
The Annals of Statistics
2014, Vol. 42, No. 4, 1312–1346
DOI: 10.1214/14-AOS1224
© Institute of Mathematical Statistics, 2014

ESTIMATING THE QUADRATIC COVARIATION MATRIX FROM
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An efficient estimator is constructed for the quadratic covariation or in-
tegrated co-volatility matrix of a multivariate continuous martingale based on
noisy and nonsynchronous observations under high-frequency asymptotics.
Our approach relies on an asymptotically equivalent continuous-time obser-
vation model where a local generalised method of moments in the spectral
domain turns out to be optimal. Asymptotic semi-parametric efficiency is es-
tablished in the Cramér–Rao sense. Main findings are that nonsynchronicity
of observation times has no impact on the asymptotics and that major effi-
ciency gains are possible under correlation. Simulations illustrate the finite-
sample behaviour.

1. Introduction. We study the estimation of the quadratic covariation (or in-
tegrated co-volatility) matrix of a multi-dimensional continuous semi-martingale.
Semi-martingales are central objects in stochastics and the estimation of their
quadratic covariation from noisy observations is certainly a fundamental topic on
its own. Because of its key importance in finance, this question attracts high at-
tention from high-frequency financial statistics with implications for portfolio al-
location, risk quantification, hedging or asset pricing. While the univariate case
has been studied extensively from both angles (see, e.g., the survey of Andersen
et al. [4] or recent work by Reiss [22] and Jacod and Rosenbaum [15]), statistical
inference for the quadratic covariation matrix is not yet well understood. This is,
on the one hand, due to a richer geometry, for example, induced by noncommuting
matrices, generating new effects and calling for a deeper mathematical understand-
ing. On the other hand, statistical challenges arise by the use of underlying mul-
tivariate high-frequency data which are typically polluted by noise. Though they
open up new ways for statistical inference, their noise properties, significantly dif-
ferent sample sizes (induced by different trading frequencies) as well as irregular

Received November 2013; revised April 2014.
1Supported by the Deutsche Forschungsgemeinschaft via SFB 649 Ökonomisches Risiko and FOR

1735 Structural Inference in Statistics: Adaptation and Efficiency.
2Supported by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF).
MSC2010 subject classifications. Primary 62M10; secondary 62G05.
Key words and phrases. Asymptotic equivalence, asynchronous observations, integrated co-

volatility matrix, high-frequency data, semi-parametric efficiency, microstructure noise.

1312

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/14-AOS1224
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


EFFICIENT QUADRATIC COVARIATION MATRIX ESTIMATION 1313

and asynchronous spacing in time make estimation in these models far from ob-
vious. Different approaches exist, partly furnish unexpected results, but are rather
linked to the method than to the statistical problem. In this paper, we strive for a
general understanding of the statistical problem itself, in particular the question of
efficiency, while at the same time we develop a local method of moments approach
which yields a simple and efficient estimator.

To remain concise, we consider the basic statistical model where the d-
dimensional discrete-time process

Y
(l)
i = X

(l)

t
(l)
i

+ ε
(l)
i , 0 ≤ i ≤ nl,1 ≤ l ≤ d,(E0)

is observed with the d-dimensional continuous martingale

Xt = X0 +
∫ t

0
�1/2(s) dBs, t ∈ [0,1],

in terms of a d-dimensional standard Brownian motion B and the squared (instan-
taneous or spot) co-volatility matrix

�(t) = (
�lr(t)

)
1≤l,r≤d ∈ R

d×d .

In financial applications, Xt corresponds to the multi-dimensional process of fun-
damental asset prices whose martingale property complies with market efficiency
and exclusion of arbitrage. The major quantity of interest is the quadratic covaria-
tion matrix

∫ 1
0 �(t) dt , computed over a normalised interval such as, for example,

a trading day.
The signal part X is assumed to be independent of the observation errors

(ε
(l)
i ),1 ≤ l ≤ d,1 ≤ i ≤ nl , which are mutually independent and centered nor-

mal with variances η2
l . In the literature on financial high-frequency data, these

errors capture microstructure frictions in the market (microstructure noise). The
observation times are given via quantile transformations as t

(l)
i = F−1

l (i/nl) for
some distribution functions Fl . While the model (E0) is certainly an idealisation
of many real data situations, its precise analysis delivers a profound understand-
ing and thus serves as a basis for developing procedures in more complex models.
During the revision of this paper, Altmeyer and Bibinger [2] have shown that the
local method of moments in a general continuous semi-martingale model (includ-
ing drift and stochastic volatility) and under general moment conditions on the
noise (ε

(l)
i ) enjoys similar asymptotic properties as in our basic model. In partic-

ular, a stable central limit theorem is established. A similar extension to random
and endogenous observations times (t

(l)
i ) would be of high interest, but does not

seem obvious; see Li et al. [20] for recent work on the case without noise and some
empirical evidence for endogenous times.

Estimation of the quadratic covariation of a price process is a core research topic
in current financial econometrics and various approaches have been put forward in
the literature. The realised covariance estimator was studied by Barndorff-Nielsen
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and Shephard [6] for a setting that neglects both microstructure noise and effects
due to the nonsyncronicity of observations. Hayashi and Yoshida [14] propose
an estimator which is efficient under the presence of asynchronicity, but without
noise. Methods accounting for both types of frictions are the quasi-maximum-
likelihood approach by Aït-Sahalia et al. [1], realised kernels by Barndorff-Nielsen
et al. [5], pre-averaging by Christensen et al. [9], the two-scale estimator by
Zhang [24] and the local spectral estimator by Bibinger and Reiss [8]. In contrast to
the univariate case, the asymptotic properties of these estimators are involved and
the structure of the terms in the asymptotic variance deviate significantly. None of
the methods outperforms the others for all settings, calling for a lower efficiency
bound as a benchmark.

In this paper, we propose a local method of moments (LMM) estimator, which
is optimal in a semi-parametric Cramér–Rao sense under the presence of noise and
the nonsynchronicity of observations. The idea rests on the (strong) asymptotic
equivalence in Le Cam’s sense of model (E0) with the continuous time signal-in-
white-noise model

dYt = Xt dt + diag
(
Hn,l(t)

)
1≤l≤d dWt , t ∈ [0,1],(E1)

where W is a standard d-dimensional Brownian motion independent of B and the
component-wise local noise level is

Hn,l(t) := ηl

(
nlF

′
l (t)

)−1/2
.(1.1)

Here, F ′
l (t) represents the local frequency of occurrences (“observation density”)

and thus nlF
′
l (t) corresponds to the local sample size, which is the continuous-time

analogue of the so called quadratic variation of time, discussed in the literature.
The advantage of the continuous-time model (E1) is particularly distinctive in the
multivariate setting where asynchronicity and different sample sizes in the discrete
data (E0) blur the fundamental statistical structure. If two sequences of statistical
experiments are asymptotically equivalent, then any statistical procedure in one
experiment has a counterpart in the other experiment with the same asymptotic
properties; see Le Cam and Yang [19] for details. Our equivalence proof is con-
structive such that the procedure we shall develop for (E1) has a concrete equivalent
in (E0) with the same asymptotic properties.

A remarkable theoretical consequence of the equivalence between (E0) and (E1)
is that under noise, the asynchronicity of the data does not affect the asymptoti-
cally efficient procedures. In fact, in model (E1), the distribution functions Fl only
generate time-varying local noise levels Hn,l(t), but the shift between observation
times of the different processes does not matter. Hence, locally varying observation
frequencies have the same effect as locally varying variances of observation errors
and may be pooled. This is in sharp contrast to the noiseless setting where the
variance of the Hayashi–Yoshida estimator [14] suffers from errors due to asyn-
chronicity, which carries over to the pre-averaged version by Christensen et al. [9]
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designed for the noisy case. Only if the noise level is assumed to tend to zero so
fast that the noiseless case is asymptotically dominant, then the nonsynchronicity
may induce additional errors.

Our proposed estimator builds on a locally constant approximation of the
continuous-time model (E1) with equi-distant blocks across all dimensions. We
show that the errors induced by this approximation vanish asymptotically. Empir-
ical local Fourier coefficients allow for a simple moment estimator for the block-
wise spot co-volatility matrix. The final estimator then corresponds to a generalised
method of moments estimator of

∫ 1
0 �(t) dt , computed as a weighted sum of all

individual local estimators (across spectral frequencies and time). Asymptotic ef-
ficiency of the resulting LMM estimator is shown to be achieved by an optimal
weighting scheme based on the Fisher information matrices of the underlying lo-
cal moment estimators.

As a result of the noncommutativity of the Fisher information matrices, the
LMM estimator for one element of the covariation matrix generally depends on
all entries of the underlying local covariances. Consequently, the volatility estima-
tor in one dimension substantially gains in efficiency when using data of all other
potentially correlated processes. These efficiency gains in the multi-dimensional
setup constitute a fundamental difference to the case of i.i.d. observations of a
Gaussian vector where the empirical variance of one component is an efficient es-
timator. Here, using the other entries cannot improve the variance estimator un-
less the correlation is known; cf. the classical Example 6.6.4 in Lehmann and
Casella [18]. This finding is natural for covariance estimation under nonhomo-
geneous noise and because of its general interest we shall discuss a related i.i.d.
example in Section 2. The possibility of efficiency gainshas been known in specific
cases for quite a while, which was then also discussed in Shephard and Xiu [23]
and Liu and Tang [21], but until now a general view and a precise lower bound
were missing.

The next Section 2 gives an overview of the estimation methodology and ex-
plains the major implications in a compact and intuitive way with the subsequent
sections establishing the general results in full rigour. Emphasis is put on the con-
crete form of the efficient asymptotic variance-covariance structure which provides
a rich geometry and has surprising consequences in practice.

In Section 3, we establish the asymptotic equivalence in Le Cam’s sense of
models (E0) and (E1) in Theorem 3.4. The regularity assumptions required for �

are less restrictive than in Reiss [22] and particularly allow � to jump.
Section 4 introduces the LMM estimator in the spectral domain. Theorem 4.2

provides a multivariate central limit theorem (CLT) for an oracle LMM estimator,
using the unknown optimal weights and an information-type matrix for normali-
sation, which allows for asymptotically diverging sample sizes in the coordinates.
Specifying to sample sizes of the same order n, Corollary 4.3 yields a CLT with
rate n1/4 and a covariance structure between matrix entries, which is explicitly
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given by concise matrix algebra. Then pre-estimated weight matrices generate a
fully adaptive version of the LMM-estimator, which by Theorem 4.4 shares the
same asymptotic properties as the oracle estimator. This allows intrinsically feasi-
ble confidence sets without pre-estimating asymptotic quantities.

In Section 5, we show that the asymptotic covariance matrix of the LMM
estimator attains a lower bound in the Cramér–Rao sense. This lower bound is
achieved by a combination of space–time transformations and advanced calculus
for covariance operators. Detailed proofs are given in the supplementary file [7].

Finally, the discretisation and implementation of the estimator for model (E0) is
briefly described in Section 6 and presented together with some numerical results.
We apply the method for a complex and realistic simulation scenario, obtained by
a superposition of time-varying seasonality functions, calibrated to real data, and
a semi-martingale process with stochastic volatilities exhibiting leverage effects.
The observation times are asynchronous and random. We conclude that the finite
sample behaviour of the LMM estimators is well predicted by the asymptotic the-
ory (even in cases where a formal proof lacks). Some comparison with competing
procedures is provided.

2. Principles and major implications.

2.1. Spectral LMM methodology. The time interval [0,1] is partitioned into
small blocks [kh, (k +1)h), k = 0, . . . , h−1 −1, such that on each block a constant
parametric co-volatility matrix estimate can be sought for (cf. the local-likelihood
approach). The main estimation idea is then to use block-wise spectral statistics
(Sjk), which represent localised Fourier coefficients as in Reiss [22]. Specifying
to the original discrete data (E0), they are calculated as

Sjk = πjh−1

(
nl∑

ν=1

(Yν − Yν−1)�jk

(
t
(l)
ν−1 + t

(l)
ν

2

))
1≤l≤d

∈ R
d,(2.1)

with sine functions �jk of frequency index j on each block [kh, (k + 1)h] given
by

�jk(t) =
√

2h

jπ
sin

(
jπh−1(t − kh)

)
1[kh,(k+1)h](t), j ≥ 1.(2.2)

The same blocks are used across all dimensions d with their size h being deter-
mined by the least frequently observed process.

The statistics (Sjk) are Riemann–Stieltjes sum approximations to Fourier inte-

grals based on a possibly nonequidistant grid. The discrete-time processes (Y
(l)
i )

can be transformed into a continuous-time process via linear interpolation in each
dimension, which yields piecewise constant (weak) derivatives, with the Sjk be-
ing interpreted as integrals over these derivatives. Mathematically, the asymptotic
equivalence of (E0) and (E1) based on this linear interpolation is made rigorous
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in Theorem 3.4. The required regularity condition is that �(t) is the sum of an
L2-Sobolev function of regularity β and an L2-martingale and the size of β ac-
commodates for asymptotically separating sample sizes (nl)1≤l≤d . In model (E1)
by partial integration, the statistics Sjk then correspond to

S
(l)
jk = πjh−1

∫ (k+1)h

kh
ϕjk(t) dY (l)(t)(2.3)

with block-wise cosine functions ϕjk = �′
jk which form an orthonormal system

in L2([0,1]). As they serve also as the eigenfunctions of the Karhunen–Loève
decomposition of a Brownian motion, they carry maximal information for �. What
is more, the spectral statistics Sjk de-correlate the observations, and thus form
their (block-wise) principal components, assuming that � and the noise levels are
block-wise constant. Then the entire family (Sjk)jk is independent and

Sjk ∼ N(0,Cjk), Cjk = �kh + π2j2h−2 diag
(
Hkh

n,l

)2
l ,(2.4)

with the kth block average �kh of � and Hkh
n,l encoding the local noise level;

cf. (4.2) below.
This relationship suggests to estimate �kh in each frequency j by bias-corrected

spectral covariance matrices SjkS
�
jk −π2j2h−2 diag ((Hkh

n,l )
2)

l
. The resulting local

method of moment (LMM) estimator then takes weighted sums across all frequen-
cies and blocks

LMM(n) :=
h−1−1∑
k=0

h

∞∑
j=1

Wjk vec
(
SjkS

�
jk − π2j2h−2 diag

((
Hkh

n,l

)2)
l

)
,

where Wjk ∈ R
d2×d2

are weight matrices and matrices A ∈ R
d×d are transformed

into vectors via

vec(A) := (A11,A21, . . . ,Ad1,A12,A22, . . . ,Ad2, . . . ,Ad(d−1),Add)� ∈R
d2

.

To ensure efficiency, the oracle and adaptive choice of the weight matrices Wjk

are based on Fisher information calculus; see Section 4 below. Let us mention that
scalar weights for each matrix estimator entry as in Bibinger and Reiss [8] will
not be sufficient to achieve (asymptotic) efficiency and the Wjk will be densely
populated.

The matrix estimator per se is not ensured to be positive semi-definite, but it is
symmetric and can be projected onto the cone of positive semi-definite matrices
by putting negative eigenvalues to zero. This projection only improves the estima-
tor, while the adjustment is asymptotically negligible in the CLT. For the relevant
question of confidence sets, the estimated nonasymptotic Fisher information ma-
trices are positive–semi-definite (basically, estimating Cjk from above) and finite
sample inference is always feasible.
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2.2. The efficiency bound. Deriving the covariance structure of a matrix es-
timator requires tensor notation; see, for example, Fackler [12] or textbooks on
multivariate analysis. Kronecker products A ⊗ B ∈ R

d2×d2
for A,B ∈ R

d×d are
defined as

(A ⊗ B)d(p−1)+q,d(p′−1)+q ′ = App′Bqq ′, p, q,p′, q ′ = 1, . . . , d.

The covariance structure for the empirical covariance matrix of a standard Gaus-
sian vector is defined as

Z = COV
(
vec

(
ZZ�)) ∈ R

d2×d2
for Z ∼ N(0,Ed).(2.5)

We can calculate Z explicitly as

Zd(p−1)+q,d(p′−1)+q ′ = (1 + δp,q)δ{p,q},{p′,q ′}, p, q,p′, q ′ = 1, . . . , d,

exploiting the property Z vec(A) = vec(A + A�) for all A ∈ R
d×d . It is clas-

sical (cf. Lehmann and Casella [18]), that for n i.i.d. Gaussian observations
Zi ∼ N(0,�), the empirical covariance matrix �̂n = 1

n

∑n
i=1 ZiZ

�
i is an asymp-

totically efficient estimator of � satisfying
√

nvec(�̂n − �)
L→N

(
0, (� ⊗ �)Z

)
.

The asymptotic variance can be easily checked by the rule vec(ABC) = (C� ⊗
A)vec(B) and the fact that Z commutes with (� ⊗ �)1/2 = �1/2 ⊗ �1/2 such
that COV(vec(�̂n)) equals

COV
(
vec

(
�1/2ZZ��1/2)) = (

�1/2 ⊗ �1/2)
Z

(
�1/2 ⊗ �1/2) = (� ⊗ �)Z.

Before proceeding, let us provide an intuitive understanding of the efficiency
gains from other dimensions by looking at another easy case with independent ob-
servations. Suppose an i.i.d. sample Z1, . . . ,Zn ∼ N(0,�), � ∈ R

d×d unknown,
is observed indirectly via Yj = Zj + εj , blurred by independent nonhomogeneous
noise εj ∼ N(0, η2

jEd), j = 1, . . . , n, with identity matrix Ed and η1, . . . , ηn > 0

known. Then the sample covariance matrix ĈY = ∑n
j=1 YjY

�
j and a bias correc-

tion yields a first natural estimator �̂(1) = ĈY − η2Ed , η2 = ∑
j η2

j /n. Yet, we can
weight each observation differently by some wj ∈ R with

∑
j wj = 1 and obtain a

second estimator �̂(2) = ∑n
j=1 wj(YjY

�
j − η2

jEd). For optimal estimation of the
first variance �11, we should choose (as in a weighted least squares approach)
wj = (�11 + η2

j )
−2/(

∑
i (�11 + η2

i )
−2) to obtain

Var
(
�̂

(2)
11

) = 2

(
n∑

j=1

(
�11 + η2

j

)−2
)−1

≤ 2

n2

n∑
j=1

(
�11 + η2

j

)2 = Var
(
�̂

(1)
11

)
,

where the bound is due to Jensen’s inequality. More generally, we can use weight
matrices Wj ∈ R

d2×d2
and introduce �̂(3) = ∑n

j=1 Wj vec(YjY
�
j − η2

jEd). Since
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the matrices Cj = � + η2
jEd commute, its covariance structure is given by

COV(�̂(3)) = ∑n
j=1 Wj(Cj ⊗ Cj)ZW�

j . This is minimal for Wj = (
∑

i C
−1
i ⊗

C−1
i )−1(C−1

j ⊗ C−1
j ), which gives COV(�̂(3)) = (

∑
j C−1

j ⊗ C−1
j )−1Z . The ma-

trices Wj are diagonal if all ηj coincide or if � is diagonal. Otherwise, the estima-
tor for one matrix entry involves in general all other entries in YjY

�
j and in par-

ticular Var(�̂(3)
11 ) < Var(�̂(2)

11 ) holds. Considering as (Yj )j≥1 the spectral statistics
(Sjk)j≥1 on a fixed block k, this example reveals the heart of our analysis for the
LMM estimator.

Similar to the i.i.d. case, for equidistant observations (Xi/n)1≤i≤n of Xt =∫ t
0 �(s) dBs without noise, the realised covariation matrix

R̂CVn =
n∑

i=1

(Xi/n − X(i−1)/n)(Xi/n − X(i−1)/n)
�

satisfies the d2-dimensional central limit theorem
√

nvec
(

R̂CVn −
∫ 1

0
�(t) dt

)
L→N

(
0,

(∫ 1

0
�(t) ⊗ �(t) dt

)
Z

)
,

provided t �→ �(t) is Riemann-integrable. In the one-dimensional case, it is known
that in the presence of noise the optimal rate of convergence not only changes
from n−1/2 to n−1/4, but also the optimal variance changes from 2σ 4 to 8σ 3. The
corresponding analogue of (� ⊗�)Z in the noisy case is not obvious at all. So far,
only the result by Barndorff-Nielsen et al. [5], establishing (� ⊗ �)Z as limiting
variance under the suboptimal rate n−1/5, was available and even a conjecture
concerning the efficiency bound was lacking.

To illustrate our multivariate efficiency results under noise let us for simplic-
ity illustrate a special case of Corollary 4.3 for equidistant observations, that is,
t
(l)
i = i/n, and homogeneous noise level ηl = η. Then the oracle (and also the

adaptive) estimator LMM(n) satisfies under mild regularity conditions (omitting
the integration variable t)

n1/4
(

LMM(n) −
∫ 1

0
vec(�)

)
L→N

(
0,2η

∫ 1

0

(
� ⊗ �1/2 + �1/2 ⊗ �

)
Z

)
.

In Theorem 5.2, it will be shown that this asymptotic covariance structure is op-
timal in a semi-parametric Cramér–Rao sense. Consequently, the efficient asymp-
totic variance AVAR for estimating

∫ 1
0 �pp(t) dt is

AVAR
(∫ 1

0
�pp(t) dt

)
= 8η

∫ 1

0
�pp(t)

(
�1/2(t)

)
pp dt.

For the asymptotic variance of the estimator of
∫ 1

0 �pq(t) dt , we obtain

2η

∫ 1

0

((
�1/2)

pp�qq + (
�1/2)

qq�pp + 2
(
�1/2)

pq�pq

)
(t) dt.
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FIG. 1. Asymptotic variances of LMM for volatility σ 2
1 (left) and co-volatility σ12 (right) plotted

against correlation ρ and noise level η2 (constant in time).

Let us illustrate specific examples. First, in the case d = 1 and � = σ 2, the asymp-
totic variance simplifies to

AVAR
(∫ 1

0
σ 2(t) dt

)
= 8η

∫ 1

0
σ 3(t) dt,

coinciding with the efficiency bound in Reiss [22]. For d > 1, p 
= q in the inde-
pendent case � = diag(σ 2

p)1≤p≤d , we find

AVAR
(∫ 1

0
�pq(t) dt

)
= 2η

∫ 1

0

(
σ 2

pσq + σpσ 2
q

)
(t) dt.

An interesting example is the case d = 2 with spot volatilities σ 2
1 (t) = σ 2

2 (t) =
σ 2(t) and general correlation ρ(t), that is, σ12(t) = (ρσ1σ2)(t). In this case, we
obtain

AVAR
(∫ 1

0
σ 2

1 (t) dt

)
= 4η

∫ 1

0
σ 3(t)

(√
1 + ρ(t) + √

1 − ρ(t)
)
dt,

AVAR
(∫ 1

0
σ12(t) dt

)
= 2η

∫ 1

0
σ 3(t)

((
1 + ρ(t)

)3/2 + (
1 − ρ(t)

)3/2)
dt.

With time-constant parameters, these bounds decay for σ 2
1 (resp., grow for σ12) in

|ρ| from 8ησ 3 (resp., 4ησ 3) at ρ = 0 to 4
√

2ησ 3 at |ρ| = 1 for both cases.
Figure 1 illustrates the asymptotic variance in the case of volatilities σ 2

1 = σ 2
2 =

1 and co-volatility σ12 = ρ (constant in time) and the first noise level given by
η1 = 1. The left plot shows the asymptotic variance of the estimator of σ 2

1 as a
function of ρ and η2. It is shown that using observations from the other (correlated)
process induces clear efficiency gains rising in ρ. If the noise level η2 for the
second process is small, the asymptotic variance can even approach zero. The plot
on the right shows the same dependence for estimating the co-volatility σ12. For
comparable size of η2 and η1 the asymptotic variance increases in ρ, which is
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explained by the fact that also the value to be estimated increases. For small values
of η2, however, the efficiency gain by exploiting the correlation prevails.

For larger dimensions d , the variance can even be of order O(1/
√

d): in the
concrete case where all volatilities and noise levels equal 1, the asymptotic vari-
ance for estimating σ 2

1 can be reduced from 8 (using only observations from the
first component or if � is diagonal) down to 8/

√
d (in case of perfect correlation).

All the preceding examples can be worked out for different noise levels ηp . For
a fixed entry (p, q), generally all noise levels enter and can be only de-coupled
in case of a diagonal covariation matrix � = diag(σ 2

p)1≤p≤d . Then the covariance
simplifies to

p 
= q : 2
∫ 1

0

(
ηpσpσ 2

q + ηqσqσ 2
p

)
(t) dt; p = q : 8

∫ 1

0

(
ηpσ 3

p

)
(t) dt.

Finally, we can also investigate the estimation of the entire quadratic covaria-
tion matrix

∫ 1
0 �(t) dt under homogeneous noise level and measure its loss by the

squared (d × d)-Hilbert–Schmidt norm. Summing up the variances for each entry,
we obtain the asymptotic risk

4η√
n

∫ 1

0

(
trace

(
�1/2)

trace(�) + trace
(
�3/2))

(t) dt.

This can be compared with the corresponding Hilbert–Schmidt norm error
1
n
(trace(�)2 + trace(�2)) for the empirical covariance matrix in the i.i.d. Gaussian

N(0,�)-setting.

3. From discrete to continuous-time observations.

3.1. Setting. First, let us specify different regularity assumptions. For func-
tions f : [0,1] → R

m, m ≥ 1 or also m = d × d for matrix values, we introduce
the L2-Sobolev ball of order α ∈ (0,1] and radius R > 0 given by

Hα(R) = {
f ∈ Hα([0,1],Rm)|‖f ‖Hα ≤ R

}
where ‖f ‖Hα := max

1≤i≤m
‖fi‖Hα,

which for matrices means ‖f ‖Hα := max1≤i,j≤d ‖fij‖Hα . We also consider
Hölder spaces Cα([0,1]) and Besov spaces Bα

p,q([0,1]) of such functions.
Canonically, for matrices we use the spectral norm ‖ · ‖ and we set ‖f ‖∞ :=
supt∈[0,1] ‖f (t)‖.

In order to pursue asymptotic theory, we impose that the deterministic sam-
plings in each component can be transferred to an equidistant scheme by respective
quantile transformations independent of nl,1 ≤ l ≤ d .

ASSUMPTION 3.1 (α). Suppose that there exist differentiable distribution
functions Fl with F ′

l ∈ Cα([0,1]), Fl(0) = 0, Fl(1) = 1 and F ′
l > 0 such that the

observation times in (E0) are generated by t
(l)
i = F−1

l (i/nl), 0 ≤ i ≤ nl , 1 ≤ l ≤ d .
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We gather all assertions on the instantaneous co-volatility matrix function �(t),
t ∈ [0,1], which we shall require at some point.

ASSUMPTION 3.2. Let � : [0,1] → R
d×d be a possibly random function with

values in the class of symmetric, positive semi-definite matrices, independent of X

and the observational noise, satisfying:

(i-β) � ∈ Hβ([0,1]) for β > 0.
(ii-α) � = �B + �M with �B ∈ Bα

1,∞([0,1]) for α > 0 and �M a matrix-
valued L2-martingale.

(iii-�) �(t) ≥ � for a strictly positive definite matrix � and all t ∈ [0,1].
We briefly discuss the different function spaces; see, for example, Cohen [11],

Section 3.2, for a survey. First, any α-Hölder-continuous function lies in the L2-
Sobolev space Hα and any Hα-function lies in the Besov space Bα

1,∞, where dif-
ferentiability is measured in an L1-sense. The important class of bounded variation
functions (e.g., modeling jumps in the volatility) lies in B1

1,∞, but only in Hα for
α < 1/2. In particular, part (ii-α), α ≤ 1, covers L2-semi-martingales by separate
bounds on the drift (bounded variation) and martingale part. Beyond classical the-
ory in this area is the fact that also nonsemi-martingales like fractional Brownian
motion BH with hurst parameter H > 1/2 give rise to feasible volatility functions
in the results below, using BH ∈ CH−ε ∩ BH

1,∞ for any ε > 0 as in Ciesielski et
al. [10].

In the sequel, the potential randomness of � is often not discussed additionally
because by independence we can always work conditionally on �. Finally, let
us point out that we could weaken the Hölder-assumptions on F1, . . . ,Fd toward
Sobolev or Besov regularity at the cost of tightening the assumptions on �. For
the sake of clarity, this is not pursued here.

Throughout the article, we write Zn = OP (δn) and Zn =OP (δn) for a sequence
of random variables Zn and a sequence δn, to express that δ−1

n Zn is tight and tends
to zero in probability, respectively. Analogously, O (or equivalently �) and O refer
to deterministic sequences. We write Zn � Yn if Zn = OP (Yn) and Yn = OP (Zn)

and the same for deterministic quantities.

3.2. Continuous-time experiment.

DEFINITION 3.3. Let E0((nl)1≤l≤d, β,R) with nl ∈ N, β ∈ (0,1],R > 0, be
the statistical experiment generated by observations from (E0) with � ∈ Hβ(R).
Analogously, let E1((nl)1≤l≤d, β,R) be the statistical experiment generated by ob-
serving (E1) with the same parameter class.

As we shall establish next, experiments (E0) and (E1) will be asymptotically
equivalent as nl → ∞,1 ≤ l ≤ d , at a comparable speed, denoting

nmin = min
1≤l≤d

nl and nmax = max
1≤l≤d

nl.
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THEOREM 3.4. Grant Assumption 3.1 with α = β on the design. The sta-
tistical experiments E0((nl)1≤l≤d, β,R) and E1((nl)1≤l≤d, β,R) are asymptoti-
cally equivalent for any β ∈ (0,1/2] and R > 0, provided nmin → ∞, nmax =
O((nmin)

1+β). More precisely, the Le Cam distance � is of order

�
(
E0

(
(nl)1≤l≤d, β,R

)
,E1

(
(nl)1≤l≤d, β,R

)) = O
(
R2

(
d∑

l=1

nl/η
2
l

)
n

−1−β
min

)
.

By inclusion, the result also applies for β > 1/2 when in the remaining expres-
sions β is replaced by min(β,1/2). A standard Sobolev smoothness of � is β

almost 1/2 for diffusions with finitely many or absolutely summable jumps. In that
case, the asymptotic equivalence result holds if nmax grows more slowly than n

3/2
min.

Theorem 3.4 is proved in the Appendix in a constructive way by warped linear in-
terpolation, which yields a readily implementable procedure; cf. Section 6 below.

4. Localisation and method of moments.

4.1. Construction. We partition the interval [0,1] in blocks [kh, (k + 1)h) of
length h. On each block a parametric MLE for a constant model could be sought
for. Its numerical determination, however, is difficult and unstable due to the non-
concavity of the ML objective function and its analysis is quite involved. Yet, the
likelihood equation leads to spectral statistics whose empirical covariances esti-
mate the quadratic covariation matrix. We therefore prefer a localised method of
moments (LMM) for these spectral statistics where for an adaptive version the
theoretically optimal weights are determined in a pre-estimation step, in analogy
with the classical (multi-step) GMM (generalised method of moments) approach
by Hansen [13].

As motivated in Section 2, let us consider the local spectral statistics Sjk in (2.3)
from the continuous-time experiment (E1). First, we consider a locally constant
approximation.

DEFINITION 4.1. Set f̄h(t) := h−1 ∫ (k+1)h
kh f (s) ds for t ∈ [kh, (k + 1)h) and

a function f on [0,1]. Assume h−1 ∈N and let Xh
t = X0 + ∫ t

0 �̄
1/2
h (s) dBs with a

d-dimensional standard Brownian motion B . Define the process

dỸt = Xh
t dt + diag

(√
H

2
n,l,h(t)

)
1≤l≤d

dWt, t ∈ [0,1],(E2)

where W is a standard Brownian motion independent of B and with noise
level (1.1). The observations from (E2) for � ∈ Hβ(R) generate experiment
E2((nl)1≤l≤d, h,β,R).

In experiment (E2), we thus observe a process with a co-volatility matrix which
is constant on each block [kh, (k + 1)h) and corrupted by noise of block-wise
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constant magnitude. Our approach is founded on the idea that for small block sizes
h and sufficient regularity this piecewise constant approximation is close to (E1).

The LMM estimator is built from the data in experiment E1, but designed for the
block-wise parametric model (E2). In (E2), the L2-orthogonality of (ϕjk) as well
as that of (�jk) imply (cf. Reiss [22])

Sjk ∼ N(0,Cjk) independent for all (j, k)(4.1)

with covariance matrix

Cjk = �kh + π2j2h−2 diag
(
Hkh

n,l

)2
l , �kh = �̄h(kh),

(4.2)
Hkh

n,l = (
H

2
n,l,h(kh)

)1/2
.

Let us further introduce the Fisher information-type matrices

Ijk = C−1
jk ⊗ C−1

jk , Ik =
∞∑

j=1

Ijk, j ≥ 1, k = 0, . . . , h−1 − 1.

Our local method of moments estimator with oracle weights LMM(n)
or exploits

that on each block a natural second moment estimator of �kh is given as a convex
combination of the bias-corrected empirical covariances:

LMM(n)
or :=

h−1−1∑
k=0

h

∞∑
j=1

Wjk vec
(
SjkS

�
jk − π2j2

h2 diag
((

Hkh
n,l

)2)
1≤l≤d

)
.(4.3)

The optimal weight matrices Wjk in the oracle case are obtained as

Wjk := I−1
k Ijk ∈R

d2×d2
.(4.4)

Note that Cjk, Ijk, Ik and Wjk all depend on (nl)1≤l≤d and h, which is omitted in

the notation. Finally, observe that (4.2) and
∑

j Wjk = Ed2 imply that LMM(n)
or is

unbiased under model (E2).

4.2. Asymptotic properties of the estimators. We formulate the main result of
this section that the oracle estimator (4.3) and also a fully adaptive version for the
quadratic covariation matrix satisfy central limit theorems.

THEOREM 4.2. Let Assumptions 3.1(α), 3.2(ii-α) and 3.2(iii-�) with α >

1/2 hold true for observations from model (E1). The oracle estimator (4.3) yields
a consistent estimator for vec(

∫ 1
0 �(s) ds) as nmin → ∞ and h = h0n

−1/2
min with

h0 → ∞. Moreover, if nmax =O(n2α
min) and h =O(n

−1/4
max ), then a multi-variate central

limit theorem holds:

I1/2
n

(
LMM(n)

or −vec
(∫ 1

0
�(s) ds

))
L−→ N(0,Z) in E1(4.5)

with Z from (2.5) and I−1
n = ∑h−1−1

k=0 h2I−1
k .
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While the preceding result is most useful in applications, it is, of course, im-
portant to understand the asymptotic covariance structure of the estimator as well;
cf. the discussion of efficiency above. Therefore, we consider comparable sample
sizes and normalise with n

1/4
min in the following result.

COROLLARY 4.3. Under the assumptions of Theorem 4.2 suppose nmin/

np → νp ∈ (0,1] for p = 1, . . . , d and introduce H(t) = diag(ηpν
1/2
p ×

F ′
p(t)−1/2)p ∈ R

d×d and �
1/2
H := H(H−1�H−1)1/2H. Then

n
1/4
min

(
LMM(n)

or −vec
(∫ 1

0
�(s) ds

))
L−→ N

(
0, I−1Z

)
in E1(4.6)

with I−1 = 2
∫ 1

0 (� ⊗ �
1/2
H + �

1/2
H ⊗ �)(t) dt . In particular, the entries satisfy for

p,q = 1, . . . , d

n
1/4
min

((
LMM(n)

or
)
p(d−1)+q −

∫ 1

0
�pq(s) ds

)
L−→ N

(
0,2(1 + δp,q)(4.7)

×
∫ 1

0

(
�pp

(
�

1/2
H

)
qq + �qq

(
�

1/2
H

)
pp + 2�pq

(
�

1/2
H

)
pq

)
(t) dt

)
.

The variance (4.7) will coincide with the lower bound obtained in Section 5
below. The local noise level in H(t) depends on the observational noise level ηp

and the local sample size ν−1
p F ′

p(t), p = 1, . . . , d , after normalisation by nmin. It
is easy to see that in the case nmin/np → 0 the asymptotic variance vanishes for
all entries (p, q), q = 1, . . . , d . We infer the structure of the asymptotic covariance
matrix using block-wise diagonalisation in Appendix B.

To obtain a feasible estimator, the optimal weight matrices Wjk = Wj(�
kh)

and the information-type matrices Ijk = Ij (�
kh) are estimated in a preliminary

step from the same data. To reduce variability in the estimate, a coarser grid of
r−1 equidistant intervals, r/h ∈ N is employed for Ŵjk . As derived in Bibinger
and Reiss [8] for supremum norm loss and extended to L1-loss and Besov reg-
ularity using the L1-modulus of continuity as in the case of wavelet estimators
(Corollary 3.3.1 in Cohen [11]), a preliminary estimator �̂(t) of the instantaneous
co-volatility matrix �(t) exists with

‖�̂ − �‖L1 = OP

(
n

−α/(4α+2)
min

)
(4.8)

for � ∈ Bα
1,∞([0,1]). For block k with kh ∈ [mr, (m + 1)r), we set

Ŵjk = Wj

(
�̂mr), Îjk = Ij

(
�̂kh)

with �̂mr = �̂r (mr), �̂kh = �̂h(kh).
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The LMM estimator with adaptive weights is then given by

LMM(n)
ad =

h−1−1∑
k=0

h

∞∑
j=1

Ŵjk vec
(
SjkS

�
jk − π2j2

h2 diag
((

Hkh
n,l

)2)
1≤l≤d

)
.(4.9)

We estimate the total covariance matrix via

Î−1
n =

h−1−1∑
k=0

h2

( ∞∑
j=1

Îjk

)−1

.(4.10)

As j → ∞, the weights Wj(�) and the matrices Ij (�) decay like j−4 in norm,
compare Lemma C.1 below, such that in practice a finite sum over frequencies
j suffices. By a tight bound on the derivatives of � �→ Wj(�), we show in Ap-
pendix C.4 the following general result.

THEOREM 4.4. Suppose � ∈ Bα
1,∞([0,1]) for α ∈ (1/2,1] satisfying α/(2α+

1) > log(nmax)/ log(nmin)−1. Choose h, r → 0 such that h0 = hn
1/2
min � log(nmin)

and n
−α/(2α+1)
min � r � (nmin/nmax)

1/2, h−1, r−1, r/h ∈ N. If the pilot estimator
�̂ satisfies (4.8), then under the conditions of Theorem 4.2 the adaptive estima-
tor (4.9) satisfies

Î1/2
n

(
LMM(n)

ad −vec
(∫ 1

0
�(s) ds

))
L−→ N(0,Z),(4.11)

with În from (4.10).
Moreover, Corollary 4.3 applies equally to the adaptive estimator (4.9).

Since the estimated În appears in the CLT, we have obtained a feasible limit
theorem and (asymptotic) inference statements are immediate.

Some assumptions of Theorem 4.4 are tighter than for the oracle estimator.
To some extent this is for the sake of clarity. Here, we have restricted Assump-
tion 3.2(ii-α) to the Besov-regular part. A generalisation of the pilot estimator to
martingales seems feasible, but is nonstandard and might require additional con-
ditions. We have also proposed a concrete order of h and r , less restrictive bounds
are used in the proof; see, for example, (C.3) below.

The lower bound for α in terms of the sample-size ratio nmax/nmin is due to
rough norm bounds for (estimated) information-type matrices. For α = 1 (bounded
variation case), the restriction imposes nmax to be slightly smaller than n

4/3
min. By

the Sobolev embedding B1
1,∞ ⊆ Hβ for all β < 1/2, the restriction nmax =O(n

1+β
min )

from Theorem 3.4 is clearly also satisfied in this case. It is not clear whether a more
elaborate analysis can avoid these restrictions. Still, to the best of our knowledge,
a feasible CLT for asymptotically separating sample sizes has not been obtained
before.
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5. Semi-parametric Cramér–Rao bound. We shall derive an efficiency
bound for the following basic case of observation model (E1):

dYt = Xt dt + 1√
n

dWt, Xt =
∫ t

0
�(s)1/2 dBs, t ∈ [0,1],(5.1)

where

�(t) = �0(t) + εH(t), �0(t)
1/2 = O(t)��(t)O(t).(5.2)

We assume �0(t) and H(t) to be known symmetric matrices, O(t) orthogonal
matrices, �(t) = diag(λ1(t), . . . , λd(t)) diagonal and consider ε ∈ [−1,1] as un-
known parameter. Furthermore, we require Assumption 3.2(iii-�) for all �. Fi-
nally, we impose throughout this section the regularity assumption that the matrix
functions O(t),H(t),�(t) are continuously differentiable.

The key idea is to transform the observation of dYt in such a manner that
the white noise part remains invariant in law while for the central parameter
�(t) = �0(t) the process X is transformed to a process with independent coor-
dinates and constant volatility. It turns out that this can only be achieved at the
cost of an additional drift in the signal. The construction first rotates the observa-
tions via O(t), which diagonalises �0(t), and then applies a coordinate-wise time-
transformation, corrected by a multiplication term to ensure L2-isometry such that
the white noise remains law-invariant. All proofs are delegated to the supplemen-
tary file [7].

We introduce the coordinate-wise time changes by

ri(t) =
∫ t

0 λi(s) ds∫ 1
0 λi(s) ds

and (Trg)(t) := (
g1

(
r1(t)

)
, . . . , gd

(
rd(t)

))�
for g = (g1, . . . , gd) :R→R

d . Moreover, we set

�̄ :=
∫ 1

0
�(s)ds, R′(t) := �̄−1�(t) = diag

(
r ′

1(t), . . . , r
′
d(t)

)
.

LEMMA 5.1. By transforming dȲ = T −1
r M(R′)−1/2O dY , the observation

model (5.1), (5.2) is equivalent to observing

dȲ (t) = S(t) dt + 1√
n

dW̄(t)(5.3)

with

S(t) = T −1
r

((
R′)−1

(∫ ·
0

((
R′)−1/2

O
)′
(s)X(s) ds

+
∫ ·

0

(
R′(s)

)−1/2
O(s) dX(s)

))
(t)
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for t ∈ [0,1]. At ε = 0 the observation dȲ (t) reduces to(∫ t

0
T −1

r

((
R′)−1((

R′)−1/2
O

)′
X

)
(s) ds + �̄B̄(t)

)
dt + 1√

n
dW̄(t).(5.4)

Here W̄ and B̄ are Brownian motions obtained from W and B , respectively, via
rotation and time shift.

If we may forget in (5.4) the first term, which is a drift term with respect to the
martingale part �̄B̄(t), then the central observation is indeed a constant volatility
model in white noise.

Let us introduce the multiplication operator MAg := Ag and the integration op-
erator Ig(t) = − ∫ 1

t g(s) ds and its adjoint I ∗g(t) = − ∫ t
0 g(s) ds. The covariance

operator Cn,ε on L2([0,1],Rd) obtained from observing the differential in (5.3) is
then given by

Cn,ε = T ∗
r M(R′)1/2OI ∗M�0+εHIMO�(R′)1/2Tr + n−1Id.

The covariance operator Qn,ε when omitting the drift part is given by

Qn,ε = Qn,0 + εI ∗T ∗
r MMTrI with M(t) := ((

R′)−1/2
OHO�(

R′)−1/2)
(t),

where for ε = 0 the one-dimensional Brownian motion covariance operator CBM =
I ∗I appears in Qn,0 = diag(λ̄iiCBM + n−1Id)1≤i≤d .

Standard calculations for the finite-dimensional Gaussian scale model, for ex-
ample, [18], Chapter 6.6, transfer one-to-one to the infinite-dimensional case of
observing N(0,Qn,ε) and yield as Fisher information for the parameter ε at ε = 0
the value I

Q
n = 1

2‖Q−1/2
n,0 Q̇0Q

−1/2
n,0 ‖2

HS because Q
−1/2
n,0 Qn,εQ

−1/2
n,0 is differentiable

at ε = 0 in Hilbert–Schmidt norm. We show by Hilbert–Schmidt calculus, the
Feldman–Hajek theorem and the Girsanov theorem that the models with and with-
out drift do not separate:

lim sup
n→∞

∥∥Q−1/2
n,0 Q̇0Q

−1/2
n,0 − C

−1/2
n,0 Ċ0C

−1/2
n,0

∥∥
HS < ∞.(5.5)

Consequently, the drift only contributes the negligible order O(1) =O(
√

n) to the
Fisher information. Analysing N(0,Qn,ε), we thus establish a semi-parametric
Cramér–Rao bound for estimating any linear functional of the co-volatility matrix.

THEOREM 5.2. For a continuous matrix-valued function A : [0,1] → R
d×d

consider the estimation of

ϑ :=
∫ 1

0

〈
A(t),�(t)

〉
HS dt =

∫ 1

0

d∑
i,j=1

Aij (t)�ij (t) dt ∈ R.(5.6)

Then a hardest parametric subproblem in model (5.1), (5.2) is obtained for the
perturbation of �0 by

H
∗(t) = (

�0
(
A + A�)

�
1/2
0 + �

1/2
0

(
A + A�)

�0
)
(t).
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There any estimator ϑ̂n of ϑ , which is asymptotically unbiased in the sense
d

dϑ
(Eϑ [ϑ̂n] − ϑ) → 0, satisfies as n → ∞
Varε=0(ϑ̂n)

≥ (2 +O(1))√
n

∫ 1

0

〈(
�0 ⊗ �

1/2
0 + �

1/2
0 ⊗ �0

)
Z vec(A),Z vec(A)

〉
(t) dt.

Further classical efficiency statements like the local asymptotic minimax theo-
rem would require the LAN-property of the parametric subproblem.

6. Implementation and numerical results.

6.1. Discrete-time estimator. The construction to transfer discrete-time to
continuous-time observations in the proof of Theorem 3.4 paves the way to the
discrete approximation of the local spectral statistics (2.3). Using the interpolated
process and integration by parts yields∫

ϕjk(t) dY (l)(t) � −
nl∑

ν=1

∫ t
(l)
ν

t
(l)
ν−1

�jk(t)
Y

(l)
ν − Y

(l)
ν−1

t
(l)
ν − t

(l)
ν−1

dt.

Hence, for discrete-time observations from (E0) we use the local spectral statis-
tics Sjk in (2.1). The noise terms in (4.2) translate from E1 to E0 via substituting

n−1
l

∫ (k+1)h
kh (F ′

l (s))
−1 ds by

∑
ν:kh≤t

(l)
ν ≤(k+1)h

(t
(l)
ν − t

(l)
ν−1)

2. The discrete sum times

h−1 can be understood as a block-wise quadratic variation of time in the spirit of
Zhang et al. [25]. The bias is discretised analogously. In theory and practice, fre-
quencies j larger than log(η−1

p n1/2) can be cut off as the size of the weights Wj

decays rapidly for j → ∞. Different constants in the choice of the block size h do
not cause a finite-sample bias, unless the volatility oscillates rapidly over time (in
a nonmartingale fashion).

For the adaptive estimator we are in need of local estimates of nlF
′
l , � and

estimators for η2
l ,1 ≤ l ≤ d . It is well known how to estimate noise variances

with faster
√

nl-rates; see, for example, Zhang et al. [25]. Local observation densi-
ties can be estimated with block-wise quadratic variation of time as above, which
then yield estimates Ĥ kh

n,l of Hn,l around time kh. Uniformly consistent estima-
tors for �(t), t ∈ [0,1], are feasible, for example, averaging spectral statistics for
j = 1, . . . , J over a set Kt of K adjacent blocks containing t :

�̂(t) = K−1
∑
k∈Kt

J−1
J∑

j=1

(
SjkS

�
jk − π2j2h−2 diag

((
Ĥ kh

n,l

)2
l

))
.(6.1)

We refer to Bibinger and Reiss [8] for details on the nonparametric pilot estimator
with J = 1.
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FIG. 2. Variances of estimators of σ 2
1 (left) and σ12 (right) in time-constant scenario.

6.2. Simulations. We examine the finite-sample properties of the LMM for
the case d = 2 in two scenarios. First, we compare the finite-sample variance with
the asymptotic variances from Sections 3 and 4, for a parametric setup with η2

1 =
η2

2 = 0.1, σ1 = σ2 = 1 and constant correlation ρ. We simulate n1 = n2 = 30,000
synchronous observations on [0,1]. For estimating σ 2

1 and σ12 = ρ, Figure 2 dis-
plays the rescaled Monte-Carlo variance based on 20,000 replications of the oracle
and adaptive LMM (LMMor and LMMad), as well as the adaptive spectral estima-
tor (SPECad) by Bibinger and Reiss [8]. The latter relies on the same spectral
approach, but uses only scalar weighting instead of the full information matrix
approach.

In practice, the pilot estimator from (6.1) for J not too large performed well.
As configuration we use h−1 = 10, J = 30 and K = 8, which turned out to be
an accurate choice, but the estimators are reasonably robust to alternative input
choices. For the LMM of σ 2

1 , we observe the variance reduction effect associated
with a growing signal correlation ρ, while the simulation-based variances of both
LMMor and LMMad are close to their theoretical asymptotic counterpart (Theor.).
The results for σ12 underline the precision gains compared to SPECad with uni-
variate weights when ρ increases.

Next, we consider a complex and realistic stochastic volatility setting that relies
on an extension of the widely-used Heston model as, for example, employed by
Aït-Sahalia et al. [1], accounting for both leverage effects and an intraday season-
ality of volatility. The signal process for l = 1,2 evolves as

dX
(l)
t = ϕl(t)σl(t) dZ

(l)
t , dσ 2

l (t) = αl

(
μl − σ 2

l (t)
)
dt + ψlσl(t) dV

(l)
t ,

where Z
(l)
t and V

(l)
t are standard Brownian motions with dZ

(1)
t dZ

(2)
t = ρ dt and

dZ
(l)
t dV

(m)
t = δl,mγl dt . ϕl(t) is a nonstochastic seasonal factor with

∫ 1
0 ϕ2

l (t) dt =
1. The unit time interval can represent one trading day, for example, 6.5 hours or
23,400 seconds at NYSE.
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FIG. 3. Nonstochastic volatility seasonality factors (left) and RMSE for estimators of∫ 1
0 ϕ2

1(t)σ 2
1 (t) dt (right) in stochastic volatility scenario.

We initialise the variance process σ 2
l (t) by sampling from its stationary dis-

tribution �(2αlμl/ψ
2
l ,ψ2

l /(2αl)) and vary the value of the instantaneous signal
correlation ρ, while setting (μl, αl,ψl, γl) = (1,6,0.3,−0.3), l = 1,2, which un-
der the stationary distribution, implies E[∫ 1

0 ϕ2
l (t)σ

2
l (t) dt] = 1. The seasonal fac-

tor ϕl(t) is specified in terms of intraday volatility functions estimated for S&P
500 equity data by the procedure in Andersen and Bollerslev [3]. ϕ1(t) and ϕ2(t)

are based on cross-sectional averages of the 50 most and 50 least liquid stocks,
respectively, which yields a pronounced L-shape in both cases (see Figure 3).
We add noise processes that are i.i.d. N(0, η2

l ) and mutually independent with
ηl = 0.1(E[∫ 1

0 ϕ4
l (t)σ

4
l (t) dt])1/4, computed under the stationary distribution of

σ 2
l (t). Finally, asynchronicity effects are introduced by drawing observation times

t
(l)
i , 1 ≤ i ≤ nl , l = 1,2, from two independent Poisson processes with intensities
λ1 = 1 and λ2 = 2/3 such that, on average, n1 = 23,400 and n2 = 15,600.

As a representative example, Figure 3 depicts the root mean-squared er-
rors (RMSEs) based on 40,000 replications of the following estimators of∫ 1

0 ϕ2
1(t)σ 2

1 (t) dt : the oracle and adaptive LMM using h−1 = 20, J = 15 and
K = 8, the quasi-maximum likelihood (QML) estimator by Aït-Sahalia et al. [1] as
well as an oracle version of the widely-used multivariate realised kernel (MRKor)
by Barndorff-Nielsen et al. [5]. For the latter, we employ the average univariate
mean-squared error optimal bandwidth based on the true value of

∫ 1
0 ϕ4

l (t)σ
4
l (t) dt ,

l = 1,2. Finally, we include the theoretical variance from the asymptotic theory
(Theor.), which is computed as the variance (4.7) averaged across all replications.

Three major results emerge. First, the LMM offers considerable precision gains
when compared to both benchmarks. Second, a rising instantaneous signal corre-
lation ρ is associated with a declining RMSE of the LMM, which is due to the
decreasing variance, and thus confirms the findings from Section 3 in a realistic
setting. Finally, the adaptive LMM closely tracks its oracle counterpart.
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In summary, the simulation results show that the estimator has promising prop-
erties even in settings which are more general than those assumed in (E1), allowing,
for instance, for random observation times, stochastic intraday volatility as well as
leverage effects. Even if the latter effects are not yet covered by our theory, the
proposed estimator seems to be quite robust to deviations from the idealised set-
ting.

APPENDIX A: FROM DISCRETE TO CONTINUOUS EXPERIMENTS

PROOF OF THEOREM 3.4. To establish Le Cam equivalence, we give a con-
structive proof to transfer observations in E0 to the continuous-time model E1 and
the other way round. We bound the Le Cam distance by estimates for the squared
Hellinger distance between Gaussian measures and refer to Section A.1 in [22] for
information on Hellinger distances between Gaussian measures and bounds with
the Hilbert–Schmidt norm. The crucial difference here is that linear interpolation is
carried out for nonsynchronous irregular observation schemes. Consider the linear
B-splines or hat functions

bi,n(t) = 1[(i−1)/n,(i+1)/n](t)min
(

1 + n

(
t − i

n

)
,1 − n

(
t − i

n

))
.

Define bl
i(t) := bi,nl

(Fl(t)),1 ≤ i ≤ nl,1 ≤ l ≤ d , which are warped spline func-

tions satisfying bl
i1
(t

(l)
i2

) = δi1,i2 . A centered Gaussian process Ŷ is derived from
linearly interpolating each component of Y :

Ŷ
(l)
t =

nl∑
i=1

Y
(l)
i bl

i(t) =
nl∑

i=1

X
(l)

t
(l)
i

bl
i(t) +

nl∑
i=1

ε
(l)
i bl

i(t).(A.1)

Setting A(t) = (alr (t))l,r=1,...,d = ∫ t
0 �(s) ds, the covariance matrix function

E[Ŷt Ŷ
�
s ] of the interpolated process Ŷ is determined by

E
[
Ŷ

(l)
t Ŷ (r)

s

] =
nl∑

i=1

nr∑
ν=1

alr

(
t
(l)
i ∧ t (r)ν

)
bl
i(t)b

r
ν(s) + δl,rη

2
l

nl∑
i=1

bl
i(t)b

l
i(s).

For any g = (g(1), . . . , g(d))� ∈ L2([0,1],Rd), we have in the L2-scalar product

E
[〈g, Ŷ 〉2] =

d∑
l,r=1

nl∑
i=1

nr∑
ν=1

alr

(
t
(l)
i ∧ t (r)ν

)〈
g(l), bl

i

〉〈
g(r), br

ν

〉 + d∑
l=1

nl∑
i=1

〈
g(l), bl

i

〉2
η2

l .

The sum of the addends induced by the observation noise in diagonal terms

is bounded from above by
∑d

l=1
η2
l

nl
‖g(l)/

√
F ′

l ‖2
L2 = ∑d

l=1 ‖g(l)Hn,l‖2
L2 since by
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virtue of 0 ≤ ∑
i bi,n ≤ 1,

∫
bi,n = 1/n and Jensen’s inequality:

nl∑
i=1

〈
g(l), bl

i

〉2 ≤ 1

nl

nl∑
i=1

∫ 1

0

((
g(l) ◦ F−1

l

) · (
F−1

l

)′)2
bi,nl

≤ 1

nl

∫ 1

0

((
g(l) ◦ F−1

l

) · (
F−1

l

)′)2 = 1

nl

∫ 1

0

(g(l))2

F ′
l

.

On the other hand, we have E[〈g,diag(Hn,l)l dW 〉] = ∑d
l=1 ‖g(l)Hn,l‖2

L2 for a
d-dimensional standard Brownian motion W . Consequently, a process Ȳ with
continuous-time white noise and the same signal part as Ŷ can be obtained by
adding uninformative noise. Introduce the process

dȲ =
(

nl∑
i=1

X
t
(l)
i

bl
i(t)

)
1≤l≤d

dt + diag
(
Hn,l(t)

)
1≤l≤d dWt,(A.2)

and its associated covariance operator C̄ :L2 → L2, given by

C̄g(t) =
(

d∑
r=1

nl∑
i=1

nr∑
ν=1

alr

(
t
(l)
i ∧ t (r)ν

)〈
g(r), br

ν

〉)
1≤l≤d

+ (
Hn,l(t)

2g(l)(t)
)
1≤l≤d .

In fact, it is possible to transfer observations from our original experiment E0 to
observations of (A.2) by adding N(0, C̄ − Ĉ)-noise, where Ĉ :L2 → L2 is the
covariance operator of Ŷ . Now, consider the covariance operator

Cg(t) =
∫ 1

0

∫ t∧u

0
A(s) ds g(u) du +

(
η2

l

nlF
′
l (t)

g(l)(t)

)
1≤l≤d

,

associated with the continuous-time experiment E1.
We can bound C−1/2 on L2([0,1],Rd) from below (by partial ordering of oper-

ators) by a simple matrix multiplication operator: C−1/2 ≤ Mdiag(Hn,l(t))l . Denote
the Hilbert–Schmidt or Frobenius norm by ‖ · ‖HS. The asymptotic equivalence of
observing Ȳ and Y in E1 is ensured by the Hellinger distance bound

H2(
L(Ȳ ),L(Y )

)
≤ 2

∥∥C−1/2(C̄ − C)C−1/2∥∥2
HS

≤ 2
∫ 1

0

∫ 1

0

(
d∑

l=1

d∑
r=1

Hn,l(t)
−2Hn,r(t)

−2

×
(

nl∑
i=1

nr∑
ν=1

alr

(
t
(l)
i ∧ t (r)ν

)
bl
i(t)b

r
ν(s) − alr (t ∧ s)

)2)
dt ds

= 2
∫ 1

0

∫ 1

0

(
d∑

l=1

d∑
r=1

nlnr

η2
l η

2
r
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×
(

nl∑
i=1

nr∑
ν=1

alr

(
t
(l)
i ∧ t (r)ν

)
bi,nl

(u)bν,nr (z)

− alr

(
F−1

l (u) ∧ F−1
r (z)

))2)
dudz

= O
(
R4

d∑
l=1

d∑
r=1

η−2
l η−2

r nlnrn
−2−2β
min

)
.

The estimate for the L2-distance between the function (t, s) �→ A(F−1
l (t) ∧

F−1
r (s)), (l, r) ∈ {1, . . . , d}2, and its coordinate-wise linear interpolation by

O(n
−1−β
min ∨ n

−3/2
min ) relies on a standard approximation result on a rectangular grid

of maximal width (nmin)
−1 based on the fact that this function lies in the Sobolev

class H 1+β([0,1]2) with corresponding norm bounded by 2R4. This follows im-
mediately by the product rule from A′ = � ∈ Hβ and (F−1

l )′ ∈ Cβ , together with
an L2-error bound at the skewed diagonal {(t, s) :Fl(t) = Fr(s)}.

Next, we explicitly show that E1 is at least as informative as E0. To this end, we
discretise in each component on the intervals Ii,l = [ i

nl
− 1

2nl
, i

nl
+ 1

2nl
] ∩ [0,1] for

i = 0, . . . , nl . Define(
Y ′

i

)(l) = 1

|Ii,l|
∫
F−1

l (Ii,l )
F ′

l (t) dY
(l)
t = 1

|Ii,l|
∫
F−1

l (Ii,l )
X

(l)
t F ′

l (t) dt + ε
(l)
i

(A.3)

= 1

|Ii,l|
∫
Ii,l

X
(l)

F−1(u)
du + ε

(l)
i ,

with i.i.d. N(0, η2
l )-random variables ε

(l)
i = 1

|Ii,l |
∫
F−1

l (Ii,l )
ηl(F

′
l /nl)

1/2 dW
(l)
t . The

covariances are calculated as

E
[(

Y ′
i

)(l)(
Y ′

ν

)(r)] = 1

|Ii,l||Iν,r |
∫
Ii,l

∫
Iν,r

alr

(
F−1

l (u) ∧ F−1
r

(
u′))dudu′ + δl,rδi,νη

2
l .

We obtain for the squared Hellinger distance between the laws of observation

H2(
L

((
Y

(l)
i

)
l=1,...,d;i=0,...,nl

)
,L

(((
Y ′

i

)(l))
l=1,...,d;i=0,...,nl

))
≤

d∑
l,r=1

η−2
l η−2

r

nl∑
i=0

nr∑
ν=0

(
1

|Ii,l||Iν,r |
∫
Ii,l

∫
Iν,r

alr

(
F−1

l (u) ∧ F−1
r

(
u′))

− alr

(
F−1

l (i/nl ∧ ν/nr)
)
dudu′

)2

.

Write AF
lr(u,u′) = alr (F

−1
l (u) ∧ F−1

r (u′)) and note AF
lr ∈ H 1+β([0,1]2) due

to A′ = � ∈ Hβ and F−1
l , F−1

r ∈ Cβ . For (i, ν) /∈ C := {(0,0), (0, nr), (nl,0),

(nl, nr)} the rectangle Ii,l × Iν,r is symmetric around (i/nl, ν/nr) such that the
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integral in the preceding display equals (∇ denotes the gradient)∫
Ii,l×Iν,r

∫ 1

0

(〈
∇AF

lr

(
i

nl

+ ϑ

(
u − i

nl

)
,

ν

nr

+ ϑ

(
u′ − ν

nr

))
,(

u − i

nl

, u′ − ν

nr

)〉
−

〈
∇AF

lr

(
i

nl

,
ν

nr

)
,

(
u − i

nl

, u′ − ν

nr

)〉)
dϑ dudu′.

Using Jensen’s inequality, we thus obtain further the bound for the squared
Hellinger distance:

d∑
l,r=1

η−2
l η−2

r

nl∑
i=0

nr∑
ν=0

(nl ∨ nr)
−2

|Ii,l||Iν,r |

×
∫
Ii,l×Iν,r

∫ 1

0

∥∥∇AF
lr

(
i/nl + ϑ(u − i/nl), ν/nr + ϑ

(
u′ − ν/nr

))
− ∇AF

lr(i/nl, ν/nr)1
(
(i, ν) /∈ C

)∥∥2
dϑ dudu′

=
d∑

l,r=1

η−2
l η−2

r

nlnr

(nl ∨ nr)2O
(
R4(nl ∧ nr)

−2β)

= O
(
R4

(
d∑

l=1

nl/η
2
l

)2

n
−2−2β
min

)
,

where the order estimate is due to ‖∇AF
lr‖Hβ ≤ R2 and a standard L2-approxi-

mation result for Sobolev spaces, observing that for the four corner rectangles in
C the boundedness of the respective integrals only adds the total order 4n−2

min <

nlnrn
−2−2β
min . �

APPENDIX B: ASYMPTOTICS IN THE BLOCK-WISE CONSTANT
EXPERIMENT

PROOF OF THEOREM 4.2. As we have seen, the estimator is unbiased in E2.
For the covariance structure we use the independence between blocks and frequen-
cies and the commutativity with Z to infer

COVE2

(
I1/2
n LMM(n)

or
)

= I1/2
n

h−1−1∑
k=0

h2
∞∑

j=1

Wjk COVE2

(
vec

(
SjkS

�
jk

))
W�

jkI1/2
n(B.1)

= I1/2
n

h−1−1∑
k=0

h2I−1
k I1/2

n Z = Z.
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Since the local Fisher-type information matrices are strictly positive definite, and
thus invertible by Assumption 3.2(iii), the multivariate CLT (4.5) for the oracle
estimator follows by applying a standard CLT for triangular schemes as Theo-
rem 4.12 from [16]. The Lindeberg condition is implied by the stronger Lyapunov
condition which is easily verified here by bounding moments of order 4.

In Appendix C below, we prove that in experiment E1 the estimator LMM(n)
or has

an additional bias of order O(n
−α/2
min ) + OP (h) and a difference in the covariance

of order O(hn
−α/2
min ) +OP (h2) under our Assumption 3.2(ii-α), (iii-�), which by

Slutsky’s lemma yields an asymptotically negligible term compared to the best
attainable rate (in any entry) n

−1/4
max ; cf. Theorem 5.2. �

PROOF OF COROLLARY 4.3. An important property of our oracle estimator is
its equi-variance with respect to invertible linear transformations Ak on each block
k in the sense that for observed statistics S̃jk := AkSjk ∼ N(0, C̃jk) under E2 we
obtain [A−� := (A�)−1 for short]

Cjk = A−1
k C̃jkA

−�
k , Ijk = (Ak ⊗ Ak)

�Ĩjk(Ak ⊗ Ak),

Ik = (Ak ⊗ Ak)
�Ĩk(Ak ⊗ Ak)

and hence with some (deterministic) bias correction terms Bjk, B̃jk

LMM(n)
or =

h−1−1∑
k=0

h(Ak ⊗ Ak)
−1Ĩ−1

k

∑
j≥0

Ĩjk(Ak ⊗ Ak)vec
(
SjkS

�
jk − Bjk

)

=
h−1−1∑
k=0

(Ak ⊗ Ak)
−1

(
hĨ−1

k

∑
j≥0

Ĩjk vec
(
S̃jkS̃

�
jk − B̃jk

))
.

For the covariance, we use commutativity with Z and obtain likewise

COVE2

(
LMM(n)

or
) =

h−1−1∑
k=0

h2(Ak ⊗ Ak)
−1Ĩ−1

k (Ak ⊗ Ak)
−�Z.(B.2)

We use this property to diagonalise the problem on each block. In terms of the
noise level matrix Hk := diag(Hk

l,n)l=1,...,d , let Ok be an orthogonal matrix such
that

�kh = OkH−1
k �khH−1

k O�
k(B.3)

is diagonal. Note that �kh grows with n, but we drop the dependence on n in the
notation for all matrices �kh, Ok and Hk . Use Ak = OkH−1

k to obtain the spectral
statistics (2.3) transformed:

S̃jk = OkH−1
k Sjk ∼ N(0, C̃jk) independent for all (j, k),
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which yields a simple-structured diagonal covariance matrix:

C̃jk = OkH−1
k CjkH−1

k O�
k = �kh + π2j2

h2 Ed.

A key point is that the covariance structure (B.2) in R
d2×d2

is for independent
components S̃jk also diagonal, up to symmetry in the co-volatility matrix entries.
Summing Ĩjk over j is explicitly solvable and gives for p,q = 1, . . . , d

(
hĨ−1

k

)
p,q =

(
h−1

∞∑
j=1

(
C̃−1

jk ⊗ C̃−1
jk

)
p,q

)−1

=
(
h−1

∞∑
j=1

(
�kh

pp + π2j2h−2)−1(
�kh

qq + π2j2h−2)−1
)−1

=
(√

�kh
qq coth(h

√
�kh

pp) −
√

�kh
pp coth(h

√
�kh

qq)

2
√

�kh
pp�kh

qq(�kh
qq − �kh

pp)
− 1

2h�kh
pp�kh

qq

)−1

= 2
(
�kh

pp

√
�kh

qq + �kh
qq

√
�kh

pp

)
× (

1 +O
(
e
−2h

√
�kh

pp∧�kh
qq + h−1(

�kh
pp ∧ �kh

qq

)−1/2))
,

using �kh ≥ (minl,t nlF
′
l (t)η

−2
l )� � nminEd , h2nmin → ∞ and coth(x) = 1 +

O(e−2x) for x → ∞. We thus obtain uniformly over k

hĨ−1
k = (

2 +O(1)
)(

�kh⊗√
�kh+√

�kh⊗�kh
)
.

By formula (B.2), we infer in terms of (�kh
H )1/2 := Hk(H−1

k �khH−1
k )1/2Hk

COVE2

(
LMM(n)

or
) = (

2 +O(1)
)∑h−1−1

k=0 h
(
�kh⊗(

�kh
H

)1/2+(
�kh
H

)1/2⊗�kh
)
Z.

The final step consists in combining n
1/2
minHn,l(t) → Hl(t) uniformly in t together

with a Riemann sum approximation to conclude

lim
nmin→∞n

1/2
min COVE2

(
LMM(n)

or
)

= 2
(∫ 1

0

(
� ⊗ (

H
(
H−1�H−1)1/2H

)
+ (

H
(
H−1�H−1)1/2H

) ⊗ �
)
(t) dt

)
Z. �
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APPENDIX C: PROOFS FOR CONTINUOUS MODELS

C.1. Weight matrix estimates. We shall often need general norm bounds on
the weight matrices Wjk .

LEMMA C.1. The oracle weight matrices satisfy ‖Wjk‖ � h−1
0 (1 + j4/h4

0)
−1

uniformly over (j, k) and matrices �kh with ‖�kh‖∞ + ‖(�kh)−1‖∞ � 1.

PROOF. From the proof of Corollary 4.3, we infer

Wjk = (
HkO

�
k ⊗ HkO

�
k

)
W̃jk

(
OkH

−1
k ⊗ OkH

−1
k

)
with

W̃jk = (
2 +O(1)

)
h−1((

�khC̃−1
jk

)⊗(√
�khC̃−1

jk

)+(√
�khC̃−1

jk

)⊗(
�khC̃−1

jk

))
.

We evaluate one factor in Wjk using∥∥HkO
�
k �khC̃−1

jk OkH
−1
k

∥∥ = ∥∥�kh(
�kh + π2j2h−2H 2

k

)−1∥∥ �
(
1 + j2h−2n−2

min

)−1
.

By ‖A ⊗ B‖ ≤ ‖A‖‖B‖ and
√

�khC̃−1
jk = (�khC̃−1

jk )(�kh)−1/2 (the matrices are

diagonal), we infer ‖Wjk‖ � h−1(1 + j2h−2
0 )−2‖HkO

�
k (�kh)−1/2OkH

−1
k ‖. To

evaluate the last norm, despite matrix multiplication is noncommutative, we note(
O�

k

(
�kh)−1/2

OkH
−1
k

)�
O�

k

(
�kh)−1/2

OkH
−1
k = H−1

k O�
k

(
�kh)−1

OkH
−1
k

= (
�kh)−1

,

whence by polar decomposition |O�
k (�kh)−1/2OkH

−1
k | = (�kh)−1/2 implies∥∥O�

k

(
�kh)−1/2

OkH
−1
k

∥∥ = ∥∥(
�kh)−1/2∥∥ � 1.

Together with ‖Hk‖ � n
−1/2
min this yields ‖Wjk‖ � h−1(1 + j2h−2

0 )−2n
−1/2
min , which

gives the result. �

Moreover, for the adaptive estimator we have to control the dependence of the
weight matrices Wjk = Wj(�

kh) on �kh. We use the notion of matrix differentia-
tion as introduced in [12]: define the derivative dA/dB of a matrix-valued function
A(B) ∈ R

o×p with respect to B ∈ R
q×r as the R

op×qr matrix with row vectors
(d/dBab)vec(A),1 ≤ a ≤ q,1 ≤ b ≤ r .

LEMMA C.2. For the derivatives of the oracle weight matrices Wj(�
kh), as-

suming ‖�kh‖∞ + ‖(�kh)−1‖∞ � 1, we have uniformly over (j, k):∥∥∥∥ d

d�kh
Wj

(
�kh)∥∥∥∥ � h−1

0

(
1 + j4h−4

0

)−1
.(C.1)
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PROOF. Since the notion of matrix derivatives relies on vectorisation, the iden-
tities vec(I−1

k Ijk) = (Ed2 ⊗ I−1
k )vec(Ijk) = (I�

jk ⊗ Ed2)vec(I−1
k ) give rise to the

matrix differentiation product rule

d

d�kh
Wjk = (Ijk ⊗ Ed2)

dI−1
k

d�kh
+ (

Ed2 ⊗ I−1
k

) dIjk

d�kh
.(C.2)

Applying the mixed product rule (A ⊗ B)(C ⊗ D) = (AC ⊗ BD) repeatedly, and
the differentiation product rule and chain rule to Ijk = C−1

jk ⊗ C−1
jk , we obtain

d

dCjk

(
C−1

jk ⊗ C−1
jk

)
= −((

C−1
jk ⊗ C−1

jk

) ⊗ (
C−1

jk ⊗ C−1
jk

))
× ((

(Cjk ⊗ Ed ⊗ Ed2) + (Ed2 ⊗ Ed ⊗ Cjk)
)
(Ed ⊗ Cd,d ⊗ Ed)

× ((
vec(Ed) ⊗ Ed2

) + (
Ed2 ⊗ vec(Ed)

)))
,

with the so-called commutation matrix Cd,d = Z − Ed2 . By orthogonality of the
last factors in both addends, ‖A ⊗ B‖ = ‖A‖‖B‖, and the mixed product rule, we
infer for the norm of the second addend in (C.2)∥∥∥∥(

Ed2 ⊗ I−1
k

) dIjk

d�kh

∥∥∥∥ ≤ 2
∥∥(

Ed ⊗ C−1
jk

) ⊗ (
I−1
k

(
C−1

jk ⊗ C−1
jk

))∥∥
= 2‖Wjk‖

∥∥C−1
jk

∥∥ � ‖Wjk‖.

By virtue of (I−1
k ⊗Ed2)

dIk

d�kh = −(Ed2 ⊗ Ik)
dI−1

k

d�kh it follows with the mixed prod-

uct rule that dI−1
k /d�kh = −(I−1

k ⊗ I−1
k )(dIk/d�kh). This yields for the norm of

the first addend in (C.2)∥∥∥∥(Ijk ⊗ Ed2)
dI−1

k

d�kh

∥∥∥∥ =
∥∥∥∥(

W�
jk ⊗ I−1

k

) dIk

d�kh

∥∥∥∥ � ‖Wjk‖
∥∥∥∥(

Ed2 ⊗ I−1
k

)∑
j ′

dIj ′k
d�kh

∥∥∥∥
� ‖Wjk‖

(∑
j ′

‖Wj ′k‖
)

� ‖Wjk‖

since we can differentiate inside the sum by the absolute convergence of∑
j ′ ‖Wj ′k‖. This proves our claim by Lemma C.1. �

C.2. Bias bound. Using the formula 1−2 sin2(x) = cos(2x) and Itô isometry,
the (d × d)-matrix of (negative) biases (in the signal) of the addends in (4.3) as an
estimator of �kh in experiment E1 is given by

Bj,k := 2h−1
∫ (k+1)h

kh
�(t) cos

(
2jπh−1(t − kh)

)
dt,
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which has the structure of a j th Fourier cosine coefficient. We introduce the cor-
responding weighting function in the time domain:

Gk(u) = 2
∞∑

j=1

Wjk cos(2jπu) ∈ R
d2×d2

, u ∈ [0,1].

Parseval’s identity then shows for the d2-dimensional block-wise bias vector
of (4.3):

∞∑
j=1

Wjk vec(Bj,k) =
∫ (k+1)h

kh
h−1Gk

(
h−1(t − kh)

)
vec

(
�(t)

)
dt.

The vector of total biases of (4.3) is then the linear functional of �:

h−1−1∑
k=0

h

∞∑
j=1

Wjk vec(Bjk) =
∫ 1

0
Gh(t)vec

(
�(t)

)
dt,

where for t ∈ [kh, (k + 1)h)

Gh(t) = Gk

(
h−1(t − kh)

) = 2
∞∑

j=1

Wjk cos
(
2πjh−1t

)
.

For � in the Besov space Bα
1,∞([0,1]), 0 < α ≤ 1, the L1-modulus of continu-

ity satisfies ωL1([0,1])(�, δ) ≤ ‖�‖Bα
1,∞δα ; see, for example, [11], Section 3.2. We

have for δ ∈ (0,1) and s ∈ [0,1 − δ]∣∣∣∣∫ δ

0
vec

(
�(t + s)

)
cos

(
2πt

δ

)
dt

∣∣∣∣
= 1

δ

∣∣∣∣∫ δ

0

∫ δ

0
vec

(
�(t + s) − �(u + s)

)
du cos

(
2πt

δ

)
dt

∣∣∣∣
≤ sup

0≤v≤δ

∫ δ

0

∣∣vec
(
�(t + s) − �(t + v + s)

)∣∣dt ≤ ωL1([s,s+δ])(�, δ).

This shows for the total bias in estimation of the volatility in X by the bound on
‖Wjk‖ in Lemma C.1∣∣∣∣∫ 1

0
Gh(t)vec

(
�(t)

)
dt

∣∣∣∣ ≤ 2
h−1−1∑
k=0

∞∑
j=1

‖Wjk‖ωL1([kh,(k+1)h])(�,h/j)

�
∞∑

j=1

h−1
0

(
1 + (h0/j)4)−1

(h/j)α � (h/h0)
α = n

−α/2
min .

We thus have a bias of order O(n
−α/2
min ). Remark that it is quite surprising that this

bias bound is independent of h, which is also at the heart of the quasi-maximum
likelihood method [1].
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If vec(�) is a (vector-valued) square-integrable martingale, then we use that
martingale differences are uncorrelated and write for the total bias∫ 1

0
Gh(t)vec

(
�(t)

)
dt =

∫ 1

0
Gh(t)vec

(
�(t) − �

(⌊
h−1t

⌋
h
))

dt,

using
∫

Gk = 0. This expression is centred with covariance matrix

h−1−1∑
k=0

∫
[kh,(k+1)h]2

Gk

(
h−1(t − kh)

)
E

[
vec

(
�(t) − �(kh)

)
vec

(
�(s) − �(kh)

)�]
× Gk

(
h−1(s − kh)

)
dt ds.

The expected value in the display is smaller than (in matrix ordering)
E[vec(�((k +1)h)−�(kh))vec(�((k +1)h)−�(kh))�]. Because of ‖Gk‖∞ �
1 the covariance matrix (in any norm) is of order O(h2

E[‖�(1) − �(0)‖2]) =
O(h2).

If � = �B + �M is the sum of a function �B in Bα
1,∞([0,1]) and a square-

integrable martingale �M , then the preceding estimations apply for each summand
and the total bias has maximal order O(n

−α/2
min ) +OP (h).

C.3. Variance for general continuous-time model. The covariance for the
estimator under model E1 can be calculated as under model E2, but we lose inde-
pendence between different frequencies j, j ′ on the same block. For that, we use
the formula for Gaussian random vectors A,B

COV
(
vec

(
AA�)

,vec
(
BB�))

= (
COV(B,B) ⊗COV(A,B) +COV(A,A) ⊗COV(A,B)

+COV(A,B) ⊗COV(A,A) +COV(A,B) ⊗COV(B,B)
)
Z/4,

obtained by polarisation. This implies∥∥COVE1

(
LMM(n)

or
) −COVE2

(
LMM(n)

or
)∥∥

�
h−1−1∑
k=0

h2
∞∑

j,j ′=1

‖Wj ′k‖
∥∥Wjk

(
COVE1(Sjk, Sjk) ⊗COVE1(Sjk, Sj ′k)

)∥∥.
From Lemma C.1 and ‖A ⊗ B‖ ≤ ‖A‖‖B‖ for matrices A,B , we infer that the
series over j, j ′ is bounded in order by

∞∑
j,j ′=1

h−2
0

(
1 + j ′/h0

)−4
(1 + j/h0)

−2

×
(∥∥∥∥∫ 1

0
(� − �̄h)(t)

�jk(t)�j ′k(t)

‖�jk‖L2‖�j ′k‖L2
dt

∥∥∥∥
+

∥∥∥∥∫ 1

0
diag

(
H 2

n,l − H
2
n,l,h

)
(t)ϕjk(t)ϕj ′k(t) dt

∥∥∥∥)
.
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The identities 2 cos(a) cos(b) = cos(a + b) + cos(a − b), 2 sin(a) sin(b) =
cos(a − b) − cos(a + b) and the same bound as in Section C.2 imply for
�, (F ′

1)
−1, . . . , (F ′

d)−1 ∈ Bα
1,∞([0,1]) [note that even (F ′

l )
−1 ∈ Cα([0,1])]∥∥∥∥∫ 1

0
(� − �̄h)(t)

�jk(t)�j ′k(t)

‖�jk‖L2‖�j ′k‖L2
dt

∥∥∥∥
� h−1

(
h

j + j ′ + h(1 − δj,j ′)

|j − j ′|
)α

‖�‖Bα
1,∞([kh,(k+1)h])

and similarly the bound

h−1
(

h

j + j ′ + h(1 − δj,j ′)

|j − j ′|
)α

jj ′h−2
0 max

l

∥∥(
F ′

l

)−1∥∥
Bα

1,∞([kh,(k+1)h])

for the norm over H 2
n,l . Putting all estimates together gives∥∥COVE1

(
LMM(n)

or
) −COVE2

(
LMM(n)

or
)∥∥

� h

∞∑
j,j ′=1

h−2
0

(
1 + j ′/h0

)−4
(1 + j/h0)

−2hα(
1 + ∣∣j − j ′∣∣)−α(

1 + jj ′h−2
0

)
.

By comparison with
∫ ∞

0
∫ ∞

0 (1 + y)−4(1 + x)−2|x − y|−α(1 + xy)dx dy � 1 (in
terms of x ≈ j/h0, y ≈ j ′/h0) we conclude∥∥COVE1

(
LMM(n)

or
) −COVE2

(
LMM(n)

or
)∥∥ � hn

−α/2
min .

Arguing exactly as in Section C.2 for the case of � being a sum of a Bα
1,∞-

function and an L2-martingale, the difference of covariances is in general of order
O(hn

−α/2
min ) +OP (h2).

C.4. Proof of Theorem 4.4. Let us denote the rate of convergence of �̂ by
δn = n

−α/(4α+2)
min . For later use, we note the order bounds

δn =O
(
r1/2h

−1/2
0 (nmin/nmax)

1/4)
, δn=O

(
h−1

0 (nmin/nmax)
1/2)

.(C.3)

First, we show that ∥∥LMM(n)
or −LMM(n)

ad

∥∥ =OP
(
n

−1/4
max

)
,(C.4)

which by Slutsky’s lemma implies the CLT with normalisation matrix In. This in
turn is already sufficient for obtaining the result of Corollary 4.3 for LMM(n)

ad . Let
us start with proving that

T m
n :=

∥∥∥∥∥
r−1−1∑
m=0

h

(m+1)r/h−1∑
k=mr/h

∞∑
j=1

(
Wj

(
�̂mr) − Wj

(
�mr))Zjk

∥∥∥∥∥ =OP
(
n

−1/4
max

)
,
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where the random variables

Zjk = vec
(
SjkS

�
jk − π2j2h−2 diag

((
Hkh

n,l

)2)
1≤l≤d

− �kh)
are independent, EE2[Zjk] = 0, COVE2(Zjk) = I−1

jk Z . We have

T m
n ≤

r−1−1∑
m=0

h

∞∑
j=1

∥∥Wj

(
�̂mr) − Wj

(
�mr)∥∥∥∥∥∥∥

(m+1)r/h−1∑
k=mr/h

Zjk

∥∥∥∥∥,(C.5)

since the weight matrices do not depend on k on the same block of the coarse grid.
Using Lemma C.2 and that ‖�̂ − �‖L1 = OP (δn), we obtain

∥∥Wj

(
�̂mr) − Wj

(
�mr)∥∥ ≤ max

k

∥∥∥∥dWj(�
kh)

d�kh

∥∥∥∥∥∥�̂mr − �mr
∥∥

= OP

((
h−1

0 ∧ h3
0j

−4)
r−1‖�̂ − �‖L1([mr,(m+1)r])

)
.

For the second factor in (C.5), we employ ‖COVE2(Zjk)‖ = 2‖Cjk‖2. Conse-
quently, (C.3) implies for T m

n the bound

r−1−1∑
m=0

h
∥∥�̂mr − �mr

∥∥ ∞∑
j=1

O
((

h−1
0 ∧ h3

0j
−4)(

1 ∨ j2h−2
0

))
= ‖�̂ − �‖L1([0,1])‖O

(
r−1/2h1/2) = OP

(
r−1/2h1/2δn

) =OP
(
n

−1/4
max

)
.

The asymptotics (C.4) follow if we can ensure that the coarse grid approxima-
tions of the weights induce a negligible error, that is, if also

r−1−1∑
m=0

(m+1)r/h−1∑
k=mr/h

h

∞∑
j=1

(
Wj

(
�kh) − Wj

(
�mr))Zjk =OP

(
n

−1/4
max

)

holds. The term is centred and its covariance matrix is bounded in norm by

r−1−1∑
m=0

(m+1)r/h−1∑
k=mr/h

h2
∞∑

j=1

∥∥Wj

(
�kh) − Wj

(
�mr)∥∥2∥∥I−1

jk

∥∥.
From Lemma C.2, ‖I−1

jk ‖ = 2‖Cjk‖2 � 1+j4h−4
0 and � ∈ Bα

1,∞([0,1]) we derive
the upper bound

O
(

h−1−1∑
k=0

h2
∞∑

j=1

r2h−2
0

(
1 + j4h−4

0

)−1
)

=O
(
n

−1/2
min r2α) =O

(
n

−1/2
max

)

by the choice of r and α > 1/2.
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Another application of Slutsky’s lemma yields the CLT with normalisation ma-
trix În provided I1/2

n Î−1/2
n → Ed2 in probability. The proof of Lemma C.2, more

specifically the bound on the last term in (C.2), yields also∥∥∥∥ d

d�kh
Ij

(
�kh)∥∥∥∥ � h−1

0

(
1 + j4h−4

0

)−1
.

This implies
∑

k,j ‖Îjk − Ijk‖ = OP (h−1δn). Using Â−1 − A−1 = A−1(Â −
A)Â−1 and ‖I−1

k ‖ � h−1
0 , we infer

∥∥Î−1
n − I−1

n

∥∥ ≤
h−1−1∑
k=0

h2

∥∥∥∥∥
( ∞∑

j=1

Îjk

)−1

−
( ∞∑

j=1

Ijk

)−1∥∥∥∥∥ = OP

(
hδnh

−2
0

)
.

The smallest eigenvalue of I−1
n equals ‖In‖−1 which has order at least n

−1/2
max .

The global Lipschitz constant Ln of f (x) = x1/2 for x ≥ ‖In‖−1 is therefore of
order n

1/4
max. The perturbation result from [17] for functional calculus therefore im-

plies ∥∥I1/2
n Î−1/2

n − Ed

∥∥ ≤ Ln

∥∥I1/2
n

∥∥∥∥I−1
n − Î−1

n

∥∥ = OP

(
n1/2

maxhδnh
−2
0

)
.

The order is (nmax/nmin)
1/2h−1

0 δn and tends to zero by (C.3).

SUPPLEMENTARY MATERIAL

Lower bound proofs for estimating the quadratic covariation matrix from
noisy observations (DOI: 10.1214/14-AOS1224SUPP; .pdf). We provide detailed
proofs for Section 5.

REFERENCES

[1] AÏT-SAHALIA, Y., FAN, J. and XIU, D. (2010). High-frequency covariance estimates
with noisy and asynchronous financial data. J. Amer. Statist. Assoc. 105 1504–1517.
MR2796567

[2] ALTMEYER, R. and BIBINGER, M. (2014). Functional stable limit theorems for efficient spec-
tral covolatility estimators. Preprint. Available at arXiv:1401.2272.

[3] ANDERSEN, T. and BOLLERSLEV, T. (1997). Intraday perdiodicity and volatility persistence
in financial markets. J. Empir. Financ. 4 115–158.

[4] ANDERSEN, T. G., BOLLERSLEV, T. and DIEBOLD, F. X. (2010). Parametric and nonpara-
metric volatility measurement. In Handbook of Financial Econometrics (Y. Aït-Sahalia
and L. P. Hansen, eds.) 67–137. Elsevier, Amsterdam.

[5] BARNDORFF-NIELSEN, O. E., HANSEN, P. R., LUNDE, A. and SHEPHARD, N. (2011). Mul-
tivariate realised kernels: Consistent positive semi-definite estimators of the covariation
of equity prices with noise and nonsynchronous trading. J. Econometrics 162 149–169.
MR2795610

http://dx.doi.org/10.1214/14-AOS1224SUPP
http://www.ams.org/mathscinet-getitem?mr=2796567
http://arxiv.org/abs/arXiv:1401.2272
http://www.ams.org/mathscinet-getitem?mr=2795610


EFFICIENT QUADRATIC COVARIATION MATRIX ESTIMATION 1345

[6] BARNDORFF-NIELSEN, O. E. and SHEPHARD, N. (2004). Econometric analysis of realized
covariation: High frequency based covariance, regression, and correlation in financial eco-
nomics. Econometrica 72 885–925. MR2051439

[7] BIBINGER, M., HAUTSCH, N., MALEC, P. and REISS, M. (2014). Supplement to “Estimating
the quadratic covariation matrix from noisy observations: Local method of moments and
efficiency.” DOI:10.1214/14-AOS1224SUPP.

[8] BIBINGER, M. and REISS, M. (2014). Spectral estimation of covolatility from noisy observa-
tions using local weights. Scand. J. Stat. 41 23–50.

[9] CHRISTENSEN, K., PODOLSKIJ, M. and VETTER, M. (2013). On covariation estimation for
multivariate continuous Itô semimartingales with noise in nonsynchronous observation
schemes. J. Multivariate Anal. 120 59–84. MR3072718

[10] CIESIELSKI, Z., KERKYACHARIAN, G. and ROYNETTE, B. (1993). Quelques espaces fonc-
tionnels associés à des processus gaussiens. Studia Math. 107 171–204. MR1244574

[11] COHEN, A. (2003). Numerical Analysis of Wavelet Methods. Studies in Mathematics and Its
Applications 32. North-Holland, Amsterdam. MR1990555

[12] FACKLER, P. L. (2005). Notes on matrix calculus. Lecture notes, North Carolina State Univ.
Available at http://www4.ncsu.edu/~pfackler/MatCalc.pdf.

[13] HANSEN, L. P. (1982). Large sample properties of generalized method of moments estimators.
Econometrica 50 1029–1054. MR0666123

[14] HAYASHI, T. and YOSHIDA, N. (2011). Nonsynchronous covariation process and limit theo-
rems. Stochastic Process. Appl. 121 2416–2454. MR2822782

[15] JACOD, J. and ROSENBAUM, M. (2013). Quarticity and other functionals of volatility: Efficient
estimation. Ann. Statist. 41 1462–1484. MR3113818

[16] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its
Applications (New York). Springer, New York. MR1876169

[17] KITTANEH, F. (1985). On Lipschitz functions of normal operators. Proc. Amer. Math. Soc. 94
416–418. MR0787884

[18] LEHMANN, E. L. and CASELLA, G. (1998). Theory of Point Estimation, 2nd ed. Springer,
New York. MR1639875

[19] LE CAM, L. and YANG, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts, 2nd ed.
Springer, New York. MR1784901

[20] LI, Y., MYKLAND, P. A., RENAULT, E., ZHANG, L. and ZHENG, X. (2014). Realized volatil-
ity when sampling times are possibly endogenous. Econometric Theory 30 580–605.
MR3205607

[21] LIU, C. and TANG, C. Y. (2014). A quasi-maximum likelihood approach for integrated co-
variance matrix estimation with high frequency data. J. Econometrics 180 217–232.
MR3197794

[22] REISS, M. (2011). Asymptotic equivalence for inference on the volatility from noisy observa-
tions. Ann. Statist. 39 772–802. MR2816338

[23] SHEPHARD, N. and XIU, D. (2012). Econometric analysis of multivariate realised QML: Effi-
cient positive semi-definite estimators of the covariation of equity prices. Preprint.

[24] ZHANG, L. (2011). Estimating covariation: Epps effect, microstructure noise. J. Econometrics
160 33–47. MR2745865

http://www.ams.org/mathscinet-getitem?mr=2051439
http://dx.doi.org/10.1214/14-AOS1224SUPP
http://www.ams.org/mathscinet-getitem?mr=3072718
http://www.ams.org/mathscinet-getitem?mr=1244574
http://www.ams.org/mathscinet-getitem?mr=1990555
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://www.ams.org/mathscinet-getitem?mr=0666123
http://www.ams.org/mathscinet-getitem?mr=2822782
http://www.ams.org/mathscinet-getitem?mr=3113818
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=0787884
http://www.ams.org/mathscinet-getitem?mr=1639875
http://www.ams.org/mathscinet-getitem?mr=1784901
http://www.ams.org/mathscinet-getitem?mr=3205607
http://www.ams.org/mathscinet-getitem?mr=3197794
http://www.ams.org/mathscinet-getitem?mr=2816338
http://www.ams.org/mathscinet-getitem?mr=2745865


1346 BIBINGER, HAUTSCH, MALEC AND REISS

[25] ZHANG, L., MYKLAND, P. A. and AÏT-SAHALIA, Y. (2005). A tale of two time scales: Deter-
mining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100
1394–1411. MR2236450

M. BIBINGER

M. REISS

INSTITUT FÜR MATHEMATIK

HUMBOLDT-UNIVERSITÄT ZU BERLIN

UNTER DEN LINDEN 6
10099 BERLIN

GERMANY

E-MAIL: bibinger@math.hu-berlin.de
mreiss@math.hu-berlin.de

N. HAUTSCH

DEPARTMENT OF STATISTICS

AND OPERATIONS RESEARCH

UNIVERSITY OF VIENNA

OSKAR-MORGENSTERN-PLATZ 1
1090 VIENNA

AUSTRIA

E-MAIL: nikolaus.hautsch@univie.ac.at

P. MALEC

SCHOOL OF BUSINESS AND ECONOMICS

HUMBOLDT-UNIVERSITÄT ZU BERLIN

SPANDAUER STR. 1
10178 BERLIN

GERMANY

E-MAIL: malecpet@hu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=2236450
mailto:bibinger@math.hu-berlin.de
mailto:mreiss@math.hu-berlin.de
mailto:nikolaus.hautsch@univie.ac.at
mailto:malecpet@hu-berlin.de

	Introduction
	Principles and major implications
	Spectral LMM methodology
	The efﬁciency bound

	From discrete to continuous-time observations
	Setting
	Continuous-time experiment

	Localisation and method of moments
	Construction
	Asymptotic properties of the estimators

	Semi-parametric Cramér-Rao bound
	Implementation and numerical results
	Discrete-time estimator
	Simulations

	Appendix A: From discrete to continuous experiments
	Appendix B: Asymptotics in the block-wise constant experiment
	Appendix C: Proofs for continuous models
	Weight matrix estimates
	Bias bound
	Variance for general continuous-time model
	Proof of Theorem 4.4

	Supplementary Material
	References
	Author's Addresses

