construction,
namely, that the process defined by considering the measure μ conditioned on the filtration Ft is Markovian. By
introducing two definitions related to this property, we will be able to view our construction as a member of a more
general family of solutions to the Skorokhod problem; this is a family of solutions which satisfy a stochastic flow
equation similar to (5), each member of which is associated with a different kernel. We will show that this family
contains two known solutions from the literature, constructed by Azéma–Yor [3] and by Bass [4].

Let Wt be a standard Wiener process with a corresponding filtration Ft . Let M be the space of Borel probability
measures μ on R such that Var[μ] < ∞ and let M′ ⊂ M be the subset of measures whose centroid is the origin. Let
T be the space of F -stopping times. We define a Skorokhod embedding scheme as a function T : M′ → T taking μ

to a stopping time T (μ) such that WT (μ) has law μ. In the following, we will abbreviate T = T (μ) when clarity is
not affected.

For a measure μ, a Skorokhod embedding scheme T and any t > 0, define a random measure μt = μt [μ,T ] by

μt(E) = μt [μ,T ](E) := P(WT (μ) ∈ E|Ft ) (23)

for all measurable E ⊂R. It is easy to verify that T (μ) is uniquely determined by the measure μt using the formula

T (μ) = sup
{
t |Var[μt ] > 0

}
. (24)

For a measure ν ∈ M and s ∈ R, denote by Lsν the measure ν translated by s. Also define C(ν) := L−E[ν]ν ∈ M′,
hence the measure ν translated by −E[ν] so that it becomes centered. Our first definition reads

Definition 5.1 (Markov property). We will say that a Skorokhod embedding scheme T has the Markov property if for
every measure μ ∈M′ and every t > 0, we have almost surely that

(
μt+s[μ,T ])

s≥0|Ft ∼ (
LE[ν]μs

[
C(ν), T

])
s≥0,

where in the right hand side, the measure ν is chosen to be the measure μt [μ,T ]. In other words, almost surely the
sequence of measures μt+s[μ,T ] (as a sequence parametrized by s), conditioned of Ft , has the same distribution as
the sequence of measures μs[C(ν), T ], with the initial measure ν being μt , up to translations.

Roughly speaking, an embedding scheme has the Markov property if μt+dt depends only on μt and on dWt . Next,
we denote by MF the space of measurable functions f : R→R. The main definition we are interested in is:
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Definition 5.2 (Analytic Markov property). A Skorokhod embedding scheme T has the analytic Markov property if
there exists a function K : M → MF such that for every μ ∈ M the associated stopping time T and the family of
probability measures {μt }t>0 defined in (23) satisfy

μt(A) = μ0(A) +
∫ t

0

(∫
A

K[μs](x)μs(dx)

)
dWs (25)

for all measurable A ⊂R and for all t > 0. We will say that K is the kernel of T .

It is clear that a solution admitting the analytic Markov property, will also admit the Markov property. Equation
(25) can be informally understood as μt+dt = (1 + K[μt ]dWt)μt . So, the function K can be regarded as a transition
rule whose randomness comes from the increment dWt .

In light of equation (5), the stopping time Tμ constructed in Section 2 admits the analytic Markov property. In
that case, for every μ ∈ M, the function K[μ] is the unique linear function satisfying

∫
R

K[μ](x)μ(dx) = 0 and∫
R

xK[μ](x)μ(dx) = 1.

Remark 5.3. The above definitions may be natural in a financial context: when one chooses a market strategy that
maximizes the expectation of a certain quantity, in many cases the optimal strategy need not take the past into account,
since the market, Wt , is presumably a Markov process.

This definition gives rise to an entire family of Skorokhod embeddings, as demonstrated by the following proposi-
tion. We will omit its proof, as it follows the same lines as the ones described in Section 2.

Proposition 5.4. Suppose that for a function K : M → MF , equation (25) has a unique solution for any given
μ0 = μ ∈ M′. Then the stopping time induced by equations (24) and (25) is a Skorokhod embedding if and only if the
following conditions hold:

(i)
∫
R

K[μ](x)μ(dx) = 0 for every μ ∈M,
(ii)

∫
R

xK[μ](x)μ(dx) = 1 for every μ ∈M, and
(iii) E[sup{t |Var[μt ] > 0}] < ∞.

Remark 5.5. Condition (i) ensures that μt is almost surely a probability measure for all 0 < t < T . Following the
same lines as in Lemma 2.4, one can see that condition (ii) implies that

∫
R

xμt (dx) = Wt . Condition (iii) amounts to
the fact that E[T ] < ∞.

5.1. Bass’s embedding

We now sketch the argument that the embedding introduced by Bass ([4]) fits in our framework of embeddings with
an analytic Markov property.

Let Φ : R→ [0,1] be the standard Gaussian cumulative distribution function. For a measure ν, let Ψν :R→ [0,1]
be its cumulative distribution function, and let gν(x) := Φ−1(Ψν(x)).

Fix a measure μ ∈ M′ and a standard Brownian motion {Bτ }1
τ=0. The idea of Bass’s embedding is the following:

it is clear by definition that g−1
μ (B1) ∼ μ, therefore, if we define

Mτ = E
[
g−1

μ (B1)|Bτ

]
, 0 ≤ τ ≤ 1

then Mτ is a martingale satisfying M1 ∼ μ. The idea is now to construct a monotone change of time t (τ ) such that
{Mτ(t)}t (1)

t=0 has the law of a Brownian motion stopped at t (1), where τ(t) is the inverse of t (τ ).
According to a calculation made in Bass’s work [4], Lemma 1, we have that

Mτ =
∫ τ

0
a(τ,Bs) dBs,
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where

a(τ, y) =
∫
R

q1−τ (z − y)g−1
μ (z) dz,

with

qs(y) = −(2πs)−1/2(y/s)e−y2/2s .

The same calculation also gives that

dτ

dt
= a

(
τ(t),Bτ (t)

)−2
.

Now, suppose that Wt is a standard Brownian motion, into which we wish to embed the measure μ. Then according
to Bass’s work, we can construct a coupling between {Bτ } and {Wt } such that Wt = Mτ(t) for all t ≤ t (1). Since
M1 ∼ μ, we will have that Wt(1) ∼ μ, thus Tμ = t (1) is a solution to Skorokhod problem (the integrability follows
from [4], Lemma 1, Lemma 2).

Now define μt as in (23). Since the distribution of B1 conditioned on Bτ is N(Bτ ,
√

1 − τ), and since WTμ =
g−1

μ (B(1)), we deduce that almost surely for all 0 ≤ t ≤ Tμ, the push forward of μτ(t) under gμ has the law
N(Bτ (t),

√
1 − τ(t)). In other words, one has

dg�
μμτ(t)

dx
= 1√

2π(1 − t)
exp

(
−|x − Wt |2

2(1 − t)

)
, (26)

where g�ν denotes the push forward of the measure ν under the map g. Using Itô’s formula (see [8], Lemma 7, for a
detailed calculation), we have

d

(
g�

μμτ(t)(dx)

dx

)
= (1 − t)−1(x − Wt)

(
g�

μμτ(t)(dx)

dx

)
dWt (27)

for all x ∈R. By using the change of variables x = gμ(y) and dividing by the density of μ with respect to the Lebesgue
measure, we get

d

(
μτ(t)(dy)

μ(dy)

)
= (1 − t)−1(gμ(y) − Wt

)(μτ(t)(dy)

μ(dy)

)
dWt , ∀y ∈ Supp(μ)

and by integrating with respect to time, we learn that for all measurable A ⊂R, one has

μτ(t)(A) = μ(A) +
∫ t

0
(1 − s)−1

∫
A

(
gμ(x) − Ws

)
μτ(s)(dx) dWs. (28)

Finally, according to equation (26) we have that gμ ◦ g−1
μ(τ(t))

pushes forward N(0,1) to N(Wt ,
√

1 − t) and by the
monotonicity of gμ one has that

gμ ◦ g−1
μ(τ(t))(y) = Wt + √

1 − ty, ∀y ∈R

and thus

gμτ(t)
(x) = (1 − t)−1/2(gμ(x) − Wt

)
, ∀x ∈ Supp(μτ(t)).

Using this, equation (28) becomes

μτ(t)(A) = μ(A) +
∫ t

0
(1 − s)−1/2

∫
A

gμτ(s)
(x)μτ(s)(dx) dWs. (29)
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In view of equation (25), we have for Bass’s scheme

KBass[μ](x) := Cμgμ(x),

where Cμ is the unique constant chosen such that condition (ii) of Proposition 5.4 holds.

Remark 5.6. Equation (27) emphasizes a further connection between our construction and the one of Bass. In view
of the similarity between this equation and equations (5), we see that while our embedding, in an infinitesimal time
increment, the update of the measure μt corresponds to its multiplication by a linear function, Bass’s embedding
corresponds to multiplying the push forward of this measure under gμt by a linear function. Nevertheless, since the
function gμt changes over time, it becomes clear that those two constructions are generally not the same up to any
transformation of time and space.

5.2. The Azéma–Yor embedding

When the measure μ is finitely supported, it turns out that the embedding introduced by Azéma and Yor in [3] satisfies
the Markov property as well.

For a finitely supported measure ν let l(ν) := min{Supp(ν)} be the left-most atom of ν. In case that the cardinality
of Supp(ν) is at least 2, define K[ν] to be the unique density supported on Supp(ν) satisfying:

(i) K[ν] is constant on Supp(ν) \ {l(ν)}.
(ii)

∫
R

K[ν](x)ν(dx) = 0.
(iii)

∫
R

xK[ν](x)ν(dx) = 1.

Remark that as long as Var[μt ] > 0, the cardinality of Supp(μt ) has to be at least 2, therefore equation (25) has a
solution corresponding to the function K . We claim that this solution coincides with the Azéma–Yor solution to the
Skorokhod problem. To see that, fix a measure μ and let T be the corresponding stopping time constructed according
to this embedding scheme. Let μt be defined as in (23). Moreover, define Gt(x) = μt (dx)

μ(dx)
. By definition of μt , we

have

Gt(x) = P(WT = x|Ft )

μ({x}) , ∀x ∈ Supp(μ)

and consequently Gt(x) is a martingale for all x. Moreover, it is evident by the construction of the embedding that
Gt(x) is continuous and therefore there exists a predictable process Ft(x) such that

dGt(x) = Ft (x)Gt (x) dWt .

Next, according to the construction of this embedding (the reader may refer to [12], Section 4.1, for an accessible
description of this construction in the case of finite measures), the following holds: For any t > 0, there exists a
number xt such that

Gt(x) = 0, ∀x ∈ Supp(μ) ∩ (−∞, xt ) and

Gt(x) = ct , ∀x ∈ Supp(μ) ∩ (xt ,∞),

where ct is some (random) constant. In other words, Gt is constant on all but the left-most atom of μt . This implies
that for all t , the function Ft is constant on Supp(μt ) \ {l(μt )}, which corresponds exactly to (i) above. Next, since μt

is a probability measure for all, t , we have that
∫
R

Ft(x)μt (dx) dWt =
∫
R

Ft(x)Gt (x)μ(dx)dWt

= d

∫
R

Gt(x)μ(dx) = dμt(R) = 0
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and finally since by definition
∫
R

xμt (dx) = Wt , we also have

∫
R

xFt (x)μt (dx) dWt = d

∫
R

xμt (dx) = dWt

and therefore
∫
R

xFt (x)μt (dx) = 1. We see that conditions (i)–(iii) above hold if K[ν] is replaced by Ft . But, since
those conditions uniquely determine the function Ft on Supp(μt ), this means that

Ft = K[μt ]
which proves that the Azéma–Yor embedding must coincide with the construction corresponding to the kernel K .

Remark 5.7. When the measure μ is not finitely supported, the Azéma–Yor embedding should still admit the Markov
property. However, in general it is not clear to us whether or not it admits the analytic Markov property.

5.3. Other known solutions

It is natural to ask what other known solutions fit under this framework. Let us mention a few examples and questions
(several of which were pointed out to us by an anonymous referee, to whom we are grateful).

• The original solution given by Skorokhod [16], as well is the solution of Hall [9] contain extra randomness (meaning
that T does not deterministically depend on the path of {Wt }), and therefore do not admit the analytic Markov
property.

• The solution of Root [14] seems to admit the Markov property, as suggested by the work of Loynes ([11]): since
the Barrier functions are essentially unique (as shown by Loynes), it follows that the Barrier corresponding to μt

should be identical to the barrier corresponding to μ, translated according to Wt . However, it is not clear to us
whether or not this solution admits the analytic Markov property.

• In the solution of Vallois [17], the fact that μt captures the local times through its support suggests that it may be
Markovian. We cannot determine whether or not it is analytically Markovian.

5.4. Another possible Markovian embedding scheme

It may be natural to consider the following construction: Denote the median of a measure ν by med(ν). Consider the
equation

F0 = 1, dFt = (1{x>med(μt )} − 1{x<med(μt )})B−1
t dWt ,

μt (dx)

μ(dx)
= Ft(x), Bt =

∫
{x>med(μt )}

xμt (dx) −
∫

{x<med(μt )}
xμt (dx)

note that if the solution of the above equations exists for some initial measure μ0 = μ, then conditions (i) and (ii) in
Proposition 5.4 hold if the measure μ has no atoms.

Question 5.8. Does the above construction induce a Skorokhod embedding for measures with no atoms?

Appendix

In this appendix we prove that the equation (2) has a unique solution whenever the second moment of μ is finite.
We begin with observing that it is enough to prove that almost surely, there exists some t0 > 0 such that the equation

has a solution in the interval [0, t0]. Indeed, Aμ(b, c) and aμ(b, c) are smooth functions any set in which b is bounded
away from zero. Since At is continuous with respect to t and since A0 > 0, there will necessarily exist some b′ > 0
such that bt ≥ b′ for all t ≥ t0 (in other words, the only “problematic” point is t = 0, since for any t > 0 the function
μt , surely has finite exponential moments).
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We argue that there exists a function cμ(·, ·) satisfying,

aμ

(
b, cμ(a, b)

) = a (30)

for all b > 0 and a ∈ Conv(Supp(μ)) (the convex hull of the support of μ). Indeed, if we denote that partial derivatives
of aμ by a1(·, ·) and a2(·, ·) a straightforward calculation gives

a2(b, c) = Vμ(b, c)−1
∫
R

(
x − aμ(b, c)

)2
ecx−(bx2)/2μ(dx) = Aμ(b, c) > 0 (31)

for all b > 0. Moreover, it is easy to check that for all b > 0,

lim
c→−∞aμ(b, c) = min Supp(μ) and lim

c→∞aμ(b, c) = max Supp(μ).

Observe also that aμ is continuous on the domain b > 0. It follows from inverse function theorem that the function
cμ exists and is unique. Moreover cμ is continuously differentiable in the second argument for all b > 0 and a ∈
Int(Supp(μ)). Fix a realization of Wt and define a function

F(b, t) = Aμ

(
b, cμ(Wt , b)

)−2

and F(0,0) = A−2(0,0) = Var[μ]−1. We claim that there exists a solution to the equation

d

dt
bt = F(bt , t), b0 = 0 (32)

in an interval t ∈ [0, t0]. Indeed, since the function cμ(w,b) is continuously differentiable with respect to b for
Wt ∈ Supp(μ) (as indicated above), we have that the function F(b, t) is continuously differentiable with respect
to b for all (b,w) ∈ Ω where

Ω = (0,∞) × (
0, sup

{
t;Wt ∈ Supp(μ)

})
.

Consequently, F(b, t) is locally Lipschitz-continuous in the in b on every compact sub-domain of Ω . Moreover, by
the continuity of Wt we conclude also that for all b > 0, the function F(b, t) is continuous with respect to t . An
application of the Picard–Lindelöf theorem (see e.g., [6], Chapter 2) establishes the uniqueness and existence of the
solution of (32).

Next define ct = cμ(Wt , bt ). Our main goal is to show that bt , ct satisfy the equation (2). To that end, we use Itô’s
formula to calculate

dct = c1(Wt , bt ) dWt + 1

2
c11(Wt , bt ) dt + c2(Wt , bt )

d

dt
bt dt,

where c11(·, ·) is the second derivative of cμ with respect to its first variable. According to the inverse function theorem
and using equation (31),

c1(a, b) = Aμ

(
b, cμ(a, b)

)−1
.

Next, we have

a1(b, c) = V −1(b, cμ(a, b)
)(∫

R

x2

2
ecμ(a,b)x−(bx2)/2 dxa −

∫
R

x3

2
ecμ(a,b)x−(bx2)/2 dx

)
.

Differentiate equation (30) to get

a1
(
b, cμ(a, b)

) + a2
(
b, cμ(a, b)

)
c2(a, b) = 0.
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So,

c2(a, b) = a1
(
b, cμ(a, b)

)
a2

(
b, cμ(a, b)

)−1

= Aμ

(
b, cμ(a, b)

)−1
V −1(b, cμ(a, b)

)(∫
R

x2

2
ecμ(a,b)x−(bx2)/2 dxa −

∫
R

x3

2
ecμ(a,b)x−(bx2)/2 dx

)
.

Lastly, we need the second derivative of c with respect to the first variable. One has

c11(a, b) = −a22
(
b, cμ(a, b)

)
/a2

(
b, cμ(a, b)

)3

= Aμ

(
b, cμ(a, b)

)−3
(

Vμ

(
b, cμ(a, b)

)−1
∫
R

(
x3 − ax2)ecμ(a,b)x−(bx2)/2 dx + 2Aa

)
.

We finally get

dct = c1(Wt , bt ) dWt + 1

2
c11(Wt , bt ) dt + c2(Wt , bt )

d

dt
bt dt

= Aμ

(
bt , cμ(Wt , bt )

)−1
dWt

+ 1

2
Aμ(bt , ct )

−3
(

Vμ(bt , ct )
−1

∫
R

(
x3 − Wtx

2)ecμ(Wt ,bt )x−(bt x
2)/2 dx − 2Aμ(bt , ct )Wt

)
dt

+ V −1(bt , ct )

(∫
R

x2

2
ect x−(bt x

2)/2 dxWt −
∫
R

x3

2
ecμ(Wt ,bt )x−(bt x

2)/2 dx

)
Aμ

(
bt , cμ(Wt , bt )

)−3
dt

= Aμ(bt , ct )
−1 dWt + WtAμ(bt , ct )

−2 dt.

In view of (7), we conclude that bt and ct satisfy (2) in some interval [0, t0), which proves the existence and uniqueness
of the solution.
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