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ON THE BLOCK MAXIMA METHOD IN EXTREME VALUE
THEORY: PWM ESTIMATORS1

BY ANA FERREIRA AND LAURENS DE HAAN

University of Lisbon and Erasmus Univ Rotterdam

In extreme value theory, there are two fundamental approaches, both
widely used: the block maxima (BM) method and the peaks-over-threshold
(POT) method. Whereas much theoretical research has gone into the POT
method, the BM method has not been studied thoroughly. The present paper
aims at providing conditions under which the BM method can be justified.
We also provide a theoretical comparative study of the methods, which is in
general consistent with the vast literature on comparing the methods all based
on simulated data and fully parametric models. The results indicate that the
BM method is a rather efficient method under usual practical conditions.

In this paper, we restrict attention to the i.i.d. case and focus on the prob-
ability weighted moment (PWM) estimators of Hosking, Wallis and Wood
[Technometrics (1985) 27 251–261].

1. Introduction. The block maxima (BM) approach in extreme value theory
(EVT), consists of dividing the observation period into nonoverlapping periods of
equal size and restricts attention to the maximum observation in each period [see,
e.g., Gumbel (1958)]. The new observations thus created follow—under domain of
attraction conditions, cf. (2) below—approximately an extreme value distribution,
Gγ for some real γ . Parametric statistical methods for the extreme value distribu-
tions are then applied to those observations.

In the peaks-over-threshold (POT) approach in EVT, one selects those of the ini-
tial observations that exceed a certain high threshold. The probability distribution
of those selected observations is approximately a generalized Pareto distribution
Pickands (1975).

In the case of the POT method, exact conditions under which the statistical
method is justified can be described by a second-order term [see, e.g., Drees (1998)
and de Haan and Ferreira (2006), Section 2.3]. In the case of block maxima, usu-
ally it is taken for granted that the maxima follow very well an extreme value
distribution. In this paper, we take this misspecification into account by quantify-
ing it in terms of a second-order expansion; cf. Condition 2.1 below. Since Gγ is
not the exact distribution for those observations, a bias may appear.
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The POT method picks up all “relevant” high observations. The BM method on
the one hand misses some of these high observations and, on the other hand, might
retain some lower observations. Hence the POT seems to make better use of the
available information.

There are practical reasons for using the BM method:

• The only available information may be block maxima, for example, yearly max-
ima with long historical records or long range simulated data sets Kharin et al.
(2007).

• The BM method may be preferable when the observations are not exactly inde-
pendent and identically distributed (i.i.d.). For example, there may be a seasonal
periodicity in case of yearly maxima or, there may be short range dependence
that plays a role within blocks but not between blocks; cf. for example, Katz,
Parlange and Naveau (2002) and Madsen, Rasmussen and Rosbjerg (1997) for
further discussion.

• The BM method may be easier to apply since the block periods appear naturally
in many situations [Naveau et al. (2009), van den Brink, Können and Opsteegh
(2005), de Valk (1993)]. On the other hand, the POT method allows for greater
flexibility in many cases since it might be difficult to change the block size in
practice.

When working with BM, there are two sets of estimators that are widely used:
the maximum likelihood (ML) estimators [e.g., Prescott and Walden (1980)] and
the probability weighted moment (PWM) estimators Hosking, Wallis and Wood
(1985). Recently, Dombry (2013) has proved consistency of the former. The
present paper concentrates on the latter. Our work has given rise to the paper
Bücher and Segers (2014) on the multivariate case.

The PWM estimators under the Gγ model are very popular, for example, in
applications to hydrologic and climatologic extremes, because of their computa-
tional simplicity, good performance for small sample sizes and robustness even for
location and scale parameters [Diebolt et al. (2008), Katz, Parlange and Naveau
(2002), Caires (2009), Hosking (1990)].

The relative merits of POT and BM have been discussed in several papers, all
based on simulated data: Cunnane (1973) states that for γ = 0 and ML estimators,
the POT estimate for a high quantile is better only if the number of exceedances
is larger than 1.65 times the number of blocks; Wang (1991) writes that POT is
as efficient as BM model for high quantiles, based on PWM estimators; Madsen,
Pearson and Rosbjerg (1997) and Madsen, Rasmussen and Rosbjerg (1997) write
that POT is preferable for γ > 0, whereas for γ < 0, BM is more efficient, again
with the number of exceedances larger than the number of blocks; Martins and
Stedinger (2001) state that the gains (when using historical data) with the BM
model are in the range of the gains with the POT model, based on ML estimators;
Caires (2009) in a vast simulation study writes that with POT samples having an
average of two or more observations per block, the estimates are more accurate
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than the corresponding BM estimates, and with more than 200 years of data the
accuracies of the two approaches are similar and rather good, based on several
estimators including the PWM and ML estimators.

From all these studies, some even with mixed views, the following two fea-
tures seem dominant. First, POT is more efficient than BM in many circumstances,
though needing, on average, a number of exceedances larger than the number of
blocks. Secondly, POT and BM often have comparable performances, for example,
for large sample sizes.

Our theoretical comparison shows that BM is rather efficient. The asymptotic
variances of both extreme value index and quantile estimators are always lower for
BM than for POT. Moreover, the approximate minimal mean square error is also
lower for BM under usual circumstances. The optimal number of exceedances is
generally higher than the optimal number of blocks.

The paper is organized as follows. In Section 2, we state exact conditions to
justify the BM method, along with the asymptotic normality result for the PWM
estimators including high quantile estimators. In Section 3, we provide a theoreti-
cal comparison between the two methods, BM and POT. The analysis is based on
a uniform expansion of the relevant quantile process given in Section 2.1. This ex-
pansion also provides a basis for analysing alternative estimators besides the PWM
estimator. Proofs are postponed to Section 4.

Throughout the paper, we assume that the observations are i.i.d. In future work,
we shall extend the results to the non-i.i.d. case and to the maximum likelihood
estimator.

2. The estimators and their properties. Let X̃1, X̃2, . . . be i.i.d. random
variables with distribution function F . Define for m = 1,2, . . . and i = 1,2, . . . , k

the block maxima

Xi = max
(i−1)m<j≤im

X̃j .(1)

Hence, the m×k observations are divided into k blocks of size m. Write n = m×k,
the total number of observations. We study the model for large k and m, hence we
shall assume that n → ∞; in order to obtain meaningful limit results, we have to
require that both m = mn → ∞ and k = kn → ∞, as n → ∞.

The main assumption is that F is in the domain of attraction of some extreme
value distribution

Gγ (x) = exp
(−(1 + γ x)−1/γ )

, γ ∈R,1 + γ x > 0,

that is, for appropriately chosen am > 0 and bm and all x

lim
m→∞P

(
Xi − bm

am

≤ x

)
= lim

m→∞Fm(amx + bm)

(2)
= Gγ (x), i = 1,2, . . . , k.
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This can be written as

lim
m→∞

1

m

1

− logF(amx + bm)
= (1 + γ x)1/γ ,

which is equivalent to the convergence of the inverse functions:

lim
m→∞

V (mx) − bm

am

= xγ − 1

γ
, x > 0,

with V = (−1/ logF)←. Hence, bm can be chosen to be V (m). This is the first-
order condition. For our analysis, we also need a second-order expansion as fol-
lows.

CONDITION 2.1 (Second-order condition). Suppose that for some positive
function a and some positive or negative function A with limt→∞ A(t) = 0,

lim
t→∞

(V (tx) − V (t))/a(t) − (xγ − 1)/γ

A(t)
=

∫ x

1
sγ−1

∫ s

1
uρ−1 duds = Hγ,ρ(x),

for all x > 0 [see, e.g., de Haan and Ferreira (2006), Theorem B.3.1]. Note that the
function |A| is regularly varying with index ρ ≤ 0.

Let X1,k, . . . ,Xk,k be the order statistics of the block maxima X1, . . . ,Xk . The
statistics β0 = k−1 ∑k

i=1 Xi,k and

βr = 1

k

k∑
i=1

(i − 1) · · · (i − r)

(k − 1) · · · (k − r)
Xi,k, r = 1,2,3, . . . , k > r,(3)

are unbiased estimators of EX1F
rm(X1) [Landwehr, Matalas and Wallis (1979)].

The PWM estimators for γ , as well as the location bm and scale am = a([m]), are
simple functionals of β0, β1 and β2. The estimator γ̂k,m for γ is defined as the
solution of the equation

3γ̂k,m − 1

2γ̂k,m − 1
= 3β2 − β0

2β1 − β0
,

âk,m = γ̂k,m

2γ̂k,m − 1

2β1 − β0

�(1 − γ̂k,m)
and b̂k,m = β0 + âk,m

1 − �(1 − γ̂k,m)

γ̂k,m

,(4)

where �(x) = ∫ ∞
0 tx−1e−t dt , x > 0 [Hosking, Wallis and Wood (1985)]. The ra-

tionale behind the estimator of γ becomes clear when checking the statement of
Theorem 2.3 below.
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2.1. Asymptotic normality. The following theorem is the basis for analysing
estimators in the BM approach. Let �u� represent the smallest integer larger than
or equal to u.

THEOREM 2.1. Assume that F is in the domain of attraction of an extreme
value distribution Gγ and that Condition 2.1 holds. Let m = mn → ∞ and k =
kn → ∞ as n → ∞, in such a way that

√
kA(m) → λ ∈ R. Let 0 < ε < 1/2 and

{Xi,k}ki=1 be the order statistics of the block maxima X1,X2, . . . ,Xk . Then, with
{Ek}k≥1 an appropriate sequence of Brownian bridges,

√
k

(
X�ks�,k − bm

a0(m)
− (− log s)−γ − 1

γ

)

= Ek(s)

s(− log s)1+γ
+ √

kA0(m)Hγ,ρ

(
1

− log s

)

+ (
s−1/2−ε(1 − s)−1/2−γ−ρ−ε)oP (1),

as n → ∞, where the oP (1) term is uniform for 1/(k + 1) ≤ s ≤ k/(k + 1). The
functions a0(m) and A0(m) are chosen as in Lemma 4.2 below.

THEOREM 2.2. Assume the conditions of Theorem 2.1 with γ < 1/2. Then
√

k

(
(r + 1)βr − bm

am

− Dr(γ )

)

→d (r + 1)

∫ 1

0
sr−1(− log s)−1−γ E(s) ds + λIr(γ, ρ) =: Qr,

as n → ∞, jointly for r = 0,1,2,3, . . . , where →d means convergence in distri-
bution, E is Brownian bridge,

Dr(ξ) = (r + 1)ξ�(1 − ξ) − 1

ξ
, ξ < 1

[Dr(0) = log(r + 1) − �′(1) as defined by continuity], and

Ir(γ, ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ

(
Dr(γ + ρ) − Dr(γ )

)
,

ρ �= 0,

D′
r (γ ) = (r + 1)γ

γ

(−�′(1 − γ ) + log(r + 1)�(1 − γ )

− (r + 1)−γ Dr(γ )
)
,

γ �= 0, ρ = 0,

D′
r (0) = 1

2

(
log2(r + 1) + �′′(1) − 2 log(r + 1)�′(1)

)
,

γ = 0, ρ = 0.

Note that �′(1 − γ ) = ∫ ∞
0 u−γ e−u(logu)du and �′′(1) = 1.97811.
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REMARK 2.1. The condition
√

kA(m) → λ ∈ R means that the growth of kn,
the number of blocks, is restricted with respect to the growth of mn, the size of
a block, as n → ∞. In particular this condition implies that (logk)/m → 0, as
n → ∞.

THEOREM 2.3. Under the conditions of Theorem 2.2, as n → ∞,
√

k(γ̂k,m − γ ) →d 1

�(1 − γ )

(
log 3

1 − 3−γ
− log 2

1 − 2−γ

)−1

×
{

γ

3γ − 1
(Q2 − Q0) − γ

2γ − 1
(Q1 − Q0)

}

=: 	,

√
k

(
âk,m

am

− 1
)

→d γ(
2γ − 1

)
�(1 − γ )

(Q1 − Q0)

+ 	

{
log 2

γ

( −γ

1 − 2−γ
+ 1

log 2

)
+ �′(1 − γ )

�(1 − γ )

}

=: 
,

√
k
b̂k,m − bm

am

→d Q0 + γ�′(1 − γ ) − 1 + �(1 − γ )

γ 2 	 + 1 − �(1 − γ )

γ



=: �;
where for γ = 0 the formulas should read as (defined by continuity):

√
kγ̂k,m →d

(
log 3

2
− log 2

2

)−1(
1

log 3
(Q2 − Q0) − 1

log 2
(Q1 − Q0)

)
,

√
k

(
âk,m

am

− 1
)

→d 1

log 2
(Q1 − Q0) + 	

(
log 2

2
+ �′(1)

)
,

√
k
b̂k,m − bm

am

→d Q0 − �′′(1)	 + �′(1)
.

REMARK 2.2. A slight modification of γ̂k,m produces the explicit estimator

γ̂ ∗
k,m = 1

log 2
log

(
4β3 − β0

2β1 − β0
− 1

)
,(5)

which is the solution of (4γ̂ ∗
k,m − 1)(2γ̂ ∗

k,m − 1)−1 = (4β3 − β0)(2β1 − β0)
−1. The

conditions of Theorem 2.2 imply

√
k
(
γ̂ ∗
k,m − γ

) →d 1

�(1 − γ )

(
log 4

1 − 4−γ
− log 2

1 − 2−γ

)−1

×
{

γ

4γ − 1
(Q3 − Q0) − γ

2γ − 1
(Q1 − Q0)

}
.



282 A. FERREIRA AND L. DE HAAN

2.2. High quantile estimation. Our estimator for xn = F←(1 − pn) =
V (1/(− log(1 − pn))), with pn small, is

x̂k,m = b̂k,m + âk,m

(mpn)
−γ̂k,m − 1

γ̂k,m

.

THEOREM 2.4. Assume the conditions of Theorem 2.2 with ρ negative, or
zero with γ negative. Moreover, assume that the probabilities pn satisfy

lim
n→∞mpn = 0 and lim

n→∞
log(mpn)√

k
= 0

[in case ρ < 0 the latter can be simplified to limn→∞(logpn)/
√

k = 0]. Then
√

k
(x̂k,m − xn)

amqγ (1/(mpn))
→d 	 + (γ−)2� − γ−
 − λ

γ−
γ− + ρ

as n → ∞, where γ− = min(0, γ ) and qγ (t) = ∫ t
1 sγ−1 log s ds.

3. Theoretical comparison between BM and POT methods. In this section,
we develop a theoretical comparison between the BM and POT methods, by com-
paring the two PWM estimators for the two methods [Hosking and Wallis (1987)
and Hosking, Wallis and Wood (1985), resp., for POT and BM].

First, we introduce the PWM-POT estimators for γ and a(n/k), where k is
the number of selected order statistics, {X̃n−i,n}k−1

i=0 , from the original sample
X̃1, X̃2, . . . , X̃n. The statistics

Pn = 1

k

k−1∑
i=0

X̃n−i,n − X̃n−k,n and Qn = 1

k

k−1∑
i=0

i

k
(X̃n−i,n − X̃n−k,n)

are estimators for a(n/k)(1 − γ )−1 and a(n/k)(2(2 − γ )−1), respectively. Conse-
quently, the PWM estimators are

γ̂k,n = 1 −
(

Pn

2Qn

− 1
)−1

and â(n/k) = Pn

(
Pn

2Qn

− 1
)−1

.

The quantile estimator is

x̂k,n = X̃n−k,n + â(n/k)
(k/(npn))

γ̂k,n − 1

γ̂k,n

.

Asymptotic normality under conditions equivalent to the ones in Theorems 2.3
and 2.4 holds [see, e.g., Cai, de Haan and Zhou (2013)], if ρ ∈ [−1,0] with a
caveat for ρ = −1 [for certain cases the functions A in the corresponding second-
order conditions may not be the same asymptotically resulting in different values
of λ in the limiting distributions; cf. Drees, de Haan and Li (2003)].

For BM, k is defined as the number of blocks and, for POT, k is defined as the
number of selected top order statistics. Hence, in both cases k means the number
of selected observations. For the theoretical comparison, we confine ourselves to
the range ρ ∈ [−1,0] and γ ∈ [−1,1/2), a usual range in many applications.
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FIG. 1. Asymptotic variances of γ PWM estimators with dashed line for POT.

Extreme value index estimators.

• First, we compare asymptotic variance and bias for a common value of k:
The asymptotic variances of the two γ estimators are shown in Figure 1: the

curve from BM is always below the other one, meaning lower values for the
asymptotic variance for all values of γ . The asymptotic biases are compared in
Figure 2, through the ratio “bias BM/bias POT”. Recall that the bias depends on
both first- and second-order parameters γ and ρ. Contrary to what is observed
for the variance, the bias of BM is always larger but for ρ = 0 they are the
same regardless the value of γ , equal to 1 [or λ if one takes into account the
asymptotic contribution of

√
kA(n/k) to the biases].

• Next, we compare asymptotic mean square errors for the “optimal choice” of k

(i.e., that value that makes the limiting mean square error of γ̂ − γ minimal),
which is different in the two cases:

FIG. 2. Ratio of asymptotic bias of γ PWM estimators.
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An asymptotic expression of the “asymptotic minimal mean square error”
(MINMSE in the sequel) is obtained in the following way. Suppose ρ < 0. First
we find for each estimator the optimal k in the sense of minimizing the approxi-
mate asymptotic mean square error. Denote by σ 2

i = σ 2
i (γ ) and B2

i = B2
i (γ, ρ)

(i = 1,2; “1” refers to PWM-BM and “2” refers to PWM-POT) the asymptotic
variance and squared bias of the estimators. Under Condition 2.1, we can write
A2(t) = ∫ ∞

t s(u) du with s(·) decreasing and 2ρ −1 regularly varying. The lim-
iting mean square error is, approximately,

inf
k

(
σ 2

i

k
+ A2(n/k)B2

i

)
(6)

or, writing r for n/k, infr ((r/n)σ 2
i + B2

i

∫ ∞
r s(u) du). Setting the derivative

equal to zero and using properties of regularly varying functions one finds for
the optimal choice of r , r

(i)
0 ∼ (1/s)←(n)(B2

i /σ 2
i )1/(1−2ρ) and, in terms of k,

k
(i)
0 ∼ n

(1/s)←(n)

(
σ 2

i

B2
i

)1/(1−2ρ)

.

Note that the optimal k
(i)
0 is different but of the same order for both methods.

Next, inserting k
(i)
0 in (6), after some manipulation we get the following asymp-

totic expression for MINMSE,

1 − 2ρ

−2ρ

(1/s)←(n)

n

(
B2

i

)1/(1−2ρ)(
σ 2

i

)−2ρ/(1−2ρ)
.

It follows that MINMSE(BM)/MINMSE(POT) is, approximately,

(
B2

1 (γ, ρ)

B2
2 (γ, ρ)

)1/(1−2ρ)(σ 2
1 (γ )

σ 2
2 (γ )

)−2ρ/(1−2ρ)

,

which does not depend on n, just on γ and ρ.
The contour plot of “MINMSE(BM)/MINMSE(POT)” is represented in Fig-

ure 3. It can be seen that the BM has lower MINMSE for a large range of (γ, ρ)

combinations. Note that this range includes γ negative and γ positive close to
zero which seem to be common values in many practical situations, for exam-
ple, in hydrologic and climatologic extremes. Only for γ > 0.2 approximately,
MINMSE for POT can be lower depending on ρ.

Finally, comparing the optimal sample sizes (cf. Figure 4 with contour plot of
the ratio of the optimal values of k), one sees that POT requires systematically
larger optimal sample size even when the approximate MINMSE is smaller for
POT than BM.
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FIG. 3. Contour plot for the ratio of asymptotic minimal mean square error of γ PWM estimators.

Quantile estimators. We repeat the previous analysis for the quantile estima-
tors:

• The asymptotic variances of the two estimators are compared in Figure 5: again
the curve from BM is always below the other one meaning lower values for the
asymptotic variance for all values of γ . In Figures 6 and 7, the asymptotic bias

FIG. 4. Contour plot for the ratio of the optimal values of k.
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FIG. 5. Asymptotic variances of quantile PWM estimators with dashed line for POT.

is represented for each case separately. Note that for γ negative, the bias for BM
approaches zero when ρ ↑ 0 whereas in the POT case it escapes to −∞.

• The contour plot for the ratio “MINMSE(BM)/MINMSE(POT)” is represented
in Figure 8. Again the BM method has lower MINMSE for a large range of
(γ, ρ) combinations. The “irregularity” around γ ≈ −0.2 is due to a change of
sign in the bias in the POT case. Finally, Figure 9 gives the contour plot for the
ratio of the optimal values of k, which is smaller than one when γ is small and
ρ is closer to zero.

In conclusion, for both the extreme value index and quantile PWM estimators,
the ones from the BM method have always lower asymptotic variances. Moreover,
at an optimal level the BM gives lower MINMSE, thus being more efficient, under
many practical situations. This is in agreement with some of Sofia Caires’ (2009)

FIG. 6. Asymptotic bias of quantile PWM estimator under BM method.
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FIG. 7. Asymptotic bias of quantile PWM estimator under POT method.

conclusions, for example, that for equal sample sizes or with more than 200 years
of data the uncertainty or the error of the estimates are lower for BM than for POT.

4. Proofs. Throughout this section, Z represents a unit Fréchet random vari-
able, that is, one with distribution function F(x) = e−1/x , x > 0, and {Zi,k}ki=1 are
the order statistics from the associated i.i.d. sample of size k, Z1, . . . ,Zk . Sim-
ilarly, {Xi,k}ki=1 represents the order statistics of the block maxima X1, . . . ,Xk

from (1) and, X�u�,k = Xr,k for r − 1 < u ≤ r , r = 1, . . . , k. Recall the function V

FIG. 8. Contour plot for the ratio of asymptotic minimal mean square error of quantile PWM
estimators.
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FIG. 9. Contour plot for the ratio of the optimal values of k in quantile case.

from Section 2. The following representation will be useful:

X =d V (mZ).(7)

We start by formulating a number of auxiliary results.

LEMMA 4.1. 1. As k → ∞,

(log k)Z1,k →P 1.

2. [Csörgő and Horváth (1993), page 381] Let 0 < ν < 1/2. With {Ek}k≥1, an
appropriate sequence of Brownian bridges,

sup
1/(k+1)≤s≤k/(k+1)

s(− log s)

(s(1 − s))ν

∣∣∣∣
√

k
(
(− log s)Z�ks�,k − 1

) − Ek(s)

s(− log s)

∣∣∣∣ = oP (1),

as k → ∞ (�u� represents the smallest integer larger or equal to u).
3. Similarly, with 0 < ν < 1/2 for an appropriate sequence {Ek}k≥1 of Brownian

bridges and ξ ∈R,

sup
1/(k+1)≤s≤k/(k+1)

(
s(1 − s)

)−ν

×
∣∣∣∣
√

ks(− log s)1+ξ

(Z
ξ
�ks�,k − 1

ξ
− (− log s)−ξ − 1

ξ

)
− Ek(s)

∣∣∣∣ = oP (1),

as k → ∞.
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The following is an easily obtained variant of Theorem B.3.10 of de Haan and
Ferreira (2006).

LEMMA 4.2. Under Condition 2.1, there are functions A0(t) ∼ A(t) and
a0(t) = a(t)(1 + o(A(t))), as t → ∞, such that for all ε, δ > 0 there exists
t0 = t0(ε, δ) such that for t, tx > t0,

∣∣∣∣(V (tx) − V (t))/a0(t) − (xγ − 1)/γ

A0(t)
− Hγ,ρ(x)

∣∣∣∣
(8)

≤ ε max
(
xγ+ρ+δ, xγ+ρ−δ).

Moreover,
∣∣∣∣a0(tx)/a0(t) − xγ

A0(t)
− xγ (xρ − 1)/ρ

∣∣∣∣
(9)

≤ ε max
(
xγ+ρ+δ, xγ+ρ−δ)

and ∣∣∣∣A0(tx)

A0(t)
− xρ

∣∣∣∣ ≤ ε max
(
xρ+δ, xρ−δ).

Note that

Hγ,ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
, ρ �= 0 �= γ,

1

γ

(
xγ logx − xγ − 1

γ

)
, ρ = 0 �= γ,

1

ρ

(
xρ − 1

ρ
− logx

)
, ρ �= 0 = γ,

1

2
(logx)2, ρ = 0 = γ.

PROOF OF THEOREM 2.1. By representation (7),

X�ks�,k − bm

a0(m)
− (− log s)−γ − 1

γ

=d

(
V (mZ�ks�,k) − bm

a0(m)
− V (m/− log s) − bm

a0(m)

)

+
(

V (m/− log s) − bm

a0(m)
− (− log s)−γ − 1

γ

)

= I (random part) + II (bias part).
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We start with part I,

I =
{
(− log s)−γ V ((− log s)Z�ks�,km/− log s) − V (m/− log s)

a0(m/− log s)

}

×
{
a0(m/− log s)

a0(m)
(− log s)γ

}

= I.1 × I.2.

According to (9) of Lemma 4.2, for each ε, δ > 0 there exists t0 such that the
factor I.2 is bounded (above and below) by

1 + A0(m)

{
(− log s)−ρ − 1

ρ
± ε max

(
(− log s)−ρ+δ, (− log s)−ρ−δ)}

provided m ≥ t0 and s ≥ e−m/t0 . According to (8) of Lemma 4.2, for factor I.1 we
have the bounds

(− log s)−γ ((− log s)Z�ks�,k)γ − 1

γ
+ A0

(
m

− log s

)
(− log s)−γ

× {
Hγ,ρ

(
(− log s)Z�ks�,k

) ± ε max
((

(− log s)Z�ks�,k
)γ+ρ+δ

,

(
(− log s)Z�ks�,k

)γ+ρ−δ)}
= I.1a + I.1b

provided s ≥ e−m/t0 and m/ log k ≥ t0 [the latter inequality eventually holds true
since

√
kA0(m) is bounded]. Note that m/ log k ≥ t0 implies mZ1,k ≥ 2t0 which

implies (Lemma 4.1) mZ�ks�,k ≥ 2t0 for all s.
For term I.1a, we use Lemma 4.1.3:

(Z�ks�,k)γ − 1

γ
− (− log s)−γ − 1

γ

is bounded (above and below) by

1√
k

Ek(s)

s(− log s)1+γ
± ε√

k

(s(1 − s))ν

s(− log s)1+γ
,

for some ε > 0, 0 < ν < 1/2 and all s ∈ [1/(k + 1), k/(k + 1)].
Next, we turn to term I.1b. By Lemma 4.2, (− log s)−γ A0(

m
− log s

) is bounded
(above and below) by

A0(m)
{
(− log s)−γ−ρ ± ε max

(
(− log s)−γ−ρ+δ, (− log s)−γ−ρ−δ)}
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provided s > e−m/t0 and m/ log k > t0. Furthermore for ρ �= 0 �= γ and s ∈ [1/(k+
1), k/(k + 1)], by Lemma 4.1.3,

Hγ,ρ

(
(− log s)Z�ks�,k

)

= 1

ρ

{
((− log s)Z�ks�,k)γ+ρ − 1

γ + ρ
− ((− log s)Z�ks�,k)γ − 1

γ

}

= 1

ρ

{
(− log s)γ+ρ

[Z
γ+ρ
�ks�,k − 1

γ + ρ
− (− log s)−γ−ρ − 1

γ + ρ

]

− (− log s)γ
[Z

γ
�ks�,k − 1

γ
− (− log s)−γ − 1

γ

]}

is bounded by

1

ρ

{
(− log s)γ+ρ

[
1√
k

Ek(s)

s(− log s)1+γ+ρ
± ε√

k

(s(1 − s))ν

s(− log s)1+γ+ρ

]

− (− log s)γ
[

1√
k

Ek(s)

s(− log s)1+γ
∓ ε√

k

(s(1 − s))ν

s(− log s)1+γ

]}

= ± 2ε

ρ
√

k

(s(1 − s))ν

s(− log s)
,

and similarly for cases other than ρ �= 0 �= γ . The remaining part of I.1b, namely
±ε max(((− log s)Z�ks�,k)γ+ρ+δ, ((− log s)Z�ks�,k)γ+ρ−δ), is similar.

Part II, by the inequalities of Lemma 4.2, is bounded by

A0(m)

{
Hγ,ρ

(
1

− log s

)
± ε max

(
(− log s)−γ−ρ+δ, (− log s)−γ−ρ−δ)}

hence it contributes
√

kA0(m)Hγ,ρ( 1
− log s

) to the result.
Collecting all the terms, one finds the result. �

PROOF OF THEOREM 2.2. Let, for r = 0,1,2,3, . . . ,

J
(r)
k (s) = (�ks� − 1) · · · (�ks� − r)

(k − 1) · · · (k − r)
, s ∈ [0,1].

Note that J
(r)
k (s) → sr , as k → ∞, uniformly in s ∈ [0,1], and

1

k

k∑
i=1

(i − 1) · · · (i − r)

(k − 1) · · · (k − r)
=

∫ 1

0
J

(r)
k (s) ds = 1

r + 1

=
∫ 1

0
sr ds.
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Then
√

k

(
(r + 1)βr − bm

am

− (r + 1)γ �(1 − γ ) − 1

γ

)

= √
k

(
(r + 1)

∫ 1
0 X�ks�,kJ (r)

k (s) ds − bm

am

− (r + 1)

∫ 1

0

(− log s)−γ − 1

γ
sr ds

)

= √
k(r + 1)

∫ 1

0

(
X�ks�,k − bm

am

− (− log s)−γ − 1

γ

)
J

(r)
k (s) ds

− √
k(r + 1)

∫ 1

0

(− log s)−γ − 1

γ

(
sr − J

(r)
k (s)

)
ds

= √
k(r + 1)

∫ 1/(k+1)

0

(
X�ks�,k − bm

am

− (− log s)−γ − 1

γ

)
J

(r)
k (s) ds

+ √
k(r + 1)

∫ k/(k+1)

1/(k+1)

(
X�ks�,k − bm

am

− (− log s)−γ − 1

γ

)
J

(r)
k (s) ds

+ √
k(r + 1)

∫ 1

k/(k+1)

(
X�ks�,k − bm

am

− (− log s)−γ − 1

γ

)
J

(r)
k (s) ds

− √
k(r + 1)

∫ 1

0

(− log s)−γ − 1

γ

(
sr − J

(r)
k (s)

)
ds

= I.1 + I.2 + I.3 + I.4.

For I.4: since (sr − J
(r)
k (s)) = O(1/k) uniformly in s, I.4 = O(1/

√
k).

For I.1, note that ∫ 1/(k+1)

0

√
k
X�ks�,k − bm

am

sr ds = oP (1).(10)

This follows since, the left-hand side of (10) equals, in distribution,√
k

(k + 1)r+1

V (mZ1,k) − V (m)

am

which, by Lemmas 4.1.1, 4.2 and the fact that m/ log k → ∞, is bounded (below
and above) by√

k

(k + 1)r+1

{
Z

γ
1,k − 1

γ
+ A(m)Hγ,ρ(Z1,k) ± εA(m)max

(
Z

γ+ρ+δ
1,k ,Z

γ+ρ−δ
1,k

)}
.

This is easily seen to converge to zero in probability, since Z
ξ
1,k/

√
k =

{(log k)Z1,k}ξ log−ξ k/
√

k →P 0 for all real ξ and
√

kA(m) → λ. Hence, I.1 =
oP (1).
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Next, we show that
∫ 1

k/(k+1)

√
k
X�ks�,k − bm

am

J
(r)
k (s) ds = oP (1).(11)

The left-hand side equals, in distribution, since J
(r)
k (s) ≡ 1 for s ∈ (k(k +1)−1,1),

(
1 − k

k + 1

)√
k
V (mZk,k) − V (m)

am

.

Lemma 4.1 yields

V (mZk,k) − V (m)

am

= Z
γ
k,k − 1

γ
+ A(m)

{
Hγ,ρ(Zk,k) ± εZ

γ+ρ+δ
k,k

}
,

which is (since Z
γ
k,k/kγ converges to a positive random variable) of the order

OP (kγ ). Hence, the integral is of order (k + 1)−1
√

kkγ which tends to zero since
γ < 1/2.

Finally, I.2 has the same asymptotic behaviour as

(r + 1)

∫ k/(k+1)

1/(k+1)

√
k

(
X�ks�,k − bm

am

− (− log s)−γ − 1

γ

)
sr ds,

which, by Theorem 2.1 tends to

(r + 1)

∫ 1

0
sr−1(− log s)−1−γ E(s) ds + λ(r + 1)

∫ 1

0
Hγ,ρ

(
1

− log s

)
sr ds.

For the evaluation of the latter integral note that for ξ < 1,

(r + 1)

∫ 1

0
sr(− log s)−ξ ds = (r + 1)ξ−1

∫ ∞
0

v−ξ e−v dv = (r + 1)ξ−1�(1 − ξ).

Moreover, note that

(r + 1)

∫ 1

0
sr (− log s)−ξ − 1

ξ
ds = (r + 1)ξ�(1 − ξ) − 1

ξ
, ξ < 1

[Dr(0) = log(r + 1) − �′(1) as defined by continuity], and (r + 1) ×∫ 1
0 Hγ,ρ( 1

− log s
)sr ds = Ir(γ, ρ). �

PROOF OF THEOREM 2.3. From Theorem 2.2, we obtain

√
k

(
2β1 − β0

am

− 2γ − 1

γ
�(1 − γ )

)
→d Q1 − Q0,

√
k

(
3β2 − β0

am

− 3γ − 1

γ
�(1 − γ )

)
→d Q2 − Q0
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hence, by Cramér’s delta method,

√
k

(
3γ̂k,m − 1

2γ̂k,m − 1
− 3γ − 1

2γ − 1

)

= √
k

(
3β2 − β0

2β1 − β0
− 3γ − 1

2γ − 1

)

→d 1

�(1 − γ )

3γ − 1

2γ − 1

(
γ

3γ − 1
(Q2 − Q0) − γ

2γ − 1
(Q1 − Q0)

)
.

It follows that γ̂k,m →P γ , and hence

√
k

(
rγ̂k,m − 1

rγ − 1
− 1

)
= √

k
rγ̂k,m−γ − 1

1 − r−γ

has the same limit distribution as
√

k(γ̂k,m − γ )
log r

1 − r−γ
, r = 2,3.

It follows that
√

k

(
3γ̂k,m − 1

2γ̂k,m − 1
− 3γ − 1

2γ − 1

)

= 3γ − 1

2γ − 1

[√
k

(
3γ̂k,m − 1

3γ − 1
− 1

)
− √

k

(
2γ̂k,m − 1

2γ − 1
− 1

)]

has the same limit distribution as
3γ − 1

2γ − 1

√
k(γ̂k,m − γ )

(
log 3

1 − 3−γ
− log 2

1 − 2−γ

)

and, consequently,√
k(γ̂k,m − γ )

→d 1

�(1 − γ )

(
log 3

1 − 3−γ
− log 2

1 − 2−γ

)−1

×
(

γ

3γ − 1
(Q2 − Q0) − γ

2γ − 1
(Q1 − Q0)

)
.

For the asymptotic distribution of âk,m we write

√
k

(
âk,m

am

− 1
)

γ̂k,m

(2γ̂k,m − 1)�(1 − γ̂k,m)

×
{√

k

(
2β1 − β0

am

− 2γ − 1

γ
�(1 − γ )

)

+ √
k

(
2γ − 1

γ
�(1 − γ ) − 2γ̂k,m − 1

γ̂k,m

�(1 − γ̂k,m)

)}
,
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and the statement follows, for example, by Cramér’s delta method.
For the asymptotic distribution of b̂k,m, we write

√
k

(
b̂k,m − bm

am

)

= √
k

(
β0 − bm

am

− �(1 − γ ) − 1

γ

)

− âk,m

am

√
k

(
�(1 − γ̂k,m) − 1

γ̂k,m

− �(1 − γ ) − 1

γ

)

+ �(1 − γ ) − 1

γ

√
k

(
âk,m

am

− 1
)

and the statement follows, for example, by Cramér’s delta method. �

PROOF OF THEOREM 2.4. The proof follows the line of the comparable result
for the POT method [see, e.g., de Haan and Ferreira (2006), Chapter 4.3]. Let
cn = 1/(mpn). Then

√
k(x̂k,m − xn)

amqγ (cn)

=
√

k

amqγ (cn)

(
b̂k,m + âk,m

c
γ̂k,m
n − 1

γ̂k,m

− V

(
1

− log(1 − pn)

))

=
√

k

qγ (cn)

b̂k,m − bm

am

+ âk,m

am

√
k

qγ (cn)

(
c
γ̂k,m
n − 1

γ̂
− c

γ
n − 1

γ

)

−
√

k

qγ (cn)

(
V (m/(−m log(1 − pn))) − V (m)

am

− c
γ
n − 1

γ

)

+ c
γ
n − 1

γ qγ (cn)

√
k

(
âk,m

am

− 1
)
.

Similarly, as on pages 135–137 of de Haan and Ferreira (2006), this converges in
distribution to

	 + (γ−)2� − γ−
 − λ
γ−

γ− + ρ
. �

APPENDIX: ASYMPTOTIC VARIANCES AND BIASES OF THE PWM
ESTIMATORS

The following provides a basis for an algorithm to calculate the asymptotic
variances/covariances and biases of the PWM estimators.
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Let Qr = (r + 1)
∫ 1

0 sr−1(− log s)−1−γ E(s) ds + λIr(γ, ρ), r = 0,1,2, as de-
fined in Theorem 2.2. For r,m = 0,1,2,

Cov(Qr,Qm)

= (r + 1)(m + 1)

×
∫ 1

0

∫ 1

0
sr−1um−1(− log s)−1−γ (− logu)−1−γ EB(s)B(u)ds du

(12)

= (r + 1)(m + 1)

∫ 1

0
um−1(1 − u)(− logu)−1−γ

∫ u

0
sr(− log s)−1−γ ds du

+ (r + 1)(m + 1)

×
∫ 1

0
sr−1(1 − s)(− log s)−1−γ

∫ s

0
um(− logu)−1−γ duds

using the fact that EB(s)B(u) = min(s, u) − su = s(1 − u) for 0 < s < u. These
integrals can be evaluated numerically (we have used Mathematica software).

From Theorems 2.3 and 2.4, after some calculations,
√

k(γ̂k,m − γ ) →d Cγ (kγ,0Q0 + kγ,1Q1 + kγ,2Q2),(13)

√
k

(
âk,m

am

− 1
)

→d ka,0Q0 + ka,1Q1 + ka,2Q2,(14)

√
k
b̂k,m − bm

am

→d kb,0Q0 + kb,1Q1 + kb,2Q2,(15)

√
k
(x̂k,m − xn)

amqγ (cn)
→d kx,0Q0 + kx,1Q1 + kx,2Q2,(16)

where, for γ �= 0,

Cγ = 1

�(1 − γ )

(
log 3

1 − 3−γ
− log 2

1 − 2−γ

)−1

,

kγ,0 = γ (3γ − 2γ )

(3γ − 1)(2γ − 1)
, kγ,1 = −γ

2γ − 1
, kγ,2 = γ

3γ − 1
;

Ca = log 2

γ

(
1

log 2
− γ

1 − 2−γ

)
+ �′(1 − γ )

�(1 − γ )
,

ka,0 = Cγ kγ,0Ca − γ

(2γ − 1)�(1 − γ )
,

ka,1 = Cγ kγ,1Ca + γ

(2γ − 1)�(1 − γ )
,

ka,2 = Cγ kγ,2Ca − γ

(2γ − 1)�(1 − γ )
;
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Cb = γ�′(1 − γ ) − 1 + �(1 − γ )

γ 2 ,

kb,0 = 1 + Cγ kγ,0Cb + kγ,0
1 − �(1 − γ )

γ
,

kb,1 = Cγ kγ,1Cb + kγ,1
1 − �(1 − γ )

γ
,

kb,2 = Cγ kγ,2Cb + kγ,2
1 − �(1 − γ )

γ
;

kx,0 = Cγ kγ,0 + (γ−)2kb,0 − γ−ka,0,

kx,1 = Cγ kγ,1 + (γ−)2kb,1 − γ−ka,1, kx,2 = Cγ kγ,2 + (γ−)2kb,2 − γ−ka,2

and, for γ = 0,

Cγ = 2
(
log(3/2)

)−1
, kγ,0 = (log 2)−1 − (log 3)−1,

kγ,1 = −(log 2)−1, kγ,2 = (log 3)−1;
Ca = 2−1 log 2 + �′(1), Cb = −�′′(1)

and the rest follow similarly by continuity. Then the asymptotic variances, covari-
ances and biases follow by combining (12) with (13)–(16) in the obvious way.
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