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ASYMPTOTICALLY DISTRIBUTION-FREE GOODNESS-OF-FIT
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Let (X1, Y1), . . . , (Xn,Yn) be an i.i.d. sample from a bivariate distri-
bution function that lies in the max-domain of attraction of an extreme value
distribution. The asymptotic joint distribution of the standardized component-
wise maxima

∨n
i=1 Xi and

∨n
i=1 Yi is then characterized by the marginal

extreme value indices and the tail copula R. We propose a procedure for
constructing asymptotically distribution-free goodness-of-fit tests for the tail
copula R. The procedure is based on a transformation of a suitable empiri-
cal process derived from a semi-parametric estimator of R. The transformed
empirical process converges weakly to a standard Wiener process, paving the
way for a multitude of asymptotically distribution-free goodness-of-fit tests.
We also extend our results to the m-variate (m > 2) case. In a simulation
study we show that the limit theorems provide good approximations for finite
samples and that tests based on the transformed empirical process have high
power.

1. Introduction. Let (X1, Y1), . . . , (Xn,Yn) be an i.i.d. sample from a bi-
variate distribution function (d.f.) F with marginal d.f.’s F1(x) = F(x,∞) and
F2(y) = F(∞, y) for x, y ∈ R. Suppose that F is in the max-domain of attraction
of some bivariate d.f. G with nondegenerate marginals. That is, suppose that there
exist normalizing sequences a1(n), a2(n) > 0 and b1(n), b2(n) ∈ R such that

P

(∨n
i=1 Xi − b1(n)

a1(n)
≤ x,

∨n
i=1 Yi − b2(n)

a2(n)
≤ y

)
→ G(x,y)(1)

as n → ∞, for all continuity points (x, y) ∈ R
2 of G. Of course, (1) is equivalent

to

Fn(
a1(n)x + b1(n), a2(n)y + b2(n)

) → G(x,y),(2)

and the d.f. G is, by definition, an extreme value d.f.
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It is a classical result in extreme value theory [see de Haan and Ferreira (2006),
Theorem 1.1.3] that the normalizing sequences a1, b1 and a2, b2 can be chosen in
such a way that the marginal d.f.’s G1(x) = G(x,∞) and G2(y) = G(∞, y) are
of the form

G1(x) = exp
{−(1 + γ1x)−1/γ1

}
, 1 + γ1x > 0,

(3)
G2(y) = exp

{−(1 + γ2y)−1/γ2
}
, 1 + γ2y > 0

for some γ1, γ2 ∈ R. [Here, and in the rest of the paper, expressions of the form
(1+γ · )1/γ should be interpreted as exp(·) when γ = 0.] We will assume through-
out that the normalizing sequences are chosen in this way. Then G is necessarily
continuous, as it has continuous marginal d.f.’s, and the equivalent convergences
(1) and (2) hold for all (x, y) ∈ [−∞,∞]2. Also, G can be fully characterized
by the marginal extreme value indices γ1, γ2 and a description of the dependence
structure between the marginal d.f.’s G1 and G2. Due to de Haan and Resnick
(1977), it is known that the class of possible dependence structures for bivariate
extreme value distributions does not form a finite-dimensional parametric family.
Nevertheless, there are various equivalent ways of describing extreme value (or
tail) dependence structures, each with its own advantages in applications. For an
overview, we refer to Beirlant et al. (2004), Chapter 8 or de Haan and Ferreira
(2006), Part II.

In this paper, we will focus on one possible description of the bivariate tail
dependence structure, namely the tail copula. For a bivariate extreme value d.f. G

with marginal d.f.’s as given in (3), the tail copula R is defined as

R(x, y) = x + y + logG

(
x−γ1 − 1

γ1
,
y−γ2 − 1

γ2

)
, (x, y) ∈ [0,∞)2.(4)

We say that a bivariate d.f. F belonging to the domain of attraction of G has
associated tail copula R. It is clear that tail copulas are not copula functions in the
usual sense (since they are not distribution functions of probability measures, e.g.),
yet they fully capture the asymptotic dependence structure of the component-wise
maxima, just like copulas capture the dependence structure of random vectors.
Indeed, it is easily checked that G(x,y) = CG(G1(x),G2(y)), with

CG(u, v) = uv exp
{
R(− logu,− logv)

}
, (u, v) ∈ (0,1]2.(5)

In other words, G is the unique d.f. characterized by the marginal d.f.’s (3) and the
copula (5).

We conclude that the asymptotic joint behavior of the standardized component-
wise maxima

∨n
i=1 Xi and

∨n
i=1 Yi is fully characterized by the marginal extreme

value indices γ1, γ2 appearing in (3) and the tail copula R defined in (4). Statistical
inference about extreme value indices is a classical and well-studied problem in
univariate extreme value theory; we refer to Beirlant et al. (2004), Chapters 4 and 5
or de Haan and Ferreira (2006), Chapter 3 for more information. There is also a



880 CAN, EINMAHL, KHMALADZE AND LAEVEN

growing literature on inference about the tail dependence structure; see Beirlant
et al. (2004), Chapter 9 or de Haan and Ferreira (2006), Chapter 7, for an overview.
In this paper, we will focus on inference about R. In particular, we will propose a
semi-parametric estimator of R, describe a transformation of the empirical process
derived from it and demonstrate how this transformed empirical process can serve
as a basis to construct asymptotically distribution-free goodness-of-fit tests for R.

1.1. More on tail dependence. The tail copula R can also be obtained (and its
domain extended) in the following way from the d.f. F :

R(x, y) = lim
t→∞ tP

(
1 − F1(X) < x/t,1 − F2(Y ) < y/t

)
,

(6)
(x, y) ∈ [0,∞]2 \ {

(∞,∞)
}
,

where (X,Y ) denotes a random vector with d.f. F . If F has continuous marginals,
(6) can also be written as

R(x, y) = lim
t→∞ tCF (x/t, y/t), (x, y) ∈ [0,∞]2 \ {

(∞,∞)
}
,(7)

where CF denotes the “survival copula” of F , that is, the copula associated
with (−X,−Y). Observe that R(x,∞) = R(∞, x) = x for all x ∈ [0,∞) and
0 ≤ R(x, y) ≤ x ∧ y for all (x, y) ∈ [0,∞]2 \ {(∞,∞)}. It is also clear from (6)
that R is homogeneous of order 1, so the restriction of R on, for example, [0,1]2

determines R on its entire domain. The characterization (6) stems from Huang
(1992), where it is used to derive a nonparametric estimator for R. We will use an
alternative, semi-parametric estimator better suited for our purposes; see Section 2.

The value R(1,1) is known in the applied extreme value literature as the (up-
per) tail dependence coefficient and is widely used as a measure of tail dependence.
When R(1,1) = 0, which is equivalent to R ≡ 0 on [0,∞)2, we call X and Y tail
independent. When R(1,1) > 0, we say that X and Y exhibit tail dependence.
Other ways of describing the tail dependence structure include the stable tail de-
pendence function, the exponent measure, the spectral measure and the Pickands
dependence function; see the monographs Kotz and Nadarajah (2000), Beirlant
et al. (2004), de Haan and Ferreira (2006) and the many references therein.

We also note here that the function R generates a σ -finite measure, which we
will also, without confusion, denote by R, on Borel subsets of [0,∞]2 \{(∞,∞)},
through the identity

R
([0, x] × [0, y]) := R(x, y), (x, y) ∈ [0,∞]2 \ {

(∞,∞)
}
.(8)

1.2. Goodness-of-fit testing. In the literature and in practice, often a paramet-
ric model is used for the tail copula R; see, for example, Coles and Tawn (1991)
or Joe, Smith and Weissman (1992). Testing the goodness-of-fit of the paramet-
ric model to a given data sample is therefore an important problem with abundant
applications in many fields such as insurance and risk management, finance and
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econometrics and hydrology and meteorology. In this paper, we develop a pro-
cedure for constructing asymptotically distribution-free goodness-of-fit tests for
the tail copula R of a bivariate d.f. F . We consider null hypotheses of the form
R ∈ R = {Rθ : θ ∈ �}, where R is a parametric family of tail copulas. Of course,
by taking the parameter space � to consist of a single point, our results can also
be used to test the goodness-of-fit of a fully specified tail copula to the data.

Our approach is based on a semi-parametric estimator R̂n of R, to be defined
below. We consider a suitably normalized difference, η̂n, between R̂n and Rθ̂ (with
θ̂ denoting a suitable estimator of θ ), and we show that, under the null hypothe-
sis, a proper transformation of η̂n converges weakly to a standard Wiener process
W . This fundamental result allows one to construct a myriad of goodness-of-fit
tests based on comparisons of appropriate functionals of η̂n (the test statistics the
practitioner may prefer to use) with the same functionals of W . We emphasize
that, since W is a standard Wiener process, our approach leads to asymptotically
distribution-free goodness-of-fit tests: under the null hypothesis, the asymptotic
distributions of the test statistics do not depend on R or the true θ . A simulation
study confirms the applicability of our approach for finite samples.

Testing (and estimation) problems for the tail copula have been studied in the
recent literature. In Einmahl, de Haan and Li (2006) the existence of R is tested,
rather than its membership of a parametric family. In de Haan, Neves and Peng
(2008) a specific Cramér–von Mises type statistic for R ∈ {Rθ : θ ∈ �} is studied
for two-dimensional data and a one-dimensional parameter; the test statistic has
a complicated limiting distribution under the null hypothesis. In Einmahl, Krajina
and Segers (2012) it is assumed that R ∈ {Rθ : θ ∈ �}, and it is then tested if R is
a member of a smaller parametric family, obtained by setting some components of
θ equal to fixed values.

The remainder of the paper is organized as follows. In Section 2, we describe
the semi-parametric estimator R̂n, introduce the empirical process η̂n, which is
the normalized difference between R̂n and Rθ̂ , and describe the weak limit η̂ of
η̂n as n → ∞. In Section 3, we describe our key transformation from η̂ into a
standard Wiener process. In Section 4, we show that the same transformation (or
rather an empirical version of it, with unknown parameters replaced by estimators)
applied to η̂n produces a process whose weak limit is a standard Wiener process.
This is our main result. In Section 5, we extend this result to the m-dimensional
setting, for m > 2. Finally, in Section 6, we demonstrate through Monte Carlo
simulations the applicability of our limit theorems in finite samples and the high
power properties of tests based on our results. Proofs are deferred to Section 7.
The paper is supplemented by an online appendix, see Can et al. (2015), which
contains some details suppressed in Section 2 as well as technical specifics about
the Monte Carlo simulations, including the computer code.

2. An estimator for R and its asymptotic behavior. As in Section 1, we
let (X1, Y1), . . . , (Xn,Yn) denote an i.i.d. sample from a bivariate d.f. F with
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marginal d.f.’s F1 and F2. We assume that the bivariate domain of attraction con-
dition (1) holds, with the normalizing sequences a1, b1 and a2, b2 chosen such that
the marginal d.f.’s G1 and G2 are as in (3). Taking logarithms in (2), and replacing
the discrete index n by a continuous index t > 0, we obtain

lim
t→∞ t

[
1 − F

(
a1(t)x + b1(t), a2(t)y + b2(t)

)] = − logG(x,y), (x, y) ∈ R
2.

Combining this with the corresponding marginal results and (5) leads to

lim
t→∞ tP

(
X1 > a1(t)x + b1(t), Y1 > a2(t)y + b2(t)

)
= R

(− logG1(x),− logG2(y)
)
,

or equivalently,

lim
t→∞ tP

(
X̃1(t) ≤ x, Ỹ1(t) ≤ y

) = R(x, y),

with

X̃i(t) =
[(

1 + γ1
Xi − b1(t)

a1(t)

)
∨ 0

]−1/γ1

,

(9)

Ỹi(t) =
[(

1 + γ2
Yi − b2(t)

a2(t)

)
∨ 0

]−1/γ2

,

for i = 1, . . . , n. We conclude that if we let k = k(n) denote an intermediate se-
quence, that is, k → ∞ and k/n → 0 as n → ∞, then

Rn(x, y) := n

k
P

(
X̃i(n/k) ≤ x, Ỹi(n/k) ≤ y

) → R(x, y)(10)

as n → ∞, for all (x, y) ∈ [0,∞)2.
We estimate Rn and hence R by replacing the unknown quantities aj (n/k),

bj (n/k) and γj , j = 1,2, by appropriate estimators âj (n/k), b̂j (n/k) and γ̂j , and
the probability P by the corresponding empirical measure. We define, therefore,

X̂i(n/k) =
[(

1 + γ̂1
Xi − b̂1(n/k)

â1(n/k)

)
∨ 0

]−1/γ̂1

,

(11)

Ŷi(n/k) =
[(

1 + γ̂2
Yi − b̂2(n/k)

â2(n/k)

)
∨ 0

]−1/γ̂2

and

R̂n(x, y) = 1

k

n∑
i=1

1{X̂i (n/k)≤x,Ŷi (n/k)≤y}(12)

for (x, y) ∈ [0,∞)2; cf. de Haan and Resnick (1993).
We consider the empirical process

ηn(x, y) = √
k
[
R̂n(x, y) − R(x, y)

]
, (x, y) ∈ [0,∞)2.(13)
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We will establish the asymptotic behavior of ηn on [δ, T ]2, for any 0 < δ < T <

∞, but we introduce some definitions and assumptions first. Note that from now
on we will omit the arguments (n/k) where appropriate, for ease of notation.

Let VR(x, y) denote a Wiener process on [0,∞]2 \ {(∞,∞)} with “time” R,
that is, a zero-mean Gaussian process with covariance

E
[
VR(x, y)VR

(
x′, y′)] = R

(
x ∧ x′, y ∧ y′).

Also write [cf. (10)]

Tn(x, y) = 1

k

n∑
i=1

1{X̃i≤x,Ỹi≤y}, (x, y) ∈ [0,∞)2.(14)

It is known, by Einmahl, de Haan and Sinha (1997), Lemma 3.1, that
√

k(Tn −
Rn) ⇒ VR in D([δ, T ]2), where “⇒” denotes weak convergence and D([δ, T ]2)

denotes the Skorohod space of functions defined on [δ, T ]2.
In order to leave the estimators âj , b̂j and γ̂j , j = 1,2, general at this stage, we

simply assume that they are chosen in such a way that:

A1. For some 6-variate random vector (A1,A2,B1,B2,�1,�2), we have the
joint weak convergence

√
k

(
Tn − Rn,

â1

a1
− 1,

â2

a2
− 1,

b̂1 − b1

a1
,
b̂2 − b2

a2
, γ̂1 − γ1, γ̂2 − γ2

)
(15)

⇒ (VR,A1,A2,B1,B2,�1,�2)

in D([δ, T ]2) ×R
6.

Assumption A1 is fulfilled for, for example, the moment estimators of γj , aj

and bj , provided that k is chosen appropriately; see de Haan and Ferreira (2006),
Sections 4.2 and 3.5. We further assume the following:

A2. The partial derivatives

R(1)(x, y) := ∂R

∂x
, R(2)(x, y) := ∂R

∂y

exist and are continuous on (0,∞)2.
A3. The sequence k is chosen such that

√
k sup

(x,y)∈[δ/2,T +1]2

∣∣Rn(x, y) − R(x, y)
∣∣ → 0.

Finally, for j = 1,2, we define the following functions on (0,∞):

fj (x) =
⎧⎪⎨⎪⎩

x(xγj − 1)

γj

, γj 
= 0,

x logx, γj = 0,

gj (x) = −xγj+1,(16)
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hj (x) =

⎧⎪⎪⎨⎪⎪⎩
x(1 − xγj )

γ 2
j

+ x logx

γj

, γj 
= 0,

−(
x log2 x

)
/2, γj = 0.

We are now ready to state the basic convergence result for ηn.

THEOREM 2.1. Let 0 < δ < T < ∞. If assumptions A1–A3 hold, then

ηn(x, y) ⇒ VR(x, y) + R(1)(x, y)
[
f1(x)A1 + g1(x)B1 + h1(x)�1

]
+ R(2)(x, y)

[
f2(y)A2 + g2(y)B2 + h2(y)�2

]
(17)

=: η(x, y)

in D([δ, T ]2).

REMARK. Note that we take δ > 0, since the result does not hold true in gen-
eral for δ = 0: the functions in (16) are unbounded near zero for γj < −1. This
theorem is very similar to Theorem 5.1 in de Haan and Resnick (1993), where
instead of R the stable tail dependence function l(x, y) = x + y − R(x, y) is esti-
mated. We nevertheless offer a detailed proof of Theorem 2.1 in Can et al. (2015),
since the statement and proof of Theorem 5.1 in de Haan and Resnick (1993) are
not completely correct; in particular, our δ is taken to be 0 there.

2.1. Parametric empirical process. Now suppose that the tail copula R is a
member of some parametric family of tail copulas, R = {Rθ : θ ∈ �}, where �

is an open subset of Rd . Then there is a θ0 = (θ01, . . . , θ0d)� ∈ � such that R =
Rθ0 . Let θ̂ = (θ̂1, . . . , θ̂d)� denote an estimator of θ0, and consider the empirical
process

η̂n(x, y) = √
k
[
R̂n(x, y) − Rθ̂ (x, y)

]
, (x, y) ∈ [0,∞)2,(18)

the parametric version of (13). Our next result will establish the asymptotic behav-
ior of η̂n. Since

η̂n(x, y) = ηn(x, y) + √
k
[
Rθ0(x, y) − Rθ̂ (x, y)

]
,(19)

the asymptotic behavior of η̂n is an easy consequence of Theorem 2.1, under proper
assumptions. We state those assumptions below.

B1. There is a (6 + d)-variate random vector (A1,A2,B1,B2,�1,�2, ζ ) such
that

√
k

(
Tn − Rn,

â1

a1
− 1,

â2

a2
− 1,

b̂1 − b1

a1
,
b̂2 − b2

a2
, γ̂1 − γ1, γ̂2 − γ2, θ0 − θ̂

)
(20)

⇒ (VR,A1,A2,B1,B2,�1,�2, ζ )

in D([δ, T ]2) ×R
6+d .
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B2. The first-order partial derivatives

Rθ(1)(x, y) = ∂

∂x
Rθ (x, y), Rθ(2)(x, y) = ∂

∂y
Rθ (x, y),

Ṙθ (x, y) =
(

∂

∂θ1
Rθ (x, y), . . . ,

∂

∂θd

Rθ (x, y)

)�

exist and are continuous for (x, y, θ) ∈ (0,∞)2 × B(θ0), for some neighborhood
B(θ0) of θ0 in �.

B3. The sequence k is chosen such that
√

k sup
(x,y)∈[δ/2,T +1]2

∣∣Rn(x, y) − Rθ0(x, y)
∣∣ → 0.(21)

Note that B3 is the same as A3; we restate it here for ease of presentation.
Also note that by virtue of B2 the second term on the right-hand side of (19) is
asymptotically equal in probability to

Ṙ�
θ0

(x, y)
√

k(θ0 − θ̂),

which, by B1, converges weakly to Ṙ�
θ0

(x, y)ζ . Thus we obtain the following
corollary to Theorem 2.1.

COROLLARY 2.2. Let 0 < δ < T < ∞. If assumptions B1–B3 hold, then

η̂n(x, y) ⇒ VRθ0
(x, y) + Rθ0(1)(x, y)

[
f1(x)A1 + g1(x)B1 + h1(x)�1

]
+ Rθ0(2)(x, y)

[
f2(y)A2 + g2(y)B2 + h2(y)�2

]
(22)

+ Ṙ�
θ0

(x, y)ζ

=: η̂(x, y)

in D([δ, T ]2).

3. Transforming η̂ into a standard Wiener process. The limiting process η̂

in (22) is of the general form

ξ(x, y) = VR(x, y) +
ν∑

j=1

Qj(x, y)Zj ,(23)

where VR denotes a Wiener process with time R, ν is a fixed integer, Q1, . . . ,Qν

are deterministic functions mapping [δ, T ]2 into R and Z1, . . . ,Zν are random
variables.

It will be more convenient to consider the set-indexed version of (23),

ξ(B) = VR(B) +
ν∑

j=1

Qj(B)Zj =: VR(B) + Q�(B)Z,(24)
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where B is a Borel subset of [δ, T ]2, VR is a set-indexed Wiener process with time
measure R and Q1, . . . ,Qν are deterministic signed measures. In the right-hand
side of (24), Q(B) denotes the column vector consisting of Q1(B), . . . ,Qν(B)

and Z denotes the column vector consisting of Z1, . . . ,Zν .
We will state a general transformation result about set-indexed processes ξ of

the form (24), which we will then apply to the process η̂ in (22). The transforma-
tion is a suitable extension of the “innovation martingale transform” first discussed
in Khmaladze (1981, 1988, 1993) in connection with parametric goodness-of-fit
testing for univariate and multivariate distribution functions; see, in particular,
Khmaladze (1993), Theorem 3.9. A good summary of the innovation martingale
transform idea can be found in Koul and Swordson (2011); for a variety of statis-
tical applications we refer to McKeague, Nikabadze and Sun (1995), Nikabadze
and Stute (1997), Stute, Thies and Zhu (1998), Koenker and Xiao (2002, 2006),
Khmaladze and Koul (2004, 2009), Delgado, Hidalgo and Velasco (2005) and
Dette and Hetzler (2009), among others.

As in Khmaladze (1993), we will call a collection of subsets {Au : 0 ≤ u ≤ 1} of
[δ, T ]2 a scanning family over [δ, T ]2 if the following hold:

(i) Leb(A0) = 0,Leb(A1) = (T − δ)2,
(ii) Au ⊂ Au′ if u ≤ u′,

(iii) Leb(Au′ \ Au) → 0 if u′ ↓ u,

with Leb denoting Lebesgue measure. Note that for any j ∈ {1, . . . , ν} and Borel
subset B of [δ, T ]2, the function u �→ Qj(B ∩ Au) generates a signed measure
on [0,1].

THEOREM 3.1. Let ξ be a set-indexed process of the form (24). Suppose there
are functions qj : [δ, T ]2 → R,1 ≤ j ≤ ν that are square-integrable with respect
to R and that satisfy

Qj(B) =
∫∫

B
qj (x, y)dR(x, y), 1 ≤ j ≤ ν,

for any Borel set B ⊂ [δ, T ]2. Let {Au : 0 ≤ u ≤ 1} be a scanning family over
[δ, T ]2. Then the process

WR(B) = ξ(B) −
∫ 1

0
Q�(B ∩ Adu)I−1(

Ac
u

) ∫∫
Ac

u

q(x, y)dξ(x, y)(25)

is a Wiener process with time R, where q(x, y) denotes the column vector consist-
ing of q1(x, y), . . . , qν(x, y), and the matrices I(Ac

u) are defined by

I
(
Ac

u

) =
∫∫

Ac
u

q(x, y)q�(x, y)dR(x, y), u ∈ [0,1)

and are assumed to be invertible.
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Now let us return to the setup of Section 2.1. We state the following assumption.

B4. For each θ ∈ �, the measure Rθ can be decomposed as Rθ = R
(c)
θ + R

(s)
θ ,

where R
(s)
θ satisfies R

(s)
θ ([0,∞)2) = 0 and R

(c)
θ is absolutely continuous with re-

spect to the Lebesgue measure on (0,∞)2, with a positive density rθ that has
continuous first-order partial derivatives with respect to x, y, θ1, . . . , θd for all
(x, y, θ) ∈ (0,∞)2 × B(θ0), for some neighborhood B(θ0) of θ0 in �.

Note that B4 allows arbitrarily large masses on the “axes at infinity” {(x,∞) :
x ≥ 0} ∪ {(∞, y) :y ≥ 0} for Rθ ∈ R, but excludes the case Rθ ≡ R

(s)
θ , which

corresponds to (strict) tail independence.
Let us define the following functions on [δ, T ]2, with fj , gj and hj as defined

in (16):

Q1(x, y) = Rθ0(1)(x, y)f1(x), Q4(x, y) = Rθ0(2)(x, y)f2(y),

Q2(x, y) = Rθ0(1)(x, y)g1(x), Q5(x, y) = Rθ0(2)(x, y)g2(y),

Q3(x, y) = Rθ0(1)(x, y)h1(x), Q6(x, y) = Rθ0(2)(x, y)h2(y)

and

Q6+i (x, y) = ∂

∂θi

Rθ (x, y)
∣∣∣
θ=θ0

, i = 1, . . . , d.

Furthermore, let qi denote the Radon–Nikodym derivatives dQi/dRθ0 for i =
1, . . . ,6 + d , or more explicitly:

q1(x, y) = f ′
1(x) + f1(x)

∂

∂x
log rθ0(x, y),

q2(x, y) = g′
1(x) + g1(x)

∂

∂x
log rθ0(x, y),

q3(x, y) = h′
1(x) + h1(x)

∂

∂x
log rθ0(x, y),

q4(x, y) = f ′
2(y) + f2(y)

∂

∂y
log rθ0(x, y),

q5(x, y) = g′
2(y) + g2(y)

∂

∂y
log rθ0(x, y),

q6(x, y) = h′
2(y) + h2(y)

∂

∂y
log rθ0(x, y)

and

q6+i (x, y) = ∂

∂θi

log rθ (x, y)
∣∣∣
θ=θ0

, i = 1, . . . , d.

As before, q(x, y) will denote the column vector consisting of q1(x, y), . . . ,

q6+d(x, y) for (x, y) ∈ [δ, T ]2.
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We are now ready to apply Theorem 3.1 to η̂ in (22). Instead of arbitrary Borel
sets B , we consider rectangles [δ, x] × [δ, y] ⊂ [δ, T ]2, with

η̂
([δ, x] × [δ, y]) := η̂(x, y) − η̂(δ, y) − η̂(x, δ) + η̂(δ, δ).

We also introduce the scanning family Au = [δ, T ] × [δ, (1 − u)δ + uT ] for 0 ≤
u ≤ 1 and define the corresponding matrices

I(t) =
∫ T

δ

∫ T

t
q
(
s′, t ′

)
q�(

s′, t ′
)

dRθ0

(
s′, t ′

)
, t ∈ [δ, T ).(26)

REMARK. From a likelihood theory point of view, the functions q1, . . . , q6+d

can be seen as score functions corresponding to the estimated values a1, a2,
b1, b2, γ1, γ2, θ01, . . . , θ0d , and the matrix I(t) can be seen as a partial Fisher in-
formation matrix constructed from these score functions.

COROLLARY 3.2. If assumptions B2 and B4, restricted to θ = θ0, hold, and
the matrices I(t) in (26) are invertible, then the process

WR

([δ, x] × [δ, y])
= η̂

([δ, x] × [δ, y])
−

∫ x

δ

∫ y

δ
q�(s, t)

(
I−1(t)

∫ T

δ

∫ T

t
q
(
s′, t ′

)
dη̂

(
s′, t ′

))
dRθ0(s, t)

is a Wiener process with time Rθ0 on [δ, T ] × [δ, T ).

In order to obtain a standard Wiener process from η̂, we normalize WR in the
usual way, as follows.

COROLLARY 3.3. If assumptions B2 and B4, restricted to θ = θ0, hold, and
the matrices I(t) in (26) are invertible, then the process

W
([δ, x] × [δ, y])

=
∫ x

δ

∫ y

δ

1√
rθ0(s, t)

dWR

([δ, s] × [δ, t])
(27)

=
∫ x

δ

∫ y

δ

1√
rθ0(s, t)

dη̂(s, t)

−
∫ x

δ

∫ y

δ
q�(s, t)

(
I−1(t)

∫ T

δ

∫ T

t
q
(
s′, t ′

)
dη̂

(
s′, t ′

))√
rθ0(s, t)dt ds

is a standard Wiener process on [δ, T ] × [δ, T ).
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4. Goodness-of-fit testing. In Section 2 we introduced the parametric empir-
ical process η̂n as the normalized difference between Rθ̂ and the semi-parametric
estimator R̂n, and derived its weak limit η̂. In Section 3 we described a transfor-
mation from η̂ into a standard Wiener process W . In this section, we will apply
the empirical version of the same transformation to η̂n, and prove that the resulting
empirical process converges weakly to a standard Wiener process. This is the main
result of this paper.

Define the empirical version of W in (27) as follows, for (x, y) ∈ [δ, T ]×[δ, T ):

Wn

([δ, x] × [δ, y])
=

∫ x

δ

∫ y

δ

1√
rθ̂ (s, t)

dη̂n(s, t)(28)

−
∫ x

δ

∫ y

δ
q̂�(s, t)

(̂
I−1(t)

∫ T

δ

∫ T

t
q̂
(
s′, t ′

)
dη̂n

(
s′, t ′

))√
rθ̂ (s, t)dt ds.

Here, the vectors q̂ and the matrices Î are obtained by replacing the unknown
marginal tail indices γ1, γ2 and the unknown parameter θ0 in the definition of q by
their estimators γ̂1, γ̂2, θ̂ .

For functions ϕ : [δ, T ]2 →R, we introduce the seminorm

‖ϕ‖HK := V (2)(ϕ) + V (1)(ϕ( · , δ)) + V (1)(ϕ(δ, · ))
(29)

+ V (1)(ϕ( · , T )
) + V (1)(ϕ(T , · )),

where V (1) denotes the univariate total variation over [δ, T ], and V (2) denotes
the bivariate (Vitali) total variation over [δ, T ]2, as defined in Owen (2005), for
example. The seminorm ‖ · ‖HK is sometimes called the Hardy–Krause variation
in the literature, in recognition of Hardy (1905) and Krause (1903).

For notational convenience, let us also denote

ρ1(x, y, θ) = ∂

∂x
log rθ (x, y), ρ2(x, y, θ) = ∂

∂y
log rθ (x, y),

ρ2+i (x, y, θ) = ∂

∂θi

log rθ (x, y), i = 1, . . . , d

and

�ρj(x, y) = ρj (x, y, θ̂) − ρj (x, y, θ0), j = 1, . . . ,2 + d.

Similarly, let

σ(x, y, θ) = rθ (x, y)−1/2, �σ(x, y) = σ(x, y, θ̂) − σ(x, y, θ0).

We introduce the following assumption:

B5. For j = 1, . . . ,2+d , ‖ρj (x, y, θ0)‖HK < ∞ and ‖�ρj (x, y)‖HK = oP (1).
Furthermore, ‖σ(x, y, θ0)‖HK < ∞ and ‖�σ(x, y)‖HK = oP (1).
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Given the consistency of θ̂ , which is implied by B1, a sufficient (but not neces-
sary) condition for B5 is the existence and continuity of the partial derivatives

∂ϕ(x, δ, θ)

∂x
,
∂ϕ(x,T , θ)

∂x
,
∂ϕ(δ, y, θ)

∂y
,
∂ϕ(T , y, θ)

∂y
,
∂2ϕ(x, y, θ)

∂x ∂y

on (x, y, θ) ∈ [δ, T ]2 ×B(θ0), for some neighborhood B(θ0) of θ0 in �, for ϕ = σ

and ϕ = ρj , j = 1, . . . ,2 + d .
We can now present the main result of this paper.

THEOREM 4.1. Let 0 < δ < τ < T , and let W and Wn be defined as in (27)
and (28). If assumptions B1–B5 hold, then

Wn

([δ, x] × [δ, y]) ⇒ W
([δ, x] × [δ, y])

in D([δ, τ ]2).

Note that Theorem 4.1 yields that under the null hypothesis R ∈ R, we ob-
tain a distribution-free limiting process W (a standard bivariate Wiener process).
Hence Wn can be used as a “test process” for producing a myriad of asymptoti-
cally distribution-free test statistics to test this null hypothesis. We will consider
examples of such tests in Section 6.

REMARK. By taking R = {R0}, where R0 is a fully specified tail copula, we
can use Theorem 4.1 for testing the null hypothesis R = R0. In this case, the pro-
cess η̂n in the definition of Wn [see (28)] reduces to ηn as defined in (13), rθ̂ re-
duces to r0 = dR0/d Leb and q̂ and Î are determined by r0 and γ̂1, γ̂2. We will
consider an example of testing R = R0 in Section 6.

5. Multivariate extension. In this section we extend Theorem 4.1 from the
bivariate to the m-dimensional setting, for m > 2. The proof will be omitted, but
it follows very similar lines as in the bivariate case. In particular, Theorem 3.1
immediately generalizes to dimension m and then serves as a basis for the main
result of this section.

So suppose that we have an i.i.d. sample X1, . . . ,Xn from an m-variate d.f.
F with marginal d.f.’s F1, . . . ,Fm. We write, for each i ∈ {1, . . . , n}, Xi =
(Xi1, . . . ,Xim)�, where Xij has d.f. Fj . We assume that F is in the max-domain
of attraction of an m-variate extreme value d.f. G, so there exist normalizing se-
quences a1(n), . . . , am(n) > 0 and b1(n), . . . , bm(n) ∈ R such that

P

(∨n
i=1 Xi1 − b1(n)

a1(n)
≤ x1, . . . ,

∨n
i=1 Xim − bm(n)

am(n)
≤ xm

)
d→ G(x),

with x = (x1, . . . , xm)� ∈ R
m. We assume, as in the bivariate case, that the se-

quences aj and bj , j = 1, . . . ,m, are chosen in such a way that G has marginal
d.f.’s of the form

Gj(x) = exp
{−(1 + γjx)−1/γj

}
, 1 + γjx > 0,
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for some γ1, . . . , γm ∈ R. We will denote γ = (γ1, . . . , γm)�. The d.f. G is then
characterized by the marginal tail indices γ and the m-variate tail copula

R(x) := lim
t→∞ tP

(
m⋂

j=1

{
1 − Fj (X1j ) ≤ xj/t

})
, x ∈ [0,∞]m \ {∞},

where ∞ denotes the point (∞, . . . ,∞).

REMARK. In the remainder of this section we consider R defined on the re-
stricted domain [0,∞)m [cf. (4)] because our processes and transformations are
not defined outside this region. The bivariate tail copula R defined on [0,∞)2 de-
termines R on the full domain [0,∞]2 \ {(∞,∞)}. In contrast, for m > 2 the tail
copula R defined on [0,∞)m in general does not determine R on the full domain
[0,∞]m \ {∞}.

Let R = {Rθ : θ ∈ �} denote a parametric family of m-variate tail copulas on
[0,∞)m, parametrized by θ = (θ1, . . . , θd)� ∈ �, an open subset of Rd . Our aim
is to enable the construction of tests for the null hypothesis R ∈ R against the
alternative R /∈ R.

For fixed θ ∈ �, Rθ can be seen as an equivalence class of tail dependence
structures (i.e., tail copulas defined on the full domain) containing one or more
elements. Under the additional assumption that Rθ puts no mass on [0,∞]m \
({∞} ∪ [0,∞)m), Rθ contains exactly one element (as in the bivariate case).

Suppose the null hypothesis holds true, with R = Rθ0 , for some θ0 ∈ �. Let θ̂
denote an estimator for θ0. As in Section 2, we let k = k(n) denote an intermediate
sequence and define the parametric empirical process

η̂n(x) = √
k
[
R̂n(x) − Rθ̂ (x)

]
, x ∈ [0,∞)m,

where

R̂n(x) = 1

k

n∑
i=1

1⋂m
j=1{X̂ij (n/k)≤xj }, x ∈ [0,∞)m,

with X̂ij (n/k), (i, j) ∈ {1, . . . , n}×{1, . . . ,m}, defined similarly as in (11). Let Rn

and Tn denote the obvious m-variate extensions of (10) and (14), let 0 < δ < T <

∞ and let C1–C4 denote the natural m-variate extensions of assumptions B1–B4
of Sections 2 and 3.

To state the analog of assumption B5 for the m-variate case, we extend the
seminorm (29) to m-variate functions by induction, as follows: For any function
ϕ : [δ, T ]m → R, and i ∈ {1, . . . ,m}, we define ϕδ,i : [δ, T ]m−1 → R to be the re-
striction of ϕ to the subset of [δ, T ]m with the ith coordinate fixed at δ, and we
define ϕT,i analogously. Then we let

‖ϕ‖(m)
HK := V (m)(ϕ) +

m∑
i=1

‖ϕδ,i‖(m−1)
HK +

m∑
i=1

‖ϕT,i‖(m−1)
HK ,(30)
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with V (m) denoting the m-variate (Vitali) total variation over [δ, T ]m and ‖ϕ‖(2)
HK

as defined in (29). We also let ρj ,�ρj , σ,�σ be defined as in Section 4, for j =
1, . . . ,m + d .

C5. For j = 1, . . . ,m+d , ‖ρj (x, θ0)‖(m)
HK < ∞ and ‖�ρj (x)‖(m)

HK = oP (1). Fur-

thermore, ‖σ(x, θ0)‖(m)
HK < ∞ and ‖�σ(x)‖(m)

HK = oP (1).

Now, let us introduce the functions Qj and qj = dQj/dRθ0 , for j = 1, . . . ,

3m + d , as the natural m-variate extensions of the bivariate functions intro-
duced before Corollary 3.2, and let us denote by q(x) the column vector con-
sisting of q1(x), . . . , q3m+d(x). Further, let us write [δ,x] = [δ, x1]× · · ·× [δ, xm],
St = [δ, T ]m−1 × (t, T ], and introduce matrices

I(t) =
∫
St

q(s)q�(s)dRθ0(s), t ∈ [δ, T ),

which are assumed to be invertible. Then the m-variate analog of the transformed
empirical process Wn in (28) is

Wn

([δ,x]) =
∫
[δ,x]

1√
rθ̂ (s)

dη̂n(s)

(31)

−
∫
[δ,x]

q̂�(s)
(̂

I−1(t)

∫
St

q̂
(
s′) dη̂n

(
s′))√

rθ̂ (s)ds,

where q̂ and Î are obtained by replacing γ and θ0 by γ̂ and θ̂ in the definition of q.
We are now ready to state the multivariate analog of Theorem 4.1. As in the bi-

variate case, this result can be used as a basis for producing a multitude of asymp-
totically distribution-free goodness-of-fit tests for a parametric model R (as well
as for a fully specified tail copula R0).

THEOREM 5.1. Let m > 2. Furthermore, let 0 < δ < τ < T , and let Wn be
defined as in (31). If assumptions C1–C5 hold, then

Wn

([δ,x]) ⇒ W
([δ,x])

in D([δ, τ ]m), where W is a standard m-variate Wiener process.

6. Simulation study. In this section we consider some specific functionals
of Wn under the null and alternative hypotheses, for three bivariate models R.
We will see in Monte Carlo simulations that under the null hypothesis our limit
theorems yield good approximations for finite sample size n, and we also find that
the resulting tests have good power properties. This shows the applicability of our
method.

The three models we consider are the following:

Model 1. R(x, y) = x + y −
√

x2 + y2;
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Model 2. R ∈R = {Rθ :Rθ(x, y) = x + y − (x1/θ + y1/θ )θ , θ ∈ (0,1)};
Model 3. R ∈ R = {Rψ :Rψ(x, y) = ψ(x + y −

√
x2 + y2),ψ ∈ (0,1)}.

Model 2 is the widely used logistic family of tail copulas. Model 1 is a fully
specified tail copula and a special case of Model 2. Model 3 is a mixture between
Model 1 and the tail independence model (R ≡ 0). Note that the tail copulas of
Model 3 assign mass to the axes at infinity; indeed, the parameter ψ determines
how much mass is assigned there.

For each model, we first generate 300 samples of size n = 1500 from a “null
hypothesis d.f.” F0 for which the model is correct. We use these samples to assess
the finite-sample performance of our main convergence result, Theorem 4.1. Next,
we generate, for each model, 100 samples of size n = 1500 from an “alternative
hypothesis d.f.” Fa for which the model is incorrect. These samples are used for
power calculations.

In Section 6.1 below, we present the data generating distributions used for each
model. Then in Section 6.2 we describe our simulation results. Additional details
about the simulations, including the verification of assumptions and the computer
code that was used, can be found in Can et al. (2015).

6.1. Data generating distributions. To test for Models 1 and 2 under the null
hypothesis, we generate samples from the bivariate Cauchy distribution on the
positive quadrant with density

f0(x, y) = 2

π(1 + x2 + y2)3/2 , (x, y) ∈ [0,∞)2.(32)

This distribution satisfies Model 1, and therefore also Model 2, with θ = 1/2.
To test for Model 3 under the null hypothesis, we sample from the bivariate

mixture random vector(
IX1 + (1 − I )X2, IY1 + (1 − I )Y2

)
,(33)

where I, (X1, Y1), (X2, Y2) are independent, I ∼ Bernoulli(0.75), (X1, Y1) has the
bivariate Cauchy distribution (32) on the positive quadrant and (X2, Y2) is a pair of
standard Cauchy absolute values coupled by the countermonotonic copula. Since
(X1, Y1) has the Model 1 tail copula and (X2, Y2) has tail independence, mix-
ture (33) has the Model 3 tail copula with ψ = 0.75.

To test for Model 1 under the alternative hypothesis, we sample from a mixture
random vector as in (33), where I, (X1, Y1), (X2, Y2) are independent and I ∼
Bernoulli(0.75) as before, but (X1, Y1) has a bivariate logistic d.f. with Fréchet
marginals,

F(x, y) = exp
{−[

(1 + x)−4 + (1 + y)−4]1/4}
, (x, y) ∈ (−1,∞)2,(34)

and (X2, Y2) has identical marginal d.f.’s as in (34), coupled by the countermono-
tonic copula. The resulting d.f. has the tail copula

R(x, y) = 0.75
[
x + y − (

x4 + y4)1/4]
, (x, y) ∈ [0,∞)2.
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To test for Model 2 under the alternative hypothesis, we sample from the bivari-
ate vector (

λZ1 + (1 − λ)Z2,μZ1 + (1 − μ)Z2
)
,(35)

where Z1 and Z2 denote independent standard Pareto random variables, and
λ,μ ∈ (0,1) are deterministic coefficients. We set λ = 0.95, μ = 0.65 for the sim-
ulations. The random vector (35) is a simple example of the linear factor model,
with associated tail copula

R(x, y) = min{λx,μy} + min
{
(1 − λ)x, (1 − μ)y

}
, (x, y) ∈ [0,∞)2.

Finally, to test for Model 3 under the alternative hypothesis, we sample from the
following asymmetric logistic d.f. with Fréchet marginals:

Fa(x, y) = exp
{
−

[
1 − φ

1 + y
+

√
1

(1 + x)2 + φ2

(1 + y)2

]}
,

(36)
(x, y) ∈ (−1,∞)2,

with φ = 0.25. This d.f. has the tail copula

R(x, y) = x + φy −
√

x2 + (φy)2, (x, y) ∈ [0,∞)2.

6.2. Simulation results. From each generated sample, the empirical process
Wn([δ, x] × [δ, y]) of (28) is computed on a 200 × 200 grid G of uniform mesh
length spanned over [δ, τ ]2, with δ = 0.001 and τ = 1.001. We take k = 250 and
T = 2 for all computations. The estimators γ̂j and âj , j = 1,2, are taken to be the
moment estimators [see, e.g., de Haan and Ferreira (2006), Sections 4.2 and 3.5],
and we set as usual b̂1 = Xn−k:n, b̂2 = Yn−k:n, with Xi:n, Yi:n denoting the marginal
order statistics. To estimate the parameters θ and ψ of Models 2 and 3, we use the
method of moments estimator described in Einmahl, Krajina and Segers (2008),
with auxiliary function g ≡ 1.

To compare the process Wn to a standard Wiener process, three test statistics
are computed from each path of Wn. These are:

κn = max
(x,y)∈G

∣∣Wn

([δ, x] × [δ, y])∣∣ (Kolmogorov–Smirnov type),

ω2
n = ‖G‖2

∑
(x,y)∈G

Wn

([δ, x] × [δ, y])2 (Cramér–von Mises type),

A2
n = ‖G‖2

∑
(x,y)∈G

Wn([δ, x] × [δ, y])2

(x − δ)(y − δ)
(Anderson–Darling type),

where ‖G‖ denotes the mesh length of the grid G, that is, 1/200. To create bench-
mark distribution tables for these statistics, we also simulate 10,000 true standard
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FIG. 1. PP-plots for the Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling type test
statistics.

Wiener process paths on the grid G, and we compute the same test statistics for
each path. We denote these statistics, computed from the true standard Wiener
process, by κ , ω2 and A2. In view of the asymptotically distribution-free nature of
our approach, these benchmark tables need to be produced only once.

For the 300 values of κn, ω2
n and A2

n computed from the null hypothesis samples,
we construct PP-plots to compare their empirical d.f.’s with the empirical d.f.’s of
κ , ω2 and A2, respectively. The results are shown in Figure 1. We see a good match
of empirical d.f.’s for all three models, which shows that Theorem 4.1 yields good
finite-sample approximations. This is also confirmed by the empirical size table
given in the left panel of Table 1, where the observed fractions of Type I errors at
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TABLE 1
Observed rejection frequencies at the 5% significance level under null and alternative hypotheses

Null Alternative

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

κn 15/300 19/300 9/300 97/100 92/100 97/100

ω2
n 16/300 11/300 13/300 99/100 90/100 97/100

A2
n 21/300 17/300 18/300 100/100 95/100 100/100

the 5% significance level are shown. Note that these numbers are consistent with
draws from a Binomial(300,0.05) distribution.

For the 100 values of the test statistics computed under each alternative hypoth-
esis, we present the observed fraction of rejections at the 5% significance level in
the right panel of Table 1. All three tests have quite high power.

7. Proofs.

PROOF OF THEOREM 3.1. First note that the terms following VR(B) in (24)
are “annihilated” by the transformation (25):

Q�(B)Z −
∫ 1

0
Q�(B ∩ Adu)I−1(

Ac
u

) ∫∫
Ac

u

q(x, y)q�(x, y)dR(x, y)Z

= Q�(B)Z −
∫ 1

0
Q�(B ∩ Adu)Z = 0.

Thus we can now compute, for Borel sets B,B ′ ⊂ [δ, T ]2,

Cov
[
WR(B)WR

(
B ′)]

= E

[
VR(B) −

∫ 1

0
Q�(B ∩ Adu)I−1(

Ac
u

) ∫∫
Ac

u

q(x, y)dVR(x, y)

]

×
[
VR

(
B ′) −

∫ 1

0
Q�(

B ′ ∩ Adu′
)
I−1(

Ac
u′

) ∫∫
Ac

u′
q(x, y)dVR(x, y)

]
= R

(
B ∩ B ′)

−
∫ 1

0
Q�(B ∩ Adu)I−1(

Ac
u

)
Q

(
B ′ ∩ Ac

u

)
−

∫ 1

0
Q�(

B ′ ∩ Adu′
)
I−1(

Ac
u′

)
Q

(
B ∩ Ac

u′
)

+
∫ 1

0

∫ 1

0
Q�(B ∩ Adu)I−1(

Ac
u

)
I
(
Ac

u∨u′
)
I−1(

Ac
u′

)
Q

(
B ′ ∩ Adu′

)
.
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Splitting the double integral into two double integrals, one over the region {u ≤ u′}
and the other over the region {u′ < u}, we see that all the integral terms cancel each
other. This implies that WR has the covariance structure of a Wiener process with
time R. �

Let Wn,R denote the empirical version of WR in Corollary 3.2,

Wn,R

([δ, x] × [δ, y])
= η̂n

([δ, x] × [δ, y])
−

∫ x

δ

∫ y

δ
q̂�(s, t)

(̂
I−1(t)

∫ T

δ

∫ T

t
q̂
(
s′, t ′

)
dη̂n

(
s′, t ′

))
dRθ̂ (s, t).

The following result will be useful for the proof of Theorem 4.1.

PROPOSITION 7.1. Let 0 < δ < τ < T . If assumptions B1–B5 hold, then

Wn,R

([δ, x] × [δ, y]) ⇒ WR

([δ, x] × [δ, y])
in D([δ, τ ]2).

PROOF. Applying Skorohod’s representation theorem [see, e.g., Billingsley
(1999), Theorem 6.7] to Theorem 2.2, we obtain a probability space that supports
probabilistically equivalent versions of η̂n and η̂ satisfying

‖η̂n − η̂‖[δ,T ]2 → 0 a.s.,

with ‖ϕ‖[a,b]2 := sup(x,y)∈[a,b]2 |ϕ(x, y)|. We will work on this space. Let us de-
note

H(s, t) = q�(s, t)I−1(t)

∫ T

δ

∫ T

t
q
(
s′, t ′

)
dη̂

(
s′, t ′

)
,

Ĥ (s, t) = q̂�(s, t )̂I−1(t)

∫ T

δ

∫ T

t
q̂
(
s′, t ′

)
dη̂

(
s′, t ′

)
,

(37)

Hn(s, t) = q�(s, t)I−1(t)

∫ T

δ

∫ T

t
q
(
s′, t ′

)
dη̂n

(
s′, t ′

)
,

Ĥn(s, t) = q̂�(s, t )̂I−1(t)

∫ T

δ

∫ T

t
q̂
(
s′, t ′

)
dη̂n

(
s′, t ′

)
.

We have to show that

sup
(x,y)∈[δ,τ ]2

∣∣∣∣∫ x

δ

∫ y

δ

(
Ĥn(s, t)rθ̂ (s, t) − H(s, t)rθ0(s, t)

)
dt ds

∣∣∣∣ P→ 0.(38)

For this, it suffices to prove the two statements∥∥H(rθ̂ − rθ0)
∥∥[δ,τ ]2

P→ 0,
∥∥rθ̂ (Ĥn − H)

∥∥[δ,τ ]2
P→ 0.(39)
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The first convergence in (39) follows from the continuity of rθ (s, t) over (s, t, θ) ∈
[δ, T ]2 × B(θ0) and the continuity of H(s, t) over (s, t) ∈ [δ, τ ]2. The second
convergence in (39) follows from

‖Ĥn − H‖[δ,τ ]2
P→ 0,(40)

since ‖rθ̂‖[δ,τ ]2 = OP (1). We establish (40) by proving the two statements

‖Ĥn − Hn‖[δ,τ ]2
P→ 0, ‖Hn − H‖[δ,τ ]2

P→ 0.(41)

Consider the second statement in (41). Its left-hand side is equal to

sup
(s,t)∈[δ,τ ]2

∣∣∣∣q�(s, t)I−1(t)

∫ T

δ

∫ T

t
q
(
s′, t ′

)
d�n

(
s′, t ′

)∣∣∣∣,
with �n = η̂n − η̂. The vector function q�(s, t)I−1(t) is bounded on (s, t) ∈
[δ, τ ]2, by continuity. So it will suffice to show

sup
t∈[δ,τ ]

∣∣∣∣∫ T

δ

∫ T

t
qi

(
s′, t ′

)
d�n

(
s′, t ′

)∣∣∣∣ P→ 0, i = 1, . . . ,6 + d.(42)

The double integral inside the absolute value bars can be rewritten, using integra-
tion by parts [see Hildebrandt (1963), Section III.8], as follows:

qi(T , T )�n(T ,T ) − qi(T , t)�n(T , t) − qi(δ, T )�n(δ, T ) + qi(δ, t)�n(δ, t)

−
∫ T

δ
�n

(
s′, T

)
dqi

(
s′, T

) +
∫ T

δ
�n

(
s′, t

)
dqi

(
s′, t

)
−

∫ T

t
�n

(
T , t ′

)
dqi

(
T , t ′

) +
∫ T

t
�n

(
δ, t ′

)
dqi

(
δ, t ′

)
+

∫ T

δ

∫ T

t
�n

(
s′, t ′

)
dqi

(
s′, t ′

)
.

Each of the first four terms is bounded in absolute value by ‖qi‖[δ,T ]2 · ‖�n‖[δ,T ]2 ,
where the first factor is finite by continuity and the second factor vanishes
in probability. Moreover, each integral term is bounded in absolute value by
‖qi‖HK‖�n‖[δ,T ]2 , which also vanishes in probability because ‖qi‖HK < ∞, by
virtue of the assumptions ‖ρj (x, y, θ0)‖HK < ∞ for j = 1, . . . ,2 + d , and Propo-
sition 1 of Blümlinger and Tichy (1989). Hence (42) follows, and the second con-
vergence in (41) is established.

It remains to prove the first convergence in (41). By virtue of the second con-
vergence there, and an analogous result for Ĥn and Ĥ , it will suffice to prove
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‖Ĥ − H‖[δ,τ ]2
P→ 0. Note that∣∣Ĥ (s, t) − H(s, t)

∣∣
≤ ∣∣̂q�(s, t )̂I−1(t) − q�(s, t)I−1(t)

∣∣ · ∣∣∣∣∫ T

δ

∫ T

t
q
(
s′, t ′

)
dη̂

(
s′, t ′

)∣∣∣∣(43)

+ ∣∣̂q�(s, t )̂I−1(t)
∣∣ · ∣∣∣∣∫ T

δ

∫ T

t

(̂
q
(
s′, t ′

) − q
(
s′, t ′

))
dη̂

(
s′, t ′

)∣∣∣∣,
where | · | should be interpreted component-wise.

Let us write q(s, t, z1, z2,w1, . . . ,wd) to denote the vector q(s, t) with the val-
ues of γ1 and γ2 replaced by variables z1 and z2, and the values θ01, . . . , θ0d

replaced by variables w1, . . . ,wd . Then q(s, t) = q(s, t, γ1, γ2, θ01, . . . , θ0d) and
q̂(s, t) = q(s, t, γ̂1, γ̂2, θ̂1, . . . , θ̂d).

Now consider the first term on the right-hand side of (43). Since the vector
q(s, t, z1, z2,w1, . . . ,wd) is continuous over [δ, τ ]2 × R

2 × B(θ0), we have that
|̂q�(s, t )̂I−1(t) − q�(s, t)I−1(t)| is oP (1) uniformly over (s, t) ∈ [δ, τ ]2. More-
over, an integration by parts argument as above yields that∣∣∣∣∫ T

δ

∫ T

t
qi

(
s′, t ′

)
dη̂

(
s′, t ′

)∣∣∣∣ ≤ ‖η̂‖[δ,T ]2 · (
4‖qi‖[δ,T ]2 + 5‖qi‖HK

)
for 1 ≤ i ≤ 6 + d , where the right-hand side is OP (1). We conclude that the first
term on the right-hand side of (43) is oP (1) uniformly over (s, t) ∈ [δ, τ ]2.

Next, consider the second term on the right-hand side of (43). It follows from the
discussion above that the vector |̂q�(s, t )̂I−1(t)| is OP (1) uniformly over (s, t) ∈
[δ, τ ]2, so it will suffice to show that

sup
t∈[δ,τ ]

∣∣∣∣∫ T

δ

∫ T

t
�qi

(
s′, t ′

)
dη̂

(
s′, t ′

)∣∣∣∣ P→ 0,(44)

with �qi = q̂i − qi , for i = 1, . . . ,6 + d . Once again, an integration by parts argu-
ment shows that the left-hand side of (44) is bounded from above by

‖η̂‖[δ,T ]2 · (
4‖�qi‖[δ,T ]2 + 5‖�qi‖HK

)
,

where ‖η̂‖[δ,T ]2 < ∞ a.s. and ‖�qi‖[δ,T ]2 = oP (1) by continuity. It remains to
establish ‖�qi‖HK = oP (1). For i = 7, . . . ,6 + d , this follows directly from as-
sumption B5. For i = 1, we have

‖�q1‖HK = ∥∥f1(x, γ̂1)ρ1(x, y, θ̂) − f1(x, γ1)ρ1(x, y, θ0) + �f ′
1(x)

∥∥
HK

≤ ∥∥�f1(x)ρ1(x, y, θ0)
∥∥

HK + ∥∥f1(x, γ̂1)�ρ1(x, y)
∥∥

HK + 2V (1)(�f ′
1
)
.

Using Proposition 1 of Blümlinger and Tichy (1989), differentiability properties
of f1, f ′

1 on [δ, T ] and assumption B5, each term on the right-hand side can be
shown to be oP (1). The cases i = 2, . . . ,6 are similar. Thus (44) follows. �
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PROOF OF THEOREM 4.1. Note that we have

Wn

([δ, x] × [δ, y]) =
∫ x

δ

∫ y

δ
σ (s, t, θ̂)dWn,R

([δ, s] × [δ, t]),
W

([δ, x] × [δ, y]) =
∫ x

δ

∫ y

δ
σ (s, t, θ0)dWR

([δ, s] × [δ, t]).
Now, by Proposition 7.1 and Skorohod’s representation theorem, there exists a
probability space supporting versions of Wn,R and WR which satisfy

sup
(x,y)∈[δ,τ ]2

∣∣Wn,R

([δ, x] × [δ, y]) − WR

([δ, x] × [δ, y])∣∣
=: sup

(x,y)∈[δ,τ ]2

∣∣Dn(x, y)
∣∣ → 0 a.s.

We work with this probability space. We have∣∣Wn

([δ, x] × [δ, y]) − W
([δ, x] × [δ, y])∣∣

(45)

≤
∣∣∣∣∫ x

δ

∫ y

δ
�σ(s, t)dWR

([δ, s] × [δ, t])∣∣∣∣ + ∣∣∣∣∫ x

δ

∫ y

δ
σ (s, t, θ̂)dDn(s, t)

∣∣∣∣.
Applying integration by parts as in the proof of Proposition 7.1, we see that the
first term on the right-hand side of (45) is bounded by

sup
(s,t)∈[δ,τ ]2

∣∣WR

([δ, s] × [δ, t])∣∣ · (
4‖�σ‖[δ,τ ]2 + 5‖�σ‖HK

)
.(46)

Since WR is a.s. bounded on [δ, τ ]2, ‖�σ‖[δ,τ ]2 = oP (1) by continuity, and
‖�σ‖HK = oP (1) by assumption B5, (46) vanishes in probability. Similarly, the
second term on the right-hand side of (45) is bounded by

‖Dn‖[δ,τ ]2 · (
4
∥∥σ(·, ·, θ̂)

∥∥[δ,τ ]2 + 5
∥∥σ(·, ·, θ̂)

∥∥
HK

)
,

which also vanishes in probability since ‖Dn‖[δ,τ ]2 = oP (1) and the two sum-
mands in the parentheses are OP (1). Thus the left-hand side of (45) is oP (1) uni-
formly over (s, t) ∈ [δ, τ ]2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotically distribution-free goodness-of-fit testing for
tail copulas” (DOI: 10.1214/14-AOS1304SUPP; .pdf). We provide a proof of The-
orem 2.1 as well as details about the Monte Carlo simulations of Section 6.

http://dx.doi.org/10.1214/14-AOS1304SUPP
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