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Abstract: In this paper, we consider the well known problem of estimat-
ing a density function under qualitative assumptions. More precisely, we
estimate monotone non-increasing densities in a Bayesian setting and de-
rive concentration rate for the posterior distribution for a Dirichlet process
and finite mixture prior. We prove that the posterior distribution based on
both priors concentrates at the rate (n/ log(n))−1/3, which is the minimax
rate of estimation up to a log(n) factor. We also study the behaviour of
the posterior for the point-wise loss at any fixed point of the support of the
density and for the sup-norm. We prove that the posterior distribution is
consistent for both loss functions.
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1. Introduction

The non-parametric problem of estimating monotone curves, and monotone den-
sities in particular, has been well studied in the literature both from theoretical
and applied perspectives. Shape constrained estimation is fairly popular in the
non-parametric literature and widely used in practice (see Robertson et al.,
1988, for instance). Monotone densities appear in a wide variety of applications
such as survival analysis, where it is natural to assume that the uncensored
survival time has a monotone non-increasing density. In these problems, esti-
mating the survival function is equivalent to estimating the survival time density
say f and the point-wise estimate f(0). It is thus interesting to have a better
understanding of the behaviour of the estimation procedures in this case. An
interesting property of monotone non-increasing densities on R

+ is that they
have a mixture representation pointed out by Williamson (1956)

f(x) =

∫ ∞

0

I[0,θ](x)

θ
dP (θ), (1)
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where P is a probability distribution on R
+ called the mixing distribution. In

order to emphasize the dependence in P , we will denote fP the functions ad-
mitting representation (1). This representation allows for inference based on the
likelihood. Grenander (1956) derived the non-parametric maximum likelihood
estimator of a monotone density and Prakasa Rao (1970) studied the behaviour
of the Grenander estimator at a fixed point. Groeneboom (1985) and more re-
cently, Balabdaoui and Wellner (2007) studied very precisely the asymptotic
properties of the non parametric maximum likelihood estimator. It is proved to
be consistent and to converge at the minimax rate n−1/3 when the support of
the distribution is compact. In their paper, Durot et al. (2012) get some refined
asymptotic results for the supremum norm.

The mixture representation of monotone densities lead naturally to a mix-
ture type prior on the set of monotone non increasing densities with support
on [0, L] or R

+. For example, Ferguson (1983) and Lo (1984) introduced the
Dirichlet Process prior (DP) and Brunner and Lo (1989) considered the special
case of unimodal densities with a prior based on a Dirichlet Process mixture.
The problem of deriving concentration rates for mixtures models has received
a huge interest in the past decade. Wu and Ghosal (2008) studied properties
of general mixture models, Ghosal and van der Vaart (2001) studied the well
known problem of Gaussian mixtures, Rousseau (2010) derived concentration
rates for mixtures of beta distributions, Kruijer et al. (2010) proved good adap-
tive properties of mixtures of Gaussian. Extensions to the multivariate case have
recently been introduced (e.g. Shen et al. (2013)).

Under monotonicity constrained, we derive an upper bound for the posterior
concentration rate with respect to some metric or semi-metric d(·, ·), that is a
positive sequence (ǫn)n that goes to 0 when n goes to infinity such that

En
0 (Π(d(f, f0) > ǫn|Xn)) → 0,

where the expectation is taken under the true distribution P0 of the data X
n and

where f0 is the density of P0 with respect to the Lebesgue measure. Following
Khazaei et al. (2010), we study two families of non-parametric priors on the class
of monotone non-increasing densities. Interestingly in our setting, the so called
Kullback-Leibler property, that is the fact that the prior puts enough mass on
Kulback-Leibler neighbourhoods of the true density, is not satisfied. Thus, the
approach based on the seminal paper of Ghosal et al. (2000) cannot be directly
applied. We therefore use a modified version of their results and obtain for the
two families of prior a concentration rate of order (n/ log(n))−1/3 which is the
minimax estimation rate up to a log(n) factor under the L1 or Hellinger distance.
We extend these results to densities with support on R

+ and prove that under
some conditions on the tail of the distribution, the posterior still concentrates
at an almost optimal rate. To the author’s knowledge, no concentration rates
have been derived for monotone densities on R

+.
Interestingly, the non-parametric maximum likelihood estimator of fP (x) is

not consistent for x = 0 (see Sun and Woodroofe (1996) and Balabdaoui and
Wellner (2007) for instance). However, we prove that the posterior distribution
of f is still consistent at this point under a specific family of non-parametric
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mixture priors. In fact, we prove the pointwise consistency of the posterior for
all x in [0, L] with L ≤ ∞. We then derive a consistent Bayesian estimator of the
density at any fixed point of the support. This is particularly interesting as the
point-wise loss is usually difficult to study in a Bayesian framework as Bayesian
approaches are well suited to losses related to the Kullback-Leiber divergence.
We also study the behaviour of the posterior distribution for the sup-norm when
the density has a compact support. This problem has been addressed recently in
the frequentist literature by Durot et al. (2012). They derive refined asymptotic
results on the sup-norm of the difference between a Grenander-type estimator
and the true density on sub intervals of the form [ǫ, L− ǫ], where ǫ > 0 avoiding
the problems at the boundaries. Here, we prove that the posterior distribution is
consistent in sup-norm on the whole support of f0 when it has compact support.
We also derive concentration rates for the posterior of the density taken at a
fixed point and for the sup-norm on subsets of [0, L] for L < ∞. We derive
an upper bound for the concentration rate of f(x) for x ∈ (0, L) but only get
suboptimal rates using a testing approach as in Giné and Nickl (2010). It is to
be noted that for this problem the modulus of continuity for the point-wise and
Hellinger losses defined for f0 ∈ F and x ∈ (0, L) by

m(ǫ) := sup{|f(x)− f0(x)| : f ∈ F , h(f, f0) ≤ ǫ}
is of the order ǫ2/3 (see Donoho and Liu, 1991). Given the discussion in Hoffmann
et al. (2013), it is to be expected that the usual approach of Ghosal et al. (2000)
based on tests will lead to suboptimal concentration rates. We now introduce
some notations used throughout the paper.

Notations For 0 < L ≤ ∞ define the set FL by

FL =

{

f s.t. 0 ≤ f < ∞, f ց
∫ L

0

f = 1

}

,

We also define Sk be the k-simplex that is the set {(s1, . . . , sk) ∈ [0, 1]k,
∑k

i=1 si = 1}. Let KL(p1, p2) be the Kullback-Leibler deviation between the
densities p1 and p2 with respect to some measure λ

KL(p1, p2) =

∫

log

(

p1
p2

)

p1dλ.

We also define the Hellinger distance h(p1, p2) between p1 and p2 as

h2(p1, p2) =
1

2

∫

(
√
p1 −

√
p2)

2dλ.

We will say that Ξn = op0(1) if Ξn → 0 under P0. Finally we will denote by f ′

the derivative of f .

Construction of a prior distribution on FL Using the mixture represen-
tation of monotone non-increasing densities (1) we construct non-parametric
priors on the set FL by considering a prior on the mixing distribution P . Let P
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be the set of probability measures on [0, L]. Thus, we fall in the well known set
up of non-parametric mixture priors models. We consider two types of prior on
the set P .

Type 1: Dirichlet Process prior P ∼ DP (A,α) where A is a positive con-
stant and α a probability density on [0, L].

Type 2: Finite mixture P =
∑K

j=1 pjδxj with K a non zero integer and δx
the dirac function on x. We choose a prior distribution Q on K and
given K, define distributions πx,K on (x1, . . . , xK) ∈ [0, L]K and πp,K

on (p1, . . . , pK) ∈ SK .

For X
n = (X1, . . . , Xn), a sample of n independent and identically distributed

random variables with common probability distribution function f in FL with
respect to the Lebesgue measure, we denote Π(·|Xn) the posterior probability
measure associated with the prior Π.

The paper is organised as follow: the main results are given in Section 2, where
conditions on the priors are discussed. The proofs are presented in Section 3.

2. Main results

Concentration rates of the posterior distributions have been well studied in the
literature and some general results link the rate to the prior distribution (see
Ghosal et al. (2000)). However, in our setting, the Kullback Leibler property is
not satisfied in its usual form and thus the standard Theorems do not hold. In
fact an interesting feature of mixture distributions whose kernels have varying
support is that the prior mass of the sets {f,KL(f0, f) = +∞} is 1 for most
f0 ∈ FL given that f and f0 will have different support. One could prevent
this by imposing that the support of the mixing distribution is wider than the
support of f0; however, this could lead to a deterioration of the concentration
rate. Here, we use a modified version of the results of Ghosal et al. (2000)
considering truncated versions of the density f . This idea has been considered
in Khazaei et al. (2010) in a similar setting. We impose some conditions on the
prior under which the posterior distribution concentrates at the minimax rate
up to a log(n) term.

Conditions on the prior

C1 condition on α Let α be a probability density on R
+ such that for all

θ ∈ (0, L), α(θ) > 0. Consider the following conditions on α

• for 0 < t2 ≤ t1 and θ small enough

θt1 . α(θ) . θt2 (2a)

• for 1 < a1 ≤ a2 and θ small enough

e−a1/θ . α(θ) . e−a2/θ (2b)

• for 1 < b1 ≤ b2 and θ small enough

e−b1/θ . α(L− θ) . e−b2/θ. (2c)
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C2 condition for Type I prior For P ∼ DP (α,M) with α satisfying C1.
C3 condition for the Type II prior The following conditions holds

• For some positive constants C1, C2, a1, . . . , ak, c

e−C1K log(K) ≥ Q(K) ≥ e−C2K log(K) (3)

πp,k(p1, . . . , pK) ≥ K−KcKpa1
1 . . . paK

K (4)

• πx,K is the distribution of K independent and identically distributed
random variables sampled from α.

C4 condition for densities on R
+ If f0 ∈ F∞ then for some fixed positive

constants β and τ we have for x large enough

f0(x) ≤ e−βxτ

. (5)

2.1. Posterior concentration rate for the L1 and Hellinger metric

The following Theorems gives the posterior concentration rate for the L1 and
Hellinger metrics for monotone non-increasing densities on [0, L] with L < ∞
and L = ∞. For both Theorems the proofs are postponed to section 3.

Theorem 1. Let X
n = (X1, . . . , Xn) be an independent and identically dis-

tributed sample with a common probability distribution function f0 such that
f0 ∈ FL with 0 < L < ∞. Let Π be either a Type I or Type II prior satisfy-
ing C2 or C3 respectively with α satisfying (2a). If d(·, ·) is either the L1 or
Hellinger distance, then there exists a positive constant C such that

Π

(

f, d(f, f0) ≥ C

(

n

log(n)

)−1/3

|Xn

)

→ 0, P0 a.e. (6)

when n goes to infinity, where C depends on f0 only through L and an upper
bound on f0(0). Furthermore, if for δ > 0, sup[0,δ] |f ′

0(x)| < ∞ and α satisfies
(2b), or sup[L,L−δ] |f ′

0(x)| < ∞ and α satisfies (2c), then (6) still holds.

Conditions C1 and C2 are roughly the same as in Khazaei et al. (2010). Theo-
rem 1 is thus an extension of their results to concentration rates. We also extend
their results to mixture priors satisfying (2b) or (2c) under some additional con-
ditions on f0. This will prove useful for the estimation of f(0) and f(L). Under
condition C3 on the tail of the true density, i.e. we require exponential tails, we
get the posterior concentration rate for a density with support on R

+.

Theorem 2. Let X
n = (X1, . . . , Xn) be an independent and identically dis-

tributed sample with a common probability distribution density f0, such that
f0 ∈ F∞ and f0 satisfy C3. Let Π be either a Type I or Type II prior sat-
isfying C2 or C3 respectively with α satisfying (2a). Then, for some positive
constant C, we have for d(·, ·) either the L1 or Hellinger metric

Π
(

d(fP , f0) ≥ C (n/ log(n))−1/3 log(n)1/τ |Xn

)

→ 0, P0 a.e. (7)
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when n goes to infinity. Similarly, if for δ > 0, sup[0,δ] |f ′
0(x)| < ∞ and α

satisfies (2b), (7) still holds.

Note that considering monotone non-increasing densities on R
+ deteriorates

the upper bound on the posterior concentration rate by a factor log(n)1/τ . It
is not clear whether it could be sharpened or not. For instance, in the frequen-
tist literature, Reynaud-Bouret et al. (2011) observe a slower convergence rate
when considering an infinite support for densities without any other conditions.
In a Bayesian setting, a similar log term appears in Kruijer et al. (2010) when
considering densities with non compact support. However this deterioration of
the concentration rate does not have a great influence on the asymptotic be-
haviour of the posterior. Note also that the tail conditions are mild since τ can
be taken as small as needed, and thus the considered densities can have almost
polynomial tails.

The above results on the posterior concentration rate in terms of the L1 or
Hellinger metric are new to the best of our knowledge, but not surprising. The
specificity of these results lies in the fact that the usual approach based on
the approach of Ghosal et al. (2000) needs to bound the prior mass of Kull-
back Leibler neighbourhoods of the true density which cannot be done here as
explained in section 1.

2.2. Consistency and posterior concentration rate for the point-wise

and supremum loss

The following results consider the point-wise loss function for which only a
few exist in the Bayesian non-parametric literature; see for instance the paper
of Giné and Nickl (2010). The following Theorem proves consistency of the
posterior distribution for all points in the interior of the support.

Theorem 3. Let x be in (0, L) with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

such that f ′
0 exists near x and f ′

0(x) < 0. Let Xi, i = 1, . . . , n and Π be either a
Type I or Type II prior satisfying C2 or C3 respectively with α satisfying C1

with either (2a), (2b) or (2c). Then, for all x in (0, L) with x < ∞, and ǫ > 0

Π
(

|fP (x)− f0(x)| > ǫ|Xn
)

→ 0. (8)

Consider the posterior median f̂π
n (x) = inf{t,Π[fP (x) ≤ t|Xn] > 1/2}, it follows

that
P0

(

|f̂π
n (x)− f0(x)| > ǫ|Xn

)

→ 0. (9)

We thus have a pointwise consistency of the posterior distribution of f0(x)
for every x in the interior of the support of f0. The maximum likelihood is
not consistent at the boundaries of the support as pointed out in Sun and
Woodroofe (1996). In particular it is not consistent at 0 and when L < ∞, it
is not consistent at L. It is known that integrating the parameter as done in
Bayesian approaches induces a penalisation. This is particularly useful in testing
or model choice problems but can also be effective in estimation problems; see
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for instance Rousseau and Mengersen (2011). Here we require that the base
measure puts exponentially small mass at the boundaries. This induces enough
penalization to achieve consistency of the posterior distribution of f(0) and
f(L). The following Theorem gives consistency of the posterior distribution of
f at every point on the support of f0 including the boundaries.

Theorem 4. Let x be in [0, L] with with 0 < L ≤ ∞ but x < ∞. Let f0 ∈ FL

such that f ′
0 exists at x and f ′

0(x) < 0. Let Xi, i = 1, . . . , n and Π be either a
Type I or Type II prior satisfying C2 or C3 with α satisfying condition (2b) if
x = 0 or (2c) if x = L. Then, for all x in [0, L] with x < ∞, and ǫ > 0

Π
(

|fP (x)− f0(x)| > ǫ|Xn
)

→ 0. (10)

Consider the posterior median f̂π
n (x) = inf{t,Π[fP (x) ≤ t|Xn] > 1/2}, it follows

that
P0

(

|f̂π
n (x) − f0(x)| > ǫ|Xn

)

→ 0. (11)

The problem of estimating f0(0) under monotonicity constraints is another
example of the effectiveness of penalization induced by integration on the pa-
rameters. Although we do not have a proof for inconsistency of the posterior
of f(0) or f(L) when α satisfies (2a), we believe that due to the similarly to
the maximum likelihood estimator, the posterior distribution is in this case not
consistent.

The following Theorem gives an upper bound on the concentration rate of
the posterior distribution under the point-wise loss.

Theorem 5. Let f0 be in FL with 0 < L ≤ ∞ and Π be either a Type I or
Type II prior satisfying C2 or C3 respectively with α satisfying C1, and let x
be in (0, L) such that f ′ exists in a neighbourhood of x and f ′(x) < 0, then for
C a positive constant

Π

(

|fP (x) − f0(x)| > C

(

n

log(n)

)−2/9

|Xn

)

→ 0. (12)

when n goes to infinity.

Here the concentration rate is suboptimal. It is however the best rate that
one can obtain using the usual approach by testing (see Hoffmann et al., 2013).
Proving that the posterior concentrates at the rate n−1/3 up to some power of
log(n) would require some more refined control of the posterior distribution close
to Bernstein-von Mises types of results, (see Castillo, 2013), which in the case
of mixture models is very difficult to handle and beyond the scope of this paper.

Next, we derive from Theorem 4 the consistency of the posterior distribution
for the sup-norm. This is particularly useful when considering confidence bands,
as pointed out in Giné and Nickl (2010). Under similar assumptions as in Durot
et al. (2012), we get the consistency of the posterior distribution for the sup-
norm. Note that contrary to the setting in Durot et al. (2012), we do not restrict
to sub-intervals of the support of the density. This is mainly due to the fact that
the Bayesian approache is consistent at the boundaries of the support of f0.
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Theorem 6. Let f0 ∈ FL with 0 < L < ∞ be such that f ′
0 exists and ||f ′

0||∞ <
∞ and for all x ∈ [0, L], f ′

0(x) < 0. Let also the prior Π be either a Type I or
Type II prior satisfying C2 or C3 with α satisfying conditions (2b) and (2c)
respectively. Then

Π( sup
x∈[0,L]

|fP (x)− f0(x)| > ǫ|Xn) → 0. (13)

Similar results as in Theorem 5 also hold for the concentration rate of the
posterior distribution for the supremum over all subsets of the form (a, b) with
0 < a < b < L with the same rate.

3. Proofs

In this section we prove Theorems 1 to 6 given in Section 2. To prove Theorems
3–6, we need to construct tests that are adapted to the point-wise or supremum
loss. The usual approach based on Le Cam (1986) cannot be applied in this
case. We thus construct test based on the Maximum Likelihood Estimator.

3.1. Proof of Theorems 1 and 2

The proofs of Theorems 1 and 2 follow the general ideas of Ghosal et al. (2000).
We first focus on a density on FL with L < ∞ and extend these results to
a monotone non-increasing density with support R

+ that satisfy C4. We ex-
tended the approach used in Khazaei et al. (2010) to the concentration rate
framework. More precisely, the proofs rely on the following Theorem which is
adapted from Rivoirard and Rousseau (2012). To tackle the fact that the usual
Kullback Leibler property is not satisfied in its usual sense, we consider trun-
cated versions of the densities

fn(·) =
f(·)I[0,θn](·)

F (θn)
, f0,n(·) =

f0(·)I[0,θn](·)
F0(θn)

(14)

where θn is defined as

θn = inf
{

x, 1− F0(x) <
ǫn
2n

}

.

We then define the counterpart of the Kullback Leibler neighbourhoods

Sn(ǫn, θn) =

{

f,KL(fn, f0,n) ≤ ǫ2n,

∫

f0,n(x)

(

log

(

f(x)

f0(x)

))2

dx ≤ ǫ2n,

∫ θn

0

f(x)dx & 1− ǫ2n

}

. (15)

Theorem 7. Let f0 be the true density and let Π be a prior on F satisfying the
following conditions: there exists a sequence (ǫn) such that ǫn → 0 and nǫ2n → ∞
and a constant c > 0, such that for any n there exist Fn ⊂ F satisfying

Π(Fc
n) = o(exp(−(c+ 2)nǫ2n)).
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For any j ∈ N, j > 0, let Fn,j = {f ∈ Fn, jǫn < d(f, f0) ≤ (j + 1)ǫn} and
Nn,j the Hellinger (or L1) metric entropy of Fn,j. There exists a J0,n such that
for all j ≥ J0,n

Nn,j ≤ (K − 1)nǫ2nj
2,

where K is an absolute constant.
Let Sn(ǫn, θn) be defined as in (15) and let Π be such that

Π(Sn(ǫn, θn)) ≥ exp(−cnǫ2n). (16)

We have:
Π(f : d(f0, f) ≤ J0,nǫn|Xn) = 1 + oP (1).

The proof of this Theorem is postponed to Appendix B. We will thus prove
that the conditions of Theorem 7 are satisfied in our case. Let f0 be in FL. The
following lemma states that (16) is satisfied.

Lemma 8. Let Π be either a Type 1 or Type 2 prior on FL as in Theorem 1
and let Sn(ǫn, θn) be a set as in (15), then

Π(Sn(ǫn, θn)) & exp
{

C1ǫ
−1
n log(ǫn)

}

. (17)

This lemma is proved in appendix A. The ǫ metric entropy of the set of
bounded monotone non-increasing densities has been shown to be less than ǫ−1,
up to a constant (see Groeneboom (1986) or van der Vaart and Wellner (1996)
for instance). As the prior puts mass on FL, on which f(0) is not uniformly
bounded, we consider an increasing sequence of sieves

Fn =
{

f ∈ FL, f(0) ≤ Mn

}

. (18)

where Mn = exp{cn1/3 log(n)2/3(t2+1)−1} with t2 as in the conditions C1. The
following lemma shows that Fn covers most of the support of Π as n increases.

Lemma 9. Let Fn be defined by (18) and Π be either a Type 1 or Type 2 as in
Theorem 1, then

Π
(

Fc
n

)

. e−cn1/3 log(n)2/3 .

Here again, the proof is postponed to appendix A. We now get an upper
bound for the ǫ-metric entropy of the set Fn. Recall that in Groeneboom (1985)
it is proved that the L1 metric entropy of monotone non-increasing densities on
[0, 1] bounded by M can be bounded from above by C0 log(M)ǫ−1

n . We cannot
apply this result directly for the sets Fn as it would give a suboptimal control of
the entropy to construct tests in a similar way as in Ghosal et al. (2000). In fact,
the upper bound on the entropy of Fn is of the order of enǫn , while the usual
conditions of Ghosal et al. (2000) requires an upper bound of the order enǫ

2
n .

However as stated in Theorem 7 it is enough to bound the ǫ-metric entropy of
the sets

Fn,j = {f ∈ Fn, jǫn ≤ d(f, f0) ≤ (j + 1)ǫn} ,
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for j ∈ N
∗. We can easily adapt the results of Groeneboom (1985) to positive

monotone non-increasing functions on any interval [a, b] and get the following
lemma.

Lemma 10. Let F̃ be the set of positive monotone non-increasing functions on

[a, b] such that for all f in F̃ ,
∫ b

a
f ≤ M2 and f ≤ M , then

N(ǫ, F̃ , d) . ǫ−1 log(M + 1)
(

(b − a) + 3M2

)

.

The proof of this lemma is straightforward given the results of Groeneboom
(1985) and is thus omitted. Let xn,j ∈ [0, L] such that ǫn/2 ≤ xn,j ≤ ǫn. We
denote for all f in Fn,j f1,j = fI[0,xn,j) and f2,j = fI[xn,j,L]. Since for all f in

Fn,j we have
∫ 1

0 |f(x)− f0(x)|dx ≤ (j + 1)ǫn then

∫ xn,j

0

f(x)dx −
∫ xn,j

0

f0(x)dx ≤ (j + 1)ǫn,

which implies that

xn,jf(xn,j) ≤ xn,jf0(0) + (j + 1)ǫn,

which in turn gives

f(xn,j) ≤ f0(0) + 2(j + 1).

Recall that for all f ∈ Fn we have f(0) ≤ Mn. Using lemma 10, we construct
an ǫn/2-net for the set F1

n,j = {f1,j, f ∈ Fn,j} with N1 points, and

log(N1) . ǫ−1
n log(Mn + 1)ǫn(j + 2),

and thus deduce

log(N1) ≤ C′nǫ2nj
2 (19)

Similarly, given that f(xn,j) ≤ M + 2(j + 1) we get an ǫn/2-net for the set
F2

n,j = {f2,j, f ∈ Fn,j} with N2 points and

log(N2) ≤ C̃′nǫ2nj
2. (20)

This provides a ǫn-net for Fn,j with less than N1 × N2 points. Given (19)
and (20) the L1 metric entropy of the sets Fn,j satisfies

log(N(Fn,j, ǫn, L1)) . nǫ2nj
2. (21)

The conditions of Theorem 7 are thus satisfied which concludes the proof of
Theorem 1.
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Extention to R
+ Given that f0(x) . e−βxτ

when x goes to infinity, if θn is
such that θn = inf{x, 1−F0(x) < ǫn/(2n)} then θn . (log(n))1/τ . Using similar
arguments as before, Lemma 8 still holds under the exponential tail assumption.
We now get an upper bound for the ǫ-metric entropy of Fn,j. Here again, we split
Fn,j into two parts. The construction of an ǫn/2-net for F1

n,j does not change

and therefore (19) holds. Finally, let F̃2
n,j = {f ∈ F2

n,j, ∀x > θn, f(x) = 0}.
Given Lemma 10, we get for c1 > 0 large enough an ǫn/(2c1(j+1))-net for F̃2

n,j

by considering f⋆ the restriction of f to [xn,j , θn]. We have

d(f, f⋆) ≤ c2(j + 1)ǫn,

where d(·, ·) is either the L1 or Hellinger distance. Hence, for c1 > c2 an ǫ/2-net

for F2
n,j with at most ec3nǫ

2
nj

2

points and thus

log
(

N(F2
n,j, ǫn, d

)

) ≤ C̃′′nǫ2nj
2.

We conclude using the same arguments as in the preceding section, and thus
Theorem 2 is proved.

3.2. Proof of Theorems 3 and 5

To prove Theorems 3 and 5, we need to construct tests for all x ∈ (0, L) of f0
versus |fP (x)− f0(x)| ≥ ǫ

2/3
n as the approach used in Ghosal et al. (2000) is not

suited for the point-wise loss. As we have Π(||fP − f0||1 > ǫn|Xn) = oP0(1) we
can consider functions fP such that ||fP − f0||1 ≤ ǫn. We construct tests Φn

such that

En
0 (Φ) = o(1), sup

f,|f(x)−f0(x)|>ǫn

En
f (1− Φ) ≤ e−Cnǫ2n .

Denote Ax
ǫ := {f, |f(x)−f0(x)| > ǫ} that can be split into Ax,+

ǫ = {f, f(x)−
f0(x) > ǫ} and Ax,−

ǫ = {f, f(x) − f0(x) < −ǫ} and denote en = e0ǫ
2/3
n and

hn = h0en. Consider the tests

φ+
n = I

{

n−1
n
∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

f0(t)dt > cn

}

φ−
n = I

{

n−1
n
∑

i=1

I[x,x+hn](Xi)−
∫ x+hn

x

f0(t)dt < −cn

}

We immediately get En
0 (max(φ+

n , φ
−
n ) = o(1). Note that if fP (x) > f0(x) + en

then
∫ x

x−hn

fP (t)− f0(t)dt ≥ hn(fP (x) − f0(x))−
∫ x

x−h

f0(t)− f0(x)dt

≥ hnen − C0h
2



Concentration rate for monotone density 1391

for some C0 > 0 that only depends on f0. Similarly if fP (x) < f0(x) − en then
for all h > 0

∫ x+h

x

fP (t)− f0(t)dt ≤ −hen + C0h
2

We thus deduce for fP such that fP (x)− f0(x) > en, we have

Pf (1− φ+
n ) ≤ Pf

(

n−1
n
∑

i=1

I[x−hn,x](Xi)−
∫ x

x−hn

fP (t)dt ≤ −hnen + C0h
2 + cn

)

≤ Pf

(

n−1
n
∑

i=1

I[x−h,x](Xi)−
∫ x

x−h

fP (t)dt ≤ −h0e
2
n/2

)

,

if cn ≤ e2n and h0 ≤ 1/C0. Now note that for fP such that ||fP − f0||1 ≤ ǫn
∫ x

x−hn

fP ≥ −
∫ ∞

0

|f − f0|+
∫ x

x−hn

f0

≥ −ǫn +

∫ x

x−hn

f0

≥ −en + hnf0(x) ≥ hnf0(x)/2.

Moreover,
∫ x

x−hn

fP ≤ en + hnf0(x − hn) ≤ 2hnf0(x),

for n large enough and h small enough. We conclude that

VarnfP

(

n−1
n
∑

i=1

I[x−h,x](Xi)

)

≤ 2hf0(x).

Using Bernstein’s inequality (e.g. van der Vaart and Wellner (1996) Lemma
2.2.9, p. 102) we get

Pf (1− φ+) ≤ 2e−nhne
2
n/(2+en/3).

Similarly, we have

Pf (1 − φ−
n ) ≤ 2e−nhne

2
n/(2+en/3).

Taking Φn = max(φ+
n , φ

−
n ) we deduce

P0(Φn) = o(1)

sup
f∈Ax

en

Pf (1 − Φn) ≤ e−Ch0e
3
n

We have

P0(Φn) = o(1)
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sup
f∈Ax

en

Pf (1− Φn) ≤ e−Cne0ǫ
2
n

Similarly to the proof of Theorem 7, following Khazaei et al. (2010), we get
an exponentially small lower bound for Dn. More precisely, we get that

Dn ≥ 2e−(c+2)nǫ2n

with probability that goes to 1. Note that

E
n
0

(

Nn

Dn

)

≤ E
n
0 (Φ

x
n) + Pn

0 (Dn ≤ e−(c+2)nǫ2n)

(22)

+E
n
0 (Π[Fc

n|Xn]) + e(c+2)nǫ2n

∫

Aǫ∩Fn

E
n
f (1− Φx

n)dΠ(f).

Given the preceding results, we have

E
n
0

(

Nn

Dn

)

≤ o(1) + e(c+2)nǫ2n sup
f

E
n
f (1− Φx

n)

which ends the proof choosing e0 large enough.

Consistency of a Bayesian estimator We consider in this section f̂π
n (t),

the Bayesian estimator associated with the absolute error loss, defined as the
median of the posterior distribution. Consistency of the posterior mean, which
is the most common Bayesian estimator is however not proved here but could
nevertheless be an interesting result.

We first define f̂π
n (t) such that

f̂π
n (t) = inf{x,Π[fP (t) ≤ x|Xn] > 1/2}. (23)

In order to get consistency in probability we note that if f̂π
n (t) − f0(t) > ǫ

then
Π(fP (t) > f0(t) + ǫ|Xn) > 1/2.

And if f̂π
n (t)− f0(t) < −ǫ then

Π(fP (t) < f0(t)− ǫ|Xn) > 1/2.

We deduce, using Markov’s inequality and Theorem 3

Pn
0 (f̂

π
n (t)− f0(t) > ǫ) ≤ Pn

0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ 2En
0 (Π(fP (t) > f0(t) + ǫ|Xn) > 1/2)

≤ o(1),

and similarly
Pn
0 (f̂

π
n (t)− f0(t) < −ǫ) ≤ o(1).

Thus, we have Pn
0 (|f̂π

n (t) − f0(t)| > ǫ) → 0 which gives the consistency in

probability of f̂π
n (t).
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3.3. Proof of Theorem 4

The previous proof holds for all x ∈ (0, L). We now need to prove the consistency
of the posterior for x = 0 and x = L, when the prior satisfies conditions (2b)
or (2c). We first consider the case x = 0, the case x = L can be deduce with
symmetric arguments.

As before, consider the set A0
ǫ and split it in A0,+

ǫ and A0,−
ǫ . Note that using

the same test φ−
n as before we easily get

Π(A0,−
ǫ |Xn) = oP0 (1).

We now consider fP ∈ A0,+
ǫ . As before we can restrict ourselves to functions fP

such that ||fP − f0||1 ≤ ǫn. We thus have for h = 2ǫn/ǫ

fP (0)− f0(0) ≤ fP (0)− fP (h) + h−1

∫

|f0(t)− fP (t)|dt

≤ fP (0)− fP (h) + h−1ǫn

= fP (0)− fP (h) + ǫ/2.

We now prove that the prior mass of the event {fP (0) − fP (h) > ǫ/2} is less

that e−(c+2)nǫ2n . Using Markov inequality we get

Π(fP (0)− fP (h) > ǫ/2) ≤ 2ǫ−1

∫ h

0

1

θ
α(θ)dθ ≤ e−a2/h . e−a2nǫ

2
n log(n).

Using the same control for Dn as in the proof of Theorem 7, and applying the
usual method of Ghosal et al. (2000), we get the desired result.

3.4. Proof of Theorem 6

In this section, we prove that the posterior distribution is consistent in sup-
norm. Here again, the main difficulty is to construct tests that are adapted to
the considered loss. More precisely we construct a test Φ such that

En
0 (Φ) = o(1), sup

f,sup[0,L] |f−f0|>ǫn

En
f (1 − Φ) ≤ e−Cnǫ2n.

To do so, we consider a combination of the tests considered in the previous
section noting that if the posterior distribution is consistent at the points of a
sufficiently refined partition of [0, L] then it is consistent for the sup-norm. Here
again, we will only consider the case L = 1 without loss of generality. We first
denote

Bǫ =

{

f, sup
[0,L]

{|f(x)− f0(x)| > ǫ

}

.

Let C′
0 be a positive constant such that ||f ′

0||∞ ≤ C′
0 and let (xi)i be the

separation points of a ǫ/(8C′
0) regular partition of [0, 1] and p = Card{(xi)i}.
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Note that

Bǫ =

p
⋃

i=1

{f, sup
[xi,xi+1]

{|f(x)− f0(x)| > ǫ}.

Recall that Ax
ǫ = {f, |f(x) − f0(x)| > ǫ}. We consider the set Bǫ

⋂p
i=1(A

xi

ǫ/8)
c.

Given Theorem 3, we have that

En
0

(

Π

(

p
⋃

i=1

(Axi

ǫ/5)
∣

∣

∣X
n

))

= o(1).

If f ∈ Bǫ we have for all x ∈ [xi, xi+1],

|f(x)− f0(x)| ≤ |f(x)− f(xi)|+ |f(xi)− f0(xi)|+ |f0(xi)− f0(x)|.
Given that f is monotone non-increasing, and given the hypotheses on f0 we
have

|f(x)− f(xi)| ≤ |f(xi+1)− f(xi)|
≤ |f(xi+1)− f0(xi+1)|+ |f0(xi+1)− f0(xi)|+ |f0(xi)− f(xi)|
≤ 3ǫ/5,

and for the same reasons

|f(xi)− f0(xi)|+ |f0(xi)− f0(x)| ≤ 2ǫ/5,

which leads to
|f(x)− f0(x)| ≤ ǫ,

and thus, taking the supremum over x, we get

sup
x∈[xi,xi+1]

|f(x)− f0(x)| ≤ ǫ.

We then deduce

Π(Bǫ|Xn) ≤ Π

(

Bǫ

⋂

{

p
⋂

i=1

(Axi

ǫ/5)
c

})

+Π

(

p
⋃

i=1

(Axi

ǫ/5)

)

= oP0(1),

which gives the consistency of the posterior distribution in sup-norm.

4. Discussion

In this paper, we obtain an upper bound for the concentration rate of the pos-
terior distribution under monotonicity constraints. This is of interest as in this
model, the standard approach based on the seminal paper of Ghosal et al. (2000)
cannot be applied directly. We prove that the concentration rate of the poste-
rior is (up to a log(n) factor) the minimax estimation rate (n/ log(n))−1/3 for
standard losses such as L1 or Hellinger.

We also prove that the posterior distribution is consistent for the point-wise
loss at any point of the support and for the sup-norm loss. Studying asymptotic
properties for these losses is difficult in general as the usual approach are well
suited for losses that are related to the Hellinger metric. Obtaining more refined
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results on the asymptotic behaviour of the posterior distribution will require
refined control of the likelihood which in the case of non-parametric mixture
models is a difficult task.
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Appendix A: Technical Lemmas

A.1. Proof of Lemma 8

To prove Lemma 8, we first construct stepwise constant functions such that
these approximations are in the truncated Kullback Leibler neighbourhood of
f0. We then construct a set N included in Sn(ǫn, θn) based on the considered
piecewise constant approximation such that for Π a Type I or Type II prior
Π(N ) ≥ e−Cnǫ2n .

We first construct a piecewise constant approximation of f0 which is based
on a sequential subdivision of the interval [0, L] with more refined subdivisions
where f0 is less regular such that the number of points is less than ǫ−1

n points.
This approximation is adapted from the proof of Theorem 2.5.7 in van der

Vaart and Wellner (1996). We then identify a finite piecewise constant density
by a mixture of uniforms for which the Hellinger distance between the piecewise
constant approximation fP of f0 ∈ F and f0 is less that ǫn and ||f0/fP ||∞ ≤ M .
The following Lemma gives the form of a finite probability distribution P such
that fP is in the Kullback-Leibler neighbourhood of some f ∈ F .

Lemma 11. Let f ∈ FL be such that f(0) ≤ M < +∞. For all 0 < ǫ < 1
there exists m . L1/3M1/3ǫ−1, p = (p1, . . . , pm) ∈ Sm and x = (x1, . . . , xm) ∈
[0, L]m such that P =

∑m
i=1 δxipi satisfies

KL(f, fP ) . ǫ2,

∫ (

log

(

f

fP

))2

f . ǫ2, (24)

where fP is defined as in (1).

Proof. For a fixed ǫ, let f be in FL. Consider P0 the coarsest partition:

0 = x0
0 < x0

1 = L.

Then at the ith step, let Pi be the partition

0 = xi
0 < xi

1 < · · · < xi
ni

= L,

and define
εi = max

j

{

(f(xi
j−1)− f(xi

j))(x
i
j − xi

j−1)
1/2
}

.
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For each j ≥ 1, if (f(xi
j−1) − f(xi

j))(x
i
j − xi

j−1)
1/2 ≥ εi√

2
we split the interval

[xj−1, xj ] into two subsets of equal length. We then get a new partition Pi+1.
We continue the partitioning until the first k such that ε2k ≤ ǫ3. At each step i,
let ni be the number of intervals in Pi, si the number of interval in Pi that have
been divided to obtain Pi+1, and c = 1/

√
2. Thus, it is clear that εi+1 ≤ cεi

si(cεi)
2/3 ≤

∑

j

(f(xi
j−1)− f(xi

j))
2/3(xi

j − xi
j−1)

1/3

≤





∑

j

f(xi
j−1)− f(xi

j)





2/3



∑

j

xi
j − xi

j−1





1/3

≤ M2/3L1/3,

using Hölder’s inequality. We then deduce that

k
∑

j=1

nj = k +
k
∑

j=1

jsk−j ≤ 2
k
∑

j=1

jsk−j ≤ 2
k
∑

j=1

jM2/3L1/3(cεk−j)
−2/3

≤ 2M2/3L1/3ε
−2/3
k 21/3

k
∑

j=1

j2−j/3

≤ K0M
2/3L1/3ε

−2/3
k ,

where K0 = 2(1− 2−2/3)−2. Thus

nk ≤ K0M
2/3L1/3ǫ−1. (25)

Now, for f ∈ FL, we prove that there exists a stepwise density with less than
K0M

2/3L1/3 1
ǫ pieces such that

KL(f, h) ≤ ǫ2 and

∫

f log(
f0
fP

)2(x)dx . ǫ2 (26)

In order to simplify notations, we define

xi = xk
i , li = xi − xi−1, gi = f(xi−1)

1/2.

We consider the partition constructed above associated with f1/2, which is
also a monotone non-increasing function that satisfies f1/2(0) ≤ M1/2 (instead
of M). We denote g the function defined as g(x) =

∑

I[xi−1,xi](x)gi

||f1/2 − g||22 =

∫

(f1/2 − g)2(x)dx =

nk
∑

i=1

∫

Ii

(f1/2 − g)2(x)dx

≤
nk
∑

i=1

∫

Ii

(f1/2(xk
i−1)− f1/2(xk

i ))
2dx

≤
nk
∑

i=1

(xk
i − xk

i−1)(f
1/2(xk

i−1)− f1/2(xk
i ))

2

≤ nkε
2
k ≤ L1/3K0M

1/3ǫ2.
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We then define h = g2
∫
g2 and and get an equivalent of

∫

g2.

∫

g2dx =

∫

(g2 − f)(x)dx + 1

=

∫

(g −
√

f)(g +
√

f)(x)dx + 1

= 1 +O(ǫ),

and deduce that (
∫

g2)1/2 = 1 +O(ε). Let H be the Hellinger distance

H(f, h) = H

(

f,
g2
∫

g2

)

≤ H(f, g2) +H(g2,
g2
∫

g2
)

≤ L1/6K0M
1/6ǫ+

(∫

(g − g

(
∫

g2)1/2
)2(x)dx

)1/2

. ǫ.

Since ||f/h||∞ = ||f/g2||∞(
∫

g2) ≤ (
∫

g2), together with the above bound
on H(f, h) and Lemma 8 from Ghosal and van der Vaart (2007), we obtain the
required result.

Let P be a probability distribution defined by

P =

nk
∑

i=1

piδ(x
k
i ) pi = (hi−1 − hi)x

k
i pnk

= hnk
xk
nk

= hnk
L,

thus fP = h and given the previous result, lemma 11 is proved.

Given Lemma 11, we now prove Lemma 8.

Proof of Lemma 8. We first consider the case where θt1 . α(θ) . θt2 for small
θ. For ǫn as in Theorem 1, define θn as

θn = inf
{

x, 1− F0(x) <
ǫn
2n

}

.

Note that F0 is càdlàg, thus

F0(θn) ≥ 1− ǫn/(2n) and ∀y < θn1− F0(y) > ǫn/(2n). (27)

Using lemma 11 with L = θn, we obtain that there exists a distribution P =
∑nk

i=1 δxipi such that

KL(f0,n, fP ) ≤ ǫ2n, and

∫

f0,n log

(

f0,n
fP

)2

. ǫ2n.

Note that fP has support [0, θn] and is such that fP (θn) > 0. Now, set m =
nk and consider P ′ the mixing distribution associated with {m,x′

1, . . . , x
′
m,
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p′1 . . . , p
′
m} with

∑m
i=1 p

′
i = 1. Define for 1 ≤ i ≤ m − 1 the set Ui = [0 ∨

(xi − ǫ3n/M, xi + ǫ3n/M ] and Um = (θn, θn + ǫn(L − θn) ∧ ǫ3n/M ]. Construct P ′

such that x′
i ∈ Ui and |P ′(Ui)− pi| ≤ ǫ2m−1. We get

∀t ∈ [0, θn] f
′
P (t) >

p′m
x′
m

.

Given that x′
m ∈ Um, we get x′

m ≤ θn + ǫn(L − θn) ∧ ǫ3n/M . θn for n large
enough. Note also that p′m ≥ pm − ǫ2nm

−1. Given the construction of Lemma
11, we deduce

pm ≥ f0(xi−1)

1 +O(ǫn)
& f0(xi−1),

for n large enough. Furthermore, given (27)

∀z < θn, f0(z)(L− z) ≥
∫ L

z

f0(t)dt ≥
ǫn
2n

,

thus

∀t ∈ [0, θn] f
′
P (t) &

ǫn
2n − ǫ2nm

−1

θn
&

ǫn
n
,

and deduce that ||f0/fP ′ ||∞ . n
ǫn

Lemma 8 from Ghosal and van der Vaart
(2007) gives us that

∫ θn

0

f0(x) log

(

f0
fP ′

)

(x)dx .
(

ǫ2n +H2(fP , fP ′)
)

(1 + | log(ǫn/n)|)

.
(

ǫ2n + |fP − fP ′ |1
)

(1 + | log(ǫn/n)|).

Given the mixture representation (1) of f0 and fP , we get

(

ǫ2n + |fP − fP ′ |1
)

(1 + log(n))

.
(

ǫ2n +

∫ θn

0

∣

∣

∣

∑

( pi
xi

− p′i
x′
i

)

Ix≤xi +
∑ pi

xi
(Ix≤xi − Ix≤x′

i
)
∣

∣

∣dx
)

(1 + log(n))

.
(

ǫ2n +
∑

|xi

x′
i

− 1|p′i +
∑

|p′i − pi|+
∑ pi

xi
|x′

i − xi|
)

(1 + | log(n)|)

. ǫ2n(1 + | log(n)|).

Generally speaking, denoting U0 = [0, 1]∩(∪m
i=1Ui)

c and N = {P ′, |P ′(Ui)−pi| ≤
ǫ2nm

−1} we obtain that for all P ′ ∈ N
∫ θn

0

f0(x) log
( f0
fP ′

)

(x)dx . ǫ2n(1 + | log(n)|),

and similarly

∫ θn

0

f0(x) log
( f0
fP ′

)2

(x)dx . ǫ2n(1 + | log(n)|)2,
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for ǫn small enough. Note also that for all P ′ ∈ N and n large enough, as before
we get

∫ L

θn

fP ′(x)dx .
ǫn
n
.

We now derive a control on k, the number of steps until εk ≤ ǫ
3/2
n in the

construction of Lemma 11. At step k − 1, we have εk−1 ≥ ǫ
3/2
n . It is clear that

for all j, εj ≤ 2−1/2εj−1, thus

M1/2L1/22−(k−1)/2 ≥ εk−1 ≥ ǫ3/2n

log(M1/2L1/2)− (k − 1)
log(2)

2
≥ 3

2
log(ǫn).

Finally, we have

k ≤ 2

log(2)
(log(M1/2L1/2)− 3

2
log(ǫn)) + 1. (28)

We can then get a lower bound for Π[N ] and, given that for ǫn small enough
and n large enough, we have

N ⊂ Sn(ǫn, θn),

we can deduce a lower bound for Π(Sn(ǫn, θn)). For the Type 1 prior, we have
similarly to Ghosal et al. (2000)

Π[N ] = Pr(D(Aα(U0), . . . , Aα(Unk
)) ∈ [pi ± ǫ2n/nk])

≥ Γ(A)
∏

i Γ(Aα(Ui))

∏

j

∫ (pi+ǫ2n/nk)

(pi−ǫ2n/nk)∧0

x
Aα(Uj)−1
j dxj .

Given condition C1, we have

α(Ui) ≥
∫

Ui

α0θ
t1dθ,

thus
α(Ui) ≥ 2ǫ3nα0xi

t1 .

For n large enough and ǫ sufficiently small we have as in Lemma 6.1 of Ghosal
et al. (2000)

Π(N ) & exp {C1nk log(ǫ)} .
Note that given (25), nk . ǫ−1

n which gives the desired result. For the Type 2
prior, we write

N ′ =







P ′ =
nk
∑

j=1

p′jδx′

j
, |p′j − pj | ≤ ǫ2/nk, |x′

j − xj | ≤ ǫ3n







⊂ Sn(ǫn, θn),
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we then deduce a lower bound for Π[Sn(ǫn, θn)]

Π[N ′] ≥ Q(K = nk)

nk
∏

j=1

n−nk

k cnk

∫ pi+ǫ2/nk

max(0,pi−ǫ2/nk)

w
aj

j dwj

nk
∏

j=1

α(Ui)

≥ exp
{

− cnk lognk +
∑

log(α(Ui))

+ nk(log(c)− log(nk)) +
∑

aj log(2ǫ
2/nk)

}

& exp
{

C′
1ǫ

−1 log(ǫ)
}

.

We now consider the case where e−a1/θ ≤ α(θ) ≤ e−a2/θ if θ is close to 0 and
supx∈[0,δ] |f ′

0(x)| ≤ C0. We have that for n large enough and C > 0, a constant
depending on f0, f0(0)− f0(ǫn) ≤ Cǫn. Following Lemma 11, we can construct
a piecewise constant approximation of f0 on [δ, L]. On [0, δ], consider the regu-
lar partition with ⌊ǫ−1

n ⌋ points and the piecewise constant approximation of f0
defined as before (i.e. fi = f0(xi−1)). Again, this approximation can be identi-
fied with a measure P . Given the assumptions on f0 we immediately get that
KL(f0, fP ) . ǫ2n.

Consider the same sets N as before, with the same partitions U1, . . . , Un.
Using similar computations as in Lemma 6.1 of Ghosal et al. (2000) we get that

Π(N ) ≥ exp
{

C1(nk + ǫ−1
n ) log(ǫn) +

∑

log(α(Ui))
}

For the Ui included in [δ, L] we have α(Ui) & ǫ
3/2
n . For the Ui included in

[0, δ] we have α(Ui) & ǫn exp{−a/(iǫn)}, which gives
∑

α(Ui) . −ǫ−1
n log(n)

We conclude the proof using similar arguments as before.

A.2. Proof of Lemma 3.1

The proof of Lemma 3.1 is straightforward and comes directly from C1 and C2.

Proof. Recall that given (1), f(0) =
∫

[0,1]
1
θdP (θ). Then

Π

[∫ 1

0

1

θ
dP (θ) ≥ Mn

]

= Π

[

∫ 2M−1
n

0

1

θ
dP (θ) +

∫ 1

2M−1
n

1

θ
dP (θ) ≥ Mn

]

.

Note that
∫ 1

2M−1
n

1

θ
dP (θ) ≤ Mn/2

∫ 1

2M−1
n

dP (θ) ≤ Mn/2.

Thus the set {P,
∫ 2M−1

n

0
θ−1dP (θ) ≥ Mn/2} contains Fc

n and

Π[Fc
n] ≤ Π

[

∫ 2M−1
n

0

1

θ
dP (θ) > Mn/2

]
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≤ 2M−1
n E

[

∫ 2M−1
n

0

1

θ
dP (θ)

]

,

using Markov inequality. Then for a Type 1 prior when n large enough

Π[Fc
n] ≤ 2M−1

n

∫ 2M−1
n

0

1

θ
α(θ)dθ

≤ 2M−1
n

∫ 2M−1
n

0

θt2−1dθ =
(2M−1

n )t2+1

t2
= Ce−cn1/3 log(n)2/3 .

For a Type 2 prior, we have that

Π[Fc
n] ≤

∞
∑

h=1

Q(K = k)πk

[

min
j≤k

xj ≤ M−1
n

]

≤
( ∞
∑

h=1

kQ(K = k)

)

α([0,M−1
n ])

≤ C′e−cn1/3 log(n)2/3 .

Appendix B: Adaptation of Theorem 4 of Rivoirard and Rousseau
(2012)

This Theorem is a slight modification of Theorem 2.9 of Ghosal et al. (2000).
The main difference lies in the handling of the denominator Dn in

Π(f : d(f0, f) ≥ J0,nǫn|Xn) =

∫

d(f,f0)≥J0,nǫn

∏n
i=1

f(Xi)
f0(Xi)

dΠ(f)
∫
∏n

i=1
f(Xi)
f0(Xi)

dπ(f)
=

Nn

Dn
,

as in general, it require a lower bound on the prior mass of Kullback Leibler
neighborhood of f0. Here we prove that under condition (16) we have for some
constants c, C > 0

Pn
0 (Dn < ce−Cnǫ2n) = o(1).

Let ln(f) be the log likelihood associated with f and define Ωn = {(f,Xn), ln(f)−
ln(f0) > −C1nǫ

2
n} for some constant C1 > 0. Define also An = {Xn, ∀iXi ≤ θn}.

We thus have

Dn ≥ e−C1nǫ
2
n

∫

Sn(ǫn,θn)

IΩndΠ(f) = e−C1nǫ
2
nΠ(Sn(ǫn, θn) ∩ Ωn).

Note that given (16) we have that there exists ρ > 0 such that for n large enough

e−C2nǫ
2
nΠ(Sn(ǫn, θn) > ρ. We now write

Pn
0 (Dn < e−Cnǫ2n)

≤ Pn
0

(

e(C−C1)nǫ
2
nΠ(Sn(ǫn, θn) ∩ Ωn) < c

)
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≤ Pn
0

(

e(C−C1−C2)nǫ
2
nΠ(Sn(ǫn, θn) ∩ Ωn <

c

ρ
Π(Sn(ǫn, θn)

)

≤ Pn
0

(

Π(Sn(ǫn, θn) ∩ Ωc
n) >

(

1− e−(C−C1−C2)nǫ
2
n
c

ρ

)

Π(Sn(ǫn, θn))

)

≤
2
∫

Sn(ǫn,θn)
Pn
0 (Ω

c
n)dΠ(f)

Π(Sn(ǫn, θn))
.

For all f ∈ Sn(ǫn, θn) we compute

mn = En
0 (ln(f0)− ln(f)IAn)

= nF0(θn)
n−1

∫ θn

0

f0 log

(

f0(x)

f(x)

)

dx

= nF0(θn)
n

(

KL(f0,n, fn) + log

(

F0(θn)

F (θn)

))

≤ C3nǫ
2
n,

and

Pn
0 (Ω

c
n) = Pn

0 (ln(f)− ln(f0) < −C1nǫ
2
n)

= Pn
0 ({ln(f)− ln(f0) < −C1nǫ

2
n} ∩ An) + o(1)

≤ Pn
0 ({ln(f0)− ln(f)−mn > (C1 − C3)nǫ

2
n} ∩An) + o(1)

≤ En
0 ({ln(f0)− ln(f)−mn}IAn)

2

(C1 − C3)2(nǫ2n)
2

+ o(1).

We then compute for C5 and C6 some fixed constants

vn = En
0 ({ln(f0)− ln(f)−mn}IAn)

2

= (F0(θn))
n−1

(

n

∫ θn

0

f0 log
2

(

f0(x)

f(x)

)

dx

+ n(n− 1)

(

∫ θn

0

f0,n log

(

f0(x)

f(x)

)

dx

)2

−m2
n

)

= (F0(θn))
n−1

(

n

∫ θn

0

f0 log
2

(

f0(x)

f(x)

)

dx+
n− 1

n
F0(θn)

−2n+2m2
n −m2

n

)

≤ nF0(θn)
n

∫ θn

0

f0,n log
2

(

f0(x)

f(x)

)

dx+
n− 1

n
m2

nF0(θn)
n−1(F0(θn)

−2n+2 − 1)

≤ C5nǫ
2
n + C6(nǫ

2
n)

2ǫn.

We finally obtain that for all f ∈ Sn(ǫn, θn), P
n
0 (Ω

c
n) = o(1). We end the proof

using similar arguments as in Ghosal et al. (2000).
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