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Bayesian Tail Risk Interdependence Using
Quantile Regression

Mauro Bernardi*, Ghislaine Gayraudf, and Lea Petrellat

Abstract. Recent financial disasters emphasised the need to investigate the con-
sequences associated with the tail co-movements among institutions; episodes of
contagion are frequently observed and increase the probability of large losses af-
fecting market participants’ risk capital. Commonly used risk management tools
fail to account for potential spillover effects among institutions because they only
provide individual risk assessment. We contribute to the analysis of the interde-
pendence effects of extreme events, providing an estimation tool for evaluating
the co-movement Value-at-Risk. In particular, our approach relies on a Bayesian
quantile regression framework. We propose a Markov chain Monte Carlo algo-
rithm, exploiting the representation of the Asymmetric Laplace distribution as a
location-scale mixture of Normals. Moreover, since risk measures are usually eval-
uated on time series data and returns typically change over time, we extend the
model to account for the dynamics of the tail behaviour. We apply our model to a
sample of U.S. companies belonging to different sectors of the Standard and Poor’s
Composite Index and we provide an evaluation of the marginal contribution to
the overall risk of each individual institution.

Keywords: Bayesian quantile regression, time-varying conditional quantile, risk
measures, state space models.

1 Introduction

In recent years particular attention has been devoted to measuring and quantifying the
level of financial risk within a firm or investment portfolio. The Value-at-Risk (VaR) has
become one of the most diffuse risk measurement tools. It measures the maximum loss
in value of a portfolio over a predetermined time period for a given confidence level. In
fact, in the current banking regulation framework, the VaR has become an important
risk capital evaluation tool where different institutions are considered as independent
entities. Unfortunately, such a risk measure fails to consider the institution as part of a
system which might itself experience instability and thus spread new sources of systemic
risk. For a comprehensive and up to date overview of VaR and related risk measures see,
for example, Jorion (2007) and McNeil et al. (2005). Recent financial disasters empha-
sised the need for a thorough investigation of the co-movement among institutions in
order to evaluate their tail interdependence relationships. Especially during periods of
financial distress, episodes of contagion among institutions are not rare and thus need to
be taken into account in order to analyse the overall level of health of a financial system:
company specific risk can not be appropriately assessed in isolation, without accounting
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for potential spillover effects to and from other firms. For this reason different risk mea-
sures have been proposed in the literature that analyse the tail-risk interdependence,
(see Acharya et al., 2012, 2010; Adams et al., 2010; Brownlees and Engle, 2012; Billio
et al., 2012). Recently, Adrian and Brunnermeier (2011) introduced the so called Con-
ditional Value-at-Risk (CoVaR), which is defined as the overall VaR of an institution,
conditional on another institution being in distress. There are many possible ways to in-
fer on these risk measures; in particular, the most common approaches to estimate VaR
are the variance—covariance methodology, historical and Monte Carlo simulations. For
an overview of alternative parametric and nonparametric methodologies and processes
to generate VaR estimates see Jorion (2007) and Lee and Su (2012). See also Chao
et al. (2012) and Taylor (2008) for recent developments. Bernardi (2013) and Bernardi
et al. (2012) propose to estimate VaR and related risk measures by fitting asymmet-
ric mixture models to the unconditional distribution of returns. Moreover, Adrian and
Brunnermeier (2011) use a quantile regression approach to estimate the CoVaR in a
frequentist framework; Girardi and Ergiin (2013) propose a multivariate Generalized
ARCH model to estimate it; Bernardi et al. (2013) and Bernardi and Petrella (2014)
consider the class of multivariate hidden Markov models; and Castro and Ferrari (2014)
propose a CoVaR-based hypothesis testing procedure to rank systemically important
institutions.

In this paper, we measure tail risk interdependence using the CoVaR framework of
Adrian and Brunnermeier (2011) and since this measure is a quantile of a conditional
distribution calculated at a given quantile of its conditioning distribution, we address
the estimation problem using a quantile regression approach. Quantile regression has
been popular as a simple, robust and distribution free modeling tool since the seminal
work of Koenker and Basset (1978) and Koenker (2005). It provides a way to model the
conditional quantiles of a response variable with respect to some covariates, in order
to have a more complete picture of the entire conditional distribution than traditional
linear regression. In fact, sometimes problem-specific features, such as skewness, fat-
tails, outliers, truncated and censored data, and heteroskedasticity, can shadow the
nature of the dependence between the variable of interest and the covariates so that the
conditional mean may not be enough to understand the nature of that dependence. In
particular, not only is the quantile regression approach appropriate when the underlying
model is nonlinear or the innovation terms are non-Gaussian, but also when modeling
the tail behaviour of the underlying distribution is the primary interest. There are a
number of papers on quantile regression utilising both frequentist and Bayesian frame-
works dealing with parametric and nonparametric approaches. For a detailed review
and references, see for example, Lum and Gelfand (2012) and Koenker (2005).

In quantile regression, the quantile of order 7 of a dependent variable Y is expressed
as a function of covariates X, say ¢” (X). In literature different representations have
been proposed to specify the quantile function ¢ (x); the most common specification is
the linear one adopted hereafter:

" (x) =x'6, (1)

where xT denotes the transpose of x.
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The problem of estimating ¢™ (x) through quantile regression has been considered
both from the frequentist and Bayesian points of view. In the former case, Koenker
and Basset (1978) show that the quantile estimation problem is solved by the following
minimisation problem:

T
argmin- ZPT (ye — 4" (x1)) (2)
t=1

where (y;,x¢) fort = 1,...,T are observations from (Y, X) and p, (y) =y (r — 1 (y < 0))
is the quantile loss function, where 1(-) is the indicator function. The Bayesian quantile
regression approach (see Yu and Moyeed, 2001; Kottas and Gelfand, 2001; Kottas and
Krnjajic, 2009; Sriram et al., 2013) instead considers the distribution of Y | x as be-
longing to the Asymmetric Laplace distribution family, denoted by ALD (7,¢" (x),0),
with positive o, whose density function is given by:

7 (0) = T LD ) )

g

A useful feature of the ALD (7,¢" (x),0) distribution is that the regression function
q" (x) corresponds exactly to the theoretical 7-th quantile of Y | x.

Quantile regression methods have been extensively considered in the literature as an
approach for evaluating the VaR (see, among others, Huang, 2012; Schaumburg, 2010;
Chernozhukov and Du, 2008; Kuester et al., 2006; Taylor, 2008; Gerlach et al., 2011;
Chen et al., 2012a,b,c); recently Adrian and Brunnermeier (2011), Chao et al. (2012),
Fan et al. (2013), Hautsch et al. (2014), Chao et al. (2012) and Castro and Ferrari
(2014) considered the same approach to also calculate the CoVaR.

In this paper, we propose the Bayesian approach to cast the CoVaR within a quan-
tile regression framework and we show how to model and estimate it as a quantile of
the conditional distribution of an institution, k, given a particular quantile of another
institution, j. Bayesian methods are very useful and flexible tools for combining data
with prior information in order to provide the entire posterior distribution for the pa-
rameters of interest. It also allows for parameter uncertainty to be taken into account
when making predictions. In the context of the present paper, since the quantities of
interest are risk measures, understanding about the whole distribution becomes more
relevant due to the interpretation of the VaR and CoVaR as financial losses. In the
Bayesian quantile regression framework, the inference on the unknown parameters is
made analytically tractable because it relies on the exact likelihood function for the
quantiles of interest, see equation (3). Moreover, by post—processing the Markov chain
Monte Carlo (MCMC) output we are able to make inference on the CoVaR function
as well as to calculate its posterior credible sets which is useful to assess the statistical
accuracy of our estimates.

In the second part of the paper, we extend the proposed model to account for the
dynamics of the tail behaviour, since risk measures are usually evaluated on time series
data and returns typically change over time. We use time-varying quantiles to link the
future tail behaviour of a time series to its past movements which is important in a risk
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management context. In particular, based on the ideas of De Rossi and Harvey (2009),
we propose a dynamic model to capture the evolution of VaR and CoVaR. In order
to provide a flexible solution for quantile modelisation whilst retaining a parsimonious
representation, the time evolution of the process should be carefully selected. Hence,
throughout the paper, we model the dynamics of the quantile functions’ parameters as
local linear trends; this is a suitable compromise between the degree of smoothness of
the resulting quantiles and the ability of the model to capture changes over time. Time-
varying quantiles represent a valid alternative to conditional quantile autoregression
proposed in different contexts by Engle and Manganelli (2004), Gerlach et al. (2011),
Gourieroux and Jasiak (2008) and Koenker and Xiao (2006).

To implement the dynamic Bayesian inference, we cast VaR and CoVaR models in
state space representation and we run a Gibbs sampler algorithm using the Exponential-
Gaussian mixture representation of Asymmetric Laplace distributions (see e.g. Kotz
et al., 2001). This approach allows us to obtain a conditionallly Gaussian state space
representation which permits an efficient numerical solution to the inferential problem.
In order to make posterior inference, we use the maximum a posteriori summarising
criterion and we prove that it leads to estimated quantiles having good sample properties
according to De Rossi and Harvey (2009) results.

There are several applications of CoVaR which are interesting in both economics
and finance. In this paper we analyse different U.S. companies belonging to several
sectors of the Standard and Poor’s Composite Index (S&P500) in order to evaluate the
marginal contribution to the overall systemic risk of a single institution belonging to it.
The empirical results show that the proposed models provide realistic and informative
characterisation of extreme tail co-movements. Moreover, our findings suggest that the
dynamic model we propose is more appropriate when dealing with financial time series
data.

The paper is organised as follows: Section 2 contains a brief definition of Value-
at-Risk and Conditional Value-at-Risk measures; Section 3 builds the time invariant
Bayesian model and provides details on how to make inference using MCMC algo-
rithms; Section 4 contains an extension of the previous framework to the time-varying
case, representing marginal and conditional quantiles as functions of latent processes;
Section 5 details the prior hyperparameters used in the following Section 6 which applies
the proposed models to real data; Section 7 concludes.

2 VaR and CoVaR representations

Let (Y1,...,Yy) be a d-dimensional (d > 1) random vector where each Y} is expressed
through some covariates X = (X1, Xs,..., X ), (M > 1). Keeping in mind that, for
any j € {1,...,d}, Y}, the variable of interest of institution j depends on some covariates

X and that for any k € {1,...,d}, k # j, the behaviour of the variable Y}, related to
either institution k£ or the whole system, depends on covariates X as well as on the
behaviour of the variable of institution j, ¥;. Without loss of generality, thereafter, we
fix 7 € (0,1) and suppose that we are interested in institutions j and k for j # k and

(k)€ {1,...,d} x {1,...,d}.
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Let us recall that the Value-at-Risk, VaR;-"T of institution j is the 7-th level condi-
tional quantile of the random variable V; | X = x, i.e.

P(Y}'SV&R}C’T|X:X):T.

The Conditional Value-at-Risk (CoVaRzl’;) is the Value-at-Risk of institution & condi-

tional on Yj = VaR>"" at the level 7, i.e., CoVaR}7 satisfies the following equation
P (Yk < CoVaRYT | X =x,Y; = VaR}"T) _— (4)
Note that the CoVaR corresponds to the 7-th quantile of the conditional distribution

of Vi, | {X = x,Y; = VaR}""}. Assuming the linear representation (1) of the quantiles
of interest, we can write:

VaR}"T - 9;0 + 9;-—_’11'1 + 9;21'2 +...+ 0;,M1'M (5)
CoVaR;:"JT = 92’0 + 9;1331 + 9]:,2372 + ...+ QE,M:EM + BTVa,R;QT’ (6)
where ‘ng,m and B are unknown parameters with | € {j,k} and m = 0,..., M. For

simplicity we consider the same 7 for both VaR and CoVaR and for ease of reading we
drop the 7 index from all parameters.

3 Time invariant quantile model

The use of Bayesian inference in a quantile regression context is now standard practice.
In what follows, we adopt the approach used in Yu and Moyeed (2001) where data
come from an Asymmetric Laplace distribution which is a convenient tool to deal with
quantile regression problems in a Bayesian framework. Suppose that we observe (y, x) =
(yt,xt)thl = (yj7t,yk)t,xt)tT:1, T independent realizations of (Yj,Y%,X). To estimate

X, T

VaR>"" and CoVaR}i7 we consider the following equations:

Yo = X[0j+€. (7)
Ykt XtTOk + Byt + €kt (8)

fort =1,2,...,T, where 8, 8, and 8}, are unknown parameters of dimension 1, (M + 1),
and (M + 1) respectively, and the first component of x; is equal to 1, including a con-
stant term in the regression function. Here, for any ¢ € {1,...,T}, € and €, are
independent random variables distributed according to ALD(7,0,0;) and ALD(7,0, o)
respectively, with positive o; and oj. Due to the property of Asymmetric Laplace dis-
tributions, the functions XTOj and x'0; + By; correspond to the 7-th quantiles of
Y; | X =xand Yy | {X =x,Y; = y,}, respectively.

For a Bayesian modeling, we need to specify the prior distribution for the vector of
the unknown parameter v = (0, 8,0,,0x). We assume the following priors independent
on the value of 7:

m(y) =7 (8) 7 (B) 7 (05) 7 (ok) , (9)
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with 0 = (8;,01)" ~ Noarya) (0°,50), 8 ~ N (8°,03), 0j ~ TG (al,89) and oy ~

VERY

G (af, b)), and where £° = diag (£9,59), 6° = (6%,69)", 8°, 0% > 0, a? > 0, b2 > 0,
ap >0 and b} > 0 are given hyperparameters, with X9 and X9 positive definite square
matrices of dimension M + 1. Notations N and ZG refer to Gaussian and Inverse Gamma
distributions, respectively. This choice is quite standard in the literature on quantile
regression, having the advantage of giving closed form solution for the full conditional
distributions. An alternative solution is proposed by Yu and Moyeed (2001) and Tokdar
and Kadane (2012) where they assume improper priors for the quantile regression and
scale parameters. In our model we opt for a proper prior structure to be coherent with
that imposed on the time-varying framework, where the posterior is not guaranteed
to be proper under improper priors. More details about the priors’ hyperparameters
elicitation procedure are given in Section 5.

As discussed in Yu and Moyeed (2001), due to the complexity of the likelihood
function, the resulting posterior density for the regression parameters 8 and 8 does not
admit a closed form representation for the full conditional distributions, and needs to be
sampled by using MCMC-based algorithms. Following Kozumi and Kobayashi (2011),
we instead adopt the well-known representation (see e.g. Kotz et al., 2001 and Park and
Casella, 2008) of ¢ ~ ALD (7,0, o) as a location-scale mixture of Gaussian distributions:

€= dw + dowz, (10)

where w ~ Exp (¢7!) and z ~ N(0,1) are independent random variables and Exp(-)

denotes the Exponential distribution. Moreover, the parameters A and §2 are fixed equal
to

1—-27 2

A= — 71 32=_—-" 11

T(1—7) T(1—71) (11)

in order to ensure that the 7—th quantile of € is equal to zero. The previous represen-

tation (10) allows us to use a Gibbs sampler algorithm detailed in the next subsection.

Exploiting this augmented data structure, the model defined by equations (7) and (8)

admits, conditionally on w, the following Gaussian representation:

Yit = xtTGj + >\Wj,t + 5«/ijj,tzj,t (12)
Yet = X{ Ok + BYjt + Nogs + O\ /ThOk 12kt (13)
for t = 1,2,...,T, where z;;, 21 are independent and w;;, w; are independently

drawn from Exp (0371) and Exp (0;1), respectively. From equations (12) and (13), the
distribution of Y conditional on the parameters vector 7y, the observed exogenous vari-
ables x and the augmented variables w = (wj¢,wy ¢);_;, becomes

T T
flylwx, ) =[N Wil wiex,05,0) [[N Wk | 0k vje %0, B, O, %)

t=1 t=1

3.1 Computations

Due to the Gaussian representation shown above, we are able to implement a partially
collapsed Gibbs sampler algorithm based on data augmentation (see Liu, 1994 and
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Van Dyk and Park, 2008). The key idea of the complete collapsed Gibbs sampler is to
avoid simulations from the full conditional distributions of all of the model parameters
(0;,04,8,0;,0k) by analytically marginalising them out. This approach has several ad-
vantages with respect to a systematic sampling because it reduces the computational
time and increases the convergence rate of the sampler. In our model, this complete
collapsed approach is not possible since the predictive distribution of the augmented
variables (w; ¢, wy ) does not have a closed form expression. Instead, given the observa-
tions, it is possible to integrate out the variables (wj ¢, wk, ) from the full conditionals of
the scale parameters (0, 01). We implement a partially collapsed Gibbs sampler that
is an iterative simulation procedure from the following full conditional distributions:

1. The full conditional distributions of the scale parameters o; and o are sampled
by integrating out the augmented latent factors (w; ¢, wk ¢)i_;, becoming:

7 (o1 | y1,%,0;) x IG (m;&) , Y= (yl,t)thl Ve gk}
where

~ 7 T
a; = a’? + T, ,llj = b;) + Zt:l Pr (yj,t — xtTOj) s

a (14)
Q=)+ T, be=00+ 3 pr (yne —X] Ok — Byse)

2. (wj_’tl |yj7t,xt,0j,aj) x IN (i, ¢5), Vt = 1,...,T, i.e., an Inverse Gaussian
with parameters

A2 4 262 A2 +252

wj,t = I —— (bj = —0.
(vje — x76;)° 0%0;

3.7 (wk_% | yt,xt,Ok,ﬁ,ak) X IN (Y1, b1), ¥t =1,...,T, with parameters

A2 4 262 A2 + 262
Vit = T ok oK = T 2or
(yk,t —x; 0) — ﬂyj,t) Ok

4. 7 (9] | Y, X, wj,aj) O(NM+1 (éj, ij), where w; = (wj7t)f:1, with

0; = 605+K;(y; —x'6) - )
Y = (Iu — Kjx) X
K; = S0 (W, +x50xT)™
. T
W, = diag ((wjyt x 82 x Uj)tzl)

and Ip74;1 denotes the identity matrix of size (M + 1).

5. ((Bk,ﬂ)T | y,x,wk,o’k) < Mari2 ((%E) ,ik), where wj, = (wk7t)?:1 with

(808)" = @057+ K (30— o) (62.5°) T xen)
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= ¥ 0
X = (HM+2—Kk(Xan)< Ok 0123 ))

000 2000 -
Kk = ( Ok 0_% ) (Xayj)T (Wk + <X7YJ) ( Ok 0./23 ) (vaj)T)

Wk diag ((wm X 52 X Ok)?:l) .

Updating the parameters in this order ensures that the posterior distribution is the
stationary distribution of the generated Markov chain. By combining steps 1 and 2
sample draws are produced from w (0, 0k, w;,wy | 0k,0;,8,y,%), i.e. the conditional
posterior distribution and the partially collapsed Gibbs sampler is a blocked version
of the ordinary Gibbs sampler, see Van Dyk and Park (2008) and Park and Van Dyk
(2009). To initialise the Gibbs sampling algorithm we simulate a random draw from the
joint prior distribution of the parameters defined in equation (9), and conditionally on
that, we simulate the initial values of the augmented variables (w; ¢, wkyt)tT:l from their
exponential distributions.

3.2 VaR and CoVaR posterior estimation

From a Bayesian point of view, simulations retrieved from the posterior distribution
can be summarised in several ways. Lin and Chang (2012) use the maximisation of
the posterior density to make inference for the quantile regression parameters, and
show that this is equivalent to the minimisation problem (2) in the frequentist context.
This leads us to consider the Maximum a Posteriori (MaP) criterion as an estimate of
all the posterior parameters in equations (7) and (8), assuming Asymmetric Laplace
distributions for the error terms and diffuse priors on the regressor parameters. For
all the MaP parameters involved in the marginal and conditional quantiles, that is

(H?MP, HkMaP, BMaP ) the estimators of VaR}"T and the CoVaRzl’; are then derived from

equations (5) and (6) as follows:

)MaP

X,T T pMaP
(VaRj x 0,

MaP a
(Covaryy) = xTON 4 gMAP (vVaRyT)™
Credible sets at a given confidence level for both VaR’k‘"; and CoVaRz(l’; estimates can

be calculated by marginalising out the scale parameters (o, o) and the latent variables
(wj,wy), using the sample draws of the MCMC algorithm. Monte Carlo estimates of
the marginal posterior densities of the quantile functions are given by

X, T 1
T (VaR]’ | y]) = 5 ZTF ()(To‘7 | O'J(g)’w‘gg)7y]) ;
g=1

71' (CoVaRjjg | yk) -~ (XTgk + 8 (Var®T) | o,i“’),wEf),y;c) ’

g

Ql =

G
G

—



M. Bernardi, G. Gayraud, and L. Petrella 561

where G denotes the number of post burn-in iterations. The 95% High Posterior
Credible intervals HPDg59, for the 7-th quantile can be obtained from the samples

G G
{XTBj | aﬁg),wg»g),yj} ) and {XTBk + 4 (VaR;(’T)(g) | a,(fg),w;g),yk} )
g= 9=

4 Time-varying quantile model

As mentioned before, VaR and CoVaR are respectively unconditional and conditional
quantiles, given current information, of future portfolio values. It is typically the case
that returns change over time and for this reason it can be interesting to build suitable
models for time-varying VaR and CoVaR. In particular, when modeling time-varying
quantiles, it is important to link future tail behaviours of time series to past movements,
to account for risk management arguments. Recently, the topic of time varying quantiles
has received increased attention and different econometric models have been proposed:
the most well-known are the Conditional Autoregressive Value-at-Risk (CAViaR) model
of Engle and Manganelli (2004), the Quantile Autoregressive (QAR) model of Koenker
and Xiao (2006), and the Dynamic Additive Quantile (DAQ) model of Gourieroux and
Jasiak (2008). Most of these include an autoregressive structure in their modeling, which
is intuitively attractive, as series of financial returns tend to exhibit time-varying condi-
tional moments, fat tails and volatility clustering. More recently, Gerlach et al. (2011)
and Chen et al. (2012a,b), deal with the problem of estimating the conditional dynamic
VaR using a Bayesian CAViaR approach. The resulting conditional quantile for the vari-
able of interest is directly modeled as a smooth function of the observed past returns.

In this paper we propose a different approach for introducing dynamics in the quan-
tiles, modeling both the VaR and CoVaR as a function of latent variables having their
own time dependence. The introduction of latent states having a dynamic evolution
allows the future behaviour of the modeled quantiles to depend upon their past move-
ments in a flexible way. In particular we estimate, from a Bayesian point of view, the
required quantiles simultaneously and we allow the quantiles to depend on exogenous
variables. In doing so we are consistent with the result of De Rossi and Harvey (2009)
and Kurose and Omori (2012) who modeled the unconditional quantile curve using
smoothing spline interpolation. More precisely, we model the observed vector at each
point in time (y;+, yx,:), as a function of independent latent processes (¢, ftx,+) and
the regressor terms in the following way:

Vit = it tX 05+ (15)
Ybt = Mgt + X Ok + By + eni, (16)

Vtel,..., T, where e ~ ALD (7,0,0;), €5, ~ ALD (7,0, 0%) are independent random
variables. The intercept terms gy, with { € {j, k} are introduced to account for time
dependence in the quantile functions. In fact, we propose the following smooth time-
varying dynamics for y;, and I € {j, k}:

Piesl = Mg+ e+ e (17)
/ﬁzﬁ,t+1 = /J’;:t + 771*.,t» (18)
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-

where (,U/lJa/j/zKJ) ~ N5 (0,rl) with k > 0 being sufficiently large, (7717t7771*7t)T ~
1 1

N>(0,5;) and S; = sl = sl i 21 , with s; > 0 allowing for a certain degree of

smoothness of the quantile process The V hyperparameter is considered as fixed in
order to control for the quantiles’ smoothness. In particular, to get a local linear trend
specification for the unobservable processes, we chose V' to be non-diagonal. Concerning
the specific choice of the V' entries, following Harvey (1989), Durbin and Koopman
(2012), De Rossi and Harvey (2009) and Kurose and Omori (2012) on related literature
on smoothing splines, we allowed them to be fixed to pre-specified values. Since one
of our main focuses is to analyse the dynamic co-movement of two institutions, we
also allow the parameter ; to change over time. To reflect different impacts between
institutions we consider the following evolution for S;:

Bev1 = B+ B+ (19)
Biyi = Bf +ju (20)

(B1, B7)" ~ Na(0,kly) and (s, M54)7 ~ Na(0,53V) where V and & is defined as
before. Throughout the paper we assume that VI € {j, k, 8}, (m,:,n/,) is independent of
(€j.t, €k,¢) (here we use § as an index since there is no ambiguity). Since we are interested
in modelling how different economic phases may influence the relationship between VaR
and CoVaR, we allow only the conditional quantile loading parameter 5 to change over
time while retaining the covariate’s parameters (0}, 0y) as fixed. In fact, we retain that
the dynamics of the time series covariates are informative enough for the evolution of
the economic and the specific characteristics, in accordance with a parsimony criterion.

In order to estimate the model parameters we rewrite equations (15)—(20) using a
state space representation so that Vt € {1,...,T},

yi = Zi&+x{0+¢€ (21)
£t+1 = A& +m, (22)
&~ Ns(0,klg), (23)

where
o €, = (€4, €k,) is the vector of independent ALDs as defined in equations (7)—(8),

100 0 0 0}, . . . .
° 7 = ( 00 10 g 0 ) is the time-varying matrix of loading factors,

-
o &, = (/Jj,t’/i;,t,ﬂk,tvM?taﬂhﬁt*) is the vector of latent states whose dynamic is

1

given by the transition matrix A, with A =13 B, B = ( 0

1
1 ) ; and ® denotes
the Kronecker product,

o 0=(0,,0,) is a (M x 2) matrix of time invariant coefficients,
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-
o7, = (77j7t777}k,t777k7t7772,t,77/37tané,t) is the time-varying error vector distributed
according to N (0, ), where Q = diag (sf, 52, s%) V.

The Bayesian model specification requires the selection of a prior distribution for all
the fixed parameters (0,0, 0%), the variance of the latent factors (s?, 5%, 35) and the

initial distribution for the vector of first states £;. Concerning the regression parameters
0 and the nuisance parameters (o;, o), which are common to the time invariant model,
we impose the same structure of conjugate proper priors defined in Section 3. The scale
of the unobserved components has an independent Inverse Gamma distribution, i.e.
st ~IG (rl , U ) with positive r) and v{ VI € {j, k, 3}. This choice is motivated by the
need to have closod forms for the full conditional distributions of those parameters. In
addition, we assume that the vector of first states &, is distributed as in equation (23),
where the Gaussian distribution is assumed to preserve the conditional Gaussianity of
the state space model defined in (21)—(22). The motivation for the specific choice of the
parameter x as well as other prior hyperparameters is explained in Section 5.

The linear state space model introduced in (21)—(23) for modeling time-varying
conditional quantiles is non-Gaussian because of the assumption made on the innova-
tion terms. So in those circumstances optimal filtering techniques used to analytically
marginalise out the latent states based on the Kalman filter recursions can not be
applied (see Durbin and Koopman, 2012). Considering the (10) representation of the
innovation terms in (21) it is easy to recognise that the non-Gaussian state space model
admits a conditionally Gaussian representation. More specifically equations (21) and
(22) become:

yi = ¢+ Z€ + X;FH + Gy, v~ N2 (0,1y) (24)

€t+1 = A& +mn;, m~N(0,Q) (25)

£1 ~ NG (07 H]IG) ) (26)

Vvt € 1,...,T, where the time-varying vector c¢;, and matrix G; are respectively ¢; =

(51 /O W ¢ 0 . .
(Awj ¢, Awp, t)T and G; = < I ; wi; and wy ¢ are independent with
N2 5 0 5\/m » s 3

wi ~ Exp (o7 ") for 1 € (j, k) and o; > 0; A and § are defined in equation (11).

The complete-data likelihood of the unobservable components w = (wj ¢, Wk.t)7—q

and (£t) _, and all parameters v = (0 s2,s2, SB’ 0'j70'k> can be factorised as follows:

£

—~

T
gt)t:l awa7 ‘ Yax)

®
=

T
f(yj,t | stawj,tvo-jaxt) Hf(yk,t | yj,tﬂétawk,tvokaxt)
t=1

t=1

T T T-1 -
< [TF @jn L o) [T £ (i low) £ (&) T £ (Gega | &85, 57, 53) (0500) ™ *

t=1 t=1 t=1



564 Bayesian Tail Risk Interdependence
d T -1
X exp {— Z (Yt —cy — Zi&y — XtTa) (GthT) (}’t —c— 2§, — X;re)}
t=1

_ Z?:l Wyt } (o_k)*T exp {_ Z,tTZI Wit }

gj Ok

N~

N

(0;) " exp

—N

T
X H (wj,twkyt)f
t=1

1
XeXP{ﬁﬂ&l}em{
t

4.1 Computations

v

1

N =

1

(i1 — A&) O (€pr - A&)} : (27)

Using the complete-data likelihood in (27) and the prior distributions stated in sections
3 and 4 we are able to write the joint posterior distribution of the parameters and
the unobservable components. The form of the posterior allows us to sample from the
complete conditional distributions and to use the Gibbs sampler algorithm, as shown
below.

After choosing a set of initial values for the parameter vector 4(°), simulations
from the posterior distribution at the i-th iteration of v, {&,,t =1,2,... 7T}(i) and
{wi,l €4,k t= 1,2,...,T}(i) for i = 1,2,..., are obtained by the following Gibbs
sampling scheme:

1. For | € {j, k, B}, generate s? from 7 (312 | yl,£é> x ZG (77,v;) with parameters

T-1
A=l @-1), =Y (6 - Be) v (el - BE)
t=1

where d denotes the vector consisting of the elements (uj,t,,u;it) for | = 7,
(Nk,t,/lfz7t) for I =k, and (B¢, B7) for l = §.

2. For [ = j, k, generate o; from 7 (O’l | yl,Ef£7 91> xZIG (El,gl> with parameters

T

G=al+T,  b=b+ ZPT (i — 2106, — %] 61)
t=1

where z;; denotes the first row of the matrix Z; for [ = j or the second one for
l=k.

3. Forallt € {1,2,...,T}, generate w;tl from 7 (wj_tl | Yj.1,%¢,05,0;, ,uj,t) distributed

according with ZN (¢; 4, ¢;), with parameters

A2 + 242 A2 + 262
Vi = \/ 55 ¢ = —5—
(yj,t

T 24
— Zjahje — X 0;) 0%




M. Bernardi, G. Gayraud, and L. Petrella 565

and generate w,;i from 7 (w;% | }’t,Xt,Bk,ﬁt,U/@,Mk,t) X IN (Y1, ¢r), with pa-
rameters

A2 + 242 A2 4262
wk,t = T 2 ¢k = (527
(Yi,t — Beyie — 2kttt — X; Ok) Tk

4. For | = j, k, denote y; = (yi.1)i=1, ity = (210 X pje)i=1, By; = (Be X yj)izs-
Then, generate 0; from 7 (0, | y,x, wy, 0y, 1) o< Ny (Gl, El) with parameters

0. = 9?+Kj(yj—zjuj—xT99——)\wj)
(Ins — K;x) 27

M
ST
Il

K, = 9% (W, +x30xT) "
W; = diag ((wj,t x 6% x Uj)thl)
and
5k = 62 + Ky (y;C -z, — By — xT02 — )\wk)
ik = (HM — Kk-X) 22
Kip = S)x" (Wi +x20x") "

W, = diag ((wk,t x 0% x Jk)j=1> :

5. For all t € {1,2,...,T}, generate 7 (Et,ﬁt |y, x, 0j,9;.“oj,ak,wj,wk,si,si,s%).

Since it is conditional on the augmented latent states (wj ¢, wk’t);l the state space
model defined in equations (24)—(26), is linear and Gaussian, the latent dynamics
can be marginalised out by running the Kalman filter-smoothing algorithm. We
draw (&, Bt)thl jointly using the multi-move simulation smoother of Durbin and
Koopman (2002). This entails running a Kalman filter forward with the state equa-
tion defined as in (26). As in Johannes and Polson (2009), equation (16) for yy ¢ is
a measurement equation with time-varying coefficients, because y; ; is known and
represents a time-varying factor loading. Once the Kalman filter is run forward,
we run the Kalman smoother backward in order to get the moments of the joint
full conditional distribution of the latent states (27). Finally, we simulate a sample
path by drawing from this joint distribution. For a similar simulation algorithm
based on forward-filtering backward-smoothing see also Carter and Kohn (1994,
1996) and Friithwirth-Schnatter (1994).

In line with Van Dyk and Park (2008) and Park and Van Dyk (2009), the ordering of
the full conditional simulation ensures that the posterior distribution is the stationary
distribution of the generated Markov chain. This is because the combination of steps
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2 and 3 above essentially ensures draws from the conditional posterior distribution
™ (a],ak,wj,wk | {/Bt,ét}t 1,01,0,,y,%,s 3,3%,5%) and the partially collapsed Gibbs
sampler is a blocked version of the ordinary Gibbs sampler. As in the time invariant
case, the Gibbs sampler algorithm is initialised by simulating a random draw from the
joint prior distribution of the parameters.

4.2 Maximum a Posteriori

As in the time invariant case, once we retrieve simulations from the posterior distribu-
tion, we use the maximum a posteriori summarising criterion in order to make posterior
inference. In what follows we prove that using this criterion, the estimated quantiles
have good sample properties according to Proposition 3 of De Rossi and Harvey (2009),
i.e. a generalisation of the “fundamental property”, where the sample quantile has the
appropriate number of observations above and below.

Proposition 4.1. For the state space model defined in equations (15)-(20) with prior
distributions specified in Sections 3 and 4, Kk large enough and a diffuse prior on 0, the

MaP quantile estimates pij MaP XTHMEP and py, Sl XTGMaP + oy BM2P satisfy
(Tt + 1) xr (w50 — (122F 4+ x] BM‘"*P - 0
J Js
t¢C
> Wi+ Tme +1) X (yk,t - (ukM?P X7 OV 4y, MaP)) _—

teC

vm € {1,...,M}, where C C {1,...,T} is the set of all points such that the MaP
quantile estimate coincides with observations and

T—1 if 2<0
XT'Z_){T it z>0. (28)

Proof of Proposition 4.1. Fort € {1,...,T}, E{ = (uN,,u;ft)T. Define 57]5“75 =
T \T
(i B0, 87) € = (€1) _ and €7 = (g 5) . From equations (15)-(20), let
' t=1 t=

us write the complete-posterior distribution p (G,EJ Ek B 52 ],sk,sﬁ,aj,ak | (yt)t 1) as

proportional to the product of two parts Postyqrg and Posteonq where

1/ AT
Postyarg = Hald i | 1 +%{0;5,05) 57 exp{ﬁ (5]1) 5{}
t=1

X exp {——22 z_: ( o1 — BS{)Tv—l ( 1 Bﬁ{)}

1
X exp(fﬁ(ej —0)T (20716, — 69)) x ZG(r?,v9) x IG(al,bT)
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T
1 T _
Posteona = Hald (Yoot | Bkt + X Ok + Bryjie, ok) exp {—ﬂ (ilf’ﬁ) E’f”ﬁ} (sksp)”"
t=1
T-1 “1
12 k,B T Sz 0 k,B
X exp {—7 tz::l (A£t+1) <[ 0 s3 @V) AL

<o (5 (00 o) (50)” (61~ })

xZG (7‘2,1}2) X TG (ag,bg) X TG (r%,vg) ,
where A& = € — (I, @ B) €17,

. T . T T

The MaP Of p(@, €j7£k757 8?, Si7 8%7 05,0k | (yt)t:l) m (07 (Mj,t)tzl ) (ngt)tzl )
(ﬁt)thl) is obtained by maximizing separately Posty,qrg and Posteonq with respect to
(6, (/J/j7t)f:1) and (O, (Uk,t)tT:1 ,(Be)EZ,), respectively. Note also that the check func-
tion p; (+) of the Asymmetric Laplace distribution is derivable everywhere except at zero
and its derivative corresponds to the function x. (-) defined in equation (28).

Differentiating log (Postmarg) YVt ={1,2,...,T}\ {C}, we obtain:

dlog (Postmarg) —pi1 — M5y 1 T
FO8 OFmarg) B0l T L D (g — i —x10;
O K + ij (y]’l i1 = %16;)

6
+5 {2 (a2 =i — 150) = (W52 = 154) }

J

0log (Postmarg) 1 T 12
G808 marg) L (= iy — x705) — 2 (pig — g —
Oty 1 an (yy,t Mgt — X J) 35 (Na,t Mje—1 — Hj¢ 1)
T (K1 = By — 1454) — 32 (1 = 2050 + 1154 -1)
j j

vte{2,...,T — 1}, and

0log (Postmarg) 1 T
TN P marg) = (yiq — i — X060
Oty 1 an (jr — wjr —x70;)

6 * * *
+g {_2 (/JJ}T — MjTr-1— Nj,Tq) + (:uj,T - Mj,Tfl)}
J

T
0log (Postar 1 -
Olog (Postmara) LS v, (g — s —x10,) + (£9) 7 (6, 63) . (29)
89j O'j =1
_ 1 —1/2
1_ 12y—-1_ 12
where we use Sj = 5§V o2 ( “12 13 ) It turns out that

dlog (Postmarg)  —Hj1 —Hj1 1 T
> = =+ = X (i — i — X1 05)
. 8Mj,t P 0j & (Jt J,t t J)
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which, combined with equation (29) and choosing x sufficiently large enough and a dif-
fuse prior on 6;, implies that the mazimiser of Posty,rq satisfies the following equation

Z (xm,t + 1) XT(yj,t - Nj,t - X;rej) = 0, Ym € {1327 s aM} .
t¢C

The derivatives of log (Post.ond) with respect to (Bk7 (Mk,t)?:]) can be obtained in the

same way as those for log (Postmarg). Derwing log (Postcona) with respect to (Bt)z;l,
Vit ={1,2,...,T}\{C}, leads to:

0log (Postcond) =5 =B |y,
g = % + ;—;XT (k1 — b1 — X1 Ok — y5.151)
6 * * *
+ta {2(B2 = B = B1) — (B3 — B1)}
B
9log (Posteond) Yit

Yit e —xT0 — w8 — 25 5 g
98, e Xt (yk,t Mt — X O y;,tﬁt) s% (ﬁt Be—1 ﬁt—l)

+% (2B —Be— BY) — (Bra — 281 + Bi1) ).
vte{2,...,T — 1}, and

0 log (POStcond) _ YT

.
- —x7p0k —y;
9By o Xr (Yo, =t — X708 — y;,75t)

6
+% {2 (Br — Br—1— Br_1) + (B — Br_1) }-

It turns out that

0log (Poston —B1 — B 1
5 et = SR S e (ke <0k ).

By choosing a sufficiently large k and a diffuse prior on 0y the maximiser of Post.ond
satisfies the following equation

Z (Wit + Tt + 1) Xr (Yt — prt — X1 Ok — y;8:) =0,
t¢C
Ym € {1,2,..., M}, which concludes the proof of Proposition 4.1.
Corollary 4.1. The MaP estimate of the quantiles (qf (x;))"*" = Py + XtTO?/IaP

and (qf (xt,yj7t))MaP = u%fp + x7 00 4, BM2P satisfies a generalisation of the
fundamental property of sample time-varying quantiles, that is:

T

> <=7 hi— > he and Y he <ty hi— Y hiy,  (30)

teA teC— teB t=1 teC—
where

hy = { T+ 1 for the VaR (31)

Yjt + Tme +1 for the CoVaR,
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and AUBUC ={1,...,T}. Here, A and B denote the set of indices such that obser-
vations are respectively (strictly) above and (strictly) below the MaP quantile estimates,
and C =CTUC™ ={teC:h >0} U{t € C:hy <0} is the set of indices such that
the observations coincide with the quantile estimates.

Proof of Corollary 4.1. Following the proof of Proposition 3 in De Rossi and Harvey
(2009), using Proposition 4.1 and the following inequalities

—r S k=) Y b <> hexs (e — (aF e
teC+ teC— tgC

> b (wie = (a7 G0)™™) < (=7 D b= Y A, (32)

tgC teC+t teC—

where hy = xp+ + 1, the result in Corollary 4.1 is obtained by rewriting the left-hand
side term in (32) as follows:

> hixs (yj,t — (a7 (Xt))Map) =Y (=1 i (33)

t¢C teA teB
The same occurs for the CoVaR.

Remark 4.1. Ifh, >0 Vt=1,2,...,T, orif the distribution of (Y ¢, Yk ) is continu-
ous, then inequalities (30) coincide with the ones stated in Proposition 3 of De Rossi and
Harvey (2009). When hy = h  Vt, then (30) corresponds to the fundamental property
of sample time-varying quantiles.

5 Specification of the prior hyperparameters

In this section we outline the elicitation of the hyperparameters for the prior distribu-
tions specified in Sections 3 and 4. Concerning the regression parameters @, which are
common to both time invariant and time-varying models, we typically set 8° = 0 and
the variance-covariance matrices Z? =29 = 10014, where d = 2M + 2 in the first case
and d = 2M in the latter case. This choice is quite standard in the Bayesian quantile
regression literature when one wants to be as non informative as possible retaining a
proper distribution. For the same reason we impose the same mean and variance hyper-
parameters for the loading factor 3, i.e. 3° = 0 and 0’% = 100. Regarding the nuisance
parameters (o, o), we choose a? = b? = a) = b = 0.0001 which corresponds to proper
Inverse Gamma distributions with infinite second moments. The same prior hyperpa-
rameters are adopted even in the time-varying case. This choice is motivated by the lack
of knowledge of the range of the data and it is particularly appropriate when dealing
with financial data characterised by large kurtosis.

In the time-varying framework we have the additional parameters related to the
latent states dynamics. For those parameters we fix the location and shape of the Inverse
Gamma prior to r) = 2 and v{ = 0.0001 for [ € {j,k, 8}, which corresponds to a prior
mean equal to 0.001 and variance equal to 0.0001. Since these parameters are related to
the smoothness of the quantile estimates, choosing those values allows us to reduce their
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variability through time. Concerning the initial values of the latent states £;, we employ
a diffuse initialisation of the Kalman filter, by allowing the first state to be Normally
distributed with zero mean and variance-covariance matrix proportional to x = 10%, as
suggested by Durbin and Koopman (2012).

6 Empirical application

Throughout this section we apply the methodology previously discussed to real data.
In particular we separately analyse the time-invariant specification of CoVaR proposed
in Section 3 and the time-varying version considered in Section 4. Our aim is to study
the tail co-movements between an individual institution j and the whole system k it
belongs to. The financial data we utilise are taken from the Standard and Poor’s Com-
posite Index (k) for the U.S. market, where different sectors (j) are included. For both
the institutions and for the whole system, we consider microeconomics and macroeco-
nomics variables, in order to account for individual information and for global economic
conditions respectively. The analysis is based on weekly observations; however, as mi-
croeconomic variables are not observable at the weekly frequency, we build a smoothing
state space model to fill the missing values. The aim of the empirical application is to
show how CoVaR provides interesting insights into the tail risk interdependence. In ad-
dition, we show the relevance of introducing dynamics in the extreme quantiles in order
to effectively capture the contribution of individual institutions to the evolution of sys-
temic risk. Approaching VaR and CoVaR estimation in a Bayesian framework allows us
to calculate their credible sets which are necessary to assess the accuracy of estimates.

6.1 The data

Our empirical analysis is based on publicly traded U.S. companies belonging to different
sectors of the Standard and Poor’s Composite Index (S&P500) listed in Table 1. The
sectors considered are: Financials, Consumer Goods, Energy, Industrials, Technologies
and Utilities. Financials consists of banks, diversified financial services and consumer
financial services. Consumer Goods consists of the food and beverage industry, primary
food industry and producers of personal and household goods. The Energy sector con-
sists of companies producing or supplying energy and it includes companies involved in
the exploration and development of oil or gas reserves, oil and gas drilling, or integrated
power firms. Industrials consist of industries such as construction and heavy equipment,
as well as industrial goods and services that include containers, packing and industrial
transport. Technologies are related to the research, development and/or distribution of
technologically based goods and services, while Utilities consists of the provision of gas
and electricity.

Daily equity price data are converted to weekly log-returns (in percentage points) for
the sample period from January 2, 2004 to December 28, 2012, covering the recent global
financial crisis. Table 1 provides summary statistics for the weekly returns. Except for
some companies, the mean return during the estimation period is positive. Consumer
Goods and Energy have the highest average return, while banks and financial services
have the lowest. Focusing on the sample correlation with the market index return, the
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Name Ticker Sector Mean Min Max  Std. Dev. Corr. 1% Str. Lev.
CITIGROUP INC. C Financial -0.490 -92.632 78.797 9.756 0.673 -26.267
BANK OF AMERICA CORP. BAC Financial -0.212 -59.287 60.672 7.990 0.705 -27.231
COMERICA INC. CMA Financial -0.072  -31.744 33.104 5.945 0.718 -19.794
JPMORGAN CHASE & CO. JPM Financial 0.086 -41.684 39.938 5.826 0.711 -12.785
KEYCORP KEY Financial -0.210 -61.427 40.976 7.428 0.694 -24.231
GOLDMAN SACHS GROUP INC. GS Financial 0.071  -36.564 39.320 5.641 0.719 -16.850
MORGAN STANLEY MS Financial -0.170  -90.465 69.931 8.342 0.699 -19.706
MOODY’S CORP. MCO Financial 0.125 -27.561 28.300 5.615 0.688 -20.719
AMERICAN EXPRESS CO. AXP Financial 0.091 -28.779 24.360 5.104 0.772 -16.108
MCDONALD’S CORP. MCD Consumer 0.320 -12.130 11.878 2.606 0.554 -4.978
NIKE INC. NKE Consumer 0.260 -18.462 18.723 3.746 0.655 -11.596
CHEVRON CORP. CVX Energy 0.254 -31.674 15.467 3.585 0.745 -8.275
EXXON MOBIL CORP. XOM Energy 0.197 -22.301 8.717 3.081 0.696 -7.123
BOEING CO. BA Industrial 0.164 -25.294 16.034 4.258 0.727 -12.468
GENERAL ELECTRIC CO. GE Industrial -0.023 -18.680 30.940 4.311 0.715 -15.578
INTEL CORP. INTC Technology -0.052 -17.038 16.935 4.117 0.671 -12.533
ORACLE ORCL  Technology 0.203 -15.518 12.135 3.762 0.632 -9.986
AMEREN CORP. AEE Utilities 0.015 -29.528 9.485 3.118 0.682 -8.172
PUBLIC SERVICE ENT. PEG Utilities 0.143  -26.492 10.568 3.318 0.553 -8.191
STANDARD AND POOR 500 S&P500 Index 0.052  -20.083 11.355 2.637 1.000 -7.258

Table 1: Summary statistics of the company’s returns and market index (S&P500) re-
turns (in percentage). The sixth column, denoted by “Corr”, is the correlation coefficient
with the market returns while the last column, denoted by “1% Str. Lev.” is the 1%
empirical quantile of the returns distribution.

correlation involving the Financials and Industrials is the largest on average. The cor-
relation with the market index return varies substantially across sectors, ranging from
0.553, Public Service Enterprise Inc. (PEG) to 0.772 American Express Co. (AXP).
Interestingly, Nike Inc. (NKE) and Ameren Corp. (AEE), which belong to bellwether
sectors like consumer and utilities, show a surprisingly high correlation level compared
to that of McDonald’s Corp. (MCD) and Public Service Enterprise Inc. (PEG) which
belong to the same sectors, respectively. A possible explanation for this empirical evi-
dence is that the correlation among financial stocks increases dramatically during times
of turbulence and this was particularly evident in late 2008 as the global financial crisis
intensified. Finally, the last column of Table 1 provides the sample 1% stress level of
each institution’s return evaluated over the entire time period. By comparing these val-
ues with the number of standard deviations away from their mean, we can see that asset
return distributions do not appear highly skewed. We study the risk interdependence
through the CoVaR tool due to the characteristics of the data summarised in Table 1.

To control for the general economic conditions we use observations of the following
macroeconomic regressors as suggested by Adrian and Brunnermeier (2011) and Chao
et al. (2012):

(I) the VIX index (VIX), measuring the model-free implied stock market volatility as
evaluated by the Chicago Board Options Exchange (CBOE);

(IT) a short term liquidity spread (LIQSPR), computed as the difference between the
3-month collateral repo rate and the 3-month Treasury Bill rate;

(ITI) the weekly change in the three-month Treasury Bill rate (3MTB);
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(IV) the change in the slope of the yield curve (TERMSPR), measured by the difference
of the 10-year Treasury rate and the 3-month Treasury Bill rate;

(V) the change in the credit spread (CREDSPR) between 10-year BAA rated bonds
and the 10-year Treasury rate;

(VI) the weekly return of the Dow Jones U.S. Real Estate Index (DJUSRE).

Historical data for the volatility index (VIX) can be downloaded from the Chicago
Board Options Exchange’s website, while the remaining variables are from the Federal
Reserve Board H.15 database. Data are available on a daily frequency and subsequently
converted to a weekly frequency.

To capture the individual firms’ characteristics, we include observations from the
following microeconomic regressors:

(VII) leverage (LEV), calculated as the value of total assets divided by total equity
(both measured in book values);

(VIII) the market to book value (MK2BK), defined as the ratio of the market value to
the book value of total equity;

(IX) the size (SIZE), defined by the logarithmic transformation of the market value
of total assets;

(X) the maturity mismatch (MM), calculated as short term debt net of cash divided
by the total liabilities.

Microeconomic variables are downloaded from the Bloomberg database and are avail-
able only on a quarterly basis. Since our analysis builds on weekly frequencies we choose
to impute missing observations by smoothing spline interpolation. Details on the pro-
cedure are given in Appendix 1.

6.2 Time-invariant risk beta

In what follows we provide the Bayesian empirical analysis for the time-invariant Co-
VaR model stated in Section 3. In order to implement the inference we specify the
hyper-parameters values for each prior distribution defined therein. We ran the MCMC
algorithm illustrated in Section 3 for 200,000 times, with a burn-in phase of 100,000 iter-
ations. Tables 3—4, 5-6 and 7-8 in the appendix report the estimated systemic risk 5 and
the exogenous parameters as well as the HPDgsg; credible sets, for 7 = (0.01,0.025,0.05),
for all the considered institutions. To check the MCMC convergence we also calculate
Geweke’s convergence diagnostics (see Geweke, 1992, 2005) which are not reported here
to save space but suggest that the convergence has been achieved.

For all reported institutions, 8’s parameters are positive and significantly different
from zero. Note that a positive 5 indicates that a decrease in VaR;-"T (expressed as a

X, T

larger negative value) yields a greater negative CoVaRk‘j, i.e. a higher risk of system
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losses. Moreover, by comparing HPDgs¢, for the 8 parameters, it is also evident that the
extent of the contribution to systemic risk is significantly different across institutions
belonging to different sectors. Hence the result highlights the evidence for a sector-
specific effect of individual losses to the overall systemic risk. We also observe that on
average the systemic S has a lower value for institutions belonging to the Financials
sector and is higher for institutions belonging to Consumer Goods and Energy sectors.
These results provide evidence that sectors have different sensitivity to risk exposure. It
is worth noting that the 8 parameter sometimes displays a huge variation even within
the same sector; as it is the case for the Industrial sector, where the estimated [ co-
efficient for GE is significantly different from the one for BA whose credible sets are
not overlapping. Furthermore, we observe as expected that the order of 8’s parameter
estimates does not correspond to the order of the empirical correlation in Table 1. This
is particularly evident for the consumer sector, where MCD has an estimated [ larger
than that of NKE but displays a lower correlation. This result is in line with what
we expected as the correlation coefficient does not provide enough information about
the relationship between extreme events. Finally, we compare the 8s for the different
values of 7 considered and we observe that, on average, higher values of the parameter
tend to be associated with smaller values of the confidence level 7, meaning that the
co-movement between asset and market is stronger for extreme returns.

Considering the influence of macroeconomic variables, from Tables 3—4, 5-6 and 7-8
in the appendix we observe some remarkable differences among assets, in particular:

e Except for the volatility (VIX) and the U.S. real estate (DJUSRE) indices, the im-
pact of the remaining variables changes in magnitude and significance as we move
from one asset to another. This heterogeneous behaviour seems to be transversal
with respect to sectors, at least in some cases such as liquidity spread (LIQSPRD).
As expected, the estimated parameters for the VIX index are always significantly
negative while the opposite occurs for the DJUSRE Index. This is true for both
the VaR and CoVaR regressions and for all the considered levels of 7.

e Some macroeconomic variables, such as the change in three-month Treasury Bill
rate (3MTB) or the term spread (TERMSPR) have different impacts on the Co-
VaR and VaR. In the first case the 3MTB displays positive or non significant
coefficients, while in the case of TERMSPR we find negative coefficients for some
sectors (Financial and Utilities). This means that an increase in the spread be-
tween 10-year Treasury Bond rates and three-month Treasury Bill rates (CRED-
SPR) produces a decrease of the CoVaR while reducing individual risks in the
case of the Financial and Utilities sectors. Thus large traded firms, such as the
ones typically operating in the mentioned sectors, benefit from an increase in the
interest rate spread because it increases the opportunity cost of different financing
strategies. As expected, the change in credit spread has a negative impact on the
firms’ level of risk.

e For different values of the confidence level 7 the macroeconomic variables exert a
different impact on the marginal and conditional quantiles, becoming in general
less significant as the 7-level increases.
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For the microeconomics exogenous regressors, we note that:

e The leverage regressor (LEV) displays a different impact on the VaR and the Co-
VaR respectively. The VaR is greatly enhanced in highly leveraged companies, in
fact the significant coefficients are negative signed. In contrast, the CoVaR regres-
sion produces mixed results for the impact of the leverage that is always positive
for American Express Co. (AXP), JP Morgan Chase & Co. (JPM) and Exxon
Mobile Corp. (XOM) and always negative for Goldman and Sachs Group Inc.
(GS), Chevron Corp. (CVX) and Public Enterprise Service icn. (PEG). Moreover
as the 7 level decreases to 0.01 a larger number of institutions belonging to the
Financials display significantly negative coefficients.

e The impact of the market capitalisation (SIZE) on the VaR is nearly exclusively
significantly positive while for the CoVaR regression its sign varies across institu-
tions belonging to the same sector. This evidence suggests that large institutions
are more risky if considered in isolation. Moreover, the extent to which large com-
panies contribute to the overall risk is not clear, and depends on the “degree of
connection” among institutions and on diversification of their portfolios.

e The maturity mismatch coefficient (MM) is nearly always negative for the VaR
regression in the Financials while it is positive for all the remaining sectors. In
this instance, the CoVaR regression shows a different influence of the MM regres-
sor; that is positive and significant for Financials (except for AXP). This signals
the existence of positive dependence between financial imbalances and systemic
riskiness at least for financials firms.

e The market-to-book ratio (MK2BK), again, shows an opposite impact on the
VaR and the CoVaR: significantly negative for the non financial sectors in the
VaR regression, and positive, when significant, for the CoVaR regression.

To have a complete picture of the contributions from individual and systemic risk we
plot the estimated VaR and CoVaR for some of the assets listed in Table 1 in Figure 1.
Looking at individual risk assessment, it is clear that the VaR profiles are relatively sim-
ilar across institutions, displaying strong negative downside effects upon the occurrence
of the recent financial crises of 2008 and 2010 and the sovereign debt crisis of 2012.
However, the analysis of the time series evolution of the marginal contribution to the
systemic risk, measured by CoVaR, reveals different behaviors for the considered assets.
In particular, Citigroup (C), which belongs to the Financials, seems to contribute more
to the overall risk than other assets do. Inspecting Figure 1 and Tables 3-4, 5-6 and
7-8 in the appendix, we note that institutions which have low [ coefficients provide
major contribution to the 2008 financial crisis. On the contrary, MCD, which belongs
to the Consumer Goods sector, has a large estimated (3, and as seen in the CoVaR
plot in Figure 1 its contribution to the overall systemic risk is much lower than that of
financial institutions.

For the selected companies, Figure 2 plots the CoVaR for two different confidence
levels 7 = 0.025 and 7 = 0.1. This figure highlights the different impact of the Global
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Figure 1: Time series plot of the VaR}"" (red line) and CoVaRjj7 (gray line) at the
confidence level 7 = 0.025, obtained by fitting the model time invariant model defined
in equations (7)—(8) for the following assets: top panel (financial): C (left), GS (right);
second panel (consumer): MCD (left) and NKE (right); third panel (energy): CVX (left),
XOM (right); fourth panel (industrial): BA (left), GE (right); fifth panel (technology):
INTC (left), ORCL (right); bottom panel (utilities): AEE (left), PEG (right).

Financial crisis among sectors. For the Financials, for example, we note that the differ-
ence between CoVaR}"O‘O25 and CoVauR}"O‘1 is much larger than for assets belonging to
other sectors, implying that the Financials had a huge impact on the extreme systemic
risk during the 2008 crisis, as witnessed by the extremely large losses.

6.3 Time-varying risk beta

We estimate time-varying systemic risk betas according to the dynamic model defined
in equations (15)—(20) using the same exogenous variables described in Section 6.1. Ta-
bles 9-10, 11-12 and 13-14 in the appendix list the posterior estimates of the exogenous
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Figure 2: Time series plot of the CoVaRzl’; at the confidence levels 7 = 0.025 (gray
line) and 7 = 0.1 (red line), obtained by fitting the time invariant model defined in
equations (7)—(8) for the following assets: top panel (financial): C (left), GS (right);
second panel (consumer): MCD (left) and NKE (right); third panel (energy): CVX (left),
XOM (right); forth panel (industrial): BA (left), GE (right); fifth panel (technology):
INTC (left), ORCL (right); bottom panel (utilities): AEE (left), PEG (right).

regressor parameters € for both VaR 7™ and CoVaR;’g regressions, at the confidence level

7 =0.01, 7 = 0.025 and 7 = 0.05, respectively. We observe that all the macroeconomic
variables related to the term structure have a positive impact on both VaR and CoVaR
or are non significant, except for a few cases. This means that an upward shift in the
term structure of interest rate provides a marginal positive contribution to individual
and systemic risks. For the remaining macroeconomic variables, the VIX index always
has a negative impact, while the rate of change of the DJUSRE index always has a
positive effect on both VaR and CoVaR. Interestingly, American Express Co. (AXP)
is the only financial institution displaying a negative coefficient for the variable credit
spread (CREDSPR) in the individual VaR regression. This essentially means that an
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Figure 3: Time series plot of the VaRY"" (red line) and CoVaR:"; (gray line) at the
confidence level 7 = 0.025, obtained by fitting the time-varying model defined in equa-
tions (15)—(20) for the following assets: top panel (financial): C (left), GS (right); second
panel (consumer): MCD (left) and NKE (right); third panel (energy): CVX (left), XOM
(right); forth panel (industrial): BA (left), GE (right); fifth panel (technology): INTC

(left), ORCL (right); bottom panel (utilities): AEE (left), PEG (right).

increase in the credit spread increases the individual riskiness of that institution. This
result seems to be coherent with American Express’s institutional activity, since it is
a global financial services institution whose main offerings are charge and credit cards.
Concerning the microeconomic variables, SIZE is the only variable which shows a clear
positive effect for all the considered institutions in the case of the VaR regression. The
effect of the SIZE variable on CoVaR changes according to the 7-level, moving from a
predominance of positive effects for higher 7s to negative effect for lower 7s. The MM
is non significant for almost all the reported institutions for both VaR and CoVaR re-
gression, while the MK2BK and the LEV variables reveal heterogeneous sector-specific
impacts on the risk measures. In this respect the analysis is not exhaustive and the
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Figure 4: Time series plot of the dynamic f3; for all confidence level 7 = 0.01, (green
line), 7 = 0.025, (dark line), 7 = 0.05, (blue line) and 7 = 0.5 (red line), obtained by
fitting the time-varying model defined in equations (15)—(20) for the following assets,
top panel (financial): C (left), GS (right); second panel (consumer): MCD (left) and
NKE (right); third panel (energy): CVX (left), XOM (right); forth panel (industrial):
BA (left), GE (right); fifth panel (technology): INTC (left), ORCL (right); bottom panel
(utilities): AEE (left), PEG (right).

identification of sector-specific risk factors deserves further investigation using a greater
number of institutions.

Figure 3, which is the dynamic counterpart of Figure 1, shows that the dynamic Co-
VaR risk measure suddenly adapts to capture extreme negative losses especially during
the 2008 financial crisis. Comparing this evidence with that shown in Figure 1, it is clear
that the dynamic model provides a better characterisation of extreme tail co-movements
when dealing with time series data.

Turning our attention to the time-varying S’s results, Figure 4 plots the evolution
of the MaP estimates for all confidence levels of 7. As expected the evolution of the
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B’s for 7 = 0.01 (green line), 7 = 0.025 (black line) and 7 = 0.05 (blue line), is almost
identical for all the reported institutions. Moreover, the behaviour of the systemic risk
[ displays huge cross-sectional heterogeneity. For example, the systemic risk 8 of the
energy institutions (third panel in Figure 4) increases over time, showing their highest
values during the financial crisis at the end of 2008 and 2011. Conversely, during the
same period, we observe a large drop down for the 8; of General Electric (GE) (fourth
panel in Figure 4). The time series behaviour of the systemic risk § reveals a different
impact of the crisis periods on the overall marginal risk contribution of each institution.

6.4 Quantile backtesting

In order to evaluate the predictive ability of the quantiles’ models (7)—(8) and (15)-
(16) we perform out—of-sample backtesting procedures. We consider observations from
January 2, 2004 to February, 21 2014 comprising 530 weekly log-returns. The full data
period is divided into a learning sample: January 2, 2004 to September 25, 2009; and a
forecasting sample: October 2, 2009 to the end of the sample period. The out—of-sample
forecasting period comprises 230 observations. For each weekly return (Y, r4n, Y&, 74n)s
n = 1,2,...,230 in the forecast sample, parameters are estimated by employing an
estimation window of 300 observations till time T+ n — 1, then the forecasts for the
next week’s 7-level quantiles are generated using 25,000 post burn—in MCMC draws.
Bayesian quantile forecasting procedures are described in Clarke and Clarke (2012). To
assess the backtesting performances we calculate the actual over expected number of
violations (A/E), the expected loss given a violation (AD), and the well known con-
ditional and unconditional coverage tests of Kupiec (1995) and Christoffersen (1998),
and the Dynamic Quantile (DQ) test of Engle and Manganelli (2004), for 7 = 0.05
and for all the considered institutions. Although these procedures are not Bayesian,
they are commonly used tools to assess the validity of the quantile models. The two
tables summarising all the results for both invariant and time-varying models are avail-
able as supplementary material. In both cases we reach satisfactory results in terms
of A/E and AD violations. For all considered institutions, the number of violations is
in line with their expected values, except in a few instances. Moreover, neither tests
of conditional and unconditional coverage reject the null hypothesis that violations se-
ries are martingale difference sequences. Concerning the AD series, results highlight the
goodness models performance in terms of loss magnitudes. Comparing the static and
dynamic backtesting results, however, we can state that the latter is preferable in terms
of maximum losses.

6.5 Measuring marginal contribution to systemic risk

In their paper Adrian and Brunnermeier (2011) introduced the ACoVaRzg as a measure
of the marginal contribution to system risk, defined as

X, T __ X, T _ X,T
ACoVaRklj = CoVaRk‘Yj:VaR}(,T CoVaRk‘Yj:VaR,;,O_5

where CoVaR™7 «» = CoVaR¥” and CoVaR™’ <05 satisfies equation (4
k|Yj:VaRJ. k|j kly}':vaRki?'E) q ( )

with VaR}"O'E’ instead of VaR’"". To illustrate the behaviour of ACoVaRzl’; in our ap-
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Figure 5: Time series plot of the static ACOV&R;:[; at the confidence level 7 = 0.025
along with HPDgj5q, credible sets, obtained by fitting the model defined in equations (8)
for the following assets, first panel (financial): C (left), GS (right); second panel (con-
sumer): MCD (left) and NKE (right); third panel (energy): CVX (left), XOM (right);
forth panel (industrial): BA (left), GE (right); fifth panel (technology): INTC (left),

ORCL (right); last panel (utilities): AEE (left), PEG (right).

plication we plot the time-invariant version in Figure 5, and its dynamic version in
Figure 6. As expected, for all the considered companies, the marginal contribution to
systemic risk increases during market turbulences, showing their lowest values during
the financial crisis of 2008. Moreover, some important differences among companies be-
longing to different sectors are evident: in particular, the Financials sector, (first panel
of Figures 5-6), the Energy sector (third panel of Figures 5-6) and the Utilities sec-
tor (bottom panel of Figures 5-6), display the largest drop in value. In contrast, the
Technology sector displays the lowest variations of the ACoVaR measure during the
2008 recession. The grey areas correspond to the HPDgso, associated to the ACoVaR
contributions providing information about the size of the risk contribution for the given
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Figure 6: Time series plot of the dynamic ACOVaRzl’; at the confidence level T = 0.025
along with HPDg5¢; credible sets, obtained by fitting the time-varying model defined in
equations (15)—(20) for the following assets, top panel (financial): C (left), GS (right);
second panel (consumer): MCD (left) and NKE (right); third panel (energy): CVX (left),
XOM (right); forth panel (industrial): BA (left), GE (right); fifth panel (technology):
INTC (left), ORCL (right); bottom panel (utilities): AEE (left), PEG (right).

confidence level. We note a huge cross-sectional heterogeneity on the credible sets be-
haviour, with some sectors such as the Consumer Goods, Industrials and Technology
being characterised by large uncertainty of the ACoVaR estimates.

Comparing Figures 5 and 6, it is evident that the dynamic ACoVaR estimates are
smoother than the corresponding time-invariant ones, which is a clear and useful signal
for policy maker purposes. Moreover, Figure 6 provides a clear indication of the high
flexibility of the dynamic model implying a prompt reaction of the risk measure to the
economic and financial downturns. These considerations argue in favour of the dynamic
model when dealing with time series data.
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CoVaR ACoVaR
Name  Time invariant Time-varying Time invariant Time-varying
C 1.325 1.035 0.401 0.325
BAC 1.084 0.983 0.230 0.298
CMA 1.109 1.264 0.109 0.177
JPM 1.259 0.573 0.136 0.111
KEY 1.078 -0.481 0.229 0.165
GS 1.085 1.276 0.234 0.188
MS 1.003 0.604 0.275 0.132
MCO 1.085 -4.139 0.130 0.052
AXP 1.110 18.352 0.171 0.205
MCD 0.933 3.500 0.062 0.192
NKE 0.842 1.251 0.095 0.222
CVvX 0.986 2.376 0.291 0.354
XOM 1.099 1.280 0.276 0.365
BA 1.017 2.666 0.169 0.156
GE 1.179 21.245 0.078 -0.039
INTC 0.874 5.928 0.060 0.097
ORCL 0.998 3.985 0.066 0.229
AEE 1.054 1.441 0.346 0.296
PEG 1.001 5.123 0.205 0.271

Table 2: §; estimates for the regressions in equations (34)—(35) for both the time invari-
ant and time varying models. Bold numbers indicate that the corresponding coefficients
are not significantly different from 1.

Finally, we consider the time series relationship between VaR and CoVaR or ACoVaR.
In what is perhaps the key result of Adrian and Brunnermeier (2011), they find that the
CoVaR (ACoVaR) of two institutions may be significantly different even if the VaR of
the two institutions are similar. On this basis, they suggest that the policy maker employ
the CoVaR (ACoVaR) risk measure, as a valid alternative to the VaR, when forming
policy regarding an institution’s risk. Results obtained with our modeling support their
thesis. In fact, building the following simple regression model for each institution j

CoVaR;’l? = 0o + 61 VaR; ™ + v, (34)
or
ACoVaR; 7 = 0o + 01VaR;™ + v, (35)

with E (v|[VaR}™) = 0, where k is the S&P500 Index we test Hy : 6; = 1 to show
that CoVaR; 1% (ACoVaR} ) is significantly different from the VaR;™. Bold numbers
in Table 2 indicate cases where the corresponding coefficient §; is not significantly
different from one. Except for a few cases the null hypothesis is rejected and this is
more evident for the dynamic model than for the time invariant one. In particular, for
the ACoVaR regression there is strong evidence that the estimated J; parameter is

related to the sector the institutions belong to, being higher for Financials, Energies
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and Utilities. Interestingly, the regression coefficients are almost zero for the Technology
sector.

7 Conclusion

One of the major issues policy makers deal with during financial crisis is the evaluation of
the extent to which risky tail events spread across financial institutions. In fact, during
financial turmoils, the correlations among asset returns tend to rise, a phenomenon
known in the economic and financial literature as contagion. From a statistical point
of view the risk of contagion essentially implies that the joint probability of observing
large losses increases during recessions. The common risk measures recently imposed by
the public regulators, (the Basel Committee, for the bank sector) such as the VaR, fail
to account for such risk spillover among institutions. The CoVaR risk measure recently
introduced by Adrian and Brunnermeier (2011) overcomes this problem as it is able to
account for the dependence among institutions’ extreme events.

In this paper we address the problem of estimating the CoVaR in a Bayesian frame-
work using quantile regression. We first consider a time-invariant model allowing for in-
teractions only among contemporaneous variables. The model is subsequently extended
in a time-varying framework where the constant part and the CoVaR parameter 5 are
modeled as functions of unobserved processes having their own dynamics. In order to
make posterior inference, we use the maximum a posteriori summarising criterion and
we prove that it leads to estimated quantiles having good sample properties according
to the results of De Rossi and Harvey (2009) and we improve the efficiency of Gibbs
sampler algorithms based on data augmentation for the two models considered.

The Bayesian approach used throughout the paper allows us to infer on the entire
posterior distribution of the quantities of interest and their credible sets which are
important to assess the accuracy of the point estimates. Since the quantities of interest
in this context are risk measures, understanding the whole distribution becomes more
relevant due to the interpretation of the VaR and CoVaR as financial losses. In addition,
credible sets provide upper and lower limits for the capital requirements for banks and
financial institutions.

To verify the reliability of the built models we analyse weekly time series for nineteen
institutions belonging to six different sectors of the Standard and Poor’s 500 composite
index spanning the period from 2nd January, 2004 to 31st December, 2012. We use micro
and macro exogenous variables to characterise the quantile functions and to give insights
into which variables have the most influences on both the VaR and the CoVaR. In order
to thoroughly investigate the joint relevance of exogenous variables we are currently
developing a Bayesian variable selection approach in a similar context. Nevertheless,
from the empirical results, it is clear that the model and the proposed approach give an
exact estimate of the marginal and conditional quantiles providing a more realistic and
informative characterisation of extreme tail co-movements. In particular, the dynamic
version of the model we propose outperforms the time invariant specification when the
analysis is based on time series data. This is, to our knowledge, the first attempt to
implement a Bayesian inference for the CoVaR.
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Figure 7: Missing values imputation using smoothing spline of the SIZE variable for
AXP (top, left), MCD (top, right), BA (bottom, left) and AEE (bottom, right). In
each plot predicted values (gray line) as well as 95% HPD credible sets (gray area) are
displayed. Black cross denotes observed values.

Appendix 1: Missing values treatment

In this appendix we give details on the procedure used to impute missing observations.
In particular for each variable, starting from balance sheets data available only on a
quarterly basis, we implement a nonparametric smoothing cubic spline, see for example
Koopman (1991) and Koopman et al. (1998). Cubic splines have been previously applied
to local linear forecasts of time series by Hyndman et al. (2005) and used for handling
missing data in Koopman (1991) and Koopman et al. (1998). This non-parametric tech-
nique represents a valid and flexible alternative to parametric methodologies without
relying on strong assumptions about the underlying data generating process.

Supposing we have a univariate time series yr,,¥Yr,,--.,Yr;, DOt necessarily equi-
spaced in time, and define §; = 74 — 7y_1, for t = 1,2,...,T as the difference between
two consecutive observations, and assume the time series is not entirely observed, we
approximate the series by a sufficiently smooth function s (7;). Following the standard
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approach, we choose s (7¢) by minimizing the following penalized-least squares criterion:

T T
m 2
LO)=Y [y —s ] +AD[A™s(r)]", (36)
i=1 i=1
with respect to s (), for a given penalization term A. The function s (1) ,Vt = 1,2,...,T
is a polynomial spline of order m+1 and when m = 2, we have a smoothing cubic spline
model.

To estimate the smoothing parameter A and to forecast missing observations model
(36) can be cast in state space form that is, for m = 2:

y(re) = s(m)+e(m)
s(mey1) = s(7) + 0l () + (1 (71)
C(ret1) = £(7e) + G2 (Te)

where [s(71),£(m1)]" ~ N (02, k), with « sufficiently large enough to ensure a dif-
fuse initialization of the latent states, the transition equation innovations vector is

163 152
(€1 (1), 2 (7)) ~ N (0, S¢) with S¢ = o} [ i§t2 25: ] , the measurement innovation
2%t

ise(ry) ~ N (O, 062) and the penalty parameter A\ coincides with the signal-to-noise ratio
A= O’? /2. We fix the parameter o, to one and estimate A\ = 0’? in a Bayesian frame-
work imposing a diffuse Inverse Gamma prior distribution, i.e. A = ag ~I3g (a?\, 69\).
We fit the model using MCMC techniques, in particular, the Gibbs sampler with data
augmentation (see Geman and Geman, 1984; Tanner and Wong, 1987; Gelfand and
Smith, 1990). The Gibbs sampler consists of the following two steps:

S1. Simulate the latent process ng“) = [s(1) ,€(Tt)}T, vt = 1,2,...,T, using the
disturbance simulation smoothing algorithm of De Jong and Shephard (1995)
appropriately adjusted to handle missing observations and the diffuse initialization
of the state vector (see also the augmented Kalman filter and smoother of De Jong,
1991).

S2. Simulate the A(t1) parameter from the complete full conditional distribution
which is an Inverse Gamma distribution \(+1) ~ Zg (&E\Hl), N/(\Hl)) with pa-

rameters:
~(i T-1
af\“rl) = oS+ —
2
111 T
S(i+1 i+1 i+1 - i+1 i+1
BITY = B> (6D - mel™Y) st (e - mel ),
t=1
where T; = (1) 61t ,fori =1,2,... G, with G equal to the number of draws. The

algorithm is initialized at ¢ = 0 by simulating the A parameter from its prior distribu-
tion. The state space representation of the smoothing spline along with the Bayesian
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paradigm allow us to efficiently deal with the estimation of the model parameters as
well as to predict the missing observations. In fact, the missing value interpolation is
obtained by running the efficient recursive Kalman filter and smoothing algorithms and
represents a byproduct of the Bayesian inferential procedure (see also Durbin and Koop-
man (2012) and Harvey (1989) for an extensive treatment of missing values using state
space methods). Missing information is then estimated by averaging simulated points
of s(7¢) across Gibbs sampler draws. The advantage of the implemented smoothing
technique is that it takes all available values into consideration instead of only past
observations, providing more credible estimates of the missing information.
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VaR c BAC CMA JPM KEY Gs MS
CONST ~44.628 ~13.362 275 24574 =7.746 ~16.918 ~30.206
(-46.623,-11.638) (-42.309, 3 855) (-30.366, 6. 108) (-48. 497 13 360) (-38. 721 0 696) (-26. 912 4 081) (-46.345,-9.539)
VIX -0.535 -1.19 -0.284 - - - -0.901
(-0.857,-0.445)  (-1.424,- 0,872) (-0.346,-0.267)  (-0. 700 o 476) (- 0A933, 0,609) (- 0.409, 0.319) (-1.049,-0.819)
LIQSPR 0.1 . -0.031 0.009 0.026 0.061 -0.013
(0.033,0.142) (0.003,0.139)  (-0.059,-0.016)  (-0.016,0.048)  (-0.025,0.087)  (0.032,0.082)  (-0.056,0.038)
SMTB -0.174 0.067 -0.096 0.113 -0.376 0.173 -0.133
(-0.270,0.056)  (-0.086,0.221)  (-0.126,-0.057)  (-0.032,0.191)  (-0.443,-0.016)  (0.086,0.244)  (-0.221,0.006)
TERMSPR 0.041 0.071 .059 0.071 -0.289 0.101 -0.186
(0.010,0.174) (-0.026,0.147) (0.043,0.090) (-0.007,0.112)  (-0.339,-0.111) (0. 026 o 153) (-0.266,-0.028)
CREDSPR -0.146 0.381 -0.13 -0.066 -0.094 -0.551
(-0.197,0.020) (0.179,0.428)  (-0.151,-0.078)  (-0. 172 0 019)  (-0.171,0.036)  (-0. osg 0 104) (-0.592,-0.433)
DJUSRE 0.998 . 0.42 0.64 0.508 0.586 .
(0.580,1.110) (0.069,0.552) (0.230,0.460) (0.416,0. 742) (0.271,0.776)  (0.438,0.727) (0.548,0.830)
LEV -2.283 -0.445 -0.187 0.027 -1.647 -0.439 0.052
(-2.646,-1.669)  (-2.140,1.005)  (-0.421,0.196)  (-0.139,0.822)  (-1.717,-0.310) (-0.568,-0.115)  (-0.251,0.347)
MK2BK 0.649 511 1.201 0.582 0.713 4.463 2.66
(-1.892,1.894)  (-0. 033 4 771) (0.113,2.027) (-1.982,2.834)  (-4.232,2.301)  (1.900,4.923)  (-1. 869 6 012)
SIZE 6.679 917 1.906 3.05 1.597
(3.726,6.629) (2. ()78 6 008) (1 649,3.092) (1. 019 3.670) (1.715,6.095)  (0.669,2.508) (1. 839 640)
MM -25.5 -52.1 2.737 4.609 2.068 704 -25.43
(-30.261,7.397) (-65. 770 36 803) (- 67.7 7%2 32 009) (-9. 267 20 620) (-12.345,16.225) (-13. 493 2 910) (-38.203,-10.582)
0.16 0.182 0.151
73 (0.147,0.176) (0.143,0.173) (0.081,0.097) (0.095,0.114) (0.156,0.187) (0.085,0.103) (0.133,0.160)
VaR MCO AXP MCD NKE CVX XOM
CONST - ~30.075 ~30.055 - 274 T.174
(-2.914,29.766) (-52.988,-18.805)  (-42.302,-4.708)  (-22.700,12.720) (-28.084,9.970) (-23.484,12.143)
VIX 0.061 -0.299 -0.039 -0.015 -0.315 -0.222
(-0.034,0.103) (-0.284,-0.181) (-0.071,-0.025) (-0.061,0.012) (-0.350,-0.302) (-0.310,-0.196)
LIQSPR 0.123 -0.06 -0.003 0.035 -0.013
(0.040,0.142) (-0. 080 0 047) (-0.023,0.008) (0.022,0.059) (-0.034,0.002) (0. 023 0 079)
IMTB -0.257 0.03 0.164 0.037
(-0.334,-0.057) (-0. 270 u 198) (-0.002,0.095) (0.096,0.198) (-0.012,0.097) (0. 037 o 138)
-0.287 -0.084 -0.028 0.116 -0.02
TERMSPR (-0.322, o 089) (-0.089,-0.042) (-0.043,-0.000) (0.060,0.136) (-0.043,-0.001) (-0. 032 0 041)
-0.195 -0.073 -0.002 -0.116
CREDSPR (-0. 168, 0 070) (-0.209,-0.149) (-0.094,-0.025) (-0.057,0.035) (-0.156,-0.078) (0. 041 o 127)
DJUSRE 1.332 0.372 0.084 0.692 0.333 0.541
(1.051,1.381) (0.312,0.428) (0. 065 0 139) (0.610,0.817) (0.193,0.361) (0.435,0.637)
LEV 0.134 -0.723 -4.709 -0.924 -7.992
(0.109,0.201) (-1.344,-0.657) (-0. 008 s 736) (-11.706,2.860) (-5.548,1.234) (-10.352,9.795)
MK2BK 0.001 0.153 -0.807 1.905 1.082 -2.907
(-0.001,0.001) (-0.151,0.868) (-1.146,-0.010) (1.072,3.732) (-0.967,1.491) (-3.723,-2.104)
SIZE -3.284 3.413 1.784 -0.876 2.412 1.807
(-5.401,-1.910) (2.443,5.541) (-0.139,2.972) (-1.712,0.538) (-0.022,2.477) (-0.882,3.192)
MM -21.133 12.664 -5.104 -2.177 16.138 10.614
(-25.495,-18.562) (5.438,24.334) (-9.962,2.912) (-6.483,1.551) (10.043,22.250) (-2.527,10.777)
- 0.145 0.083 0.059 0.104 0.08 0.073
J (0.132,0.158) (0.073,0.087) (0.052,0.063) (0.090,0.108) (0.074,0.088) (0.065,0.078)
VaR BA GE INTC ORCL ABE PEG
CONST -9.948 —23.374 34916 -36.633 2.812 ~30.87
(-32.756,-2.359) (-46.142,-8.340) (-37.384,-1.083) (-52.563,-19.746) (-7.549,13.665) (-36.585,-2.333)
VIX -0.188 -0.197 -0.048 -0.173 -0.396 -0.294
(-0.228,-0.112) (-0.251,-0.144) (-0.127,-0.043) (-0.275,-0.164) (-0.444,-0.376) (-0.317,-0.262)
LIQSPR . - 0.055 -0.05 -0.045 -
(-0.001,0.034) (-0.177,-0.056) (0.015,0.068) (-0.076,-0.029) (-0.063,-0.031) (-0.164,-0.090)
IMTB 0.026 -0.072 0.149 . -0.054 -0.009
(-0.025,0.041) (-0.086,0.020) (0.089,0.200) (0.023,0.196) (-0.103,-0.041) (-0.047,0.040)
0.041 -0.001 0.116 0.108 -0.024 -0.067
TERMSPR (0.009,0.061) (-0.014,0.056) (0.082,0.151) (0.024,0.120) (-0.069,-0.013) (-0.086,-0.031)
-0.069 -0.073 -0.015 -0.15 -
CREDSPR (-0.198,-0.044) (-0.079,-0.005) (0.044,0.143) (-0.127,0.007) (-0.200,-0.127) (-0.082,0.004)
DJUSRE . . 0.553 -0.024 0.51 0.174
(0.768,0.964) (0.467,0.705) (0.355,0.588) (-0.150,0.085) (0.408,0.535) (0.100,0.281)
LEV 0.025 -1.288 8.828 12.738 -6.526 0.366
(0.021,0.031) (-2.522,-0.543) (1.262,12.417) (8.731,21.628) (-9. 410 3 876) (-0.757,0.601)
MK2BK -0.003 -0.47 14 0.161 - -
(-0. 010 0 015) (-2.384,0.173) (-7. 466 -5.944) (-0. 306 0.539) (-4. 499 2 599) (-1.058,1.128)
S1ZE 2.613 876 2.511 3.169
(0. 057 2 828) (1.390,4.818) (-0.062,3.222) (-1. 148 2.056) (1.753,3.235) (0.265,3.738)
MM 18.439 -4.285 -7.173 2.152 7.183 34.012
(17.263,40.139) (-7.426,9.228) (-12.137,-5.689) (-0.158,4.083) (4.891,19.742) (7.889,38.060)
o 0.091 0.081 0.106 0.094 0.076 0.085
J (0.079,0.095) (0.071,0.086) (0.097,0.116) (0.083,0.100) (0.066,0.079) (0.076,0.091)

Table 3: VaR parameter estimates obtained by fitting the time invariant model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.01. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible

sets.
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CoVaR [¢] BAC CMA JPM KEY GS MS
CONST 22.686 8613 ~2.556 0.439 ~12.936 .15 ~15.852
(13.746,28.843) (-5.061, 15 474) (-5.260,3.271) (-15.336,5.558) (-17.946,5.696) (-6.157,3.317) (-19.356,-8.646)
VIX -0.264 -0.1 -0.2 -0.293 -0.102 -0.112 -0.068
(-0.290,-0.247) (-0. 202 0 146) (-0.243,-0.177) (-0.304,-0.276) (-0.180,-0.102) (-0.133,-0.085) (-0.082,-0.051)
LIQSPR -0.008 0.01 0.012 0.007 -0.004 -0.011 0.008
(-0.017,0.004) (-0. 024,0. 008) (-0.009,0.032) (-0.006,0.024) (-0.015,0.004) (-0.021,0.004) (-0.004,0.013)
SMTB 0.075 0.115 0.094 0.046 0.091 0.055 0.088
(0.044,0.097)  (0.056,0.123)  (0.046,0.110)  (0.040,0.108) (0.058,0.132) (0.015,0.089)  (0.057,0.110)
TERMSPR 0.002 0.03 0.044 0.035 0.055 0.033 0.056
(-0.011,0.013)  (0.019,0.039)  (0.030,0.057)  (0.023,0.047) (0.047,0.070) (0.008,0.041) (0.044,0.059)
CREDSPR 0.04 0.022 0.024 0.03 0.01 0.022 0.047
" (0.025,0.056) (-0.016,0.027) (0.010,0.048)  (0.035,0.072) (0.001,0.032) (0.004,0.049)  (0.041,0.062)
DJUSRE 0.162 0.308 0.235 0.307 0.245 0.296 0.321
(0.148,0.239)  (0.233,0.345)  (0.210,0.304)  (0.300,0.390) (0.196,0.265) (0.252,0.357)  (0.302,0.346)
LEV -0.005 -0.102 -0.096 0.381 -0.391 -0.038 -0.054
(-0.035,0.031) (-0.199,0.157) (-0.275,0.123)  (0.239,0.408) (-0.384,-0.068) (-0.093,-0.010) (-0.090,-0.040)
MK2BK -0.901 -1.384 -1.64 -3.438 -1.069 -0.045 -0.939
(-1.335,-0.414) (-1.459,-0.412) (-2.046,-1.097) (-5.040,-3.190) (-2.024,-0.294) (-0.629,0.322) (-1.447,-0.344)
S1ZE -2.031 0.981 0.757 0.009 1.961 0.004 1.487
(-2.501,-1.229) (-1.276,0.607) (0.037,1.119) (-0.411,1.354) (-0.212,2.467) (-0.211,0.591) (0.809,1.792)
MM 19.698 2.619 -8.594 6.362 6.168 -1.458 3.025
(12.129,23.386) (-0.896,8.075) (-21.921,-0.429) (3.488,20.180) (-3.064,10.506) (-3.610,4.881) (1.496,5.958)
8 0.162 0.102 0.155 0.146 0.14 0.265 0.118
(0.114,0.173)  (0.086,0.129)  (0.118,0.180) (0.115,0.209) (0.099,0.153) (0.239,0.291)  (0.116,0.145)
0.032 0.036 0.033 0.035 0.035 0.032 0.029
Tk (0.031,0.038)  (0.032,0.038)  (0.032,0.038)  (0.032,0.039) (0.031,0.037) (0.030,0.036)  (0.027,0.032)
CoVaR MCO AXP MCD NKE CVX XOM
CONST 19.58 8.419 13.405 “12.615 ~1.496 “17.332
(11.940,21.390) (8.225,27.859) (-17.500,17.692)  (-25.305,4.103)  (-6.785,26.106)  (-21.370,-3.897)
VIX -0.256 -0.235 -0.189 -0.174 -0.101 -0.17
(-0.281,-0.237) (-0.265,-0.223) (-0.195,-0.143) (-0.216,-0.170) (-0.140,-0.092) (-0.184,-0.129)
LIGSPR 0.024 0.018 0.002 -0.018 0.001 0.005
(0.001,0.020) (-0.004,0.016) (-0.006,0.020) (-0.031,-0.008) (-0.016,0.004) (0.000,0.024)
IMTB 0.044 0.076 -0.024 0.094 0.018 0.014
(0.017,0.053) (0.061,0.101) (-0.028,0.025) (0.030,0.106) (-0.022,0.034) (-0.004,0.049)
0.02 0.054 -0.001 0.044 0.035 0.006
TERMSPR (0.009,0.035) (0.041,0.063) (-0.022,0.012) (0.017,0.055) (0.023,0.051) (-0.006,0.027)
CREDSPR -0.024 0.024 -0.095 -0.009 -0.041 -0.025
(-0.035,0.003) (0.026,0.065) (-0.095,-0.045) (-0.026,0.004) (-0.050,-0.012) (-0.037,0.002)
DJUSRE 0.2 0.181 0.231 0.297 . .
(0.162,0.228) (0.118,0.192) (0.236,0.351) (0.257,0.330) (0.218,0.276) (0.276,0.366)
LEV -0.013 0.585 -5.605 1.704 -2.015 10.978
(-0.017,-0.007) (0.109,0.590) (-8.487,-2.422) (-2. 616 7 181) (-5.341,-1.096) (5. 837 11.966)
MK2BK 0 . . -0.083 0.052
(-0.000,0.000) (-0.229,0.096) (-0.122,0.965) (-0. 749 o 335) (-0.524,0.581) (-0.556,0.418)
SIZE -1.852 -1.273 -0.324 0.397 -0.347
(-1.996,-1.009) (-2.566,-1.042) (-0.570,2.472) (- UA195.1.760) (-1.418,0.794) (-0.574,-0.147)
MM 1.669 -15.891 5.462 -2.861 -2.533 -2.555
(1.130,2.738) (-15.223,-4.542) (4.728,9.597) (-5.027,-0.386) (-4.565,1.213) (-3.409,2.701)
s 0.127 0.196 0.24 0.276 0.292 .
(0.099,0.173) (0.198,0.274) (0.205,0.359) (0. 169 0.295) (0.255,0.312) (0.237,0.364)
o 0.031 0.034 0.037 0.039 0.028 0.03
k (0.030,0.036) (0.030,0.036) (0.035,0.041) (0.033,0.040) (0.027,0.033) (0.028,0.033)
CoVaR BA GB INTC ORCL AEE PEG
CONST Z0.757 13.748 ~34.985 2.623 ~10.804 ~10.487
(-5.088,8.764) (29.376,52.771)  (-43.813,-20.351) (-5.429,8.097) (-9.430,8.813) (-14.445,-4.795)
VIX -0.132 -0.332 -0.186 -0.18 -0.132 -0.088
(-0.158,-0.126) (-0.338,-0.310) (-0.203,-0.175) (-0.187,-0.154)  (-0.166,-0.125) (-0.110,-0.069)
LIQSPR -0.001 0.044 0.006 -0.003 0.006 0.017
(-0.012,0.024) (0.021,0.054) (-0.011,0.011) (-0.008,0.010) (0.003,0.013) (0.004,0.021)
SMTE -0.025 0.029 0.024 0.014 0.053 0.055
(-0.041,0.001) (-0. 010 o 052) (-0. 012 o 030) (0.014,0.071) (0.034,0.057) (0.026,0.089)
-0.031 -0.012 . .
TERMSPR (-0.039,-0.012) (-0. 009 0 025) (-0. 009 0 025) (-0.027,0.019) (0.044,0.064) (0.027,0.061)
CREDSPR -0.044 -0.07 -0.059 0.007 -0.045
(-0.059,-0.030) (-0. 009 n 020) (-0.079,-0.053) (-0.079,-0.026) (-0.002,0.020) (-0.067,-0.011)
DJUSRE .301 0. 247 0.251 0.252 0.185 0.269
(0.247,0.316) (0. 205 0 275) (0.236,0. 298) (0.225,0.337) (0. 148 0 195) (0.257,0.355)
LEV 0.006 -5.2 -0.181 -0.359
(0.002,0.010) (0. 362 0 876) (-6.660, 2 059) (-1.925,0.642) (-0. 038 2 603) (-0.686,-0.141)
MK2BK 0.003 -0.375 -0.967 -0.288 -1.677 0.274
(-0.003,0.004) (-0.868,0.180) (-1.165,-0.347) (-0.520,0.021) (-2.432,-1.565) (-0.197,0.472)
SIZE -0.043 -3.514 4.011 -0.032 0.611 1.049
(-0.899,0.383) (-4.290,-2.267) (2.432,4.765) (-0.470,0.676) (-0.880,0.625) (0.522,1.480)
MM -10.568 -1.581 2.25 -0.926 7.636 -6.775
(-12.839,-2.524) (-5.204,2.112) (1.285,2.936) (-1.342,-0.149) (6.418,10.077) (-11.854,6.084)
s 0.234 0.137 0.201 0.21 0.373 0.308
(0.200,0.257) (0.102,0.197) (0.160,0.223) (0.169,0.258) (0.324,0.397) (0.257,0.350)
o 0.037 0.035 0.031 0.035 0.032 0.036
k (0.033,0.039) (0.031,0.038) (0.030,0.036) (0.033,0.039) (0.028,0.034) (0.033,0.039)

Table 4: CoVaR parameter estimates obtained by fitting the time invariant model to
each of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.01. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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VaR c BAC CMA JPM KEY Gs MS
CONST ~23.453 T23.73 T24.575 73.706 ~25.803 “13.518 ~40.232
(-41.309,-5.136) (-42.958,-11.088) (-28.871,-15.193) (-28.752,2.264) (-40.714,-3.834) (-22.909,-0.779) (-58.293,-21.802)
VIX -0.881 -0.766 -0.3 -0.371 -0.905 -0.398 -0.603
(-1.295,-0.747)  (-0.855,-0.552)  (-0.350,-0.246) (-0.459,-0.364) (-0.975,-0.717) (-0.436,-0.350) (-0.778,-0.466)
LIQSPR 0.014 0.097 -0.034 0 0.022 0.042 -0.018
(-0.076,0.041)  (0.003,0.088)  (-0.058,-0.012) (-0.014,0.028) (-0.029,0.078)  (0.000,0.057)  (-O. 064 0.043)
SMTB -0.007 -0.084 -0.025 -0.159 116 0.09
(-0.207, 0 071)  (-0. 117 o 141)  (-0.107,-0.019)  (-0. 049 o 054) (-0.235,0.020)  (0.054,0.134)  (-0.081,0.101)
-0.137 . -0.027
TERMSPR ¢ 405, 0 179)  (-0. 017 0 140) (0.059, U 106) (0. 003 [) 062) (-0.233,-0.050)  (0.015,0.075)  (-0.117,0.008)
CREDSPR -0.003 0.07: -0.038 -0.018 -0.213
(-0.130,0.110)  (-0. 136 o 118) (-0. 153, 0 061) (-0.071,0.002) (-0. 043 0 119) (-0.133,-0.023) (-0.411,-0.161)
DJUSRE 776 0.67 . .
(0.319,0.917) (0.406,0.737) (0.298,0.506)  (0.496,0.689) (0. 277 0 788) (0.340,0.510) (0.517,0.917)
LEV -1.046 0.093 -0.147 -0.081 -0.463 -0.281 -0.025
(-1.268,-0.095)  (-1.027,1.295)  (-0.505,0.176) (-0.186,0.336) (-1.042,0.007) (-0.312,-0.053)  (-0.193,0.126)
MK2BK -1.61 0.477 0.773 1.191 -4.699 1.86 -3.526
(-3.923,0.055)  (-0.730,2.861) (0.524,2.384)  (-0.152,2.452) (-6.073,-1.249) (-0.144,2.376)  (-5.719,0.044)
SIZE 4.276 3.033 2.689 0.215 5.003 1.701 4.328
(2.574,5.648) (1.881,4.307) (1.570,3.023)  (-0.199,2.292)  (2.287,6.438)  (0.518,2.311) (2.398,6.036)
MM -16.018 -40.628 -65.857 .852 -5.523 -5.775 4.814
(-33. 629 1.883) (-47. 632 24 672) (-58. 769 23 794) (-9. 480 11 641) (-14.424,16.149) (-13. 134 3.581) (~10.206,19.449)
o 88 0.317 0.306 195 0.324
J (0. 342 0.410) (0.290,0.348) (0,191,0,229) (0,197,0,235) (0.301,0.362) (0. 193 0.232) (0.300,0.362)
VaR MCO AXP MCD NKE CVX XOM
CONST 0.151 ~30.096 3.099 20.26 “18.94 ~23.383
(-13.902,17.419)  (-44.705,-13.426)  (-32.696,1.486)  (-24.156,12.067)  (-23.875,13.031)  (-22.646,8.844)
VIX -0.329 -0.332 -0.092 -0.104 -0.3 -0.237
(-0.399,-0.231) (-0.346,-0.228) (-0.104,-0.064) (-0.106,-0.020) (-0.381,-0.273) (-0.321,-0.244)
LIQSPR . -0.048 0.017 . -0.01 .
' (0.003,0.063) (-0.080,-0.009) (0.005,0.034) (-0.007,0.049) (-0.037,0.019) (0.010,0.061)
IMTB 0.025 -0.11 0.015 0.067 0.017 0.029
b (0.006,0.159) (-0.240,-0.079) (-0.031,0.034) (0.038,0.144) (-0.041,0.094) (-0.021,0.088)
-0.011 -0.036 -0.004 0.057 0.006 .
TERMSPR (-0.023,0.112) (-0.083,-0.004) (-0.025,0.009) (-0.006,0.109) (-0.050,0.017) (-0.017,0.038)
. -0.097 -0.075 0.056 -0.109 -0.024
CREDSPR (0.073,0.257) (-0.159,-0.068) (-0.088,-0.044) (-0.010,0.057) (-0.169,-0.047) (-0.032,0.054)
DJUSRE 0.785 0.348 0.112 0.592 0.217 0.287
. (0.484,0.914) (0.318,0.460) (0. 077 0.165) (0.527,0.794) (0.145,0.333) (0.248,0.436)
LEV -0.008 -0.546 88 -4.157 -1.443 -0.671
(-0.057,0.030) (-1.165,-0.205) (-0. 057 6 930) (-10.445,3.260) (-8.269,-0.155) (-0.363,14.448)
MK2BK 0 0.072 1.518 -0.177 -1.013
(-0.000,0.001) (-0.285,0.601) (- 0.571,0.389) (1.177,3.623) (-1.937,1.344) (-2.299,-0.483)
SIZE -0.493 3.392 -0.859 -0.54 2.127 2.284
(-2.255,0.992) (1.910,4.684) (-0.885,1.978) (-1.869,0.903) (0.146,2.636) (-1.739,1.377)
MM -9.419 5.392 -2.905 -5.08 22.866 13.566
(-11.613,-5.467) (-0.754,16.497) (-7.443,0.710) (-7.222,0.039) (6.004,22.529) (-1.730,12.212)
o 0.305 0.179 0.122 0.216 0.197 0.165
J (0.279,0.334) (0.167,0.200) (0.117,0.140) (0.186,0.223) (0.172,0.206) (0.145,0.174)
VaR BA GE INTC ORCL AEE PEG
CONST T30.23 T30.936 ~9.147 T31.432 756 ~19.406
(-38.347,-14.434)  (-54.967,-19.101)  (-35.447,2.443)  (-46.134,-18.303) (-5.195,17.662) (-32.558,-0.159)
VIX -0.164 -0.321 -0.168 -0.166 -0.267 -0.:
(-0.189,-0.112) (-0.326,-0.234) (-0.178,-0.094) (-0.220,-0.153) (-0.318,-0.238) (-0.337,-0.262)
LIQSPR -0.03 -0.002 0.006 -0.041 -0.054
g (-0.039,0.007) (-0.031,0.019) (-0.081,0.028) (-0.068,-0.026) (-0.026,0.022) (-0.094,-0.009)
MTB 0.014 -0.01 . . -0.046 -0.036
(-0.034,0.056) (-0.054,0.034) (0.058,0.242) (0.109,0.200) (-0.091,-0.026) (-0.062,0.064)
0.036 0.033 0.175 0.081 -0.044 -0.042
TERMSPR (-0.035,0.051) (0.002,0.050) (0.105,0.208) (0.054,0.124) (-0.095,-0.029) (-0.066,0.003)
CREDSPR -0.101 0.011 0.123 0.022 -0.167 -0.092
(-0.150,-0.044) (-0.045,0.040) (0.036,0.152) (-0.033,0.074) (-0.198,-0.126) (-0.116,-0.042)
DJUSRE 7E . . 0.095 0.41 .
(0.676,0.838) (0.311,0.517) (0.225,0.486) (-0.031,0.200) (0.327,0.455) (0.022,0.193)
LEV 0.027 0.69 2.208 4.951 -7.226 0.121
(0.021,0.036) (-0.447, 0 625) (-7.393,7.797) (4.051,10.956) (-10.479,-3.950) (-0.697,0.468)
MK2BK -0.005 -1.6 -3.986 -0.007 -3.435 -1.473
(-0.011,0.005) (-2.534 0.481) (-4.901,-0.982) (-0.267,0.386) (-4.128,-1.743) (-2.744,-0.237)
SIZE 2.705 2.632 1.016 1.745 2.03 2.348
(1.232,3.415) (1.774,4.884) (-0.200,3.634) (0.168,2.671) (1.544,2.673) (0.482,3.732)
MM 16.945 -6.272 -6.329 0.686 3.878 -1.645
(14.240,36.859) (-11.209,-2.179) (-9. 374 2 304) (-1.218,2.378) (-0.720,17.106) (-12.453,19.996)
o 0.187 0.157 0.176 0.173 0.179
J (0.175,0.210) (0.148,0.178) (0. 220 o 203) (0.180,0.216) (0.147,0.175) (0.172,0.205)

Table

5: VaR parameter estimates obtained by fitting the time invariant model to each

of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.025. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible

sets.



(0.074,0.088)

(0.072,0.086)

(0.066,0.078)

(0.070,0.084)

(0.062,0.074)

590 Bayesian Tail Risk Interdependence
CoVaR C BAC CMA JPM KEY GS MS
CONST 21.132 -0.745 12.509 -8.071 0.218 0.027 -7.597

(7.972,27.108) (-0.198,14.951) (-3.539, 10 333) (-15. 303 0 607) (-10. 848 8 853) (-6. 376 2 947) (-17.399, 5 490)
VIX -0.252 -0.188 - - - - -
(-0.276,-0.211) (-0.204,-0.160) (-0,240,-0.176) (—0,303,-0.208) (-0,213,-0.104) (-0.146,-0.109) (-0.100,-0,044)
LIQSPR -0.008 0.01 0.014 0.012 0.004
(-0.013,0.008) (-0.010,0.018) (0.008,0.036) (0.000,0.022) (0.004,0.018) (-0.000,0.015) (-0.009,0.011)
3MTB 0.023 0.044 0.046 0.036 0.014 0.063
(0.021,0.080) (-0.008,0.050) (0.028,0.081) (0.000,0.092) (0.020,0.058) (-0.017,0.024) (0.043,0.103)
TERMSPR 0.003 0.015 0.042 0.031 0.029 0.014 0.037
(-0.012,0.012) (-0.001,0.026) (0.026,0.050) (0.017,0.044) (0.024,0.053) (0.002,0.021)  (0.032,0.053)
CREDSPR 0.002 -0.009 0.022 -0.005 0.002 -0.013 0.033
(-0.022,0.031) (-0.044,0.004) (-0.025,0.032) (-0.025,0.038) (-0. 012 0. 030) (-0.030,0.011) (0.038,0.063)
DJUSRE 0.151 0.234 0.209 . 0.24 0.284 0.316
(0.137,0.223) (0.188,0.274) (0.191,0.277) (0.209,0.311) (0.193,0. 258) (0.229,0.309) (0.302,0.348)
LEV -0.019 0.086 -0.023 0.327 -0.093 -0.072 -0.027
(-0.065,0.019) (-0.140,0.245) (-0.383,0.028) (0.212,0.428) (-0.204,0.039) (-0.121,-0.055) (-0.091,-0.012)
MK2BK -0.971 -1.415 -1.176 -3.896 -1.429 -0.073 -0.881
(-1.533,-0.521) (-1.486,-0.471) (-2.168,-1.074) (-4. 775 3 528) (-2. 010 O 568) (-0. 214 0 620) (-1.207,-0.284)
SIZE -1.853 0.221 -0.946 0.779
(-2.333,-0.685) (-1.141,0.128) (-0.618,1.069) (0.042,1.281) (-0.630,1.624) (-0,033,0.844) (0.559,1.649)
MM 18.739 0.459 -6.417 12.946 9.352 -2.369 1.805
(11.500,21.613) (-1.346,6.252) (-17.247,2.584) (9.701,19.381) (-2.890,11.002) (76A64971.025) (70,543,5387)
0.138 0.116 0.147 0.14 0.107 243
B (0.103,0.158) (0.103,0.138) (0.113,0.168) (0.086,0.169) (0.097,0.142) (0. 207 0.256) (0. 114 0 148)
. 0.076 0.076 0.072 0.081 0.076 0.076 0.065
k (0.071,0.085)  (0.068,0.082) (0.071,0.085) (0.070,0.084) (0.067,0.080) (0.063,0.076) (0.059,0.071)
CoVaR MCO AXP MCD NKE CVX XOM
CONST 16.835 25.524 -9.039 -10.414 9.677 -12.747
(13.627,22.211) (6.678,26.090) (-25.983,7.463) (-15.093,8.644) (3.317,23.778) (-18.034,-7.015)
VIX -0.24 -0.243 -0.149 -0.128 -0.099 -0.152
(-0.269,-0.228) (-0.248,-0.201) (-0.195,-0.139) (-0.141,-0.091) (-0.107,-0.065) (-0.165,-0.105)
LIQSPR 0.022 0.005 0.01 -0.01 0.012 0.009
(0.008,0.027) (0.000,0.016) (-0.001,0.021) (-0.023,-0.004) (0.005,0.016) (-0.002,0.014)
3MTB 0.039 0.089 0.007 0.031 0.027 0.026
(0.017,0.056) (0.050,0.106) (-0. 023 O 032) (0.001,0.064) (0.006,0.045) (0. 006 O 045)
0.024 0.047 0.037 0.023
TERMSPR (0.012,0.037) (0. 030 0 053) (-0. 008 O 017) (0.016,0.044) (0.010,0. 038) (0. 004 0 029)
- -0.044 -0.002 -0.0 -0.006
CREDSPR (-0.034,-0.001) (0. 024 0 (163) (-0.085,-0.039) (-0.027,0.022) (-0.052, 70 014) (-0. 034 0 0()3)
. . 0.286
DJUSRE (0.177,0.235) (0. 127 0 210) (0.228,0.303) (0.235,0.326) (0.211,0.282) (0. 277 0 348)
LEV -0.015 0.257 -2.304 1.907 -3.26 8.835
(-0.016,-0.006) (0. 114 0 436) (-4. 171 0 065) (-3.872,3.391) (-5.988,-2.268) (5.627,10.242)
MK2BK 0 -0.067 . -0.001
(-0.000,0.000) (-0. 031 0 249) (-0. 280 0 705) (-0.293,0.537) (-0.324,0.737) (-0.404,0.450)
SIZE -1.584 -2, 4[]2 1. 246 0.722 -0.337 -0.342
(-2.133,-1.225) (-2.499,-0.800) (-0.217,2.637) (-0.602,1.033) (-1.233,0.102) (-0.400,-0.042)
MM 0.893 -8.13 5.641 -1.648 0.145 -0.555
(0.716,1.954) (-12.256,-6.441) (1.580,6.941) (-4.143,-1.265) (-4.200,1.809) (-3.485,2.361)
0.153 0.262 0.327 0.252 0.297 0.34
8 (0.120,0.181) (0.218,0.287) (0.187,0.324) (0.162,0.244) (0.294,0.354) (0.310,0.421)
0.073 0.071 0.08 0.079 0.066 0.059
Tk (0.067,0.081) (0.065,0.078) (0.074,0.088) (0.073,0.087) (0.058,0.070) (0.059,0.071)
CoVaR BA GE INTC ORCL AEE PEG
CONST -2.66 38.01 -8.476 -2.013 8.342 -12.301
(-13.725,3.097) (22.465,48.669) (-24.689,-1.164) (-7.721,2.699) (-9.701,5.974) (-14.436,-2.596)
VIX -0.122 -0.325 -0.129 -0.159 -0.153 -0.108
(-0.145,-0.097) (-0.333,-0.283) (-0.159,-0.114) (-0.173,-0.129) (-0.185,-0.134) (-0.139,-0.087)
LIQSPR 0.013 0.038 -0.003 0.012 0.013 0.018
(-0.010,0.020) (0.018,0.049) (-0.014,0.007) (-0.000,0.014) (0. 007 0 018) (0.008,0.023)
3MTB -0.004 . -0.006 0.027 0.04
(-0.052,0.019) (-0.005,0.068) (-0.019,0.031) (0.023,0.062) (0. 022 0 049) (0.015,0.076)
TERMSPR -0.007 0.009 0.015 -0.006 0.037 0.042
- (-0.028,0.000) (-0.005,0.027) (0.003,0.030) (-0.007,0.020) (0.030,0.056) (0.026,0.059)
CREDSPR -0.046 0.008 -0.054 -0.071 0.009 -0.057
(-0.084,-0.015) (-0.031,0.025) (-0.067,-0.033) (-0.096,-0.056) (-0.012,0.018) (-0.067,-0.030)
DJUSRE 0.287 0.228 0.235 0.273 0.18 0.271
k (0.217,0.351) (0.184,0.284) (0.222,0.275) (0.223,0.294) (0.157,0.212) (0.236,0.310)
LEV 0.009 0.685 -1.409 -1.496 0.861 -0.399
(0.004,0.014) (0.272,0.865) (-4.305,-0.949) (-2.520,-0.357) (-0.137,3.041) (-0.636,-0.180)
MK2BK 0.002 -0.59 -0.23 -0.258 -1.54 -0.104
(-0.002,0.004) (-0.975,0.025) (-0.762,-0.044) (-0.315,0.004) (-2.621,-1.617) (-0.533,0.282)
SIZE 0.211 -3.012 1.014 0.558 -0.961 1.439
(-0.289,1.266) (-3.923,-1.705) (0. 428 2.745) (0.077,1.005) (-0.574,0.623) (0.437,1.684)
MM -0.504 -0.796 47 -0.492 8.684 -11.421
(-3.486,8.583) (-5.450,2.629) (0. 202 1.696) (-1.003,0.082) (4.172,9.289) (-14.582,-3.803)
0.219 0.153 0.194 0.179 0.353
B (0.193,0.290) (0.086,0.193) (0.164,0.216) (0.157,0.233) (0.277,0.370) (0.220,0.315)
ok 0.085 0.075 0.073 0.074 0.065 0.081

(0.070,0.084)

Table 6: CoVaR parameter estimates obtained by fitting the time invariant model to
each of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.025. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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VaR

c BAC CMA JPM KEY Gs MS
CONST 730.567 T22.619 ~15.032 T29.325 T22.208 T3.429 ~42.321
(-40.095,-5.584) (-43.424,-9.687) (-23.739,-8.861) (-35.705,-2.935) (-42.447,-5.758) (-15.338,7.775) (-51.416,-15.868)
VIX -0.571 -0.416 -0.397 -0.339 -0.434 -0.313 -0.275
(-0.853,-0.424)  (-0.776,-0.446)  (-0.409,-0.222)  (-0.464,-0.313) (-0.646,-0.366) (-0.297,-0.169) (-0.443,-0.233)
LIQSPR 0.038 0.005 -0.048 0.008 0.006 0.035 -0.032
(-0.020,0.058)  (0.015,0.090)  (-0.056,-0.013)  (-0.017,0.027)  (-0.042,0.025) (-0. 002 0. 050) (-0. 079 0 007)
SMTB -0.051 -0.051 -0.065 -0.011 -0.104 0.10
(-0.137,0.058)  (-0. 161 o 048) (-0.110,-0.011)  (-0. 079 0 030) (-0.134,0.045) (0. 062 0 191) (0. 036 0 191)
0.071 . -0.075
TERMSPR —( 022,0.141)  (-0. 078 0 062) (0.017,0.098)  (-0. 027 0 004) (-0.081,0.016) (0. 021 0 112) (-0. 028 0 090)
CREDSPR -0.088 -0.073 -0.022 -0.01 -0.09 -0.082 -0.1
(-0.189,0.004)  (-0.134,0.070)  (-0.202,-0.056)  (-0. 083 o 038) (-0.066,0.113) (-0.162,-0.003) (-0.254,-0.084)
DIUSRE 0.531 0.45 . 0.52 . .
(0.350,0.733) (0.346,0.651) (0.334,0.655) (0. 570 0 839) (0.331,0.702)  (0.342,0.570)  (0.449,0.820)
LEV -0.513 -0.426 0.565 0.025 -0.972 -0.22 -0.122
(-0.812,-0.108)  (-0.239,1.553)  (-0.275,0.730)  (-0.197,0.474) (-1.278,-0.258) (-0.285,-0.069) (-0.224,0.039)
MK2BK -1.548 2.418 -0.225 1.114 -0.654 2.424 -4.885
(-2.669,0.452)  (-1.796,1.546)  (-0.570,1.529)  (-1.574,2.181) (-3.448,0.637) (0.778,3.299) (-5.854,-0.994)
S17E 3.796 2.604 1.262 2.546 3.932 0.811 3.45
(1.785,4.808) (0.987,3.809) (0.633,2.376) (0.322,2.952) (2. 099 6 253) (-0.492,1.409)  (1.129,4.616)
MM -7.724 -19.824 -36.894 .028 -12.917 29.372
(-30.441,1.276) (-33. 085 10 879) (-47. 880 13 141) (-12. 368 12.512) (-7. 523 22 752) (-15.137,3.840) (9.365,32.212)
o 0.653 49 25 0.382 0.528
J (0.591,0.708) (0,489,0.588) (0,3o9,0,431) (0.343,0.411) (0. 484 0.580)  (0.350,0.420)  (0.489,0.588)
VaR MCO AXP MCD NKB CVX XOM
CONST 20.671 T21.941 “10.8 ~7.908 2.736 T5.371
(-1.387,21.765) (-43.386,-12.236) (-28.864,5.137) (-19.865,15.642) (-24.191,13.474) (-11.947,15.798)
VIX -0.359 -0.334 -0.084 R -0.311 -
(-0.396,-0.264) (-0.352,-0.233) (-0.109,-0.070) (-0.158,-0.089) (-0.304,-0.186) (-0.256,-0.120)
LIQSPR . . 014 0 -0.006 .
: (0.001,0.040) (-0.011,0.038) (0.007,0.031) (-0.024,0.040) (-0.041,0.006) (0.020,0.068)
IMTB 0.102 -0.05 -0.002 0.084 0.013 0.013
(0.052,0.139) (-0.107,0.019) (-0.027,0.023) (0.017,0.123) (0.018,0.135) (-0.024,0.108)
0.087 0.007 0.001 0.056 -0.01 -0.014
TERMSPR (0. 047 0.120) (-0.040,0.024) (-0.023,0.012) (0.015,0.097) (-0.010,0.078) (-0.021,0.056)
0.087 -0.062 -0.057 . -0.051 -0.055
CREDSPR (0.003,0.114) (-0.118,-0.024) (-0.080,-0.035) (-0.043,0.059) (-0.090,0.033) (-0.084,-0.008)
DJUSRE 0.449 0.493 0.168 0.384 0.246 0.249
: (0.348,0.638) (0.487,0.655) (0. 104 o 202) (0.330,0.570) (0.146,0.326) (0. 100 0 337)
LEV . -0.02 -2.905 -4.431
(-0.021,0.031) (-0.401,0.347) (-0. 643 5. 836) (-10.835,2.790) (-7.671,1.642) (-2. 016 9 679)
MK2BK 0 -0.224 -0.375 0.124 -1.514 -1.044
(-0.000,0.000) (-0.543,0.171) (-0.536,0.491) (-0.816,1.518) (-3.069,0.710) (-2.365,-0.464)
S1ZE -2.326 2.254 1.105 0.925 0.984 -0.049
(-2.402,-0.003) (1.369,4.078) (-1.053,1.796) (-0.812,1.816) (-0.030,2.663) (-1.449,0.795)
MM -5.023 -5.437 -2.498 -1.23 12.417 9.032
(-7.120,-3.242) (-12.994,2.934) (-7.179,-0.608) (-3.759,3.553) (6.140,22.127) (1.043,11.944)
o 0.515 0.337 0.232 0.35 0.357 0.305
J (0.440,0.528) (0.290,0.347) (0.212,0.254) (0.311,0.373) (0.306,0.367) (0.258,0.310)
VaR BA GE INTC ORCL AEE PEG
CONST ~24.596 ~10.958 ~17.548 8218 5. ~10.077
(-36.554,-12.861)  (-49.954,-15.272) (-27.708,6.410) (-34.212,-3.006)  (-12.458,14.775)  (-20.598,1.331)
VIX -0.09 -0.284 -0.128 -0.191 -0.244 -0.144
(-0.157,-0.077) (-0.331,-0.219) (-0.169,-0.087) (-0.238,-0.172) (-0.292,-0.161) (-0.229,-0.096)
LIQSPR -0.023 . -0.005 -0.048 . .
(-0.053,-0.002) (-0.027,0.024) (-0.005,0.035) (-0.045,0.005) (-0.016,0.033) (-0.038,0.032)
IMTB 0.004 0.041 0.126 0.159 -0.073 0.021
(-0.044,0.047) (-0.023,0.059) (0. oso 0.157) (0. 070 0.165) (-0.094,-0.014) (-0.014,0.077)
-0.012 0.078 21 08 -0.084 -0.023
TERMSPR (-0.033,0.034) (0.017,0.080) (0. 067 0.133) (0. 039 ,0.108) (-0.121,-0.053) (-0.062,0.029)
CREDSPR -0.037 0.044 0.068 0.012 -0.151 -0.024
(-0. 163 o 002) (-0. 001 ,0. oso) (0. 001 o 102) (-0. 007 0 095) (-0. 185 0 101) (-0.087,0.020)
0.43 0.223
DJUSRE (0. 562 n 722) (0.334,0. 523) (0. 231 o 419) (0. 056 o zsc) (0. 295 o 450) (0.123,0.324)
LEV 0.029 0.691 -5.424 1.029 -3.167 -0.068
(0.006,0.038) (-0.807,0.915) (-12.964,-1.582) (2.517,9.632) (-8.613,-0.274) (-0.672,0.450)
MK2BK -0.001 -2.181 -0.742 -0.564 -2.288 -2.250
(-0.007,0.008) (-2.650,-0.889) (-2.200,-0.673) (-0.616,0.019) (-4.353,-0.753) (-3.168,-0.808)
SIZE 2.138 3.495 2.136 -1.19 2.053 1.365
(1.066,3.274) (1.610,4.523) (0.181,3.605) (-0.554,1.967) (0.995,2.441) (0.197,2.503)
MM 19.721 -4.243 1.605 -0.012 -0.605 3.511
(4.277,27.544) (-10.316,2.410) (-1.659,4.307) (-1.844,1.166) (-9.528,7.868) (-9.541,17.568)
- 0.353 0.279 0.409 0.348 0.257 0.320

(0.313,0.375)

(0.259,0.312)

(0.351,0.421)

(0.320,0.384)

(0.254,0.304)

(0.304,0.365)

Table 7: VaR parameter estimates obtained by fitting the time invariant model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.05. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible

sets.
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CoVaR C BAC CMA JPM KEY GS MS
CONST 19.181 5.401 3.905 -0.906 3.785 -5.954 1.791

(6.034,20.256) (-1.032,9.738) (-2.861,10,222) (-11.724,2.908) (-6.847,12.108) (-8.639,1.038) (-10.801,4.484)
VIX -0.167 -0.168 .126 -0.164 -0.167 -0.115 -0.096
(-0.181,-0.117) (-0. 179 -0.103) (-0. 161 0 093) (-0. 196 o 148) (-0.189,-0.130) (-0.149,-0.106) (-0.099,-0.051)
LIQSPR 0.006 o7 0.003 0.002 0.009
(-0. 002 0.013) (-0. 006 0.013) (0A006,0.027) (70A000,0.014) (0.001,0.016) (-0.000,0.017) (0.001,0.016)
3MTB 0.05 . 0.035 0.037 0.005 0.044
(0.015,0.059) (0.011,0.059) (0.032,0.081) (0.022,0.064) (0.022,0.060) (-0.021,0.016) (0.021,0.063)
TERMSPR 0.026 0.026 0.041 0.025 0.038 0.003 0.021
(0.010, 0 034) (-0.000,0.035) (0. 020 0 054) (0.013,0.038) (0.020,0,051) (-0.006,0.018) (0.011,0.033)
CREDSPR -0.015 0.006 -0.004
(-0.008, 0 034) (-0. 030 0 013) (-0. 030 0 019) (-0.027,0.030) (-0. 033 0 036) (-0.033,0.004) (-0.010,0.039)
DJUSRE 0.25 0.335 22 0.256 0.316
b (0.222,0.311) (0. 223 0 318) (0.243,0.332) (0.258,0.337) (0.188,04268) (0.233,0.298)  (0.304,0.364)
LEV 0.006 -0.027 -0.077 0.064 -0.045 -0.051 -0.017
(-0.046,0.037) (-0.121,0.249) (-0.240,0.028) (0.032,0.237) (-0.222,0.021) (-0.114,-0.036) (-0.054,0.003)
MK2BK -0.283 -0.843 -1.236 -3.108 -0.82 0.135 -0.361
(-0.922,-0.118) (-1.172,-0.318) (-1. 708 -0.632) (-3.712,-2.428) (-1.543,-0.184) (-0.200,0.541) (-0.913,-0.075)
SIZE -1.7 -0.245 15 0.185 -0.125 0.783 -0.075
(-1. 734 0 546) (-0. 753 0 146) (-0. 809 0.708) (-0.151,0.998) (-0.998,1.093) (0.190,1.054) (-0.381,1.071)
MM -10.758 12.859 -3.935 -0.132
(3. 613 13 537) (-2. 005 3 748) (-16. 063 3 034) (7. 380 17 038) (-3. 388 8 257) (-7.353,0.088) (-1.542,3.406)
8 102 0.222 0.143
(0,082,0.124) (0. 093 0 131) (0. 098 o 166) (0. 102 0 161) (0. 108 0 109) (0.184,0.239) (0.118,0.151)
- 0.13 0.136 0.12 0.116
k (0.122,0.146) (0.121,0,145) (0.124,0.148) (0,120,0.144) (0.120,04144) (0.113,0.135)  (0.106,0.127)
CoVaR MCO AXP MCD NKE CVX XOM
CONST 16.287 24.691 -2.188 -18.412 12.451 -11.071
(13.990,24.617) (7.882,30.063) (-19.552,9.145) (-20.668,2.366) (6.583,21.842) (-17.948,-7.645)
VIX -0.212 -0.229 -0.105 -0.106 -0.075 -0.103
(-0.249,-0.164) (-0.248,-0.177) (-0.128,-0.081) (-0.116,-0.080) (-0.087,-0.055) (-0.133,-0.093)
LIQSPR 0.017 0.012 0.002 -0.005 0.007 0.013
(0.008,0.024) (0.002,0.020) (-0.006,0.013) (-0.017,-0.001) (0.003,0.012) (-0.002,0.012)
3MTB 0.035 0.081 0.023 0.028 0.022 0.019
(0.029,0.073) (0.030,0.083) (0.014,0.056) (0.012,0.056) (0.015,0.043) (-0.002,0.033)
TERMSPR 0.026 0.029 0.021 0.03 0.026 0.012
(0.028,0.058) (0.016,0.043) (0.011,0.043) (0,020,0.046) (0.014,0.035) (0.002,0.028)
CREDSPR -0.033 0.045 -0.026 -0.018 -0.033
- : (-0.030,0.020) (0.016,0.061) (-0.040,0.010) (-0. 020 0.025) (-0.036,-0.004) (-0.048,-0.004)
DJUSRE 0.208 0.219 0.338 0. 3 0.301 0.324
(0.190,0.280) (0.138,0.246) (0.292,0.385) (0.271,0.347) (0.242,0.324) (0.271,0.346)
LEV -0.011 0.218 -1.148 3.143 -3.68 6.78
(-0.011,0.003) (0.083,0.441) (-3.442,1.094) (-3.116,3.717) (-5.408,-2.476) (5.551,9.462)
MK2BK 0 0.069 0.377 -0.055 -0.064 0.169
(-0.000, () 000) (-0.003,0.297) (-0.111, O 742) (-0. .5)5 0. 4()7) (-0.449,0.510) (-0.385,0.216)
SIZE -2.301 0.2, 1.29 -0.479 -0.216
(-2. 384 1 355) (-2.841,-0.889) (-0.616, 1 799) (-0.013,1. 608) (-1.094,-0.101) (-0. 355 O 126)
MM 1.05 -8.901 -0.24 -2. 492 -0.534
(0.174,1.486) (-12. 606 6 095) (-2. 302 2 512) (-3.112,-0.722) (-2.232,2.380) (-3. 180 0 446)
0.153 0.169 0.347 0.386
B (0.105,0.181) (0. 199 0 292) (0. 189 0 304) (0.147,0.217) (0.316,0.388) (0.308,0.398)
. 0.144 0. 133 0. 132 0.14 0.11 0.11
k (0.123,0.147) (0.118,0.141) (0.125,0.150) (0.120,0.144) (0.100,0.120) (0.103,0.124)
CoVaR BA GE INTC ORCL AEE PEG
CONST -0.134 18.708 -4.144 -7.104 -2.633 -10.080
(-12.840,1.177) (4.842,36.457) (-15.879,5.770) (-11.422,0.227) (-9.876,7.335) (-11.788,3.139)
VIX -0.078 -0.193 -0.083 -0.092 -0.13 -0.120
(-0.104,-0.057) (-0.226,-0.146) (-0.108,-0.069) (-0.107,-0.072) (-0.171,-0.129) (-0.127,-0.090)
. . . . . .012
LIQSPR (0.000,0.016) (0.014,0.034) (-0.005,0.008) (-0.005,0.010) (0.009,0.022) (0.004,0.017)
3MTB 0.002 0.022 0.049 0.035 0.036 0.038
(-0.011,0.037) (0.002,0.052) (0.011,0.040) (0.017,0.060) (0.009,0.042) (0.022,0.064)
TERMSPR 0.005 0.019 0.027 0.018 0.035 0.047
(0.001,0.033) (0.004,0.036) (0.014,0.036) (0.004,0.029) (0.012,0.038) (0.032,0.059)
CREDSPR -0.013 -0.019 -0.029 -0.048 -0.017 -0.030
(-0.045,0.019) (-0.034,0.015) (-0.047,-0.005) (-0.060,-0.009) (-0.037,0.019) (-0.046,-0.007)
DJUSRE 0.273 0.27 0.184
(0.259,0.354) (0.221,0.310) (0.254,0.330) (0.277,0.353) (0.167,0.244) (0.249,0.318)
LEV 0.006 0.258 -2.954 0.064 0.535 -0.263
(-0. 000 0 009) (-0.006,0.540) (-4.081,0.188) (-2.276,0.479) (-0.317,3.537) (-0.671,-0.104)
MK2BK -0.689 -0.239 -0.069 -2.004 -0.249
(-0. 003 0 003) (-1.158,0.062) (-0.592,0.002) (-0.223,0.057) (-2. 553 1 282) (-0.507,0.270)
SIZE -1.381 0.776 0.621 1.264
(-0. 109 1 182) (-2.895,-0.288) (-0.267,1.791) (0.196,1.090) (-0. 701 0 546) (-0.100,1.419)
MM 7.242 0.405 0.888 -0.532 5.599 -10.513
(1.734,11.166) (-3.810,3.196) (-0.032,1.554) (-0.726,0.290) (1.983,8.818) (-15.061,-0.298)
0.23 0.097 0.174 0.154 0.328 0.208
B (0.171,0.244) (0.084,0.170) (0.170,0.225) (0. 147 0 211) (0.275,0.356) (0. 156 O 268)
- 0.133 0.142 0.119 0.119
k (0.126,0.151) (0.126,0.152) (0.111,0.132) (0. 120 0 143) (0.113,0.135) (0. 124 0 148)

Table 8: CoVaR parameter estimates obtained by fitting the time invariant model to
each of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.05. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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VaR [¢] BAC CMA JPM KEY GS MS
VIX ~0.542 ~0.395 ~0.352 ~0.244 ~0.895 70.442 1,107
(-0.635,-0.190) (-0.549,-0.210) (-0.504,-0.230) (-0.350,-0.102) (-1.068,-0.626) (-0.457,-0.305) (-1.157,-0.834)
LIQSPR 0.033 0.031 0.013 0.009 0.116 0.023 0.054
(-0. 070 0 049) (-0.041,0.034) (-0.036,0.020) (-0.036,0.036)  (0.023,0.120)  (-0.021,0.044) (0.015,0.129)
SMTB -0.026 -0.127 -0.01 -0.084 0.077 -0.033
(0.009,0.175) (-0.044,0.083) (-0.114,0.015) (-0.035,0.093) (-0.122,0.014)  (0.056,0.149) (-0.040,0.118)
TERMSPR 0.038 0.05 0.036 0.021 [ 0.056 -0.016
(0.035,0.157) (0.014,0.116)  (0.028,0.121)  (0.010,0.089)  (-0.045,0.042)  (0.050,0.123) (-0.026,0.101)
CREDSPR -0.055 -0.059 -0.066 -0.136 0.084 -0.004 0.01
(-0.159,0.080) (-0.150,0.043) (-0.111,0.082) (-0.201,0.068) (-0.051,0.140) (-0.080,0.058) (-0.106,0.099)
DJUSRE 0.691 0.51 0.425 0.763 0.534 0.43 0.624
(0.573,0.935)  (0.455,0.738)  (0.338,0. 061) (0.668, 0 922) (0.426,0.669)  (0.402,0.622) (0.498,0.789)
LEV -6.222 -0.932 -9.0 -1.6 -11.082 -3.494 -3.703
(-7.631,-6.158) (-2.288,0.748) (-10.882, 8 630) (-2.540, -o 609) (-15.097,-10.828) (-3.842,-3.099) (-4.297,-3.054)
MK2BK 2.858 5.98 -3.522 -0.909 -1.671 -0.655 1.203
(-1.770,7.826) (2.343,14.281) (-3.216,5.159) (-5.159,3.915) (-3.514,10.233) (-2.024,6.441) (-0.253,9.801)
S17ZE -0.819 -7.374 1.52 -6.291 4.387 -2.844 -0.644
(-1.339,1.021) (-9.217,-6.558) (0.396,1.812) (-7.623,-5.942) (3.600,8.900) (-4.517,-2.205) (-3.440,0.139)
MM 0.916 -1.953 1.3 0.798 1.823 2.615 0.701
(-7.183,5.579) (-7. 432 4. 338) (-6.468,5.498) (-6.424,5.701) (-5.505,6.409) (6. 451 5.809) (-6.442,5.383)
o 0.109 0.09 0.079 0.078 0.083 0.076 0.096
J (0.091,0.112) (0,084,0102) (0.067,0.082)  (0.065,0.080)  (0.067,0.085)  (0.062,0.076) (0.080,0.100)
VaR MCO AXP MCD NKE CVX XOM
VIX -1.277 -0.287 -0.228 -0.347 -0.572 -0.431
(-1.803,-1.078) (-0.420,-0.261) (-0.241,-0.144) (-0.377,-0.177) (-0.603,-0.476) (-0.467,-0.359)
LIQSPR 0.055 0.012 0.055 0.034 0.044 0.039
(-0.102,0.086) (-0.046,0.021) (0.032,0.061) (-0.016,0.051) (-0.027,0.048) (-0.011,0.043)
3MTB -0.01 -0.045 -0.016 0.026 0.057
(-0.010,0.167) (-0.100,0.020) (-0.039,0.032) (0.015,0.114) (-0. 021 0 087) (0.030,0.129)
-0.02 0.015 -0.014 B .
TERMSPR (-0.009,0.118) (-0.004,0.054) (-0.029,0.025) (0.011,0.095) (-0. 013 0 051) (0.028,0.078)
CREDSPR 0.05 -0.104 0.001 0.058 0.072 0.111
(0.038,0.309) (-0.149,-0.009) (-0.076,0.056) (0.001,0.132) (-0.038,0.070) (0.054,0.160)
DJUSRE 0.389 0.522 0.09 0.291 0.16 0.212
(0.272,0.553) (0.420,0.609) (0.021,0.150) (0.283,0.486) (0.078,0.246) (0.177,0.331)
LEV 11.432 -5.374 -8.644 -10.635 -10.713 -9.716
(11.409,11.631) (-7.605,-4.242) (-9.840,0.900) (-10.913,-0.472) (-13.221,-1.394) (-14.139,-6.290)
MK2BK 0 -0.823 -1.162 -5.508 -8.117 -8.893
(-0.000,0.001) (-1.506,3.971) (-1.960,0.490) (-6.296,-0.357) (-10.543,-1.494)  (-11.345,-6.177)
SIZE -13.189 -1.48 -3.203 -1.419 -1.456 -0.539
(-13.846,-12.719) (-2.672,-1.389) (-5.757,-3.163) (-4. 751 1.780) (-3.140,-1.442) (-0.871,-0.214)
MM 1.904 7.453 -6.742 0.32 -3.427 0.04
(-7.567,3.219) (-4.944,7.394) (-10.809,0.278) (-3.915,6.975) (-4.433,7.604) (-4. 717 6.863)
. 0.081 . . 0.061
J (0.064,0.082) (0.053,0.065) (0.043,0.053) (0,048,0.061) (0.052,0.065) (0,042,0.051)
VaR BA GE INTC ORCL ABE PEG
VIX 0.492 T0.158 20.256 20.344 70.423 70.445
(-0.534,-0.330) (-0.214,-0.052) (-0.302,-0.143) (-0.381,-0.191) (-0.472,-0.264) (-0.509,-0.378)
LIQSPR 0.033 -0.035 0.081 0.039 0.041
(-0.058,0.025) (-0.104,-0.031) (0.030,0.088) (-0.034,0.039) (0.001,0. 054) (-0. 034 o 038)
IMTB 0.045 0.019 -0.002 -0.0
(0.018,0.117) (0.011,0.111) (0. 092 o 148) (-0.001,0.118) (-0.033, o 040) (-0. oos o 077)
0.028 0.052 078 0.006 -0.026 -0.008
TERMSPR (0.028,0.098) (0.036,0.101) (0. 066 0 133) (-0.001,0.082) (-0.040,0.013) (-0. 042 0. 026)
-0.041 -0.027 0 -0.043 0.04
CREDSPR (-0.100,0.091) (-0.051,0.048) (0. 048 0 148) (-0.060,0.094) (-0.092,0.014) (-0.007, o 108)
DJUSRE 0.417 0.558 0.153 0.155 0.296 0.226
- (0.368,0.547) (0.468,0.622) (0.111,0.303) (0.165,0.372) (0.240,0.380) (0.168,0.310)
LEV -0.486 -1.956 -11.981 -8.537 -11.568 -0.655
(-0.635,-0.465) (-6.971,-0.917) (-11.725,-0.477)  (-15.913,-6.510)  (-18.736,-6.351) (-1.239,0.858)
MK2BK -0.011 2.664 -3.362 -1.504 -4.758 -4.970
(-0.011,0.006) (1.554,8.157) (-6.393,0.319) (-1.621,0.619) (-5.942,5.346) (-7.268,-2.350)
SIZE -6.303 -6.011 -2.273 -1.58 -4.479 -7.040
(-6.691,-6.310) (-6.763,-4.244) (-4.385,-2.177) (-2.685,-1.140) (-7.295,-2.731) (-8.113,-6.680)
MM -1.883 2.247 -3.302 -0.252 0.928 .
(-5.849,5.671) (-6.318,6.360) (-5.752,5.989) (-2.707,2.464) (-5.988,5.313) (-5.652,6.566)
o 0.057 0.051 0.066 0.065 0.047 0.057
J (0.046,0.057) (0.043,0.053) (0.055,0.068) (0.053,0.069) (0.039,0.048) (0.047,0.058)

Table 9: VaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.01. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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CoVaR C BAC CMA JPM KEY GS MS
VIX -0.147 -0.144 -0.153 -0.32 -0.18 -0.175 -0.071
(-0.241,-0.107) (-0.323,-0.132) (-0.274,-0.149) (-0.471,-0.308) (-0.256,-0.167) (-0.281,-0.152) (-0.181,-0.069)
LIQSPR -0.002 0.005 0.016 0.037 -0.005 -0.007 0.017
(-0.020,0.010) (-0.017,0.024) (-0.011,0.016) (0.004,0.047) (-0.023,0.000) (-0.027,0.001) (-0.017,0.013)
3MTB 0.023 0.037 0.05 0.025 0.038 0.019 0.021
(0.009,0.057)  (0.017,0.063)  (0.033,0.073)  (0.017,0.058)  (0.034,0.067) (0.018,0.056) (0.012,0.053)
TERMSPR 0.007 0.022 0.021 0.004 0.021 0.013
(0.001,0.036)  (0.011,0.047)  (0.018,0.048)  (0.008,0.045)  (0.032,0.061)  (0.020,0.049)  (0.010,0.046)
CREDSPR 0.021 0.023 0.069 0.054 0.053 0.01
(-0.010,0.050)  (0.017,0.093)  (0.002,0.056)  (0.047,0.116)  (0.031,0.086)  (0.027,0.084) (-0.005,0.048)
DJUSRE 0.265 0.311 0.286 0.26 0.318 0.275
(0.224,0.332) (0.256,0.354) (0.240,0.329) (0.198,0.309) (0.266,0.354) (0.228,0.319) (0.286,0.370)
LEV 0.272 -0.006 0.43 -2.897 -2.693 1.342 1.634
(0.211,0.501)  (-4.745,0.733) (0.196,0.792) (-5.199,-2.204) (-3.387,-2.348) (0.881,1.487) (1.091,1.807)
MK2BK 24.223 22.535 35.034 16.241 36.495 24.587 30.898
(23.781,25.946) (21.860,25.367) (34.752,36.653) (15.626,25.870) (35.586,36.701) (23.106,30.548) (27.986,34.991)
SIZE 2.716 3.116 0.035 7.265 4.163 1.892 0.152
(2.333,2.742) (2.457,7.559) (-0.443,0.201) (6.527,9.092) (3.824,5.109) (1.278,1.834) (-0.151,0.777)
MM 0.705 -0.609 0.735 -3.314 -2.992 -6.275 2.546
(-2.519,8.826) (-4.575,9.650) (-6.295,5.446) (-6.350,6.034) (-6.171,6.292) (-1.648,9.617) (3.284,14.718)
- 0.023 0.022 0.02 0.025 0.021 0.022 0.022
k (0.020,0.025)  (0.020,0.026)  (0.018,0.022)  (0.022,0.028)  (0.019,0.023)  (0.019,0.024)  (0.019,0.024)
CoVaR MCO AXP MCD NKE CVX XOM
VIX -0.392 -0.188 -0.189 -0.208 -0.074 -0.055
(-0.706,-0.401) (-0.252,-0.158) (-0.248,-0.169) (-0.355,-0.199) (-0.204,-0.067) (-0.098,-0.026)
LIQSPR 0.028 0.011 0.017 -0.004 (0] -0.005
(0.002,0.036) (-0.012,0.014) (-0.008,0.018) (-0.024,0.003) (-0.016,0.006) (-0.021,-0.001)
3MTB 0.013 0.021 0.043 0.018 0.038 0.027
(0.011,0.057) (0.014,0.055) (0.032,0.086) (0.007,0.053) (0.031,0.062) (0.031,0.067)
0.014 0.015 0.039 0.023 0.03 0.03
TERMSPR (0.018,0.064) (0.012,0.044) (0.036,0.074) (0.019,0.051) (0.025,0.054) (0.028,0.062)
CREDSPR 0.059 0.019 0.037 0.037 0.034 0.011
(0.055,0.118) (0.001,0.056) (0.027,0.079) (0.014,0.065) (0.021,0.079) (0.007,0.068)
DJUSRE 0.279 0.27 0.298 0.325 0.298 0.329
k (0.217,0.319) (0.241,0.329) (0.274,0.341) (0.237,0.334) (0.252,0.324) (0.296,0.363)
LEV 2.3 0.429 -0.529 1.18 9.039 12.578
(2.290,2.327) (-0.026,0.814) (-2.709,4.961) (-7.046,7.137) (2.710,15.592) (1.613,15.804)
MK2BK 0 10.526 -8.54 11.762 12.079 0.073
(-0.000,0.000) (9.417,10.817) (-10.374,-7.839) (10.893,16.560) (9.641,12.891) (-0.796,2.762)
SIZE 4.289 0.707 7.625 0.246 0.118 1.633
(4.330,4.643) (0.349,1.296) (6.772,8.292) (-0.761,0.466) (-0.437,1.218) (1.070,2.886)
MM -20.368 -0.764 0.702 2.658 -2.435 5.064
(-26.990,-16.699) (-7.180,3.715) (-5.433,5.198) (-2.902,6.393) (-5.688,5.050) (-9.562,5.699)
B 0.02 0.024 0.021 0.021 0.024
Tk (0.018,0.023) (0.018,0.023) (0.021,0.026) (0.019,0.023) (0.018,0.022) (0.021,0.025)
CoVaR BA GE INTC ORCL AEE PEG
VIX -0.465 -0.28 -0.219 -0.119 -0.139 -0.127
(-0.899,-0.423) (-0.345,-0.245) (-0.333,-0.222) (-0.190,-0.093) (-0.215,-0.115) (-0.207,-0.108)
LIQSPR 0.031 0.004 0.004 0.008
(-0.005,0.042) (-0.002,0.041) (-0.007,0.015) (-0.030,-0.003) (-0.012,0.008) (-0.006,0.011)
3MTB 0.002 0.004 0.018 0.011 0.056 0.017
(-0.011,0.044) (-0.006,0.038) (0.011,0.052) (0.016,0.060) (0.044,0.077) (0.018,0.064)
TERMSPR 0.012 0.008 0.014 0.016 0.042 0.032
(0.002,0.059) (-0.002,0.033) (0.012,0.044) (0.022,0.055) (0.038,0.063) (0.029,0.059)
CREDSPR 0.044 0.02 . 0.005 0.044 0.033
(0.019,0.114) (-0.008,0.052) (-0.000,0.052) (-0.004,0.040) (0.017,0.072) (0.020,0.076)
DJUSRE 0.249 0.312 0.292 0.315 0.308 0.354
(0.189,0.323) (0.278,0.373) (0.249,0.322) (0.252,0.324) (0.278,0.361) (0.281,0.368)
LEV 2.071 1.011 3.926 -0.8 4.88 8.731
(2.070,2.084) (-2.282,2.142) (-2.538,5.525) (-2.197,1.867) (3.748,6.666) (8.329,11.382)
MK2BK 0.006 16.977 11.732 2.185 20.842 -0.221
(0.001,0.009) (16.480,18.312) (11.720,13.832) (2.018,2.951) (19.713,23.402) (-0.852,1.288)
SIZE 4.186 1.383 0.585 2.767 0.118 0.101
(4.106,4.845) (0.859,2.995) (0.124,1.497) (2.110,2.864) (-0.542,0.284) (-1.094,0.295)
MM 1.125 -4.474 -6.021 1.405 -2.916 -3.057
(-6.725,5.965) (-6.694,2.795) (-6.011,0.542) (-0.014,2.914) (-4.480,6.182) (-5.900,4.319)
- 0.018 0.023 0.021 0.024 0.023 0.027
k (0.018,0.024) (0.020,0.025) (0.019,0.023) (0.021,0.026) (0.020,0.024) (0.023,0.028)

Table 10: CoVaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.01. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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VaR [e] BAC CMA JPM KEY Gs MsS
VIX S0.372 -0.402 -0.366 -0.143 ~0.606 S0.275 S0.715
(-0.602,-0.120) (-0.464,-0.084) (-0.469,-0.314) (-0.256,-0.025) (-0.824,-0.460) (-0.400,-0.220) (-1.019,-0.668)
LIQSPR -0.01 -0.008 0.094 0.004 0.065
(-0.046,0.051)  (-0.021,0.062) (-0.031,0.018) (0.006,0.069)  (0.045,0.136) (-0.048,0.039) (0.037,0.140)
3MTB 0.126 0.017 -0.038 0.088 -0.054 -0.002
(0.036,0.186)  (-0.054,0.074) (-0.097,0.006) (-0.015,0.088) (-0.118,-0.012) (0. 031 o 136) (-0.087,0.060)
TERMSPR 0.143 0.066 0.113 0.107 0.004 0.018
(0.060,0.194)  (-0.011,0.099) (0.062,0.124)  (0.044,0.116)  (-0.048,0.027) (0. 039 0 134) (-0.046,0.056)
CREDSPR. 0.042 0.135 -0.006 0.121 0.067 0.014 -0.068
(-0.029,0.169)  (-0.078,0.126) (-0.074,0.058) (0.024,0.150)  (-0.036,0.114) (-0.087,0.063) (-0.130,0.050)
DJUSRE 0.821 0.443 0.326 0.621 0.574 0.543 0.632
(0.588,0.980)  (0.387,0.690)  (0.309,0.539) (0.541,0.830)  (0.396,0.671)  (0.380,0.637) (0.524,0.797)
LEV 4.01 -2.095 -2.126 -5.057 -9.054 3.715 0.784
(3.060,5.498)  (-2.776,0.234) (-2.110,-0.036) (-8.468, 5 457) (-11.707, 5 887) (3.426,4.314) (0.496,1.740)
MK2BK -10.536 -3.206 -2.164 -6.3 -2.9 -9.493 -0.836
(-20.510,-6.433) (-10. 438 1 068) (-5. 478 0 780) (-11.379,- 1 873) (-7.522, o 918) (-12.312,-2.865) (-6.877,3.179)
SIZE 6.666 25.876 20.569 5.981 4.095
(6.514,9.782) (6404,8,709) (0,795,2.780) (26.485,30.494) (17.537,24.030) (4.867,6.426) (2.716,4.767)
MM 2.854 3.491 2.974 -2.903 -3.318 -3.859 1.419
(-6.838,5.443)  (-5.925,6.244) (-7.669,4.549) (-6.271,5.793) (-6.506,5.477) (-7.390,4.397) (-6.704,5.186)
o 0.241 0.214 0.186 0.145 0.162 0.176 0.188
J (0.203,0.249)  (0.197,0.239)  (0.171,0.211)  (0.133,0.165)  (0.144,0.190)  (0.143,0.179)  (0.181,0.222)
Vak MCO AXP MCD NKB CVX XOM
VIX 20.034 T0.211 Z0.178 Z0.257 70.401 Z0.308
(-0.018,0.900) (-0.283,-0.130) (-0.206,-0.114) (-0.298,-0.156) (-0.514,-0.350) (-0.418,-0.282)
LIQSPR -0.012 -0.013 0.045 0.027 0.038 0.017
(-0.026,0.124) (-0.036,0.024) (0.030,0.060) (-0.017,0.049) (-0.009,0.063) (-0.019,0.067)
IMTB 0.104 -0.039 -0.02 0.09 0.062 0.021
(0. 024 0 215) (-0. 070 0 017) (-0.030,0.023) (0.010,0.095) (-0. 007 o 108) (-0. 019 o 109)
-0.015 0.063
TERMSPR (0. 054 0 179) (-0. 001 0 059) (-0.029,0.018) (0.009,0.084) (-0. 004 o 060) (-0. 009 o 070)
CREDSPR 0.073 -0.107 -0.009 0.079 0.047 0.051
(0.045,0.230) (-0.168,-0.079) (-0.027,0.068) (0.019,0.122) (0.000,0.108) (0.006,0.144)
DJUSRE 0.581 0.585 0.13 0.468 0.221 0.326
(0.497,0.863) (0.485,0.672) (0.061,0.205) (0.337,0.518) (0.122,0.276) (0.171,0.344)
LEV 13.564 4.993 -3.784 -3.996 -8.426 1.008
(13.316,13.575) (3.357,5.100) (-5.398,6.451) (-9.360,1.539) (-8.127,3.678) (-4.034,8.182)
MK2BK 0 0.19 4.503 2.413 -5.572 1.46
(0.000,0.001) (0.914,3.565) (1.988,5.062) (-1.859,3.453) (-8.929,-1.863) (-3.095,2.299)
SIZE 30.641 11.211 8.86 3.074 14.158 5.035
(29.507,30.644) (10.611,12.669) (7.376,9.753) (2.399,4.800) (12.581,14.745) (3.936,6.351)
MM 2.211 -2.196 -0.94 0.266 -4.235 3.713
(-2.740,12.412) (-8. 8&4 2.961) (-9. 186 0 908) (-7.130,4.815) (-7.558,3.962) (-7. o()() 4 130)
. 0.095 126 0.128 0.135
J (0.085,0.115) (0. 114 0.139) (0. 090 0 112) (0.108,0.135) (0.122,0.149) (0. 104 o 133)
VaR BA GB INTC ORCL ABB PEG
VIX T0.411 Z0.082 20074 Z0.226 T0.131 70.164
(-0.511,-0.262)  (-0.164,-0.010) (-0.086,0.069) (-0. 317 0 167) (-0. 331 0 081) (-0.179,0.016)
LIQSPR 0.005 -0.052 0.047 0.015
(-0.048,0.026) (-0. 068 0 005) (0.002,0.082) (-0. 024 0 059) (0. oos o 078) (-0.043,0.077)
IMTB 0.072 0.076 - 0.043
(0.016,0.102) (0. oos o 081) (0.015,0.105) (0. 028 0 119) (- 0,043,0.035) (-0. 006 o 091)
0.064 0.065 -0.026
TERMSPR (0. 028 0 090) (0. 034 0 079) (0.032,0.090) (0.013 0.082) (-0.043,0.015) (-0. 021 o 043)
-0.01 0.129 0.107 -0.164 -0.067
CREDSPR (-0. 073 o 068) (-0.050,0.035) (0.063,0.163) (0.024,0.146) (-0.154,-0.033) (-0.117,-0.002)
DJUSRE 0.512 0.317 0.216 . .
(0.304,0.027) (0.406,0.571) (0.210,0.374) (0. 136 0 329) (0.229,0.399) (0.278,0.476)
LEV 0.872 1.752 10.882 29.995 .
(0.875,1.003) (-2.053,2.712) (-0.518,13.613) - 2.47a,9.482) (27.499,33.212) (0.963,8.038)
MK2BK 0.008 -1.991 -35.73 -11.746 7.257 21.233
(0.003,0.011) (-4.704,-0.329) (-45.045,-35.591) (-11.470,-5.786) (6.441,15.177) (15.872,23.850)
SIZE 7.428 34.56 15.592 2.974 13.221
(7.432,7.850) (5. 967 8 052) (34. 792 38.321) (12.874,16.147) (1.877,3. 235) (13.295,17.800)
MM -1.985 831 -5.146 -1.1 2.157
(-5.881,6.317) (-4. 292 6 978) (2. 176 12 974) (-5. 219 3.953) (-6. 208 5 508) (-5.796,6.345)
o 0.121 21 0.117
i (0.093,0.115) (0.093,0.115) (0. 107 0 133) (0. 114 0.141) (0.086,0.107) (0.121,0.153)

Table 11: VaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.025. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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CoVaR c BAC CMA JPM KEY Gs Ms
VIX S0.157 ~0.066 -0.137 -0.186 0.023 T0.141 0.
(-0. 332 -0.163) (-0.115,-0.045) (-0.194,-0.106) (-0.258,-0.180) (-0.080,0.030) (-0.193,-0.118)  (0.033,0.179)
LIQSPR -0.002 -0.006 0.004 0.005 -0.021 0.005
(-0. 032 0 013) (-0.008,0.016)  (-0.018,0.010) (0. 004 0 028) (-0. 020 0 015) (-0. 039 o 009) (-0. 032 0 008)
SMTB 0.063 0.04
(-0. 003 0 052) (0.027,0.068)  (0.035,0.073) (0. 020 0 056) (0. 044 0 oss) (0. 002 0 042) (0. 004 0 061)
TERMSPR 0.017 0.024 0.025 0.023 0.065 0.026 0.023
(0.009,0.049)  (0.009,0.037) (0. 017 0 045) (0.010,0.036)  (0.040,0.071) (0. 012 0 040) (0.017,0.058)
CREDSPR 0.027 0.005 -0.007 0.034 0.025
(-0.026,0.054) (-0.030,0.025)  (-0. 003 0 045) (-0.021,0.024)  (0.016,0.077) (0. 002 0 004) (-0.042,0.028)
DJUSRE 0.221 0.276 0.301 0.302 0.361 0.285 0.365
(0.145,0.279)  (0.263,0.336) (0. 234 0 332) (0. 252 0 329) (0.259,0.371)  (0.238,0.313) (0. 306 o 423)
LEV 7.634 0.618 10.988 2.324
(7.664,10.884) (0.383,1.344) (4. 409 5 943)  (-0. 680 0 487) (11.007,16.783) (2.167,4.758) (3. 473 4 345)
MK2BK 14.821 -0.346 -31.865 -3.0 -25.14 0.628 -16.423
(14.334,26.435) (-2. 572 0 101) (-42. 140 31 434) (-6.063, 0 162) (-43. 667 25 572) (-22. 032 2 998) (-28. 846 15 475)
SIZE -1.482 -0.3
(-6.462,-1.366) (0.080,1.116) (-1. 121 o 179) (-0.777, 0 085) (3. 808 8 642) (-1 006 0 209) (7. 821 11 076)
MM 6.625 1.549 7.601 -2.843 -1.273 0.624
(-3.881,8.264) (-4.259,5.645) (-4.822,7.239) (-5.071,5.153) (-7.136,5.921)  (-8. 886 3 295) (-5.515,7.515)
> 0.054 0.042 0.057 0.055 0.073
k (0.061,0.079)  (0.049,0.060)  (0.039,0.048)  (0.050,0.062)  (0.049,0.061) (0.047,0.0d9) (0.069,0.087)
CoVaR MCO AXP MCD NKE CVX XOM
VIX 20.604 Z0.402 T0.217 Z0.143 Z0.073 20.104
(-0.969,-0.556) (-0.447,-0.330) (-0.285,-0.209)  (-0.234,-0.113) (-0.122,-0.059) (-0.104,-0.064)
LIQSPR 0.005 -0.012 -0.004 -0.013 -0.01 -0.009
’ (0.004,0.041) (-0.018,0.013) (-0.010,0.017) (-0.026,-0.002) (-0.016,0.002) (-0.015,-0.003)
SMTB 0.022 0.036 0.051 0.034 0.04 0.04
(-0.007,0.045) (0.011,0.052) (0.030,0.071) (0.005,0.039) (0.020,0.052) (0.028,0.052)
TERMSPR 0.003 0.027 0.044 0.035 0.034 0.037
(0.002,0.045) (0.008,0.037) (0.033,0.065) (0.020,0.047) (0.016,0.044) (0.029,0.049)
CREDSPR 0.023 0.048 0.038 0.034 0.028 0.03
(0.019,0.100) (0.015,0.065) (0.017,0.061) (0.010,0.056) (0.008,0.052) (0.005,0.041)
DJUSRE 0.251 0.264 0.279 0.332 0.316 0.33
(0. 163 0 282) (0.181,0.272) (0.275,0.347) (0.255,0.332) (0.271,0.336) (0.288,0.343)
LEV -1.802 5.172 7.65 15.472 -13.124
(5. 065 5 148) (-4.170,-1.854) (-2.759,5.557) (1.598,14.057) (11.412,17.700)  (-15.960,-12.372)
MK2BK 19.025 8.285 -1.378 -0.858 -1.336
(- 0.000,0.000) (18.810,23.131) (8.536,12.628) (-6.127,-0.223) (-2.193,0.426) (-1.808,-0.253)
SIZE -13.493 -15.499 -0.241 3.798 3.458 -0.169
(-13.792,-13.138)  (-15.773,-14.937) (-1.371, o 580) (2.302,6.045) (3.002,4.214) (-0.347,-0.037)
MM -13.168 3. -0.9 0.029 1.628 1.932
(-24.580,-12.211) (-1.947,8.920) (-5.739, s ro4) (-7.708,4.510) (-6. 27r ,4.218) (-3.530,6.667)
0.035 0.042 0.049 0.056 0.05 0.044
Tk (0.033,0.044) (0.037,0.047) (0.043,0.053) (0.048,0.062) (0.045,0.055) (0.043,0.052)
CoVaR BA GE INTC ORCL AEE PEG
VIX Z0.321 20.207 20.185 20.067 Z0.165 20.150
(-0.428,-0.297) (-0.298,-0.216) (-0.269,-0.186) (-0.087,-0.014) (-0.188,-0.111) (-0.156,-0.025)
LIQSPR 0.015 0.012 0.002 -0.014 -0.003 .
' (-0.027,0.020) (-0.008,0.021) (-0.008,0.010) (-0.024,-0.001) (-0.014,0.007) (-0.012,0.025)
IMTB 0.042 0.015 0.037 -0.006 0.058 0.044
(0.016,0.063) (0.006,0.044) (0.015,0.048) (0.000,0.045) (0.050,0.078) (0.021,0.068)
0.04 0.025 0.018 0.016 0.053 0.036
TERMSPR (0. 020 0 063) (0.009,0.036) (0.010,0.033) (0.014,0.042) (0. 042 0 065) (0. 027 o 062)
0.056 0.008 .
CREDSPR (0. 042 o 108) (0.007,0.058) (-0.005,0.036) (-0.001,0.046) (0. 022 o 064) (-0. 025 0 047)
DJUSRE 251 0.329 . 0.23 0.3
(0.186,0.303) (0.270,0.358) (0.254,0.309) (0.230,0.316) (0.256,0.333) (0.298,0.426)
LEV -3.985 14.072 2.518 -0.079 8.039 -6.957
(-3.990,-3.962) (13.437,17.983) (-7.174,3.374) (0.497,5.535) (7.772,14.210) (-12.426,-6.557)
MK2BK -0.003 -17.047 0.554 -0.257 -6.849 0.253
(-0. oue -0. 001) (-22.498,-16.637) (0.544,6.286) (-2.604,0.236) (-21.980,-7.119) (-6.298,0.724)
SIZE 4.62 0.181 0.776 16.263 -0.116 .
(-4. 685, 4 427) (-1. 315 0 517) (0.063,1.322) (15.511,16.903) (-0.570,0.313) (0.058,3.843)
MM -1.984 -6.696 0.007 -1.442 -2.947
(-4. 162 7 792) (-7. 930 2 710) (-14.254,-3.877) (-2.214,0.916) (-7. 009 4 074) (-6.749,4.022)
0.045 0.06 0.057
Tk (0. 029 0 oss) (0. 043 o 054) (0.042,0.052) (0.058,0.071) (0. 044 0 055) (0.051,0.064)

Table 12: CoVaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.025. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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VaR C BAC CMA JPM KEY GS MS
VIX -0.289 -0.449 -0.328 -0.255 -0.575 -0.195 -0.415
(-0.582,-0.172) (-0.608,-0.328) (-0.461,-0.280) (-0.311,-0.104) (-0.810,-0.459) (-0.249,-0.114) (-0.579,-0.292)
LIQSPR -0.005 0.033 0.023 0.027 0.091 0.012 -0.002
" (-0.053,0.053) (-0.026,0.052) (-0.021,0.032) (-0.008,0.053) (0.038,0.151) (-0.007,0.047) (-0.075,0.009)
3MTB 0.098 -0.011 -0.093 0.011 -0.065 0.098 0.055
(0.042,0.189) (-0.082,0.058) (-0.102,0.019) (-0.037,0.069) (-0.121,0.002) (0.076,0.184) (0.050,0.190)
TERMSPR 0.107 0.03 0.053 0.092 -0.001 0.051 -0.011
(0.066,0.186) (-0.027,0.078) (0.034,0.114) (0.015,0.104) (-0.048,0.028) (0.024,0.103) (-0.025,0.083)
CREDSPR 0.066 0.038 0.002 -0.006 0.045 -0.116 -0.167
(-0.047,0.169) (-0.106,0.077) (-0.065,0.100) (-0.048,0.081) (-0.039,0.121) (-0.117,0.013) (-0.153,0.003)
DJUSRE 621 0.461 0.602 0.385 0.569 0.875
(0.548,0.922) (0.432,0.698) (0.346,0.590) (0.562,0.835)  (0.384,0.690) (0.403,0.609) (0.549,0.829)
LEV -4.748 -2.016 7.434 -2.195 -6.049 -0.18 -2.172
(-4.609,-1.123) (-2.480,0.960) (5.754,8.236) (-4.715,-1.883) (-6.803,1.339) (-1.131,0.000) (-4.018,-1.410)
MK2BK -1.813 3.965 -5.967 -5.682 -3.652 2.577 -2.421
(-6.966,-1.801) (-5.516,2.773) (-7.438,-0.040) (-7.437,1.429) (-9.469,0.754) (0.075,4.741) (-5.909,2.442)
SIZE 10.337 4.014 1.037 11.342 21.974 1.99 3.975
(6.938,10.738) (1.450,4.901) (0.589,2.404) (10.561,14.765) (14.293,23.179) (1.376,5.079) (2.931,6.892)
MM 2.416 -2.6 2.491 -2.095 -5.669 -4.732 -1.288
(-6.762,5.264) (-5.379,6.361) (-7.012,5.229) (-5.415,6.715) (-6.873,5.029) (-7.044,4.453) (-7.058,5.047)
o 0.398 0.423 0.33 0.349 0.353 0.344 0.49
J (0.397,0.486) (0.424,0.512) (0.320,0.393) (0.294,0.362)  (0.279,0.389) (0.335,0.403) (0.432,0.527)
VaR MCO AXP MCD NKE CVX XOM
VIX -0.214 -0.267 -0.157 -0.036 -0.51 -0.23
(-0.390,-0.124) (-0.312,-0.177) (-0.228,-0.114) (-0.351,-0.095) (-0.575,-0.413) (-0.335,-0.197)
LIQSPR -0.026 0.045 -0.015 0.014
(-0.017,0.049) (-0.053,0.024) (0.026,0.056) (-0.022,0.051) (-0.020,0.058) (-0.022,0.028)
3MTB 0.078 0.002 -0.026 0.086 0.009 -0.021
(0.009,0.133) (-0.103,0.023) (-0.032,0.032) (0.011,0.097) (-0.000,0.120) (-0.044,0.047)
0.026 0.025 -0.011 0.023 -0.026
TERMSPR (-0.023,0.084) (-0.014,0.050) (-0.026,0.026) (0.005,0.084) (-0.006,0.071) (-0.030,0.028)
CREDSPR 0.037 -0.07 -0.026 0.023 0.041 -0.009
(-0.065,0.147) (-0.164,-0.048) (-0.054,0.061) (-0.003,0.127) (-0.015,0.097) (-0.040,0.049)
DJUSRE 0.624 0.092 0.478 0.183 0.276
(0.409,0.676) (0.423,0.614) (0.065,0.208) (0.324,0.533) (0.110,0.277) (0.174,0.335)
LEV 0.12 -4.647 -3.147 -1.379 -2.262 -1.543
(-0.112,1.184) (-8.058,-4.422) (-7.432,4.933) (-10.645,1.433) (-6.651,4.404) (-3.639,7.919)
MK2BK 0 -0.919 -1.065 -8.302 -5.97 -2.912
(-0.000,0.000) (-3.836,0.050) (-2.061,1.416) (-9.582,0.143) (-7.866,-0.416) (-4.142,-0.508)
SIZE 9.592 1.528 0.113 -0.279 4.189 7.332
(9.239,11.702) (1.399,3.866) (-2.178,0.983) (-3.704,1.133) (2.326,4.373) (5.671,7.854)
MM -1.058 -3.205 -5.392 1.594 -0.998 -1.434
(-4.568,5.630) (-8.965,3.998) (-9.433,-0.051) (-4.613,8.208) (-6.219,5.500) (-6.526,4.561)
o 0.294 0.326 0.193 0.25 0.242 0.264
J (0.253,0.345) (0.255,0.320) (0.192,0.234) (0.205,0.271) (0.239,0.298) (0.230,0.277)
VaR BA GE INTC ORCL AEE PEG
VIX -0.45 0.02 -0.09 -0.261 -0.144 -0.195
(-0.506,-0.315) (-0.140,0.016) (-0.246,-0.063) (-0.340,-0.168) (-0.248,-0.097) (-0.276,-0.093)
LIQSPR -0.031 -0.051 0.052 0.019 0.002 -0.018
(-0.071,0.020) (-0.084,-0.014) (0.033,0.098) (-0.022,0.064) (0.005,0.065) (-0.036,0.033)
3MTB 0.082 . 0.118 0.083 -0.015 -0.004
(0.027,0.131) (0.015,0.089) (0.065,0.152) (0.033,0.123) (-0.066,0.015) (-0.034,0.065)
TERMSPR 0.094 0.058 0.118 0.069 -0.056 -0.043
(0.040,0.114) (0.039,0.089) (0.061,0.131) (0.020,0.085) (-0.091,-0.026) (-0.059,0.022)
CREDSPR 0.107 -0.024 0.141 0.079 -0.203 -0.037
(-0.031,0.120) (-0.040,0.038) (0.055,0.156) (0.023,0.142) (-0.231,-0.135) (-0.083,0.029)
DJUSRE 0.346 0.591 . . . 0.329
(0.324,0.520) (0.426,0.590) (0.144,0.350) (0.130,0.329) (0.323,0.482) (0.223,0.398)
LEV -1.657 -1.076 -4.507 0.57 22.493 9.380
(-1.753,-1.567) (-2.138,4.223) (-7.159,4.734) (-2.984,8.990) (21.227,33.193) (5.406,9.456)
MK2BK -0.005 -5.311 -3.947 -6.556 6.416 7.269
(-0.009,0.007) (-9.451,-5.360) (-8.723,-2.496) (-13.354,-5.472) (1.652,10.367) (5.484,14.125)
SIZE 1.06 6.71 2.545 12.098 3.623 4.409
(0.427,1.090) (5.197,7.616) (1.133,3.660) (11.082,15.720) (2.771,4.066) (3.580,6.515)
MM -4.732 -3.612 4.854 -0.169 0.299 -1.372
(-6.274,6.346) (-6.257,5.845) (-5.056,6.705) (-4.141,3.884) (-7.265,4.380) (-5.711,6.326)
o 0.202 0.191 0.28 0.257 0.263 0.263
J (0.176,0.220) (0.182,0.226) (0.250,0.315) (0.220,0.273) (0.242,0.291) (0.219,0.274)

Table 13: VaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.025. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible

sets.
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CoVaR C BAC CMA JPM KEY GS MS
VIX 20.094 S0.121 Z0.129 Z0.279 Z0.157 S0.124 ~0.333
(-0.166,-0.055) (0. 243 0 099) (-0.165,-0.086) (-0.238,-0.128) (-0.228,-0.127) (-0.162,-0.100) (-0.419,-0.310)
LIQSPR -0.005 0.011 -0.006 -0.009 0 -0.006
(-0.029,0.003)  (-0. 014 0 020) (-0.013,0.017)  (-0.029,0.007) (-0.014,0.012) (-0.016,0.001)  (-0.022,0.006)
SMTB 0.036 0.034 0.038 0.043 0.04 0.038 0.046
(0.012,0.061)  (0.018,0.065)  (0.034,0.072)  (0.030,0.075)  (0.038,0.073) (0.018,0.050)  (0.019,0.056)
TERMSPR 0.021 0.011 0.03 0.022 0.035 0.031 0.03
(0.002,0.035)  (0.007,0.040)  (0.017,0.045)  (0.008,0.040)  (0.027,0.051) (0.016,0.038)  (0.012,0.037)
CREDSPR -0.002 011 0.007 0.066 0.017 0.03 0.036
(-0.013,0.052) (-0.037,0.030)  (-0.008,0.037)  (0.020,0.084)  (0.005,0.057) (0.008,0.044)  (0.003,0.050)
DJUSRE 0.293 0.319 0.347 0.239 0.375 0.292 0.292
(0.246,0.341)  (0.271,0.373)  (0.275,0.358)  (0.222,0.319)  (0.271,0.377)  (0.239,0.308)  (0.269,0.342)
LEV 2.63 -6.06 4.65 3.058 -3.064 0.268 -0.064
(2.268,2.707) (-7.307,-5.267)  (4.248,6.207)  (2.416,3.528) (-3.571,-2.549) (0,287,0.856) (-0.121,0.227)
MK2BK 0.3 -8.786 -3.066 -1.627 -8.476 1.076 25.007
(-1. 643 0 835) (-11.358, 6 699) (-14.052, 0 820) (-4.903,3.550) (-14.151,-7.705) (-0.043,2.216) (20.889,34.748)
SIZE -4.9 -0.1 11.516 -4.149 405 -15.947
(4.127,4.899) (-5.530, 3 787)  (-0. 803 0 159) (11.033,11.849) (-4.625,-2.734) (-1. 208 -0. 310) (-17.190,-15.678)
MM 8.429 -0.878 -0.759 -3.787 4.763 6.95
(-2.087,9.599) (-8.888,3.136) (-5.980, .878) (-4.267,7.510)  (-8.054,4.351) (-5 082 .185)  (0.364,11.800)
o 0.123 0.121 0.094 0.1 0.089 112 0.094
k (0.103,0.126)  (0.101,0.129)  (0.078,0.103)  (0.097,0.122)  (0.075,0.096) (0.094,0.113) (0.083,0.102)
CoVaR MCO AXP MCD NKE CVX XOM
VIX -0.172 -0.188 -0.161 -0.11 -0.08 -0.106
(-0.309,-0.122) (-0.292,-0.186) (-0.193,-0.119) (-0.182,-0.107) (-0.120,-0.067) (-0.147,-0.081)
LIQSPR 0.023 -0.004 0.006 -0.008 0.002 -0.009
(0.007,0.050) (-0.009,0.018) (-0.005,0.015) (-0.015,0.002) (-0.011,0.002) (-0.020,-0.004)
MTB 0.04 0.031 0.063 0.021 0.019 0.033
(0.019,0.066) (0.022,0.057) (0.028,0.072) (0.010,0.046) (0.025,0.053) (0.028,0.054)
0.035 0.022 0.045 0.021 0.012 0.033
TERMSPR (0.017,0.053) (0. 010 0 042) (0.028,0.056) (0.015,0.041) (0. 020 0 044) (0.028,0.052)
0.035 0.009 -0.021 0.02
CREDSPR (0.030,0.103) (0. 018 o 066) (-0.010,0.040) (-0. 025 0 021) (0. 009 o 045) (0.001,0.041)
DJUSRE 0.366 0.29 0.283
: - (0.287,0.396) (0. 236 0 310) (0.249,0.324) (0. 294 0 368) (0.255,0,314) (0.278,0.341)
LEV 0.86 -0.366 . -22.402 7.352 -35.741
(0.782,1.070) (-0. 706 1 757) (-0.980,9.195) (-24.988,-18.350) (1.225,10. 041) (-38.175,-34.204)
MK2BK 0 -0.279 -0.787 -1.45 -6.012
(-0.000,0.000) (4. 433 6 322) (-1.372,-0.065) (-1.913,-0.332) (- 2.\)08,0.178) (-6.691,-4.370)
SIZE 26.698 -5.3 0.296 -1.783 -0.274 -0.263
(26.549,27.138) (-6.802,-4.744) (0.129,2.058) (-2.431,-1.403) (-0.793,0.752) (-0.460,-0.138)
MM -0.906 2.56 -1.681 3.131 1.197 3.288
(-3.319,3.090) (-2.423,10.332) (-7.046,0.119) (-0.371,5.001) (-3.896,4.845) (-2.685,8.078)
P 0.1 0.08 0.106 0.107 0.092 0.091
k (0.084,0.106) (0.071,0.090) (0.095,0.115) (0.097,0.117) (0.081,0.098) (0.077,0.094)
CoVaR BA GE INTC ORCL AEE PEG
VIX T0.314 20.296 -0.143 T0.132 20.169 Z0.089
(-0.393,-0.300) (-0.319,-0.217) (-0.207,-0.107) (-0.140,-0.063) (-0.206,-0.132) (-0.136,-0.063)
LIQSPR 0.003 0.008 0.007 -0.007 0.002 0.001
(-0.019,0.018) (-0.006,0.025) (-0.008,0.016) (-0.020,-0.002) (-0.011,0.005) (-0.009,0.007)
IMTB 0.037 -0.001 0.009 0.018 0.059 0.031
(0.011,0.054) (0.002,0.042) (0.001,0.043) (0.002,0.040) (0.046,0.074) (0.021,0.063)
0.039 0.006 0.024 0.03 0.048 0.038
TERMSPR (0.024,0. 056) (0.006,0.034) (0.016,0.045) (0.014,0. 038) (0.040,0.062) (0.032,0.060)
0.07 0.015 -0.012 0.02 0.064 0.008
CREDSPR (0.034,0. 093) (0.000,0.050) (-0. 002 o 060) (-0. 014 0 028) (0.027,0.073) (-0.006,0.044)
DIUSRE 0.274 0.350
(0.219,0.300) (0. 271 0 35‘;) (0. 26(] U 347) (0. 24() 0 219) (0.246,0. 318) (0.323,0.406)
LEV - 10.716 -0.779 -11.4
(-1.154,-1.111) (8. 050 10 669) (6.473, 18 929) (-1.657,3.050) (-13.780,-6.341) (8.222,11.550)
MK2BK -0.003 -6.857 -0.396 -4.331 780
(-0.005,0.000) (-12.815,-6.164)  (-18. 357, 2 606) (-0.807,0.152) (-4.284,1.753) (-1. 347,0. 237)
SIZE -1.691 -0.4 13.69 7.174 -3.359 1.080
(-1.796,-1.624) (-0.922,0.768) (12.511,17.506) (6.381,7.386) (-5.721,-2.889) (0.501,1.572)
MM 5.928 -1.908 6.849 -0.743 3.734 -1.384
(-7.234,5.686) (-7.929,2.842) (1.663,17.154) (-1.229,0.620) (-3.442,6.773) (-6.165,3.729)
0.068 0.091 0.114 0.1 0.094 0.107
Tk (0.096,0.117)

(0.054,0.070)

(0.084,0.107)

(0.092,0.118)

(0.088,0.108)

(0.100,0.121)

Table 14: CoVaR parameter estimates obtained by fitting the time-varying model to each
of the 19 assets vs S&P500 and all the exogenous variables, for the confidence levels
7 = 0.05. For each regressor the first row reports parameter estimates by Maximum a
Posteriori, while the second row reports the 95% High Posterior Density (HPD) credible
sets.
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Supplementary Material

Supplementary Materials for “Bayesian tail risk interdependence using quantile regres-
sion” (DOI: 10.1214/14-BA911SUPP; .pdf).
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