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We consider the asymptotic consistency of maximum likelihood param-
eter estimation for dynamical systems observed with noise. Under suitable
conditions on the dynamical systems and the observations, we show that max-
imum likelihood parameter estimation is consistent. Our proof involves ideas
from both information theory and dynamical systems. Furthermore, we show
how some well-studied properties of dynamical systems imply the general
statistical properties related to maximum likelihood estimation. Finally, we
exhibit classical families of dynamical systems for which maximum like-
lihood estimation is consistent. Examples include shifts of finite type with
Gibbs measures and Axiom A attractors with SRB measures.

1. Introduction. Maximum likelihood estimation is a common, well-studied
and powerful technique for statistical estimation. In the context of a statistical
model with an unknown parameter, the maximum likelihood estimate of the un-
known parameter is, by definition, any parameter value under which the observed
data is most likely; such parameter values are said to maximize the likelihood func-
tion with respect to the observed data. In classical statistical models, one typically
thinks of the unknown parameter as a real number or possibly a finite dimensional
vector of real numbers. Here we consider maximum likelihood estimation for sta-
tistical models in which each parameter value corresponds to a stochastic system
observed with noise.

Hidden Markov models (HMMs) provide a natural setting in which to study
both stochastic systems with observational noise and maximum likelihood estima-
tion. In this setting, one has a parametrized family of stochastic processes that are
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assumed to be Markov, and one attempts to perform inference about the under-
lying parameters from noisy observations of the process. There has been a sub-
stantial amount of work on statistical inference for HMMs, and we do not attempt
a complete survey of that area here. In the 1960s, Baum and Petrie [5, 37] stud-
ied consistency of maximum likelihood estimation for finite state HMMs. Since
that time, several other authors have shown that maximum likelihood estimation
is consistent for HMMs under increasingly general conditions [13, 16, 18, 29–31],
culminating with the work of Douc et al. [15], which currently provides the most
general conditions on HMMs under which maximum likelihood estimation has
been shown to be consistent.

We focus here on the consistency of maximum likelihood estimation for
parametrized families of deterministic systems observed with noise. Inference
methods for deterministic systems from noisy observations are of interest in a va-
riety of scientific areas; for a few examples, see [19, 20, 28, 38–40, 46, 49].

For the purpose of this article, the terms deterministic system and dynamical
system refer to a map T : X → X. The set X is referred to as the state space, and
the transformation T governs the evolution of states over one (discrete) time in-
crement. Our main interest here lies in families of dynamical systems observed
with noise. More precisely, we consider a state space X and a parameter space �,
and to each θ in �, we associate a dynamical system Tθ : X → X. Note that the
state space X does not depend on θ . For each θ in �, we assume that the system
is started at equilibrium from a Tθ -invariant measure μθ . See Section 2 for pre-
cise definitions. We are particularly interested in situations in which the family
of dynamical systems is observed via noisy measurements (or observations). We
consider a general observation model specified by a family of probability densities
{gθ (·|x) : θ ∈ �,x ∈ X}, where gθ (·|x) prescribes the distribution of an observa-
tion given that the state of the dynamical system is x and the state of nature is θ .
Under some additional conditions (see Section 3), our first main result states that
maximum likelihood estimation is a consistent method of estimation of the param-
eter θ .

We have chosen to state the conditions of our main consistency result in terms
of statistical properties of the family of dynamical systems and the observations.
However, these particular statistical properties have not been directly studied in
the dynamical systems literature. In the interest of applying our general result to
specific systems, we also establish several connections between well-studied prop-
erties of dynamical systems and the statistical properties relevant to maximum
likelihood estimation. Finally, we apply these results to some examples, including
shifts of finite type with Gibbs measures and Axiom A attractors with SRB (Sinai–
Ruelle–Bowen) measures. It is widely accepted in the field of ergodic theory and
dynamical systems that these classes of systems have “good” statistical properties,
and our results may be viewed as a precise confirmation of this view.
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1.1. Previous work. There has been a substantial amount of work on statisti-
cal inference for HMMs, and a complete survey of that area is beyond the scope
of this work. The asymptotic consistency of maximum likelihood estimation for
HMMs has been studied at least since the work of Baum and Petrie [5, 37] un-
der the assumption that both the hidden state space X and the observation space
Y are finite sets. Leroux extended this result to the setting where Y is a general
space and X is a finite set [29]. Several other authors have shown that maximum
likelihood estimation is consistent for HMMs under increasingly general condi-
tions [13, 16, 18, 30, 31], culminating with the work of Douc et al. [15], which
currently provides the most general conditions for HMMs under which maximum
likelihood estimation has been shown to be consistent.

Let us now discuss the results of Douc et al. [15] in greater detail. Consider
parametrized families of HMMs in which both the hidden state space X and the
observation space Y are complete, separable metric spaces. The main result of [15]
shows that under several conditions, maximum likelihood estimation is a consis-
tent method of estimation of the unknown parameter. These conditions involve
some requirements on the transition kernel of the hidden Markov chain, as well
as basic integrability conditions on the observations. The proof of that result re-
lies on information-theoretic arguments, in combination with the application of
some mixing conditions that follow from the assumptions on the transition kernel.
To prove our consistency result, we take a similar information-theoretic approach,
but instead of placing explicit restrictions on the transition kernel, we identify and
study mixing conditions suitable for dynamical systems. See Remarks 2.4 and 3.3
for further discussion of our results in the context of HMMs.

Other directions of study regarding inference for HMMs include the behavior of
MLE for misspecified HMMs [14], asymptotic normality for parameter estimates
[8, 23], the dynamics of Bayesian updating [44] and starting the hidden process
away from equilibrium [15]. Extending these results to dynamical systems is of
potential interest.

The topic of statistical inference for dynamical systems has been widely studied
in a variety of fields. Early interest from the statistical point of view is reflected in
the following surveys [6, 12, 21, 22]. For a recent review of this area with many
references, see [33]. There has been significant methodological work in the area of
statistical inference for dynamical systems (for a few recent examples, see [19, 20,
38, 46, 49]), but in this section we attempt to describe some of the more theoretical
work in this area. The relevant theoretical work to date falls (very) roughly into
three classes:

• state estimation (also known as denoising or filtering) for dynamical systems
with observational noise;

• prediction for dynamical systems with observational noise;
• system reconstruction from dynamical systems without noise.
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Let us now mention some representative works from these lines of research.
In the setting of dynamical systems with observational noise, Lalley introduced

several ideas regarding state estimation in [25]. These ideas were subsequently
generalized and developed in [26, 27]. Key results from this line of study include
both positive and negative results on the consistency of denoising a dynamical sys-
tem under additive observational noise. In short, the magnitude of the support of
the noise seems to determine whether consistent denoising is possible. In related
work, Judd [24] demonstrated that MLE can fail (in a particular sense) in state esti-
mation when noise is large. It is perhaps interesting to note that there are examples
of Axiom A systems with Gaussian observational noise for which state estima-
tion cannot be consistent (by results of [26, 27]) and yet MLE provides consistent
parameter estimation (by Theorem 5.7).

Steinwart and Anghel considered the problem of consistency in prediction accu-
racy for dynamical systems with observational noise [45]. They were able to show
that support vector machines are consistent in terms of prediction accuracy under
some conditions on the decay of correlations of the dynamical system.

The work of Adams and Nobel uses ideas from regression to study reconstruc-
tion of measure-preserving dynamical systems [1, 34, 35] without noise. These re-
sults show that certain types of inference are possible under fairly mild ergodicity
assumptions. A sample result from this line of work is that a measure-preserving
transformation may be consistently reconstructed from a typical trajectory ob-
served without noise, assuming that the transformation preserves a measure that
is absolutely continuous (with Radon–Nikodym derivative bounded away from 0
and infinity) with respect to a known reference measure.

1.2. Organization. In Section 2, we give some necessary background on dy-
namical systems observed with noise. Section 3 contains a statement and discus-
sion of our main result (Theorem 3.1), which asserts that under some general
statistical conditions, maximum likelihood parameter estimation is consistent for
families of dynamical systems observed with noise. The purpose of Section 4 is to
establish connections between well-studied properties of dynamical systems and
the (statistical) conditions appearing in Theorem 3.1. Section 5 gives several ex-
amples of widely studied families of dynamical systems to which we apply The-
orem 3.1 and therefore establish consistency of maximum likelihood estimation.
The proofs of our main results appear in Section 6, and we conclude with some
final remarks in Section 7.

2. Setting and notation. Recall that our primary objects of study are
parametrized families of dynamical systems. In this section we introduce these
objects in some detail. First let us recall some terminology regarding dynamical
systems and ergodic theory. We use X to denote a state space, which we assume to
be a complete separable metric space endowed with its Borel σ -algebra X . Then
a measurable dynamical system on X is defined by a measurable map T : X → X,
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which governs the evolution of states over one (discrete) time increment. For a
probability measure μ on the measurable space (X,X ), we say that T preserves
μ (or μ is T -invariant) if μ(T −1E) = μ(E) for each set E in X . We refer to the
quadruple (X,X , T ,μ) as a measure-preserving system. To generate a trajectory
(Xk) from such a measure-preserving system, one chooses X0 according to μ and
sets Xk = T k(X0) for k ≥ 0. Note that (Xk) is then a stationary X-valued stochastic
process. Finally, the measure-preserving system (X,X , T ,μ) is said to be ergodic
if T −1E = E implies μ(E) ∈ {0,1}. See the books [36, 48] for an introduction to
measure-preserving systems and ergodic theory.

Let us now introduce the setting of parametrized families of dynamical systems.
We denote the parameter space by �, which is assumed to be a compact metric
space endowed with its Borel σ -algebra. Fix a state space X and its Borel σ -algebra
X as above. To each parameter θ in �, we associate a measurable transformation
Tθ : X → X, which prescribes the dynamics corresponding to the parameter θ . Fi-
nally, we need to specify some initial conditions. In this article, we consider the
case that the system is started from equilibrium. More precisely, we associate to
each θ in � a Tθ -invariant Borel probability measure μθ on (X,X ). Thus, to each
θ in �, we associate a measure-preserving system (X,X , Tθ ,μθ), and we refer to
the collection (X,X , Tθ ,μθ)θ∈� as a parametrized family of dynamical systems.
For ease of notation, we will refer to (Tθ ,μθ)θ∈� as a family of dynamical systems
on (X,X ), instead of referring to the family of quadruples (X,X , Tθ ,μθ)θ∈�.

We would like to study the situation that such a family of dynamical systems
is observed via noisy measurements. Here we describe the specifics of our ob-
servation model. We suppose that we have a complete, separable metric space Y,
endowed with its σ -algebra Y , which serves as our observation space. We also as-
sume that we have a family of Borel probability densities {gθ (·|x) : θ ∈ �,x ∈ X}
with respect to a fixed reference measure ν on Y. The density gθ (·|x) prescribes
the distribution of our observation given that the state of the dynamical system is x

and the state of nature is θ . Finally, we assume that the noise involved in successive
observations is conditionally independent given θ and the underlying trajectory of
the dynamical system. Thus our full model consists of a parametrized family of
dynamical systems (Tθ ,μθ)θ∈� on a measurable space (X,X ) with corresponding
observation densities {gθ (·|x) : θ ∈ �,x ∈ X}.

In general, we would like to estimate the parameter θ from our observations.
Maximum likelihood estimation provides a basic method for performing such esti-
mation. Our first main result states that maximum likelihood estimation is a consis-
tent estimator of θ under some general conditions on the family of systems and the
noise. In order to state these results precisely, we now introduce the likelihood for
our model. For the sake of notation, it will be convenient to denote finite sequences
(xi, . . . , xj ) with the notation x

j
i .

As we have assumed that our observations are conditionally independent given
θ and a trajectory (Xk), we have that for θ ∈ � and yn

0 ∈ Yn+1, the likelihood of
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observing yn
0 given θ and (Xk) is

pθ

(
yn

0 |Xn
0
) =

n∏
j=0

gθ (yj |Xj).

Since Xk = T k
θ (X0) given θ and X0, the conditional likelihood of yn

0 given θ and
X0 = x is

pθ

(
yn

0 |x) =
n∏

j=0

gθ

(
yj |T j

θ (x)
)
.

Since our model also assumes that X0 is distributed according to μθ , we have that
for θ ∈ � and yn

0 ∈ Yn+1, the marginal likelihood of observing yn
0 given θ is

pθ

(
yn

0
) =

∫
pθ

(
yn

0 |x)
dμθ(x).(2.1)

We denote by νn the product measure on Yn+1 with marginals equal to ν. Let Pθ be
the probability measure on X × YN such that for Borel sets A ⊂ X and B ⊂ Yn+1,
it holds that

Pθ (A × B) =
∫ ∫

1A(x)1B

(
yn

0
)
pθ

(
yn

0 |x)
dνn(

yn
0
)
dμθ(x),

which is well defined by Kolmogorov’s consistency theorem. Let Eθ denote ex-
pectation with respect to Pθ , and let PY

θ be the marginal of Pθ on YN.
Before we define consistency, let us first consider the issue of identifiability. Our

notion of identifiability is captured by the following equivalence relation.

DEFINITION 2.1. Define an equivalence relation on � as follows: let θ ∼ θ ′ if
P

Y
θ = P

Y
θ ′ . Denote by [θ ] the equivalence class of θ with respect to this equivalence

relation.

In a strong theoretical sense, if θ ′ is in [θ ], then the systems corresponding to
the parameter values θ ′ and θ cannot be distinguished from each other based on
observations of the system.

Now we fix a distinguished element θ0 in �. Here and in the rest of the paper,
we assume that θ0 is the “true” parameter; that is, the data are generated from the
measure P

Y
θ0

. Hence, one may think of [θ0] as the set of parameters that cannot be
distinguished from the true parameter.

DEFINITION 2.2. An approximate maximum likelihood estimator (MLE) is a
sequence of measurable functions θ̂n : (Y)n+1 → � such that

1

n
logp

θ̂n(Y n
0 )

(
Yn

0
) ≥ sup

θ

1

n
logpθ

(
Yn

0
) − oa.s.(1),(2.2)

where oa.s.(1) denotes a process that tends to zero Pθ0 -a.s. as n tends to infinity.
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REMARK 2.1. Several notions in this article, including the definition of ap-
proximate MLE above, involve taking suprema over θ in �. In many situations
of interest to us, X and � are compact, and all relevant functions are continu-
ous in these arguments. In such cases, we have sufficient regularity to guarantee
that suprema over θ in � are measurable. However, in the general situation, such
suprema are not guaranteed to be measurable, and one must take some care. As all
our measurable spaces are Polish (complete, separable metric spaces); such func-
tions are always universally measurable [7], Proposition 7.47. Similarly, a Borel-
measurable (approximate) maximum likelihood estimator need not exist, but the
Polish assumption ensures the existence of universally measurable maximum like-
lihood estimators [7], Proposition 7.50. Thus all probabilities and expectations
may be unambiguously extended to such quantities.

REMARK 2.2. In this work, we do not consider specific schemes for con-
structing an approximate MLE. Based on the existing results regarding denoising
and system reconstruction (e.g., [1, 25–27, 34, 35], which are briefly discussed in
Section 1.1), explicit construction of an approximate MLE may be possible un-
der suitable conditions. Although the description and study of such constructive
methods could be interesting, it is outside of the scope of this work.

REMARK 2.3. In principle, one could consider inference based on the condi-
tional likelihood pθ(·|x0) in place of the marginal likelihood pθ(·). However, we
do not pursue this direction in this work. For nonlinear dynamical systems, even
the conditional likelihood pθ(·|x0) may depend very sensitively on x0; see [6], for
example. Thus optimizing over x0 is essentially no more “tractable” than marginal-
izing the likelihood via an invariant measure.

REMARK 2.4. The framework of this paper may be translated into the lan-
guage of Markov chains as follows. For each θ ∈ �, we define a (degenerate)
Markov transition kernel Qθ as follows:

Qθ(x, y) = δTθ (x)(y).

In other words, for each θ ∈ �, x ∈ X, and Borel set A ⊂ X, the probability that
X1 ∈ A conditioned on X0 = x is

Qθ(x,A) = δTθ (x)(A),

where δx is defined to be a point mass at x.
In all previous work on consistency of maximum likelihood estimation for

HMMs (including [13, 15, 16, 18, 30, 31]), there have been significant assumptions
placed on the Markovian structure of the hidden chain. For example, the central
hypothesis appearing in [15] requires that there is a σ -finite measure λ on X such
that for some L ≥ 0, the L-step transition kernel QL

θ (x, ·) is absolutely continuous
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with respect to λ with bounded Radon–Nikodym derivative. If X is uncountable,
then the degeneracy of Qθ , which arises directly from the fact that we are con-
sidering deterministic systems, makes the existence of such a dominating measure
impossible. In short, it is precisely the determinism in our hidden processes that
prevents previous theorems for HMMs from applying to dynamical systems.

Nonetheless, there is a special case of systems that we consider in Section 5.1
that overlaps with the systems considered in the HMM literature. If X is a shift
of finite type, Tθ is the shift map σ : X → X for all θ , μθ is a (1-step) Markov
measure for all θ , and gθ (·|x) depends only θ and the zero coordinate x0, then
both the present work and the results in [15] apply to this setting and guarantee
consistency of any approximate MLE under additional assumptions on the noise.

3. Consistency of MLE. In this section, we show that under suitable condi-
tions, any approximate MLE is consistent for families of dynamical systems ob-
served with noise. To make this statement precise, we make the following defini-
tion of consistency.

DEFINITION 3.1. An approximate MLE (θ̂n)n is consistent at θ0 if θ̂n(Y
n
0 )

converges to [θ0], Pθ0 -a.s. as n tends to infinity.

For the sake of notation, define the function γ :� × Y →R+, where

γθ (y) = sup
x∈X

gθ (y|x).

Also, for x > 0, let log+ x = max(0, log(x)).
Consider the following conditions on a family of dynamical systems observed

with noise:

(S1) Ergodicity.
The system (Tθ0,μθ0) on (X,X ) is ergodic.
(S2) Logarithmic integrability at θ0.
It holds that

Eθ0

[
log+ γθ0(Y0)

]
< ∞

and

Eθ0

[∣∣∣∣log
∫

gθ0(Y0|x)dμθ0(x)

∣∣∣∣
]

< ∞.

(S3) Logarithmic integrability away from θ0.
For each θ ′ /∈ [θ0], there exists a neighborhood U of θ ′ such that

Eθ0

[
sup
θ∈U

log+ γθ (Y0)
]
< ∞.
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(S4) Upper semi-continuity of the likelihood.
For each θ ′ /∈ [θ0] and n ≥ 0, the function θ 	→ pθ(Y

n
0 ) is upper semi-continuous

at θ ′, Pθ0 -a.s.
(S5) Mixing condition.
There exists 	 ≥ 0 such that for each m ≥ 0, there exists a measurable function

Cm :� × Ym+1 →R+ such that if t ≥ 1 and w0, . . . ,wt ∈ Ym+1, then
∫ t∏

j=0

pθ

(
wj |T j(m+	)

θ x
)
dμθ(x) ≤

t∏
j=0

Cm(θ,wj )

t∏
j=0

pθ(wj ).

Furthermore, for each θ ′ /∈ [θ0], there exists a neighborhood U of θ ′ such that

sup
m

Eθ0

[
sup
θ∈U

logCm

(
θ,Ym

0
)]

< ∞.

(S6) Exponential identifiability.
For each θ /∈ [θ0], there exists a sequence of measurable sets An ⊂ Yn+1 such

that

lim inf
n

P
Y
θ0

(An) > 0 and lim sup
n

1

n
logPY

θ (An) < 0.

The following theorem is our main general result.

THEOREM 3.1. Suppose that (Tθ ,μθ)θ∈� is a parametrized family of dynam-
ical systems on (X,X ) with corresponding observation densities (gθ )θ∈�. If con-
ditions (S1)–(S6) hold, then any approximate MLE is consistent at θ0.

The proof of Theorem 3.1 is given in Section 6. In the following remark, we
discuss conditions (S1)–(S6).

REMARK 3.2. Conditions (S1)–(S3) involve basic irreducibility and integra-
bility conditions, and similar conditions have appeared in previous work on con-
sistency of maximum likelihood estimation for HMMs; see, for example, [15, 29].
Taken together, conditions (S1) and (S2) ensure the almost sure existence and
finiteness of the entropy rate for the process (Yn),

h(θ0) = lim
n

1

n
logpθ0

(
Yn

0
)
.

Condition (S3) serves as a basic integrability condition in the proof of Theo-
rem 3.1, in which one must essentially show that for θ /∈ [θ0],

lim sup
n

1

n
logpθ

(
Yn

0
)
< h(θ0).

Conditions (S4)–(S6) are more interesting from the point of view of dynamical
systems, and we discuss them in greater detail below.
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The upper semi-continuity of the likelihood (S4) is closely related to the conti-
nuity of the map θ 	→ μθ . In general, the continuous dependence of μθ on θ places
nontrivial restrictions on a family of dynamical systems. This property (continuity
of θ 	→ μθ ) is often called “statistical stability” in the dynamical systems and er-
godic theory literature, and it has been studied for some families of systems; for
example, see [2, 17, 42, 47] and references therein. In Section 4.1, we show how
statistical stability of the family of dynamical systems may be used to establish the
upper semi-continuity of the likelihood (S4).

The mixing condition (S5) involves control of the correlations of the obser-
vation densities along trajectories of the underlying dynamical system. Although
the general topic of decay of correlations has been widely studied in dynamical
systems (see [3] for an overview), condition (S5) is not implied by the particular
decay of correlations properties that are typically studied for dynamical systems.
Nonetheless, we show in Section 4.2 how some well-studied mixing properties of
dynamical systems imply the mixing condition (S5).

Finally, condition (S6) involves the exponential identifiability of the true pa-
rameter θ0. We show in Section 4.3 how large deviations for a family of dynamical
systems may be used to establish exponential identifiability (S6). Large deviations
estimates for dynamical systems have been studied in [41, 50], and our main goal
in Section 4.3 is to connect such results to exponential identifiability (S6).

REMARK 3.3. Suppose one has a family of bi-variate stochastic processes
{(Xθ

k , Y θ
k ) : θ ∈ �}, where (Xθ

k ) is interpreted as a hidden process and (Y θ
k ) as an

observation process. If the observations have conditional densities with respect to a
common measure given (Xθ

k ) and θ , then it makes sense to ask whether maximum
likelihood estimation is a consistent method of inference for the parameter θ .

It is well known that the setting of stationary stochastic processes may be trans-
lated into the deterministic setting of dynamical systems, which may be carried
out as follows. Let {(Xθ

k ) : θ ∈ �} be a family of stationary stochastic processes on
a measurable space (X,X ). Consider the product space X̂ = X⊗Z with correspond-
ing σ -algebra X̂ . Each process (Xθ

k ) corresponds to a probability measure μθ on
(X̂, X̂ ) with the property that μθ is invariant under the left-shift map T : X̂ → X̂
given by x = (xi)i 	→ T (x) = (xi+1)i . With this translation, Theorem 3.1 shows
that maximum likelihood estimation is consistent for families of hidden stochastic
processes (Xθ

k ) observed with noise, whenever the corresponding family of dy-
namical systems (T ,μθ) on (X̂, X̂ ) with observation densities satisfy conditions
(S1)–(S6).

With the above translation, Theorem 3.1 applies to some families of processes
allowing infinite-range dependence in both the hidden process (Xθ

k ) and the obser-
vation process (Y θ

k ). From this point of view, Theorem 3.1 highlights the fact that
maximum likelihood estimation is consistent for dependent processes observed
with noise as long as they satisfy some general conditions: ergodicity, logarithmic
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integrability of observations, continuous dependence on the parameters and some
mixing of the observation process. It is interesting to note that the existing work
on consistency of maximum likelihood estimation for HMMs [11, 13, 15, 16, 18,
29–31] makes assumptions of precisely this sort in the specific context of Markov
chains.

4. Statistical properties of dynamical systems. In our main consistency re-
sult (Theorem 3.1), we establish the consistency of any approximate MLE under
conditions (S1)–(S6). We have chosen to formulate our result in these terms be-
cause they reflect general statistical properties of dynamical systems observed with
noise that are relevant to parameter inference. However, these conditions have not
been explicitly studied in the dynamical systems literature, despite the fact that
much effort has been devoted to understanding certain statistical aspects of dynam-
ical systems. In this section, we make connections between the general statistical
conditions appearing in Theorem 3.1 and some well-studied properties of dynam-
ical systems. Section 4.1 shows how the notion of statistical stability may be used
to verify the upper semi-continuity of the likelihood (S4). Section 4.2 connects
well-known mixing properties of some measure-preserving dynamical systems to
the mixing property (S5). In Section 4.3, we show how large deviations for dynam-
ical systems may be used to deduce the exponential identifiability condition (S6).
Proofs of statements in this section, as well as additional discussion, appear in
Supplementary Appendix A [32].

4.1. Statistical stability and continuity of pθ . As discussed in Remark 3.2, the
upper semi-continuity condition (S4) places nontrivial restrictions on the family
of dynamical systems under consideration. In this section, we establish sufficient
conditions for (S4) to hold. The continuous dependence of μθ on θ is a property
called statistical stability in the dynamical systems literature [2, 17, 42, 47]. Let us
state this property precisely. Let M(X) denote the space of Borel probability mea-
sures on X. Endow M(X) with the topology of weak convergence: μn converges
to μ if

∫
f dμn converges to

∫
f dμ as n tends to infinity, for each continuous,

bounded function f : X → R. The family of dynamical systems (Tθ ,μθ)θ∈X on
(X,X ) is said to have statistical stability if the map θ 	→ μθ is continuous with
respect to the weak topology on M(X).

The following proposition shows that under some continuity and compactness
assumptions, statistical stability of the family of dynamical systems implies upper
semi-continuity of the likelihood (S4).

PROPOSITION 4.1. Suppose that X and � are compact, and the maps T :�×
X → X and g :� × X × Y → R+ are continuous. If the family (Tθ ,μθ)θ∈� has
statistical stability, then upper semi-continuity of the likelihood (S4) holds.

The proof of Proposition 4.1 appears in Supplementary Appendix A.1 [32].
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4.2. Mixing. In this section, we focus on mixing condition (S5). Recall that
(S5) involves a nontrivial restriction on the correlations of the observation densi-
ties gθ along trajectories of the underlying dynamical system. Although mixing
conditions have been widely studied in the dynamics literature, the particular type
of condition appearing in (S5) appears not to have been investigated. Nonetheless,
we show that a well-studied mixing property for dynamical systems implies the
statistical mixing property (S5).

In order to study mixing for dynamical systems, one typically places restrictions
on the type of events or observations that one considers (by considering certain
functionals of the process). For example, in some situations a substantial amount
work has been devoted to finding particular partitions of state space with respect
to which the system possess good mixing properties; an example of such partitions
are the well-known Markov partitions [9]. If a system has good mixing properties
with respect to a particular partition, and if that partition possesses certain (topo-
logical) regularity properties, then it is often possible to show that the system also
has good mixing properties for related function classes, such as Lipschitz or Hölder
continuous observables. For variations of this approach to mixing in dynamical
systems, see the vast literature on decay of correlations; for an introduction, see
the survey [3].

In this section, we follow the above approach to study mixing condition (S5)
for dynamical systems observed with noise. First, we define a mixing property for
families of dynamical systems with respect to a partition (M1). Second, we define
a regularity property for partitions (M2). Third, we define a topological regularity
property for a family of observation densities (M3). Finally, in the main result of
this section (Proposition 4.2), we show how these three properties together imply
the mixing condition (S5).

Here and in the rest of this section, we consider only invertible transformations.
It is certainly possible to modify the definitions slightly to handle the noninvertible
case, but we omit such modifications.

We will have need to consider finite partitions of X. The join of two partitions
C0 and C1 is defined to be the common refinement of C0 and C1, and it is denoted
C0 ∨ C1. Note that for any measurable transformation T : X → X, if C is a partition,
then so is T −1C = {T −1A :A ∈ C}. For a fixed partition C and i ≤ j , let Cj

i =∨j
k=i T

−k
θ C. Notice that Cj

i depends on θ through Tθ , although we suppress this
dependence in our notation. Now consider the following alternative conditions,
which may be used in place of condition (S5):

(M1) Mixing condition with respect to the partition C.
There exists L :� → R+ and 	 ≥ 0 such that for all θ ∈ �, m,n ≥ 0, A ∈ Cm

0
and B ∈ Cn

0 , it holds that

μθ

(
A ∩ T

−(m+	)
θ B

) ≤ Lθμθ(A)μθ(B).
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Furthermore, for each θ ′ /∈ [θ0] there exists a neighborhood U of θ ′ such that

sup
θ∈U

Lθ < ∞.

(M2) Regularity of the partition C. There exists β ∈ (0,1) such that for all
θ ∈ � and m,n ≥ 0, if A ∈ Cn−m and x, z ∈ A, then

d(x, z) ≤ βmin(m,n).

(M3) Regularity of observations. There exists a function K :�×Y →R+ such
that for y ∈ Y and x, z ∈ X,

gθ (y|x) ≤ gθ (y|z) exp
(
K(θ, y)d(x, z)

)
.

Furthermore, for each θ ′ /∈ [θ0], there exists a neighborhood U of θ ′ such that

Eθ0

[
sup
θ∈U

K(θ,Y0)
]
< ∞.

Let us now state the main proposition of this section, whose proof is deferred to
Supplementary Appendix A.2 [32].

PROPOSITION 4.2. Suppose (Tθ ,μθ)θ∈� is a family of dynamical systems on
(X,X ) with corresponding observation densities (gθ )θ∈�. If there exists a partition
C of X such that conditions (M1) and (M2) are satisfied, and if the observation
regularity condition (M3) is satisfied, then mixing property (S5) holds.

4.3. Exponential identifiability. In this section, we study exponential identifia-
bility condition (S6). We show how large deviations for dynamical systems may be
used in combination with some regularity of the observation densities to establish
exponential identifiability (S6).

Let X1 and X2 be metric spaces with metrics d1 and d2, respectively. Recall that
a function f : X1 → X2 is said to be Hölder continuous if there exist α > 0 and
C > 0 such that for each x, z in X1, it holds that

d2
(
f (x), f (z)

) ≤ Cd1(x, z)α.

If (T ,μ) is a dynamical system on (X,X ) such that T : X → X is Hölder continu-
ous, then we refer to (T ,μ) as a Hölder continuous dynamical system. For many
dynamical systems, the class of Hölder continuous functions f : X →R provides a
natural class of observables whose statistical properties are fairly well understood
and satisfy some large deviations estimates [41, 50].

Consider the following conditions, which we later show are sufficient to guar-
antee exponential identifiability (S6):

(L1) Large deviations. For each θ /∈ [θ0], for each Hölder continuous function
f : X →R, and for each δ > 0, it holds that

lim sup
n

1

n
logμθ

(∣∣∣∣∣1

n

n−1∑
k=0

f
(
T k

θ (x)
) −

∫
f dμθ

∣∣∣∣∣ > δ

)
< 0.
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(L2) Regularity of observations. There exists α > 0 and K :� × Y →R+ such
that for each x and z in X, it holds that

gθ (y|x) ≤ gθ (y|z) exp
(
K(θ, y)d(x, z)α

)
.

Furthermore, for θ ∈ � and C > 0, it holds that

sup
x

∫
exp

(
CK(θ, y)

)
gθ (y|x)dν(y) < ∞.

The following proposition relates large deviations for dynamical systems to the
exponential identifiability condition (S6).

PROPOSITION 4.3. Suppose that (Tθ ,μθ )θ∈� is a family of Hölder contin-
uous dynamical systems on the (X,X ) with corresponding observation densities
(gθ )θ∈�. Further suppose that the large deviations property (L1) and the obser-
vation regularity property (L2) are satisfied. Then the exponential identifiability
condition (S6) holds.

The proof of Proposition 4.3 appears in Supplementary Appendix A.3 [32].

5. Examples. In this section we present some classical families of dynamical
systems for which maximum likelihood estimation is consistent. We begin in Sec-
tion 5.1 by considering symbolic dynamical systems called shifts of finite type.
The state space for such systems consists of (bi-)infinite sequences of symbols
from a finite set, and the transformation on the state space is always given by the
“left-shift” map, which just shifts each point one coordinate to the left. Such sys-
tems are considered models of “chaotic” dynamical systems that may be defined
by a finite amount of combinatorial information. In this setting Gibbs measures
form a natural class of invariant measures, which have been studied due to their
connections to statistical physics. These measures play a central role in a topic
called the thermodynamic formalism, which is well described in the books [10,
43]. Note that kth order finite state Markov chains form a special case of Gibbs
measures. The main result of this section is Theorem 5.1, which states that under
sufficient regularity conditions, any approximate maximum likelihood estimator is
consistent for families of Gibbs measures on a shift of finite type. The crucial as-
sumptions for this theorem involve continuous dependence of the Gibbs measures
on θ and sufficiently regular dependence of gθ (y|x) on x. Additional proofs and
discussion for this section appear in the Supplementary Appendix B [32].

Having established consistency of maximum likelihood estimation for fami-
lies of Gibbs measures on a shift of finite type, we deduce in Section 5.2 that
maximum likelihood estimation is consistent for families of Axiom A attractors
observed with noise. Axiom A systems are well studied differentiable dynamical
systems on manifolds that, like shifts of finite type, exhibit “chaotic” behavior;
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for a thorough treatment of Axiom A systems, see the book [10]. In related sta-
tistical work, Lalley [25] considered the problem of denoising the trajectories of
Axiom A systems. For these systems, there is a natural class of measures, known
as SRB (Sinai–Ruelle–Bowen) measures. See the article [52] for an introduction
to these measures with discussion of their interpretation and importance. With the
construction of Markov partitions [9, 10], one may view an Axiom A attractor with
its SRB measure as a factor of a shift of finite type with a Gibbs measure. Using
this natural factor structure, we establish the consistency of any approximate max-
imum likelihood estimator for Axiom A systems. Proofs and discussion of these
topics appear in the Supplementary Appendix C [32].

5.1. Gibbs measures. In this section, we consider the setting of symbolic dy-
namics, shifts of finite type and Gibbs measures. We prove that any approximate
maximum likelihood estimator is consistent for these systems (Theorem 5.1) under
some general assumptions on the observations. Finally, we consider two examples
of observations in greater detail. In the first example, we consider “discrete” obser-
vations, corresponding to a “noisy channel.” In the second example, we consider
making real-valued observations with Gaussian observational noise. For a brief
introduction to shifts of finite type and Gibbs measures that contains everything
needed in this work, see the Supplementary Appendix B [32]. For a complete in-
troduction to shifts of finite type and Gibbs measures, see [10].

Let us now consider some families of measure-preserving systems on SFTs.
Let A be an alphabet, and let M be a binary matrix with dimensions |A| × |A|.
Let X = XM be the associated SFT, and let X be the Borel σ -algebra on X. For
α > 0, let f :� → Cα(X) be a continuous map, and let μθ be the Gibbs measure
associated to the potential function fθ . In this setting, we refer to (μθ)θ∈� as a
continuously parametrized family of Gibbs measures on (X,X ).

THEOREM 5.1. Suppose X = XM is a mixing shift of finite type and (μθ )θ∈�

is a continuously parametrized family of Gibbs measures on (X,X ). If the family of
observation densities (gθ )θ∈� satisfies the integrability conditions (S2) and (S3)
and the regularity conditions (M3) and (L2), then any approximate maximum like-
lihood estimator is consistent.

The proof of Theorem 5.1 is based on an appeal to Theorem 3.1. However, in
order to verify the hypotheses of Theorem 3.1, we combine the results of Section 4
with some well-known properties of Gibbs measures. This proof appears in the
Supplementary Appendix B [32].

REMARK 5.2. There is an analogous theory of “one-sided” symbolic dynam-
ics and Gibbs measures, in which AZ is replaced by AN and appropriate modifi-
cations are made in the definitions. The two-sided case deals with invertible dy-
namical systems, whereas the one-sided case handles noninvertible systems. We
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have stated Theorem 5.1 in the invertible setting, although it applies as well in the
noninvertible setting, with the obvious modifications.

EXAMPLE 5.3. In this example, we consider families of dynamical systems
(Tθ ,μθ) on (X,X ), where X is a mixing shift of finite type, Tθ = σ |X, and μθ is a
continuous family of Gibbs measures on X (as in Theorem 5.1). Here we consider
the particular observation model in which our observations of X are passed through
a discrete, memoryless, noisy channel. Suppose that Y is a finite set, ν is counting
measure on Y and for each symbol a in A and parameter θ in �, we have a proba-
bility distribution πθ(·|a) on Y. We consider the case that our observation densities
gθ satisfy gθ (·|x) = πθ(·|x0). This situation is covered by Theorem 5.1, since the
following conditions may be easily verified: observation integrability (S2) and (S3)
and observation regularity (M3) and (L2).

EXAMPLE 5.4. In this example, we once again consider families of dynamical
systems (Tθ ,μθ) on (X,X ), such that X is a mixing shift of finite type, Tθ = σ |X
and μθ is a continuous family of Gibbs measures on X (as in Theorem 5.1).
Here we consider the particular observation model in which we make real-valued,
parameter-dependent measurements of the system, which are corrupted by Gaus-
sian noise with parameter-dependent variance. More precisely, let us assume that
Y = R, and there exists a Lipschitz continuous ϕ :� × X → R and continuous
s :� → (0,∞) such that

gθ (y|x) = 1

s(θ)
√

2π
exp

(
− 1

2s(θ)2

(
ϕθ(x) − y

)2
)
.

We now proceed to verify conditions (S2), (S3), (M3) and (L2). First, by com-
pactness and continuity, there exist C1,C2,C3 > 0 such that for θ in �, y in Y and
x in X, it holds that

C−1
1 exp

(−C2y
2) ≤ gθ (y|x) ≤ C1 exp

(−C3y
2)

.(5.1)

From (5.1), one easily obtains the observation integrability conditions (S2)
and (S3). Furthermore, there exists C4,C5 > 0 such that for x, z ∈ X, it holds
that

gθ (y|x)

gθ (y|z)
= exp

(
− 1

2s(θ)2

[(
ϕθ(x) − y

)2 − (
ϕθ(z) − y

)2])
(5.2)

= exp
(
− 1

2s(θ)2

[(
ϕθ(x) − ϕθ(z)

)(
ϕθ(x) + ϕθ(z)

) + 2y
(
ϕθ(z) − ϕθ(x)

)])

≤ exp
((

C4 + C5|y|)∣∣ϕθ(x) − ϕθ(z)
∣∣).

Let ϕ be Lipschitz continuous with constant C6, and let K(θ, y) = C6(C4 +C5|y|).
With this choice of K and (5.2), one may easily verify the observation regularity
conditions (M3) and (L2).
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REMARK 5.5. Similar calculations to those in Example 5.4 imply that any
approximate maximum likelihood estimator is also consistent if the observational
noise is “double-exponential” [i.e., gθ (y|x) ∝ e−|y−x|]. Indeed, these calculations
should hold for most members of the exponential family, although we do not pur-
sue them here.

5.2. Axiom A systems. In this section, we show how the previous results may
be applied to some smooth (differentiable) families of dynamical systems. These
results follow easily from the results in Section 5.1, using the work of Bowen and
others (see [9, 10] and references therein) in constructing Markov partitions for
these systems. With Markov partitions, Axiom A systems may be viewed as fac-
tors of the shifts of finite type with Gibbs measures. For a brief introduction of
Axiom A systems that contains the details necessary for this work, see the Supple-
mentary Appendix C [32].

The basic fact that allows us to transfer our results from shifts of finite type
to Axiom A systems is that consistency of maximum likelihood estimation is
preserved under taking appropriate factors. Let us now make this statement pre-
cisely. Suppose that (Tθ ,μθ)θ∈� is a family of dynamical systems on (X,X ) with
observation densities (gθ )θ∈�. Further, suppose that there are continuous maps
π :� × X̃ → X and T̃ :� × X̃ → X̃ such that:

(i) for each θ , we have that πθ ◦ T̃θ = Tθ ◦ πθ ;
(ii) for each θ , there is a unique probability measure μ̃θ on X̃ such that μ̃θ ◦

π−1
θ = μθ ;
(iii) for each θ , the map πθ is injective μ̃θ -a.s.

For x in X̃ and θ in �, define g̃θ (·|x) = gθ (·|πθ(x)). Then (T̃θ , μ̃θ )θ∈� is a family
of dynamical systems on (X̃, X̃ ) with observation densities (g̃θ )θ∈�. In this situa-
tion, we say that (Tθ ,μθ , gθ )θ∈� is an isomorphic factor of (T̃θ , μ̃θ , g̃θ )θ∈�, and
π is the factor map. The following proposition addresses the consistency of maxi-
mum likelihood estimation for isomorphic factors. Its proof is straightforward and
omitted.

PROPOSITION 5.6. Suppose that (Tθ ,μθ , gθ )θ∈� is an isomorphic fac-
tor of (T̃θ , μ̃θ , g̃θ )θ∈�. Then maximum likelihood estimation is consistent for
(Tθ ,μθ , gθ )θ∈� if and only if maximum likelihood estimation is consistent for
(T̃θ , μ̃θ , g̃θ )θ∈�.

For the sake of brevity, we defer precise definitions for Axiom A systems to
Supplementary Appendix C [32].

We consider families of Axiom A systems as follows. Suppose that f :�×X →
X is a parametrized family of diffeomorphisms such that:

(i) θ 	→ fθ is Hölder continuous;
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(ii) there exists α > 0 such that for each θ , the map fθ is C1+α ;
(iii) for each θ , �(fθ) is an Axiom A attractor and the restriction fθ |�(fθ ) is

topologically mixing;
(iv) for each θ , the measure μθ is the unique SRB measure corresponding to

fθ [10], Theorem 4.1.

If these conditions are satisfied, then we say that (fθ ,μθ)θ∈� is a parametrized
family of Axiom A systems on (X,X ).

THEOREM 5.7. Suppose that (fθ ,μθ)θ∈� is a parametrized family of Ax-
iom A systems on (X,X ). Further, suppose that (gθ )θ∈� is a family of observa-
tions densities satisfying the following conditions: observation integrability (S2)
and (S3) and observation regularity (M3) and (L2). Then maximum likelihood
estimation is consistent.

The proof of Theorem 5.7 appears in the Supplementary Appendix C [32].

6. Proof of the main result. Propositions 6.1–6.5 are used in the proof of
Theorem 3.1, which is given at the end of the present section.

PROPOSITION 6.1. Suppose that condition (S1) (ergodicity) holds. Then the
process (Yk) is ergodic under PY

θ0
.

PROOF. Let m > 0 be arbitrary, and let A and B be Borel subsets of Ym+1. To
obtain the ergodicity of {Yk}k , it suffices to show that (see [36])

lim
n

1

n

n∑
k=0

P
Y
θ0

(
Ym

0 ∈ A,Y k+m
k ∈ B

) = P
Y
θ0

(
Ym

0 ∈ A
)
P

Y
θ0

(
Ym

0 ∈ B
)
.(6.1)

For x ∈ X, define

ηA(x) =
∫

1A

(
ym

0
)
pθ0

(
ym

0 |x)
dνm(

ym
0

)
,

and define ηB(x) similarly. For k > m, by the conditional independence of Ym
0 and

Y k+m
k given θ0 and X0 = x, we have that

P
Y
θ0

(
Ym

0 ∈ A,Y k+m
k ∈ B

)
=

∫ ∫
1A

(
ym

0
)
1B

(
yk+m
k

)
pθ0

(
yn+m

0 |x)
dνn+m(

yn+m
0

)
dμθ0(x)

=
∫ (∫

1A

(
ym

0
)
pθ0

(
ym

0 |x)
dνm(

ym
0

)

×
∫

1B

(
yk+m
k

)
pθ0

(
yk+m
k |T k

θ0
(x)

)
dνm(

yk+m
k

))
dμθ0(x)

=
∫

ηA(x)ηB

(
T k

θ0
(x)

)
dμθ0(x),
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where we have used Fubini’s theorem. Since m is fixed, we have that

lim
n

1

n

n∑
k=0

P
Y
θ0

(
Ym

0 ∈ A,Y k+m
k ∈ B

)

= lim
n

(
1

n

m∑
k=0

P
Y
θ0

(
Ym

0 ∈ A,Y k+m
k ∈ B

)

+ 1

n

n∑
k=m+1

∫
ηA(x)ηB

(
T k

θ0
(x)

)
dμθ0(x)

)

= lim
n

1

n

n∑
k=m+1

∫
ηA(x)ηB

(
T k

θ0
(x)

)
dμθ0(x).

Since (Tθ0,μθ0) is ergodic, an alternative characterization of ergodicity (see [36])
gives that

lim
n

1

n

n∑
k=0

P
Y
θ0

(
Ym

0 ∈ A,Y k+m
k ∈ B

) = lim
n

1

n

n∑
k=m+1

∫
ηA(x)ηB

(
T k

θ0
(x)

)
dμθ0(x)

=
∫

ηA(x) dμθ0(x)

∫
ηB(x) dμθ0(x)

= P
Y
θ0

(
Ym

0 ∈ A
)
P

Y
θ0

(
Ym

0 ∈ B
)
.

Thus we have verified equation (6.1), and the proof is complete. �

For the following propositions, recall our notation that

γθ (y) = sup
x

gθ (y|x).

PROPOSITION 6.2. Suppose that conditions (S1) and (S2) hold. Then there
exists h(θ0) ∈ (−∞,∞) such that

h(θ0) = lim
n

Eθ0

(
1

n
logpθ0

(
Yn

0
))

.

Moreover, the following equality holds Pθ0-a.s.:

h(θ0) = lim
n

1

n
logpθ0

(
Yn

0
)
.

PROOF. The proposition is a direct application of Barron’s generalized
Shannon–McMillan–Breiman theorem [4]. Here we simply check that the hy-
potheses of that theorem hold in our setting. Since condition (S1) (ergodicity)
holds, Proposition 6.1 gives (Yk) is stationary and ergodic under Pθ0 . By defini-
tion, Yn

0 has density pθ0(Y
n
0 ) with respect to the σ -finite measure νn. The measure
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νn is a product of the measure ν taken n + 1 times. As such, the sequence {νn}
clearly satisfies Barron’s condition that this sequence is “Markov with stationary
transitions.” Define Dn = Eθ0(logpθ0(Y

n+1
0 ))−Eθ0(logpθ0(Y

n
0 )). Let us show that

for n > 0, we have that

Eθ0

(∣∣logpθ0

(
Yn

0
)∣∣) < ∞,(6.2)

which clearly implies that −∞ < Dn < ∞. Once (6.2) is established, we will
have verified all of the hypotheses of Barron’s generalized Shannon–McMillan–
Breiman theorem, and the proof of the proposition will be complete.

Observe that the first part of the integrability condition (S2) gives that

Eθ0

[
log+ pθ0

(
Yn

0
)] ≤ (n + 1)Eθ0

[
log+ γθ0(Y0)

]
< ∞.(6.3)

Then the second part of the integrability condition (S2) implies that

Eθ0

[
logpθ0

(
Yn

0
)] = Eθ0

[
log

pθ0(Y
n
0 )∏n

k=0
∫

gθ0(Yk|x)dμθ0(x)

]

+Eθ0

[
n∑

k=0

log
∫

gθ0(Yk|x)dμθ0(x)

]

(6.4)

≥ −(n + 1)Eθ0

[∣∣∣∣log
∫

gθ0(Y0|x)dμθ0(x)

∣∣∣∣
]

> −∞,

where we have used that relative entropy is nonnegative. By (6.3) and (6.4), we
conclude that (6.2) holds, which completes the proof. �

The following proposition is used in the proof of Theorem 3.1 to given an almost
sure bound for the normalized log-likelihoods in terms of quantities involving only
expectations.

PROPOSITION 6.3. Suppose that conditions (S1), (S3) and (S5) hold. Let 	 be
as in condition (S5). Then for θ ′ /∈ [θ0], there exists a neighborhood U of θ ′ such
that for each m > 0, the following inequality holds Pθ0-a.s.:

lim sup
n→∞

sup
θ∈U

1

n
logpθ

(
Yn

0
) ≤ 1

m + 	
Eθ0

(
sup
θ∈U

logpθ

(
Ym

0
))

+ 	

m + 	
Eθ0

(
sup
θ∈U

log+ γθ (Y0)
)

+ 1

m + 	
Eθ0

(
sup
θ∈U

logCm

(
θ,Ym

0
))

.
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Informally, in the proof of Proposition 6.3, we use the mixing property from
condition (S5) to parse a sequence of observations into alternating sequences of
“large blocks” and “small blocks,” and then the ergodicity and integrability con-
ditions finish the proof. More specifically, we break up the sequence of observa-
tions Yn

0 into alternating blocks of length m and 	, where 	 is given by condi-
tion (S5).

PROOF. Let θ ′ /∈ [θ0]. Fix a neighborhood U of θ ′ so that the conclusions
of both condition (S3) and condition (S5) hold. Let m > 0 be arbitrary, and let
	 be as in condition (S5). We consider sequences of observations of length n,
where n is a large integer. These sequences of observations will be parsed into
alternating blocks of lengths m and 	, respectively, starting from an offset of size
s and possibly ending with a remainder sequence. For the sake of notation, we
use interval notation to denote intervals of integers. For n > 2(m + 	) and s in
[0,m + 	), let R = R(s,m, 	,n) ∈ [0,m + 	) and k = k(s,m, 	,n) ≥ 0 be de-
fined by the condition n = s + k(m + 	) + R. Then we partition [0, n] as fol-
lows:

Bs = [0, s),

Is(j) = [
s + (m + 	)(j − 1), s + (m + 	)(j − 1) + m

)
for 1 ≤ j ≤ k,

Js(j) = [
s + (m + 	)(j − 1) + m,s + (m + 	)j

)
for 1 ≤ j ≤ k,

Es = [
s + t (m + 	), n

]
.

Given a sequence Yn
0 of observations, we define the following subsequences of Yn

0
according to the above partitions of [0, n]:

bs = Y |Bs ,

ws(j) = Y |Is(j) for 1 ≤ j ≤ k,

vs(j) = Y |Js(j) for 1 ≤ j ≤ k,

es = Y |Es .

For a sequence yt
0 in Yt+1, define

γθ

(
yt

0
) =

t∏
j=0

γθ (yj ) =
t∏

j=0

sup
x

gθ (yj |x).

Then for θ in U , it follows from condition (S5) that

pθ

(
Yn

0
) ≤ γθ (bs)γθ (es) ·

k∏
j=1

γθ

(
vs(j)

) ·
k∏

j=1

Cm

(
θ,ws(j)

) ·
k∏

j=1

pθ

(
ws(j)

)
.
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Taking the logarithm of both sides and averaging over s in [0,m + 	), we ob-
tain

logpθ

(
Yn

0
) ≤ 1

m + 	

m+	−1∑
s=0

k∑
j=1

[
logpθ

(
ws(j)

) + logCm

(
θ,ws(j)

)]

+ 1

m + 	

m+	−1∑
s=0

k∑
j=1

logγθ

(
vs(j)

)
(6.5)

+ 1

m + 	

m+	−1∑
s=0

[
logγθ (bs) + logγθ (es)

]
.

Let us now take the supremum over θ in U in (6.5) and evaluate the limits of the
three terms on the right-hand side as n tends to infinity.

Let ξ1 : Ym+1 →R and ξ2 : Ym+1 →R be defined by

ξ1
(
ym

0
) = sup

θ∈U

logpθ

(
ym

0
)
,

ξ2
(
ym

0
) = sup

θ∈U

logCm

(
θ, ym

0
)
.

With this notation, we have that

1

n

m+	−1∑
s=0

k∑
j=1

[
sup
θ∈U

logpθ

(
ws(j)

) + sup
θ∈U

logCm

(
θ,ws(j)

)]

= 1

n

n∑
i=0

[
ξ1

(
Y i+m

i

) + ξ2
(
Y i+m

i

)]
.

Since (Yk) is ergodic (by Proposition 6.1), it follows from Birkhoff’s ergodic the-
orem and conditions (S3) and (S5) that the following limit exists Pθ0 -a.s.:

lim
n

1

n

m+	−1∑
s=0

k∑
j=1

[
sup
θ∈U

logpθ

(
ws(j)

) + sup
θ∈U

logCm

(
θ,ws(j)

)]

= lim
n

1

n

n∑
i=0

[
ξ1

(
Y i+m

i

) + ξ2
(
Y i+m

i

)]

= Eθ0

[
ξ1

(
Ym

0
)] +Eθ0

[
ξ2

(
Ym

0
)]

(6.6)

= Eθ0

[
sup
θ∈U

logpθ

(
Ym

0
)]

+Eθ0

[
sup
θ∈U

logCm

(
θ,Ym

0
)]

.
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Similarly, using Birkhoff’s ergodic theorem and condition (S3), we have that
the following holds Pθ0 -a.s.:

lim sup
n

1

n

m+	−1∑
s=0

k∑
j=1

sup
θ∈U

logγθ

(
vs(j)

) ≤ lim sup
n

1

n

n∑
i=0

sup
θ∈U

log+ γθ

(
Y i+	−1

i

)

≤ 	 lim sup
n

1

n

n∑
i=0

sup
θ∈U

log+ γθ (Yi)(6.7)

= 	Eθ0

[
sup
θ∈U

log+ γθ (Y0)
]
.

Finally, Birkhoff’s ergodic theorem and condition (S3) again imply that the fol-
lowing limit holds Pθ0 -a.s.:

lim
n

1

n

m+	−1∑
s=0

[
sup
θ∈U

log+ γθ (bs) + sup
θ∈U

log+ γθ (es)
]
= 0,(6.8)

where we have used that max(|Bs |, |Es |) ≤ m + 	.
Combining the inequalities in (6.5)–(6.8), we obtain that

lim sup
n→∞

sup
θ∈U

1

n
logpθ

(
Yn

0
) ≤ 1

m + 	
Eθ0

[
sup
θ∈U

logpθ

(
Ym

0
)]

+ 1

m + 	
Eθ0

[
sup
θ∈U

logCm

(
θ,Ym

0
)]

+ 	

m + 	
Eθ0

[
sup
θ∈U

log+ γθ (Y0)
]
,

as desired. �

The following proposition is a direct application of Lemma 10 in [15] to the
present setting, and we omit the proof.

PROPOSITION 6.4. Suppose that the following conditions hold: ergodic-
ity (S1), logarithmic integrability at θ0 (S2) and exponential identifiability (S6).
Then for θ /∈ [θ0], it holds that

lim sup
n

1

n
Eθ0

[
logpθ

(
Yn

0
)]

< h(θ0).

The following proposition provides an essential estimate in the proof of Theo-
rem 3.1.
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PROPOSITION 6.5. Suppose that conditions (S1)–(S6) hold, and let 	 be as
in (S5). Then for θ ′ /∈ [θ0], there exists m > 0 and a neighborhood U of θ ′ such
that

h(θ0) >
1

m + 	
Eθ0

[
sup
θ∈U

logpθ

(
Ym

0
)]

+ 	

m + 	
Eθ0

[
sup
θ∈U

log+ γθ (Y0)
]

+ 1

m + 	
Eθ0

[
sup
θ∈U

logCm

(
θ ′, Ym

0
)]

.

PROOF. Suppose θ ′ /∈ [θ0]. By Proposition 6.4, there exists ε > 0 such that

lim sup
n

1

n
Eθ0

[
logpθ ′

(
Yn

0
)]

< h(θ0) − ε.(6.9)

By conditions (S3) (logarithmic integrability away from θ0) and (S5) (mixing),
there exists a neighborhood U ′ of θ ′ and m0 > 0 such that for m ≥ m0, we have
that

ε/2 >
	

m + 	
Eθ0

[
sup
θ∈U ′

log+ γθ (Y0)
]

(6.10)

+ 1

m + 	
Eθ0

[
sup
θ∈U ′

logCm

(
θ,Ym

0
)]

.

Fix m ≥ m0 such that

1

m + 	
Eθ0

[
logpθ ′

(
Ym

0
)]

< lim sup
n

1

n
Eθ0

[
logpθ ′

(
Yn

0
)] + ε/4.(6.11)

For η > 0, let B(θ ′, η) denote the ball of radius η about θ ′ in �. For η such that
B(θ ′, η) ⊂ U ′, we have that

sup
θ∈B(θ ′,η)

logpθ

(
Ym

0
) ≤

m∑
k=0

sup
θ∈U ′

log+ γθ (Yk).

The sum above is integrable with respect to Pθ0 and does not depend on η. Then
(the reverse) Fatou’s Lemma implies that

lim sup
η→0

Eθ0

[
sup

θ∈B(θ ′,η)

logpθ

(
Ym

0
)] ≤ Eθ0

[
lim sup

η→0
sup

θ∈B(θ ′,η)

logpθ

(
Ym

0
)]

.

By condition (S4) [upper semi-continuity of θ 	→ pθ(Y
m
0 )], we see that

Eθ0

[
lim sup

η→0
sup

θ∈B(θ ′,η)

logpθ

(
Ym

0
)] ≤ Eθ0

[
logpθ ′

(
Ym

0
)]

.
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Now by an appropriate choice of η > 0, we have shown that there exists a neigh-
borhood U ⊂ U ′ of θ ′ such that

1

m + 	
Eθ0

[
sup
θ∈U

logpθ

(
Ym

0
)]

<
1

m + 	
Eθ0

[
logpθ ′

(
Ym

0
)] + ε/4.(6.12)

Combining estimates (6.9)–(6.12), we obtain the desired inequality. �

PROOF OF THEOREM 3.1. Let h(θ0) be defined as in Proposition 6.2. We
prove the theorem by showing the following statement: for each closed set C in �

such that C ∩ [θ0] = ∅, it holds that

lim sup
n

sup
θ∈C

1

n
logpθ

(
Yn

0
)
< h(θ0).(6.13)

Let C be a closed subset of � such that C ∩ [θ0] = ∅. Since � is compact, C is
compact. Suppose that for each θ ′ ∈ C, there exists a neighborhood U of θ ′ such
that

lim sup
n

sup
θ∈U∩C

1

n
logpθ

(
Yn

0
)
< h(θ0).(6.14)

Then by compactness, we would conclude that (6.13) holds and thus complete the
proof of the theorem.

Let θ ′ be in C. Let us now show that there exists a neighborhood U of θ ′ such
that (6.14) holds. Since θ ′ is in C, we have that θ ′ /∈ [θ0]. Let 	 be as in (S5). By
Proposition 6.5, there exists m > 0 and a neighborhood U ′ of θ ′ such that

h(θ0) >
1

m + 	
Eθ0

[
sup
θ∈U ′

logpθ

(
Ym

0
)]

+ 	

m + 	
Eθ0

[
sup
θ∈U ′

log+ γθ (Y0)
]

(6.15)

+ 1

m + 	
Eθ0

[
sup
θ∈U ′

logCm

(
θ,Ym

0
)]

.

By Proposition 6.3, there exists a neighborhood U ⊂ U ′ of θ ′ such that

lim sup
n→∞

sup
θ∈U

1

n
logpθ

(
Yn

0
) ≤ 1

m + 	
Eθ0

[
sup
θ∈U

logpθ

(
Ym

0
)]

+ 	

m + 	
Eθ0

[
sup
θ∈U

log+ γθ (Y0)
]

(6.16)

+ 1

m + 	
Eθ0

[
sup
θ∈U

logCm

(
θ ′, Ym

0
)]

.

Combining (6.15) and (6.16), we obtain (6.14), which completes the proof of the
theorem. �
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7. Concluding remarks. In this paper, we demonstrate how the properties
of a family of dynamical systems affect the asymptotic consistency of maximum
likelihood parameter estimation. We have exhibited a collection of general statis-
tical conditions on families of dynamical systems observed with noise, and we
have shown that under these general conditions, maximum likelihood estimation
is a consistent method of parameter estimation. Furthermore, we have shown that
these general conditions are indeed satisfied by some classes of well-studied fam-
ilies of dynamical systems. As mentioned in the Introduction, our results can be
considered as a theoretical validation of the notion from dynamical systems that
these classes of systems have “good” statistical properties.

However, there remain interesting families of systems to which our results do
not apply, including some classes of systems that are also believed to have “good”
statistical properties. In particular, the class of systems modeled by Young towers
with exponential tail [51] has exponential decay of correlations and certain large
deviations estimates [41]. These families include a positive measure set of maps
from the quadratic family [x 	→ ax(1 − x)] and the Hénon family, as well as cer-
tain billiards and many other systems of physical and mathematical interest [51].
In short, the setting of systems modeled by Young towers with exponential tail
provides a very attractive setting in which to consider consistency of maximum
likelihood estimation. Unfortunately, our proof does not apply to systems in this
setting in general, mainly due to the presence of the mixing condition (S5), which
is not satisfied by these systems in general.

A natural next step might be to obtain rates of convergence and derive central
limit theorems for maximum likelihood estimation. To this end, it might be possi-
ble to build off of analogous results for HMMs [8, 23]. We leave these questions
for future work.

SUPPLEMENTARY MATERIAL

Supplement to “Consistency of maximum likelihood estimation for some
dynamical systems” (DOI: 10.1214/14-AOS1259SUPP; .pdf). We provide three
technical appendices. In Appendix A, we present proofs of Propositions 4.1, 4.2
and 4.3. In Appendix B, we discuss shifts of finite type and Gibbs measures and
prove Theorem 5.1. Finally, Appendix C contains definitions for Axiom A systems,
as well as a proof of Theorem 5.7.
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