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I would like to start out by congratulating the authors of the article on both
a lucid and precise exposition of some of the key inferential challenges that
arise in the prescription of optimal dynamic treatment regimes (DTR from now
on) which have found growing interest across the clinical sciences but also have
intimate connections to other forms of adaptive decision making (in engineer-
ing/robotics contexts). This particular discussant has had the good fortune to
hear his colleague, Professor Murphy, and also members of her group, speak on
several occasions on this area and this review paper is the perfect icing on that
cake, providing a great degree of clarity about the subtle mathematical issues
that arise naturally in very canonical versions of this problem: non-regularity of
least squares estimates of the parameters associated with the optimal DTR and
issues related to the associated asymptotic bias.

The paper is formulated within the context of Q-learning, an indirect esti-
mation method for optimal DTR that is attractive when model building can be
aided by expert opinion. For ease of exposition, the authors concentrate on two
treatment times which is sufficient to illustrate the non-regularity issue. The
Q-functions are taken to have linear forms and the action space (decision space)
taken to be binary – generalization to a finite action space is straightforward
though notationally (and algebraically) tedious. A version of Q-learning that
uses a least squares based algorithm is described in Section 2.1. It appears that
for this particular algorithm to be consistent with the definitions of the Q2 and
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Q1 functions that precede it, Y1 should be part of H2, the history at time 2.
This does not seem to be explicated in the paper.

The source of non-regularity lies in the estimation of β⋆
1 , the optimal popu-

lation regression coefficient at time 1, as its estimation involves regressing the
predicted outcome Ỹ on (H1, A1) and the computation of Ỹ depends on a max-
imizing operation over the action space at time 2. This leads to an expression
for β̂1, the least squares estimate of β⋆

1 , whose normalized version contains the
expression

Un =
√
n
(

[HT
2,1 β̂2,1]+ − [HT

2,1 β
⋆
2,1]+

)

.

Owing to the appearance of positive parts the distribution of Un depends in an
abrupt way on whether β⋆

2,1 is orthogonal to H2,1, the part of the history at
time 2 that is relevant to decision making, leading to a ‘boundary phenomenon’
and subsequent non-regularity (with a rigorous description in Theorem 4.1).

The asymptotic bias of β̂1 is also shown to be strictly positive (Theorem 3.1).
While, strictly speaking, non-regularity is not possible with continuous distri-
butions for H2,1, relatively small magnitudes for the second stage treatment
effect may push the scenario close towards the non-regular situation for modest
sample sizes. This motivates the formulation of moving parameter asymptotics
expounded in Section 3 that provide a more appealing way of studying the
behavior of the non-smooth estimator β̂1. This is formalized via a standard
Hellinger–differentiability type formulation (A3) along a sequence of local al-
ternatives. A particular insight gleaned from the local alternatives exposition
is the fact that ample caution needs to be exercised while thresholding the
predicted outcome Ỹ with an eye towards reducing the asymptotic bias of β̂1:
aggressive thresholding can blow up the supremum of the c-directional asymp-
totic bias over the direction of approach of the local parameter to ∞. The toy
example using a randomized two-arm study is particularly illustrative in this
context.

Section 4.2 describes the construction of adaptive confidence intervals for lin-
ear combinations of the Stage 1 regression coefficients through upper and lower
bounding of the term involving the problematic quantity Un by regular uni-
formly convergent stochastic quantities, a strategy motivated by earlier work
of some of the authors. The asymptotic properties of the bounds are investi-
gated in Theorem 4.1: a pleasing property of these bounds is that they adapt
to the situation where all patients experience a treatment effect. An important
issue here would seem to be how these bounds are reliably computed in practice
as they involve taking the suprema or infima over a quantity varying continu-
ously over a Euclidean space of a certain dimension, which could be be large in
applications. There seem to be no pointers in this direction in the paper.

The authors end by discusing some interesting challenges in this area. I would
like to focus on two more aspects of dynamic treatment regimes which seem
natural. The first has to do with continuous action spaces as opposed to the
discrete action space of this paper and the second with high-dimensional versions
of these problems.
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Continuous action space It would be desirable to accommodate a continu-
ous action space into this framework. To motivate this, consider a situation of
an un-manned vehicle and think of the action at time t as deflecting the vehi-
cle by a certain angle from its course so as to avoid a collision or some other
mishap. In this case at would be the angle by which the vehicle is deviated at
time t and is therefore naturally modeled as being in a continuous space. In
the examples discussed in the paper the non-regularity appears, in a sense, to
be tied to the discrete nature of the action space. In what situations might the
issue of non-regularity arise in such a context? Of course, a continuous action
space may not be natural in a clinical context but should be more relevant in
engineering/technology.

High-dimensional action space Here I am thinking about controlling a
complex system over time where the action vector at could be high-dimensional.
To put this into context, suppose that at time t action involves altering a large
number of settings, say p of these, on a control panel. For concreteness, suppose
at,j, the j’th component of at assumes values −1, 0, 1: 0 corresponds to main-
taing the current setting and invokes no cost, −1 and 1 are changes of setting of
two different kinds that involve a cost. For starters, consider a scenario without
histories in the spirit of the toy example that the authors discuss in their pa-
per. Let Qt(at, βt) = Ψ(〈at, βt〉) where Ψ, say, is a monotone function; even the
identity function for the purpose of this discussion. Naturally one would like to
make a sparsity assumption on βt, the idea being that many of the settings may
not require any tweaking at time t and one wants to optimize over a parsimo-
nious number of actions. In this case, the Stage 2 regression step could involve
solving a least squares problem penalized by the l1 norm of β2. Having obtained
a parsimonious solution, β̂2,λ, one can now maximize Q2(a2, β̂2,λ) over all vec-

tors a2 but because of the sparsity of β̂2,λ this becomes a lower dimensional
optimization problem.

Of course in a practical setting, histories will need to be accommodated. In a
situation where the relevant part of the history, say ht,1 (using notation from the
paper), is a vector capturing information on the p settings Qt(ht, at, βt) might
be modeled as Ψ(〈at · ht , βt〉) where · denotes the co-ordinate wise product
of two vectors and a similar optimization procedure as above could be used.
The key question here, of course, is how tractable such models would be at an
analytical level.

Last but not least, given Professor Murphy’s expertise in semiparametrics,
the possibility of using semiparametric approaches to Q-learning would seem a
natural mode of approach, though as an outsider to this field it is difficult for me
to judge the marginal gains that might accrue from them in practical contexts.


