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IMAGINARY GEOMETRY II: REVERSIBILITY
OF SLEκ(ρ1;ρ2) FOR κ ∈ (0,4)

BY JASON MILLER AND SCOTT SHEFFIELD

University of Cambridge and Massachusetts Institute of Technology

Given a simply connected planar domain D, distinct points x, y ∈ ∂D,
and κ > 0, the Schramm–Loewner evolution SLEκ is a random continuous
non-self-crossing path in D from x to y. The SLEκ (ρ1;ρ2) processes, defined
for ρ1, ρ2 > −2, are in some sense the most natural generalizations of SLEκ .

When κ ≤ 4, we prove that the law of the time-reversal of an SLEκ (ρ1;ρ2)

from x to y is, up to parameterization, an SLEκ (ρ2;ρ1) from y to x. This as-
sumes that the “force points” used to define SLEκ (ρ1;ρ2) are immediately to
the left and right of the SLE seed. A generalization to arbitrary (and arbitrar-
ily many) force points applies whenever the path does not (or is conditioned
not to) hit ∂D \ {x, y}.

The proof of time-reversal symmetry makes use of the interpretation of
SLEκ (ρ1;ρ2) as a ray of a random geometry associated to the Gaussian-free
field. Within this framework, the time-reversal result allows us to couple two
instances of the Gaussian-free field (with different boundary conditions) so
that their difference is almost surely constant on either side of the path. In
a fairly general sense, adding appropriate constants to the two sides of a ray
reverses its orientation.

.
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1. Introduction. For each simply connected Jordan domain D ⊆ C and dis-
tinct pair x, y ∈ ∂D, the Schramm–Loewner evolution of parameter κ > 0 (SLEκ )
describes the law of a random continuous path from x to y in D. This path is almost
surely a continuous, simple curve when κ ≤ 4. It is almost surely a continuous,
non-space-filling curve that intersects itself and the boundary when κ ∈ (4,8), and
it is almost surely a space-filling curve when κ ≥ 8 [14, 25]. We recall the basic
definitions of SLEκ in Section 2.1.

While SLEκ curves were introduced by Schramm in [26], the following fact
was proved only much more recently by Zhan in [42]: if η is an SLEκ process for
κ ∈ (0,4] from x to y in D then the law of the time-reversal of η is, up to monotone
reparameterization, that of an SLEκ process from y to x in D. This is an extremely
natural symmetry.

Since their introduction in [26], it has been widely expected that SLEκ curves
would exhibit this symmetry for all κ ≤ 8.1 One reason to expect this to be true
is that SLEκ has been conjectured and in some cases proved to arise as a scaling
limit of discrete models that enjoy a discrete analog of time-reversal symmetry.
However, it is far from obvious from the definition of SLEκ why such a symmetry
should exist.

It was further conjectured by Dubédat that when κ ≤ 4 the property of time-
reversal symmetry is also enjoyed by the so-called SLEκ(ρ1;ρ2) processes, which
depend on parameters ρ1, ρ2 > −2, and which are in some sense the most natural
generalizations of SLEκ . We recall the definition of SLEκ(ρ1;ρ2) in Section 2.1.
(The conjecture assumes the so-called force points, whose definition we recall in
Section 2.1, are located immediately left and right of the SLE seed.) Dubédat’s
conjecture was later proved in the special case of SLEκ(ρ) processes (obtained by
setting one of the ρi to 0 and the other to ρ), under the condition that ρ is in the
range of values for which the curve almost surely does not intersect the boundary.
This was accomplished by Dubédat [6] and Zhan [43] using a generalization of the
technique used to prove the reversibility of SLEκ in [42].

1This was the final problem in a series presented by Schramm at ICM 2006 [27].
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This article will prove Dubédat’s conjecture in its complete generality using
several new methods that we hope will be of independent interest. In particular, we
will give a new proof of the time-reversal symmetry of ordinary SLEκ for κ < 4
(inspired by an unpublished argument of Schramm and second author), which is
independent of the arguments in [6, 42, 43].

One can generalize SLEκ(ρ1;ρ2) theory to multiple force points, as we recall
in Section 2.1; when there are more than two, we often use ρ to denote the cor-
responding vector of ρ values. The time-reversal of SLEκ(ρ) with multiple force
points (or a force point not immediately adjacent to the SLE seed) need not be an
SLEκ(ρ), as illustrated in [6, 43]. However, another result of the current paper is
that in general the time-reversal of an SLEκ(ρ) that does not (or is conditioned
not to) hit the boundary is also an SLEκ(ρ) that does not (or is conditioned not
to) hit the boundary, with appropriate force points. A similar result applies if the
SLEκ(ρ) hits the boundary only on one of the two boundary arcs connecting x and
y (and there are no force points in the interior of that arc).

This paper is a sequel to and makes heavy use of a recent work of the authors
[18], which in particular proves the almost sure continuity of general SLEκ(ρ)

traces, even those that hit the boundary. The results of the current paper have vari-
ous applications to the theory of “imaginary geometry” described in [18], to Liou-
ville quantum gravity, and to SLE theory itself.

In particular, they will play a crucial role in a subsequent work by the au-
thors that will give the first proof of the time-reversal symmetry of SLEκ and
SLEκ(ρ1;ρ2) processes that applies when κ ∈ (4,8) [19]. Interestingly, we will
find in [19] that when κ ∈ (4,8) the SLEκ(ρ1;ρ2) processes are reversible if and
only if ρi ≥ κ

2 − 4 for i ∈ {1,2}. The threshold κ
2 − 4 is significant because, when

κ ∈ (4,8), the SLEκ(ρ1;ρ2) curves almost surely hit every point on the entire left
(resp., right) boundary of D if and only if ρ1 ≤ κ

2 − 4 (resp., ρ2 ≤ κ
2 − 4). Thus,

aside from the critical cases, the “non-boundary-filling” SLEκ(ρ1;ρ2) curves are
the ones with time-reversal symmetry.

The time-reversal symmetries that apply when κ ≥ 8 will be addressed in the
fourth work of the current series [20]. When κ ≥ 8, we will see that one has time-
reversal symmetry only for one special pair of ρ1, ρ2 values; however, in the κ ≥ 8
context, it is possible to describe time-reversals of SLEκ(ρ1;ρ2) processes more
generally in terms of SLEκ(ρ̂1; ρ̂2) processes for certain values of ρ̂1 and ρ̂2. We
will also show in [20] that certain families of “whole-plane” variants of SLEκ

have time-reversal symmetry as well, generalizing a recent work of Zhan on this
topic [44].

1.1. Main results. The following is our first main result.

THEOREM 1.1. Suppose that η is an SLEκ(ρ1;ρ2) process in a Jordan do-
main D from x to y, with x, y ∈ ∂D distinct and weights ρ1, ρ2 > −2 correspond-
ing to force points located at x−, x+, respectively. The law of the time-reversal
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R(η) of η is, up to reparameterization, an SLEκ(ρ2;ρ1) process in D from y to x

with force points located at y−, y+, respectively. Thus, the law of η as a random
set is invariant under an anti-conformal map that swaps x and y.

The proof of Theorem 1.1 has two main parts. The first part is to establish the
reversibility of SLEκ(ρ) processes with a single force point located at the SLE
seed, even when they hit the boundary. This extends the one-sided result of [6,
43] to the boundary-intersecting regime. The second part is to extend this result to
SLEκ(ρ1;ρ2) processes.

This second part of the proof will be accomplished using so-called bi-chordal
SLE processes to reduce the two-force-point problem to the single-force-point
case. The bi-chordal processes we use will be probability measures on pairs of
non-crossing paths (η1, η2) in D from x to y with the property that the conditional
law of η1 given η2 is an SLEκ(ρL) in the left connected component of D \ η2

and the law of η2 given η1 is an SLEκ(ρR) in the right connected component of
D \η1. We use the superscript “R” to indicate that the force points associated with
η1 lie on the counterclockwise arc of ∂D between the initial and terminal points
of η1. Likewise, the superscript “L” indicates that the force points associated with
η2 lie on the clockwise arc of ∂D between the initial and terminal points of η2. We
will prove in a rather general setting that this information (about the conditional
law of each ηi given the other) completely characterizes the joint law of (η1, η2),
a result we consider independently interesting. One can then use the imaginary
geometry constructions from [18] to explicitly produce processes in which each
ηi is a one-sided SLEκ(ρ) when restricted to the complement of the other, but the
marginal law of each path is an SLEκ(ρ1;ρ2) process in the whole domain. The
time-reversal symmetry of the individual SLEκ(ρ) processes can then be used to
prove the time-reversal symmetry of SLEκ(ρ1;ρ2).

Another important point for us will be to show the law of SLEκ(ρ) is uniquely
determined by certain type of domain Markov property, much like the one charac-
terizes ordinary SLEκ [26]. A simple heuristic argument of a statement of this kind
appears at the beginning of [12], Section 8.3, which is where the SLEκ(ρ) pro-
cesses were first defined. It is noted there that the SDE driving single-force-point
SLEκ(ρ) is the only one with this type of property. Our proof of the reversibility of
SLEκ(ρ) requires a particular precise characterization of the type indicated in [12],
Section 8.3 (see also the discussion in [40], Section 7.2). That is, we will need that
SLEκ(ρ) is characterized by the following version of conformal invariance and the
domain Markov property. Let c = (D,x, y; z) be a configuration which consists of
a Jordan domain D ⊆ C and x, y, z ∈ ∂D and x �= y. We let CL (resp., CR) be the
collection of configurations c = (D,x, y; z) where z lies on the clockwise (resp.,
counterclockwise) arc of ∂D from x to y.

DEFINITION 1.2 (Conformal invariance). We say that a family (Pc : c ∈ Cq),
q ∈ {L,R}, where Pc is a probability measure on continuous paths from x to y in
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D, is conformally invariant if the following is true. Suppose that c = (D,x, y; z),
c′ = (D′, x′, y′; z′) ∈ Cq , and ψ :D → D′ is a conformal map with ψ(x) = x′,
ψ(y) = y′, and ψ(z) = z′. Then for η ∼ Pc, we have that ψ(η) ∼ Pc′ , up to repa-
rameterization.

DEFINITION 1.3 (Domain Markov property). We say that a family (Pc : c ∈
Cq), q ∈ {L,R}, where Pc is a probability measure on continuous paths from x to
y in D, satisfies the domain Markov property if for all c ∈ Cq the following is true.
Suppose η ∼ Pc. Then for every η stopping time τ , the law of η|[τ,∞) conditional
on η|[0,τ ] is, up to reparameterization, given by Pcτ where cτ = (Dτ , η(τ ), y; zτ ).
Here, Dτ is the connected component of D \ η([0, τ ]) which contains y on its
boundary. If q = L (resp., q = R), then zτ is the leftmost (resp., rightmost) point
on the clockwise (resp., counterclockwise) arc of ∂D from x to y which lies to the
right (resp., left) of z and η([0, τ ]) ∩ ∂D.

Our conformal Markov characterization of SLEκ(ρ) is the following.

THEOREM 1.4. Suppose that (Pc : c ∈ Cq), q ∈ {L,R}, is a conformally in-
variant family which satisfies the domain Markov property in the sense of Defi-
nitions 1.2 and 1.3. Assume further that when c = (D,x, y; z) ∈ Cq and D has
smooth boundary and η ∼ Pc, the Lebesgue measure of η ∩ ∂D is zero almost
surely. Then there exists ρ > −2 such that for each c = (D,x, y; z) ∈ Cq , Pc is the
law of an SLEκ(ρ) process in D from x to y with a single force point at z.

Theorem 1.4 is a generalization of the conformal Markov characterization of
ordinary SLEκ established by Schramm [26] (and used by Schramm [26] to char-
acterize SLEκ processes) but with the addition of one extra marked point. It is
implicit in the hypotheses that η ∼ Pc cannot cross itself and also never enters the
loops it creates with segments of the boundary or itself as it moves from x to y.
This combined with the hypothesis that η∩ ∂D has zero Lebesgue measure almost
surely when D is smooth implies that η has a continuous Loewner driving function
[18], Section 6.2, and that the evolution of the marked point under the uniformizing
conformal maps is described by the Loewner flow (Lemma 3.3). The proof makes
use of a characterization of continuous self-similar Markov processes due to Lam-
perti [11], Theorem 5.1. (In the setting that we consider, this is a rescaled version
of the fact that “the only continuous Markov process with stationary increments
are the Brownian motions with drift.”)

The next step in the proof of the reversibility of SLEκ(ρ) for ρ > −2 is to show
that the time-reversal R(η) of η ∼ SLEκ(ρ) for ρ ∈ (−2,0] satisfies the criteria of
Theorem 1.4. This is in some sense the heart of the argument. We will first present
a new proof in the case that ρ = 0, which is related to an argument sketch obtained
(but never published) by the second author and Schramm several years ago. The
idea is to try to make sense of conditioning on a flow line of the Gaussian-free
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field, whose law is an SLEκ , up to a reverse stopping time. The conditional law
of the initial part of the flow line is then in some sense a certain SLEκ(ρ1;ρ2)

process conditioned to merge into the tip of that flow line. We make this idea
(which involves conditioning on an event of probability zero) precise using certain
bi-chordal SLEκ constructions. We will use similar tricks to establish a conformal
Markov property for the time-reversal of SLEκ , which is then extended to give a
similar property for SLEκ(ρ).

The above arguments will imply that the time-reversal of an SLEκ(ρ) is it-
self an SLEκ(ρ̃) for some ρ̃ > −2. This will imply that there exists a function R

such that R(η) ∼ SLEκ(R(ρ)). One can then easily observe that the function R

is continuous and increasing and satisfies R(R(ρ)) = ρ which implies R(ρ) = ρ.
Using another trick involving bi-chordal SLE configurations, we can extend the
reversibility of SLEκ(ρ) to all ρ > −2.

Using the interpretation of SLEκ(ρL;ρR) processes as flow lines of the
Gaussian-free field with certain boundary data [18], we will also give a description
of the time-reversal R(η) of η ∼ SLEκ(ρL;ρR) processes with many force points,
provided η is almost surely non-boundary intersecting.

THEOREM 1.5. Suppose that η is an SLEκ(ρL;ρR), in a Jordan domain D

from x to y, with x, y ∈ ∂D distinct, that does not (or is conditioned not to) hit ∂D

except at x and y. Then the time-reversal R(η) of η is an SLEκ(ρL;ρR) process
(with appropriate force points) that does not (or is conditioned not to) hit ∂D

except at x and y.

A more precise discussion and complete description of how to construct the law
of the time-reversal (in particular how to set up the various ρ values) appears in
Section 8. In order to make the theorem precise, we will in particular have to make
sense of what it means to condition a path not to hit the boundary (which in some
cases involves conditioning on a probability zero event).

1.2. Relation to previous work. As we mentioned earlier, the reversibility of
SLEκ for κ ∈ (0,4] was first proved by Zhan [42] but also appears in the work
of Dubédat [6]. Both proofs are based on a beautiful technique that allows one to
construct a coupling of η ∼ SLEκ from x to y in D with η̃ ∼ SLEκ in D from y to
x such that the two paths commute. In other words, one has a recipe for growing
the paths one at a time, in either order, that produces the same overall joint law. In
the coupling of [42], the joint law is shown to have the property that for every η

stopping time τ , the law of η̃ given η|[0,τ ] is an SLEκ in the connected component
of D \ η([0, τ ]) containing y from y to η(τ). The same likewise holds when the
roles of η and η̃ are reversed. This implies that η contains a dense subset of η̃

and vice-versa. Thus, the continuity of η and η̃ implies that η̃ is almost surely the
time-reversal (up to reparameterization) of η. In particular, the time-reversal R(η)

of η is an SLEκ in D from y to x. The approaches of both Dubédat [6] and Zhan
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[43] to the reversibility of non-boundary intersecting SLEκ(ρ) are also based on
considering a commuting pair of SLEκ(ρ) processes η, η̃ growing at each other.2

The difference from the setup of ordinary SLEκ is that in such a coupling, the
conditional law of η given η̃|[0,τ̃ ], τ̃ an η̃ stopping time, is not an SLEκ(ρ) process
in the connected component of D \ η̃([0, τ̃ ]) containing x from x to η̃(τ̃ ). Rather,
it is a more complicated variant of SLEκ , a so-called intermediate SLE.

Because our approach to SLEκ(ρ) reversibility is somewhat different from the
methods in [6, 43] (and in particular we use a domain Markov property to char-
acterize the time-reversal), we will not actually need to define intermediate SLE
explicitly (e.g., by giving an explicit formula for the Loewner drift term). We will
also avoid the analogous explicit calculations in the multiple force point cases with
tricks involving bi-chordal resampling and the Gaussian-free field.

We also remark that in [38] it is shown that an SLEκ(ρ) process with ρ > 0
can be viewed as arising from an SLEκ process conditioned not to hit a sample
of a one-sided restriction measure. This, combined with the reversibility of SLEκ

for κ ∈ (0,4] [6, 42] yields another proof of the reversibility of SLEκ(ρ) for κ ∈
(0,4] and ρ > 0. Also, it is shown in [41] that the boundary intersecting SLEκ(ρ)

processes when κ ∈ (8/3,4] arise naturally in the context of the Brownian loop
soups and this implies the reversibility of the SLEκ(ρ) for κ and ρ in this regime.

Part of this paper addresses the question of making sense of SLEκ(ρ) (and its
variants) conditioned not to hit the boundary. The simplest version of this is a con-
sequence of the fact that a Bessel process of dimension d ≤ 2 conditioned not to hit
0 is a Bessel process of dimension 4 − d ≥ 2 and various statements based on this
fact have appeared in other places in the literature, for example [5]. In the present
work, we need to establish particular statements of this form that hold in the pres-
ence of many force points and also in the case of multiple paths. For example, we
need to know that the joint laws of certain families of non-intersecting paths are
uniquely characterized by certain Gibbs properties. Proving this requires some re-
sampling tricks beyond the usual Girsanov martingale-weighting procedures, and
we did not find a place in the literature where these kinds of characterizations were
carefully stated or worked out.

1.3. Outline. The remainder of this article is structured as follows. In the next
section, we will review the basics of SLEκ(ρ) processes. We will also give a sum-
mary of how SLEκ(ρ) processes can be viewed as flow lines of the Gaussian-free
field (GFF)—this is the so-called imaginary geometry of the GFF [18]. We will
in particular emphasize how this interpretation can be used to construct couplings

2The results in [6, 43] only apply if ρ is in the range for which the path avoids the boundary almost
surely. However, it is possible that the arguments could be extended to the boundary-hitting case of
one-force-point SLEκ (ρ). Zhan told us privately before we wrote [18] that he believed the techniques
in [43] could be extended to the single-force-point boundary-intersecting case if the continuity result
of [18] were known.
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of systems of SLEκ(ρ) processes and the calculus one uses in order to compute
the conditional law of one such curve given the realizations of the others. Next,
in Section 3, we will prove Theorem 1.4, the conformal Markov characterization
of SLEκ(ρ) processes. In Section 4, we will show in certain special cases that the
joint law of a system of multiple SLEκ(ρ) strands is characterized by the condi-
tional laws of the individual strands. This provides an alternative mechanism for
constructing systems of SLEκ type curves in which it is easy to compute the con-
ditional law of one of the curves given the others. It is the key tool for deducing
the reversibility of SLEκ(ρ1;ρ2) from the reversibility of SLEκ(ρ). In Section 5,
we discuss how to make sense of SLEκ(ρ) processes conditioned not to intersect
certain boundary segments.

We will then combine the above elements in Section 6 to show that the time-
reversal of an SLEκ(ρ) process satisfies the conformal Markov property. In Sec-
tion 7, we will complete the proof of Theorem 1.1 by deducing the reversibility of
SLEκ(ρ1;ρ2) from the reversibility of SLEκ(ρ). We finish in Section 8 by proving
Theorem 1.5

2. Preliminaries. The purpose of this section is to review the basic proper-
ties of SLEκ(ρL;ρR) processes in addition to giving a non-technical overview of
the so-called imaginary geometry of the Gaussian-free field. The latter provides a
mechanism for constructing couplings of many SLEκ(ρL;ρR) strands in such a
way that it is easy to compute the conditional law of one of the curves given the
realization of the others [18].

2.1. SLEκ(ρ) processes. SLEκ is a one-parameter family of conformally in-
variant random curves, introduced by Oded Schramm in [26] as a candidate for
(and later proved to be) the scaling limit of loop erased random walk [14] and the
interfaces in critical percolation [3, 36]. Schramm’s curves have been shown so
far also to arise as the scaling limit of the macroscopic interfaces in several other
models from statistical physics: [4, 16, 28, 29, 37]. More detailed introductions to
SLE can be found in many excellent survey articles of the subject, for example,
[13, 39].

An SLEκ in H from 0 to ∞ is defined by the random family of conformal maps
gt obtained by solving the Loewner ODE:

∂tgt (z) = 2

gt (z) − Wt

, g0(z) = z,(2.1)

where W = √
κB and B is a standard Brownian motion. Write Kt := {z ∈ H :

τ(z) ≤ t}. Then gt is a conformal map from Ht := H \ Kt to H satisfying
lim|z|→∞ |gt (z) − z| = 0.

Rohde and Schramm showed that there almost surely exists a curve η (the so-
called SLE trace) such that for each t ≥ 0 the domain Ht is the unbounded con-
nected component of H\η([0, t]), in which case the (necessarily simply connected
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and closed) set Kt is called the “filling” of η([0, t]) [25]. An SLEκ connecting
boundary points x and y of an arbitrary simply connected Jordan domain can
be constructed as the image of an SLEκ on H under a conformal transformation
ψ : H → D sending 0 to x and ∞ to y. (The choice of ψ does not affect the law of
this image path, since the law of SLEκ on H is scale invariant.) SLEκ is character-
ized by the fact that it satisfies the domain Markov property and is invariant under
conformal transformations.

SLEκ(ρL;ρR) is the stochastic process one obtains by solving (2.1) where the
driving function W is taken to be the solution to the SDE

dWt = √
κ dBt + ∑

q∈{L,R}

∑
i

ρi,q

Wt − V
i,q
t

dt,

(2.2)

dV
i,q
t = 2

V
i,q
t − Wt

dt, V
i,q
0 = xi,q .

The existence and uniqueness of solutions to (2.2) is discussed in [18], Section 2. In
particular, it is shown that there is a unique solution to (2.2) until the first time t that
Wt = V

j,q
t where

∑j
i=1 ρi,q ≤ −2 for q ∈ {L,R} (we call this time the continua-

tion threshold). In particular, if
∑j

i=1 ρi,q > −2 for all 1 ≤ j ≤ |ρq | for q ∈ {L,R},
then (2.2) has a unique solution for all times t . This even holds when one or both
of the x1,q are zero. The almost sure continuity of the SLEκ(ρL;ρR) trace is also
proved in [18]. In Section 3, we will prove Theorem 1.4, that the single-force-
point SLEκ(ρ) processes are characterized by conformal invariance and the do-
main Markov property with one extra marked point. This extends Schramm’s con-
formal Markov characterization of ordinary SLEκ [26].

2.2. Imaginary geometry of the Gaussian-free field. We will now give an
overview of the so-called imaginary geometry of the Gaussian-free field (GFF).
In this article, this serves as a tool for constructing couplings of multiple SLE
strands and provides a simple calculus for computing the conditional law of one of
the strands given the realization of the others [18]. The purpose of this overview is
to explain just enough of the theory so that this article may be read and understood
independently of [18]. We refer the reader interested in proofs of the statements
we make here to [18]. We begin by fixing a domain D ⊆ C with smooth boundary
and let C∞

0 (D) denote the space of compactly supported C∞ functions on D. For
f,g ∈ C∞

0 (D), let

(f, g)∇ := 1

2π

∫
D

∇f (x) · ∇g(x) dx

denote the Dirichlet inner product of f and g where dx is the Lebesgue mea-
sure on D. Let H(D) be the Hilbert space closure of C∞

0 (D) under (·, ·)∇ . The
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continuum Gaussian-free field h (with zero boundary conditions) is the so-called
standard Gaussian on H(D). It is given formally as a random linear combination

h = ∑
n

αnfn,(2.3)

where (αn) are i.i.d. N(0,1) and (fn) is an orthonormal basis of H(D). The GFF
with non-zero boundary data ψ is given by adding the harmonic extension of ψ to
a zero-boundary GFF h (see [34] for a more detailed introduction to the GFF).

The GFF is a two-dimensional-time analog of Brownian motion. Just as Brow-
nian motion can be realized as the scaling limit of many random lattice walks, the
GFF arises as the scaling limit of many random (real or integer valued) functions
on two dimensional lattices [2, 10, 17, 21, 24]. The GFF can be used to generate
various kinds of random geometric structures, in particular the imaginary geome-
try discussed here [18, 33]. This corresponds to considering the formal expression
eih/χ , for a fixed constant χ > 0. Informally, the “rays” of the imaginary geometry
are flow lines of the complex vector field ei(h/χ+θ), that is, solutions to the ODE

η′(t) = ei(h(η(t))/χ+θ) for t > 0,(2.4)

for given values of η(0) and θ .
Although (2.4) does not make sense as written (since h is an instance of the GFF,

not a continuous function), one can construct these rays precisely by solving (2.4)
in a rather indirect way: one begins by constructing explicit couplings of h with
variants of SLE and showing that these couplings have certain properties. Namely,
if one conditions on part of the curve, then the conditional law of h is that of a GFF
in the complement of the curve with certain boundary conditions (see Figure 4).
Examples of these couplings appear in [7, 30, 32, 33] as well as variants in [8, 9,
15]. This step is carried out in some generality in [7, 18, 33]. The next step is to
show that in these couplings the path is almost surely determined by the field so
that we can really interpret the ray as a path-valued function of the field. This step
is carried out for certain boundary conditions in [7] and in more generality in [18].
See Figure 1 for a simulation.

If h is a smooth function, η a flow line of eih/χ , and ψ : D̃ → D a conformal
transformation, then by the chain rule, ψ−1(η) is a flow line of h◦ψ −χ argψ ′, as
in Figure 2. With this in mind, we define an imaginary surface to be an equivalence
class of pairs (D,h) under the equivalence relation

(D,h) → (
ψ−1(D),h ◦ ψ − χ argψ ′) = (D̃, h̃).(2.5)

We interpret ψ as a (conformal) coordinate change of the imaginary surface. In
what follows, we will generally take D to be the upper half plane, but one can map
the flow lines defined there to other domains using (2.5).

We assume throughout the rest of this section that κ ∈ (0,4) so that κ ′ := 16/κ ∈
(4,∞). When following the illustrations, it will be useful to keep in mind a few
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FIG. 1. Numerically generated flow lines, started at a common point, of ei(h/χ+θ) where h is the
projection of a GFF onto the space of functions piecewise linear on the triangles of a 300 × 300
grid and κ = 1/2. Different colors indicate different values of θ ∈ [−π/2,π/2]. We expect but do not
prove that if one considers increasingly fine meshes (and the same instance of the GFF) the corre-
sponding paths converge to limiting continuous paths. One of the consequences of Theorem 1.1 is that
the law of the continuum analog of the random set depicted above is invariant under anti-conformal
maps which swap the initial and terminal points of the paths.

definitions and identities:

λ := π√
κ

, λ′ := π√
16/κ

= π
√

κ

4
= κ

4
λ < λ, χ := 2√

κ
−

√
κ

2
,(2.6)

2πχ = 4
(
λ − λ′), λ′ = λ − π

2
χ,(2.7)

2πχ = (4 − κ)λ = (
κ ′ − 4

)
λ′.(2.8)

FIG. 2. The set of flow lines in D̃ will be the pullback via a conformal map ψ of the set of flow lines
in D provided h is transformed to a new function h̃ in the manner shown.
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FIG. 3. We will often make use of the notation depicted on the left-hand side to indicate boundary
values for Gaussian-free fields. Specifically, we will delineate the boundary ∂D of a Jordan domain
D with black dots. On each arc L of ∂D which lies between a pair of black dots, we will draw either
a horizontal or vertical segment L0 and label it with x∼. This means that the boundary data on L0 is
given by x. Whenever L makes a quarter turn to the right, the height goes down by π

2 χ and whenever
L makes a quarter turn to the left, the height goes up by π

2 χ . More generally, if L makes a turn which
is not necessarily at a right angle, the boundary data is given by χ times the winding of L relative to
L0. If we just write x next to a horizontal or vertical segment, we mean just to indicate the boundary
data at that segment and nowhere else. The right side above has exactly the same meaning as the left
side, but the boundary data is spelled out explicitly everywhere. Even when the curve has a fractal,
non-smooth structure, the harmonic extension of the boundary values still makes sense, since one
can transform the figure via the rule in Figure 2 to a half plane with piecewise constant boundary
conditions. The notation above is simply a convenient way of describing what the constants are. We
will often include horizontal or vertical segments on curves in our figures (even if the whole curve is
known to be fractal) so that we can label them this way.

The boundary data one associates with the GFF on H so that its flow line from
0 to ∞ is an SLEκ(ρL;ρR) process with force points located at x = (xL, xR) is

−λ

(
1 +

j∑
i=1

ρi,L

)
for x ∈ [

xj+1,L, xj,L)
and(2.9)

λ

(
1 +

j∑
i=1

ρi,R

)
for x ∈ [

xj,R, xj+1,R)
.(2.10)

This is depicted in Figure 4 in the special case that |ρL| = |ρR| = 2. As we ex-
plained earlier, for any η stopping time τ , the law of h conditional on η([0, τ ]) is
a GFF in H \ η([0, τ ]). The boundary data of the conditional field agrees with that
of h on ∂H. On the right side of η([0, τ ]), it is λ′ + χ · winding, where the termi-
nology “winding” is explained in Figure 3, and to the left it is −λ′ + χ · winding.
This is also depicted in Figure 4.

By considering several flow lines of the same field (starting either at the same
point or at different points), we can construct couplings of multiple SLEκ(ρ) pro-
cesses. For example, suppose that θ ∈ R. The flow line ηθ of h + θχ should be
interpreted as the flow line of the vector field eih/χ+θ . We say that ηθ is the flow
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FIG. 4. Suppose that h is a GFF on H with the boundary data depicted above. Then the flow line η

of h starting from 0 is an SLEκ (ρL;ρR) curve in H where |ρL| = |ρR | = 2. Conditional on η|[0,τ ]
for any η stopping time τ , h is equal in distribution to a GFF on H \ η([0, τ ]) with the boundary
data on η([0, τ ]) depicted above (the notation a∼ which appears adjacent to η([0, τ ]) is explained

in some detail in Figure 3). It is also possible to couple η′ ∼ SLEκ ′(ρL;ρR) for κ ′ > 4 with h and
the boundary data takes on the same form (with λ′ := π√

κ ′ in place of λ := π√
κ

). The difference is in

the interpretation. The (almost surely self-intersecting) path η′ is not a flow line of h, but for each η′
stopping time τ ′ the left and right boundaries of η′([0, τ ′]) are SLEκ flow lines, where κ = 16/κ ′,
angled in opposite directions. The union of the left boundaries—over a collection of τ ′ values—is a
tree of merging flow lines, while the union of the right boundaries is a corresponding dual tree whose
branches do not cross those of the tree.

line of h with angle θ . If h were a smooth function and θ1 < θ2, then it would be
obvious that ηθ1 lies to the right of ηθ2 . Although non-trivial to prove, this is also
true in the setting of the GFF [18], Theorem 1.5, and is depicted in Figure 5. The
case in which the flow lines start at different points is depicted in Figure 6.

For θ1 < θ2, we can compute the conditional law of ηθ2 given ηθ1 . It is an
SLEκ((a − θ2χ)/λ − 1; (θ2 − θ1)χ/λ − 2) process independently in each con-
nected component of H \ ηθ1 which lies to the left of ηθ1 . Moreover, ηθ1 given ηθ2

is an SLEκ((θ2 − θ1)χ/λ − 2; (b + θ1χ)/λ − 1) in each of the connected compo-
nents of H \ ηθ2 which lie to the right of ηθ2 . This is depicted in Figure 5. We can
also couple together SLEκ(ρ) processes starting at different points by considering
the flow lines of h initialized at different points. This is depicted in Figure 6.

Recall that κ ′ = 16/κ ∈ (4,∞). We refer to SLEκ ′ processes as counterflow
lines because of the particular way that they are related to the flow lines of the
Gaussian- free field. As explained in [18], the counterflow line runs in the oppo-
site direction of (or counter to) the so-called “light cone” of angle-varying flow
lines whose angles stay within some range. We can construct couplings of SLEκ

and SLEκ ′ processes (flow lines and counterflow lines) within the same imaginary
geometry. This is depicted in Figure 7. Just as in the setting of multiple flow lines,



1660 J. MILLER AND S. SHEFFIELD

FIG. 5. Suppose that h is a GFF on H with the boundary data depicted above. For each θ ∈ R, let
ηθ be the flow line of the GFF h + θχ . This corresponds to setting the angle of ηθ to be θ . Just as if
h were a smooth function, if θ1 < θ2 then ηθ1 lies to the right of ηθ2 . The conditional law of h given
ηθ1 and ηθ2 is a GFF on H \ (ηθ1 ∪ ηθ2) shown above. By applying a conformal mapping and using
the transformation rule, we can compute the conditional law of ηθ1 given the realization of ηθ2 and
vice-versa. That is, ηθ2 given ηθ1 is an SLEκ ((a − θ2χ)/λ − 1; (θ2 − θ1)χ/λ − 2) process indepen-
dently in each of the connected components of H \ ηθ1 which lie to the left of ηθ1 , and moreover, ηθ1
given ηθ2 is independently an SLEκ ((θ2 − θ1)χ/λ − 2; (b + θ1χ)/λ − 1) in each of the connected
components of H \ ηθ2 which lie to the right of ηθ2 .

we can compute the conditional law of a flow line given the realization of a coun-
terflow line within the same geometry. This will be rather useful for us in Section 4
and is explained in Figure 7.

FIG. 6. Suppose that h is a GFF on H with the boundary data depicted above. For each x, θ ∈ R,
let ηx

θ be the flow line of the GFF h+ θχ starting at x. Assume y < x. Just as in Figure 5, if θ2 > θ1,

then η
y
θ2

lies to the left of ηx
θ1

. The conditional law of h given ηx
θ1

, η
y
θ2

is a GFF on H \ (ηx
θ1

∪ η
y
θ2

)

shown above. By applying a conformal mapping and using the transformation rule, we can compute
the conditional law of either curve given the realization of the other. For example, as depicted above,
the conditional law of ηx

θ1
given η

y
θ2

is an SLEκ (−(b+θ1χ)/λ−1, (b+θ2χ)/λ−1; (a+θ1χ)/λ−1)

process.
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FIG. 7. We can construct SLEκ flow lines and SLEκ ′ counterflow lines within the same geom-
etry when κ ′ = 16/κ . This is depicted above for a single counterflow line η′ emanating from
y and a flow line ηθ with angle θ starting from 0. Also shown is the boundary data for h in
D \ (η′([0, τ ′]) ∪ ηθ ([0, τ ])) where τ ′ and τ are stopping times for η′ and ηθ , respectively (we
intentionally did not specify the boundary data of h on ∂D). If θ = 1

χ (λ′ − λ) = −π
2 so that the

boundary data on the right side of ηθ matches that on the right side of η′, then ηθ will almost surely
hit and then “merge” into the right boundary of η′—this fact is known as SLE duality. We can com-
pute the conditional law of ηθ given η′([0, τ ′]) by conformally mapping the connected component
of D \ η′([0, τ ′]) which contains x to H and then applying Figure 4. If ηθ ∼ SLEκ (ρL;ρR), then

ηθ conditional on η′([0, τ ′]) is an SLEκ (ρL, 3
2 ( κ

2 − 2) − θχ
λ − ρL;ρR, 3

2 ( κ
2 − 2) + θχ

λ − ρR)

process where ρq = ∑
i ρi,q with the extra force points located at the left and right sides of

η′([0, τ ′]) ∩ ∂D. In the special case that θ = −π
2 , then the law of ηθ given η′([0, τ ′]) is an

SLEκ (ρL, κ
2 − 2 − ρL;ρR,κ − 4 − ρR) process.

It is also possible to determine which segments of the boundary a flow or coun-
terflow line cannot hit. This is described in terms of the boundary data of the field
in Figure 8 and Figure 9 and proved in [18], Lemma 5.2 (this result gives the
range of boundary data that η cannot hit, contingent on the almost sure conti-
nuity of η; this, in turn, is given in [18], Theorem 1.3). This can be rephrased
in terms of the weights ρ: an SLEκ(ρ) process almost surely does not hit a

boundary interval (xi,R, xi+1,R) (resp., (xi+1,L, xi)) if
∑i

s=1 ρs,R ≥ κ
2 − 2 (resp.,∑i

s=1 ρs,L ≥ κ
2 − 2). See [18], Remark 5.3.

2.3. Naive time-reversal. If h were a smooth function and η were a flow line
of eih/χ , then the time-reversal of η would be a flow line of ei(h/χ+π). This turns
out not to be the case for the flow lines of the Gaussian-free field (which is not a
smooth function). To give an instructive explanation of what actually happens if we
try to reverse direction naively in this way, consider the Gaussian-free field on an
infinite strip with boundary conditions −a and b as in Figure 10. If a, b ∈ (−λ′, λ)
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FIG. 8. Suppose that h is a GFF on the strip S with the boundary data depicted above and let η

be the flow line of h starting at 0 (we do not specify the boundary data on the bottom of the strip
∂LS , but only assume that the flow line never hits the continuation threshold upon hitting ∂LS).
The interaction of η with the upper boundary ∂US of ∂S depends on a, the boundary data of h on
∂US . Curves shown represent almost sure behaviors corresponding to the three different regimes
of a (indicated by the closed boxes). The path hits ∂US almost surely if and only if a ∈ (−λ,λ).
When a ≥ λ, it tends to −∞ (left end of the strip) and when a ≤ −λ it tends to +∞ (right end of
the strip) without hitting ∂US . If η can hit the continuation threshold upon hitting some point on
∂LS , then η only has the possibility of hitting ∂US if a ∈ (−λ,λ) (but does not necessarily do so);
if a /∈ (−λ,λ) then η almost surely does not hit ∂US . Using the transformation rule (2.5), we can
extract from this the values of the boundary data for the boundary segments that η can hit with other
orientations. We can also rephrase this in terms of the weights ρ: an SLEκ (ρ) process almost surely

does not hit a boundary interval (xi,R, xi+1,R) (resp., (xi+1,L, xi)) if
∑i

s=1 ρs,R ≥ κ
2 − 2 (resp.,∑i

s=1 ρs,L ≥ κ
2 − 2). See [18], Lemma 5.2 and Remark 5.3. These facts hold for all κ > 0.

then the results of [18] (see Figure 8) imply that both a forward path from the
bottom to the top of strip and an “opposite direction” path (sometimes called a
dual flow line) from the top to the bottom are defined, and that both paths almost
surely hit both sides of the strip infinitely often, as Figure 10 illustrates.

FIG. 9. (Continuation of Figure 8.) Assume the boundary data on ∂LS are such that the flow line
η of h almost surely does not hit the continuation threshold on ∂LS . Suppose the boundary data for
h on ∂US is a ≤ −λ to the left of z0 and b ≥ λ to the right of z0. Then η almost surely terminates at
z0 without first hitting any other point on ∂US [18], Theorem 1.3. If a ≤ −λ and b ∈ (−λ + πχ,λ),
then η still almost surely reaches z0 but it hits ∂US to the right (and only to the right) of z0 before
it hits z0. Similarly, if we have b ≥ λ and a ∈ (−λ,λ − πχ), then η hits ∂US to the left (and only to
the left) of z0 before it hits z0. If b ∈ (−λ + πχ,λ) and a ∈ (−λ,λ − πχ) then η almost surely hits
both sides of z0 before reaching z0. If either b ≤ −λ + πχ or a ≥ λ − πχ , then η almost surely hits
the continuation threshold before reaching z0.
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FIG. 10. Suppose a, b ∈ (−λ′, λ′) so that one can draw a red flow line and blue dual flow line
directed at each other, starting from opposite ends of the strip. Each path almost surely hits both
sides of the strip infinitely often [the range of boundary values for which the path can hit both sides
comes from combining Figure 8 with (2.5)]. A green dot indicates the first time a path hits a given side
of the strip after hitting the other side; a black dot indicates the last time. The results of [18] imply
that the black dots for the blue and red paths coincide (see also Figures 8–9). In the right figure, we
consider the red path stopped at a stopping time when it has just completed a crossing (a green dot)
and the blue path stopped at an analogous forward stopping time (a green dot on the opposite side).
On the event that the red path and blue path up to these stopping times are disjoint, we denote by
D the component of the complement of this pair of paths that is incident to both paths. Conditioned
on D, there is a positive probability that the following three equivalent events will occur: the dotted
lines (which are continuations of the red and blue flow lines) avoid each other, the red dotted line
avoids the right boundary and the blue dotted line avoids the left boundary.

However, the extent to which these two paths fail to coincide with one another is
somewhat amusing. By way of remark, we mention a few facts about the joint law
of this pair of paths that follow from certain results of [18], which are explained
in Figures 8 and 9). Combined with Figure 6 and Figure 5, these describe when
flow lines can intersect each other and at which segments and points they can exit
given domains with positive probability. If we condition on the dual flow line η̃ up
to any rational time τ̃ and on the flow line η up until any rational time τ and the
two paths run to these times do not intersect each other, then it almost certainly
the case that, after time τ , η first intersects η̃([0, τ̃ ]) at either the last place η̃ hit
the left boundary before time τ̃ or the last place η̃ hit the right boundary before
time τ̃ . An analogous result holds with the roles of η and η̃ reversed.

This implies in particular that the two paths almost surely do not intersect each
other at any point in the interior of the strip. It also implies that if they do intersect
at a point x = η(τ) = η̃(τ̃ ) on the boundary of the strip, then the next place η hits
η̃([0, τ̃ ]) after time τ must be on the opposite side of the strip. (If it collided with
a point y on same side before crossing the strip, and we restricted η and η̃ to the
portions in between their hitting of x and y, then the boundary intersection rules
mentioned above would imply that each of these portions must be to the right of
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the other, a contradiction.) This implies that the paths almost surely behave in the
manner illustrated in Figure 10. In particular, whenever the two paths intersect at a
boundary point, they immediately cross each other and do not intersect anywhere
else in a neighborhood of that point.

The fact that flow lines and dual flow lines almost surely do not intersect each
other (except at isolated boundary points) will actually be useful to us. Figure 10
also illustrates another principle that will be useful in this paper, namely that in
some circumstances a flow line avoids a boundary interval if and only if a dual
flow line avoids another boundary interval.

2.4. Idea for a Gaussian-free field reversibility proof. We are now going to
provide some intuition behind our proof of the reversibility of SLEκ(ρ1;ρ2) which
comes from the imaginary geometry perspective of SLE. First, we present a heuris-
tic argument for the reversibility of ordinary SLEκ that uses Gaussian-free field
machinery. (This was discovered by Schramm and second author some years ago
but never published.)

Suppose that D is a Jordan domain with x, y ∈ ∂D distinct. Let h be a GFF on
D with boundary data as described in Figure 11(a), so that the flow line η of h

starting from x is an SLEκ process from x to y. Let η̃ be any simple curve ending

FIG. 11. Although the coupling of SLEκ processes with the GFF is non-reversible, the theory
nevertheless provides an intuitive explanation of the reversibility. Suppose that h is a GFF on D

whose boundary data is compatible with an ordinary SLEκ process from x to y as above. On the
left side, we have drawn an interior flow line η′ of h starting from z. Conditionally on η̃, η is an
SLEκ (κ − 4;κ − 4) process in D \ η̃ with force points at y−, y+, respectively. If η̃ is the terminal
segment of η, then η must first hit η̃ at z (see the right side). This gives us the conditional law
of η given the realization of its time-reversal up to a reverse stopping time. Once one shows that
SLEκ (κ − 4;κ − 4) processes conditioned not to hit the boundary (which corresponds to η first
exiting D \ η′ at z) are (appropriately interpreted) SLEκ processes, the reversibility follows.
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at y which does not hit ∂D\{y} and which starts at a point z = η̃(0) ∈ D. Formally,
we can write the event E that η̃ is the terminal segment of η as the intersection of
the event E1 that η̃ is a flow line of h starting at z and the event E2 that η intersects
and then merges with η̃ precisely at z. Although E1 is a probability zero event, we
expect that the conditional law of h given E1 is that of a GFF in D \ η̃ with the
boundary data depicted in Figure 11(a). This would imply that the conditional law
of η given E1 is that of an SLEκ(κ −4;κ −4) in D \ η̃ with force points on the left
and right sides of y. Therefore, E2 given E1 is the event that an SLEκ(κ −4;κ −4)

process first exits D \ η̃ at z.
The event E2 has probability zero; however, we will see in Section 5 that, with

an appropriate interpretation, one can still “condition” on this event so that the
conditional law of the process is that of an SLEκ in D \ η̃ from x to z. That is,
the law of η conditional on η̃ being its terminal segment is an SLEκ from x to z

in D \ η̃. This implies the domain Markov property for the time-reversal of SLEκ ,
which implies that the time-reversal is itself an SLEκ .

This argument also motivates our approach to the time-reversal symmetry of
SLEκ(ρ1;ρ2). At least heuristically, we can also consider the same setup with
more general boundary data to obtain that for η ∼ SLEκ(ρL;ρR), the law of η,
given the realization of its time-reversal η̃ up to a reverse stopping time τR , is that
of an SLEκ(ρL, κ − 4 − ρL;ρR, κ − 4 − ρR) process in the connected component
of D \ η̃([0, τR]) containing x from x to η̃(τR) where ρq = ∑

i ρ
i,q for q ∈ {L,R},

conditioned to hit η̃([0, τR]) precisely at its tip.

3. SLEκ(ρ): Conformal Markov characterization. The purpose of this sec-
tion is to prove Theorem 1.4, that conformal invariance (Definition 1.2) and the
domain Markov property (Definition 1.3) with one extra marked point single out
the single-force-point SLEκ(ρ) processes. This is a generalization of Schramm’s
conformal Markov characterization of ordinary SLE [26].

Before we proceed to the proof, we pause momentarily to remind the reader of
a few basic facts regarding Bessel processes [23]. We recall that a Bessel process
BESδ of dimension δ is a solution to the SDE

dX(t) = δ − 1

2X(t)
dt + dB(t), X(0) = x0 ≥ 0,(3.1)

where B is a standard Brownian motion. Bessel processes are typically defined by
first starting with a solution to the square Bessel equation BESQδ

dZ(t) = 2
√

Z(t) dB(t) + δt, Z(0) = z0 ≥ 0,(3.2)

which exists for all t ≥ 0 provided δ > 0 [23], and then taking the square root. In
this case,

√
Z solves (3.1) at times when Z > 0 and is instantaneously reflecting

at 0 (almost surely spends zero Lebesgue measure time at 0). When δ > 1,
√

Z
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solves (3.1) for all times t . We make sense of this when Z = 0 by taking the
integral version of (3.1). The infinitesimal generator A of Z is given by

Af (x) = δf ′(x) + xf ′′(x).(3.3)

Therefore, any Markov process whose infinitesimal generator Ã takes the form

Ãf (x) = a0f
′(x) + a1xf

′′(x)(3.4)

for a0, a1 > 0 is a BESQδ process for δ = a0/
√

a1 > 0 multiplied by
√

a1.
The driving function W for an SLEκ(ρ) process with one force point of weight

ρ > −2 can be constructed by first taking a solution X of (3.1) with

δ = 1 + 2(ρ + 2)

κ
> 1,(3.5)

then letting O(t) = −2κ−1/2 ∫ t
0

2
X(s)

ds, and finally setting W = O + √
κX (see,

e.g., [35], Section 3.3). The main ingredient to the proof of Theorem 1.4 is the
following characterization of Bessel processes, which is essentially a consequence
of Lamperti’s characterization [11] of time homogeneous self-similar Markov pro-
cesses taking values in [0,∞).

LEMMA 3.1. Suppose that V is a time homogeneous Markov process with
continuous sample paths taking values in [0,∞) which is instantaneously reflect-
ing at 0 and satisfies Brownian scaling. Then V is a positive multiple of a BESδ

process for some δ > 0.

PROOF. Note that V 2 is also a time homogeneous Markov process with con-
tinuous sample paths taking values in [0,∞) which is instantaneously reflecting

at 0. Moreover, V 2 satisfies the scaling relation (t �→ α−1V 2(αt))
d= (t �→ V 2(t)).

Consequently, it follows from [11], Theorem 5.1, that the generator A of V 2 takes
the form

Af (x) = a0f
′(x) + a1xf

′′(x), x > 0

for constants a0, a1 > 0 (Lamperti’s characterization allows for a0 ≤ 0; this, how-
ever, requires that 0 is an absorbing state, which is not the case in our setting since
our process is defined for all times and is instantaneously reflecting at 0). This is the
generator for a positive multiple a of a BESQδ process, some δ > 0 [recall (3.4)
and the surrounding text]. That is, aV 2 evolves as a BESQδ process when it is
away from 0. Since V 2 is instantaneously reflecting, it follows that aV 2(t) solves
the BESQδ equation for all time. Consequently, V is a positive multiple of a BESδ

process. �

Before we proceed to the proof of Theorem 1.4, we need to collect two technical
lemmas.
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LEMMA 3.2. Suppose that η is a continuous path in H from 0 to ∞ that
admits a continuous Loewner driving function. Assume that η is parameterized by
capacity and let J = {t ≥ 0 : η(t) ∈ R}. Then J has Lebesgue measure zero.

PROOF. This is [18], Lemma 2.5. �

LEMMA 3.3. Suppose that η is a continuous path in H from 0 to ∞ that
admits a continuous Loewner driving function W . Let (gt ) be the corresponding
family of conformal maps, parameterized by capacity. For each t , let X(t) be the
right most point of gt (η([0, t])) in R. If the Lebesgue measure of η([0,∞]) ∩ R is
zero, then X solves the integral equation

X(t) =
∫ t

0

2

X(s) − W(s)
ds, X(0) = 0+.

REMARK 3.4. This always holds for SLEκ(ρ) paths, even when κ > 4 and ρ

is such that the path is boundary filling. However, there are examples of continuous
curves which intersect the boundary with positive Lebesgue measure so that the
above does not hold.

PROOF OF LEMMA 3.3.3 Fix ε > 0. We define iteratively the process Xε as
follows. We take Xε(0) = ε and let Xε(t) evolve according to the Loewner flow
which is driven by W up until time τ1 = inf{t ≥ 0 : Xε(t) = W(t)}. We then take
Xε(τ1+) = Xε(τ1) + ε. Assuming that Xε has been defined up until time τk , we
take Xε(τk+) = Xε(τk)+ε and then take τk+1 = inf{t > τk : Xε(t) = W(t)}. Then
we clearly have that

X(t) ≤ Xε(t) ≤ X(t) + ε for all t.

We then let Nε(t) be the number of ε-jumps made by Xε before time t . Then we
have that the Lebesgue measure of the ε-neighborhood of η([0, t]) ∩ R is at least
εNε(t) as each jump of Xε corresponds to an interval of length larger than ε on
the real line that contains a point of η ∩ R and, for a given ε, these intervals are
disjoint. Hence, since η([0, t]) ∩ R is both closed and has zero Lebesgue measure,
it follows that εNε(t) → 0 as ε → 0. On the other hand, we have that

Xε(t) = εNε(t) +
∫ t

0

2

Xε(s) − W(s)
ds.

Thus, sending ε → 0, we obtain

X(t) =
∫ t

0

2

X(s) − W(s)
ds,

3We thank Wendelin Werner for suggesting the following simple proof.
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as desired. [The convergence of the integral follows from the monotone conver-
gence theorem as X(s) − W(s) ≤ Xε(s) − W(s) for all s.] �

Lemma 3.3 allows us to make sense of gt (x) for any x ∈ R for all t ≥ 0, even
after being swallowed by η, via the Loewner evolution. We can now complete the
proof of Theorem 1.4.

PROOF OF THEOREM 1.4. For x ≥ 0+, let c(x) = (H,0,∞;x). Let η ∼ Pc(x)

and, for each t > 0, let ct (x) = (Ht , η(t),∞;xt ) where we recall the definitions
of Ht and xt from Definition 1.3. We are now going to argue that η almost surely
has a continuous Loewner driving function viewed as a path in H from 0 to ∞.
To see this, we will check the criteria of [18], Proposition 6.12. It is implicit in the
domain Markov property that, almost surely, for every t > 0 we have that η((t,∞))

is contained in the closure of the unbounded connected component of H\η((0, t)).
The hypothesis that η ∩ R has zero Lebesgue measure combined with the domain
Markov property and conformal invariance implies that, almost surely, for every
t > 0 we have η|−1

[t,∞)(R ∪ η([0, t])) has empty interior. Therefore, η almost surely
has a continuous Loewner driving function. Let (gt ) be the family of Loewner
maps associated with η, parameterized by capacity.

Let X(t) = gt (x) (which makes sense for all t ≥ 0 by Lemma 3.3) and W be the
Loewner driving function for η. Finally, let V (t) = X(t) − W(t). Then V (t) takes
values in [0,∞). Since W and X are continuous, so is V . We note that η(t) ∈ R
precisely when V (t) = 0. Therefore, Lemma 3.2 implies that V is instantaneously
reflecting at 0. We are going to complete the proof of the theorem by showing that
V is a Bessel process by checking the criteria of Lemma 3.1.

We are first going to show that V is a time homogeneous Markov process. Let
Ft = σ(η(s) : s ≤ t) be the filtration generated by η. For t ∈ R, let θtu(s) = u(s +
t) be the usual shift operator. For any t ≥ 0, the domain Markov property implies

Pc(V (0))[θtV ∈ A|Ft ] = Pct (V (0))[V ∈ A].(3.6)

Note that we used V (0) = X(0). By applying the conformal map gt − W(t), con-
formal invariance implies that the expression in (3.6) is equal to Pc(V (t))[V ∈ A].
Therefore, V is a time homogeneous Markov process.

We are now going to show in the special case x = 0+ that V satisfies Brownian
scaling. The reason we choose to work with this particular case is that Pc(0+) is
scale invariant by conformal invariance. We will first show that W satisfies Brow-
nian scaling. For α > 0, we note that

∂tgαt (z) = 2α

gt(αt) − W(αt)
.

Dividing both sides by α1/2 and rearranging, we see that

∂t

(
α−1/2gαt (z)

) = 2

α−1/2gαt (z) − α−1/2W(αt)
.
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The scale invariance of Pc(0+) and the half-plane capacity scaling relation
hcap(αA) = α2 hcap(A) (this appears, e.g., just after [13], Definition 3.35) im-

ply that (t �→ gαt (z))
d= (t �→ α1/2gt (α

−1/2z)). Consequently, we have that

(t �→ α−1/2W(αt))
d= (t �→ W(t)). That is, W satisfies Brownian scaling. Note

that

X(αt) =
∫ αt

0

2

X(s) − W(s)
ds, X(0) = 0+

(the integral representation of X is justified by Lemma 3.3). Making the change of
variables αu = s, we see that

X(αt) =
∫ t

0

2α

X(αu) − W(αu)
du, X(0) = 0+.

Thus, multiplying both sides by α−1/2, we see that X satisfies Brownian scaling
jointly with W . Therefore, V satisfies Brownian scaling.

Lemma 3.1 therefore implies that V is a positive multiple of a BESδ pro-
cess. Moreover, we must have that δ > 1 since δ ∈ (0,1] would imply that
X(t) = ∫ t

0
2

V (s)
ds = ∞ almost surely [23]. Therefore, there exists κ > 0 such that

dV (t) =
√

κ(δ − 1)

2V (t)
dt + √

κ dB(t),

where B is a standard Brownian motion. Combining everything, we see that
(X,W) solves the SDE

dW(t) = d
(
X(t) − V (t)

) =
√

κ(δ − 1)/2 − 2

W(t) − X(t)
dt − √

κ dB(t),

dX(t) = 2

X(t) − W(t)
dt, X(0) = 0.

This exactly says that Pc(0+) is an SLEκ(ρ) process with a single force point at 0+.
We will now explain how the case x > 0 follows from the case x = 0+. Let

τ = inf{t > 0 : V (t) = x}. By the domain Markov property, the law of Pcτ (0+) is
the conformal image of Pc(x) under the conformal map H → Hτ which fixes ∞,
sends 0 to η(τ), and sends x to (0+)τ (recall Definition 1.3). On the other hand,
we also know that Pcτ (0+) is the law of an SLEκ(ρ) process in Hτ from η(τ) to ∞
with a single force point of weight ρ at (0+)τ . Therefore, Pc(x) is an SLEκ(ρ)

process in H from 0 to ∞ with a single force point at x. �

4. Bi-chordal SLEκ processes. Suppose that D is a Jordan domain in C. Fix
x, y ∈ ∂D distinct. Let h be an instance of the GFF on D with some boundary
conditions. We would like to consider two flow lines η1 and η2 from x to y with
respective angles θ1 > θ2. We can change coordinates (using the coordinate change
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of Figure 2) to the setting where D is the upper half plane, with x mapping to 0
and y to ∞. Let us assume that after such a mapping, the boundary conditions of
the GFF become piecewise constant, and that these values are less than λ − θ1χ

on (−∞,0) and more than −λ− θ2χ on (0,∞). This ensures that each ηi is some
kind of SLEκ(ρ) process that can almost surely be continued all the way from x

to y.
In this setting, we also know (from the theory developed in [18]) that if we

condition on one of the ηi , then the conditional law of the other is given by a
particular SLEκ(ρ) process (recall Figures 5 and 6). Thus, we have a recipe that
tells us how to resample either one of the paths (leaving the other fixed) in a way
that preserves the joint law of the pair of paths. A natural question is whether the
invariance of the joint law under this one-path-at-a-time resampling completely
characterizes the joint law. The purpose of this section is to show that indeed it
does.

The most straightforward way to approach this would be to argue that if we start
with any pair of paths (η1, η2), and we repeatedly alternate between resampling η1
and resampling η2, then the law of the pair of paths “mixes,” that is, converges to
some unique invariant measure. The problem is that we do not actually expect a
statement this strong to be true, mainly because we do not expect that the behavior
in a small neighborhood of x (or in a small neighborhood of y) can be completely
mixed in finitely many steps. We will get around this by first using a Gaussian-
free field trick that allows us to put a little bit of distance between the endpoints
of the two paths, and second arguing that this little distance does not affect the
macroscopic behavior of the pair of paths.

Before we proceed to prove this, let us restate the theorem formally in terms of
SLEκ(ρ) processes. Let ρL,ρR be vectors of weights with

∑j
i=1 ρi,q > −2 for all

1 ≤ j ≤ |ρq | and q ∈ {L,R}. Let η1 be an SLEκ(ρL;2 + ρR) in D from x to y

[here and hereafter, we will write 2 + ρ for (2 + ρ1, ρ2, . . . , ρn)]. Conditional on
η1, let η2 be an SLEκ(ρR) in the right connected component of D \η1 from x to y.
Then η2 is an SLEκ(2 + ρL;ρR) from x to y in D and the conditional law of η1

given η2 is an SLEκ(ρL) in the left connected component of D \ η2 from x to y

(see Section 2.2 and Figure 12). We will show that if (η̃1, η̃2) is any other pair of
non-intersecting simple random curves in D in which η̃1 lies to the left of η̃2 and
such that η̃i connects x to y with the conditional law of η̃i given η̃j equal to the

conditional law of ηi given ηj for i, j ∈ {1,2} distinct, then (η̃1, η̃2)
d= (η1, η2).

We call this configuration a “bi-chordal SLEκ(ρ)” process. This characterization
is the main ingredient in our derivation of the reversibility of SLEκ(ρ1;ρ2) from
the reversibility of single-force-point SLEκ(ρ) processes. The following theorem
states this result.

THEOREM 4.1. Suppose that D ⊆ C is a Jordan domain. Fix weights ρL,ρR

with
∑j

i=1 ρi,q > −2 for 1 ≤ j ≤ |ρq | and q ∈ {L,R} and fix x, y ∈ ∂D distinct.
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FIG. 12. Suppose that D is a Jordan domain in C. Fix weights ρL,ρR with
∑j

i=1 ρi,q > −2 for
all 1 ≤ j ≤ |ρq | and q ∈ {L,R}. Let h be a GFF on D whose boundary data is depicted above (with
the obvious generalization from |ρq | = 2). Let η1 be the flow line of h starting at x and η2 the flow

line of h− 2λ starting at x. Then η1 ∼ SLEκ (ρL;2 +ρR) (where 2 +ρ = (2 +ρ1, ρ2, . . . , ρn)) and

η2 ∼ SLEκ (2 + ρL;ρR). The conditional law of η1 given η2 is an SLEκ (ρL) in the left connected

component of D \ η2 and the conditional law of η2 given η1 is an SLEκ (ρR) in the right connected
component of D \η1. We prove in Theorem 4.1 that the joint law of (η1, η2) is characterized by these
conditional laws.

There exists a unique measure on pairs of simple curves (η1, η2)—each connecting
x to y in D and intersecting each other only at these endpoints—such that the
following is true: The law of η1 given η2 is an SLEκ(ρL) in the left connected
component of D \ η2, with the force points corresponding to ρL located on the
clockwise arc from x to y; and the law of η2 given η1 is an SLEκ(ρR) in the right
connected component of D \ η1, with force points corresponding to ρR located on
the counterclockwise arc from x to y.

The proof of Theorem 4.1 consists of two steps. First, we will reduce to the
case that the initial and terminal points of η1 and η2 are almost surely distinct
as follows. By SLE duality (see Figure 7), conditionally on η2, there exists an
SLE16/κ(ρ′) process η′

1 running from y to x whose right boundary is almost surely
equal to η1. We condition on the realization of an initial segment of η1 as well as
on an initial segment of η′

1. Then η1 will merge into the latter before hitting y, so
that this conditioning has an effect similar to conditioning on the terminal segment
of η1. Upon applying a conformal mapping, this in turn allows us to assume that
η1 connects x1 to (y1, y2) and that η2 connects x2 to y2 where x1, x2, y2, y1 ∈ ∂D

are distinct and given in counterclockwise order. Next, we will show that the chain
which transitions from a configuration (γ1, γ2) of non-intersecting simple paths
where γ1 connects x1 to (y1, y2) and γ2 connects x2 to y2 by picking i ∈ {1,2}
uniformly and then resamples γi according to the conditional law of ηi given ηj
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for j = 3− i has a unique stationary distribution. The result then follows by noting
that the law of η1 is continuous in the realization of its initial segment and terminal
dual segment [18], Section 2. Before we proceed to the proof, we establish the
following technical lemma.

LEMMA 4.2. Suppose that D is a Jordan domain and fix x, y ∈ ∂D distinct.
Fix a vector of weights ρL and let η be an SLEκ(ρL) process in D from x to
y where the force points xL associated with the weights ρL are located on the
clockwise arc of ∂D from x to y. Let D̃ be another Jordan domain with x, y ∈ ∂D̃.
Assume that ∂D̃ agrees with ∂D in neighborhoods of both x and y, as well as
along the clockwise arc from x to y. If η̃ is an SLEκ(ρL) process in D̃ from x to
y with the same force points xL as η, then there exists a coupling (η, η̃) such that
P[η = η̃] > 0.

PROOF. Let h (resp., h̃) be a GFF on D (resp., D̃) whose boundary data is
such that we can couple h (resp., h̃) with η (resp., η̃) so that η (resp., η̃) is the
flow line of h (resp., h̃) from x to y as in [18], Theorem 1.1. Let x′′ (resp., y′′)
be in the counterclockwise arc of both ∂D and ∂D̃ from x to y such that the
counterclockwise arcs of ∂D and ∂D̃ from x to x′′ and from y′′ to y agree. Fix
x′ (resp., y′) in the counterclockwise arc of ∂D from x to x′′ (resp., y to y′′)
distinct from x and x′′ (resp., y and y′′). Assume further that x′, x′′, y′, y′′ are at
a positive distance from where ∂D and ∂D̃ disagree. Let U ⊆ D ∩ D̃ be a Jordan
domain such that the clockwise arc of ∂D from x′ to y′ is contained in ∂U and
such that U has a positive distance from where ∂D and ∂D̃ differ. Part 2 of [18],
Proposition 3.4, implies that the laws of h and h̃, both restricted to U , are mutually
absolutely continuous. By [18], Theorem 1.2, η (resp., η̃) up until first exiting U

is almost surely determined by h (resp., h̃) restricted to U . Therefore, the laws of
η and η̃ stopped upon first exiting U are mutually absolutely continuous.

To finish proving the lemma, it suffices to show that η has a positive chance
of staying in U . To see this, suppose that D̂ ⊆ D ∩ D̃ is a Jordan domain with
x′′, y′′ ∈ ∂D̂ whose boundary agrees with that of D and D̃ along the clockwise
arc from x′′ to y′′. Assume also that U ⊆ D̂ and that the clockwise arc of ∂U

from x′ to y′ has a positive distance from the clockwise arc of ∂D̂ from x′′ to y′′.
Suppose that ĥ is a GFF on D̂ with the same boundary data as h and h̃ on the
clockwise arc from x′ to y′ and so that its flow line η̂ from x to y has the law of an
SLEκ(ρL) process with force points at xL. Then η̂ almost surely does not hit the
counteclockwise segment of ∂D̂ from x to y, hence almost surely stays in D ∩ D̃.
Applying the same reasoning as above, we have that the law of η̂ stopped upon
exiting U is mutually absolutely continuous with respect to the laws of η and η̃

stopped upon exiting U . Since η̂ is almost surely continuous and almost surely
does not hit the counterclockwise segment L of ∂D̂ from x′ to y′, it has a positive
chance of not getting within distance δ > 0 of L provided we make δ > 0 small
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enough. Thus (by possibly expanding U ), it follows that the same is true for η

and η̃, which implies that they both have a positive chance of staying in U . �

We remark that we have not made any hypotheses on the weights ρL in the
statement of Lemma 4.2. The important assumption is that η (resp., η̃) does not
have force points on the segment of ∂D (resp., ∂D̃) which connects x to y in the
counterclockwise direction because this ensures that η (resp., η̃) almost surely does
not intersect this part of ∂D (resp., ∂D̃). The same result is true if we add force
points on the arc of ∂D (resp., ∂D̃) which connects x to y in the counterclockwise
direction as long the particular choice does not imply that η (resp., η̃) almost surely
intersects this part of the boundary. We are now ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1. We are first going to explain how, using SLE
duality, we can reduce to the setting that the initial and terminal points of η1
and η2 are distinct. Let D1 be the right connected component of D \ η1 and
let D2 be the left connected component of D \ η2. Fix ε > 0 and let τε be the
first time t that |η1(t) − x| = ε. Conditional on η2, we can couple η1 with an
SLE16/κ(ρ′) process η′

1 from y to x in D2 such that η1 is almost surely the right
boundary of η′

1 (recall Figure 7). Let τ ′
ε be the first time t that |η′

1(t) − y| = ε.
The conditional law of η1 given η2, Aε := η1([0, τε]), and A′

ε := η′
1([0, τ ′

ε]) is
an SLEκ(ρL, κ

2 − 2 − ρL;κ − 4) process from η1(τε) to η′
1(τ

′
ε) where ρL =∑

i ρ
i,L. The extra force points are located at the left and right most points of

A′
ε ∩ ∂D (the right most point is actually y−; see Figure 13). Now, conditional

on η1,Aε , and A′
ε , the law of η2 is still an SLEκ(ρR) from x to y in D1. Let

ψ :Dε → D, Dε the connected component of D \ (Aε ∪A′
ε) whose boundary con-

tains both x+ and y−, be a conformal transformation and set x1 = ψ(η1(τε)),
x2 = ψ(x+), y1 = ψ(η′

1(τ
′
ε)), and y2 = ψ(y−). Given ψ(η2), we have that ψ(η1)

is an SLEκ(ρL, κ
2 − 2 − ρL;κ − 4) process from x1 to y1 where the extra force

points are located at the image of the left most point of A′
ε ∩ ∂D under ψ and

at y2. This implies that ψ(η1) almost surely exits D in the open interval (y1, y2)

(since η1 almost surely merges with the right boundary of A′
ε before hitting y).

Conditional on ψ(η1), ψ(η2) is an SLEκ(ρR) from x2 to y2 in the right connected
component of D \ ψ(η1). Therefore, the initial and terminal points of ψ(η1) and
ψ(η2) are almost surely distinct.

Suppose that μ is any stationary distribution of the chain described just after the
statement of Theorem 4.1. Fix ε > 0 small so that the counterclockwise segment
S1 of ∂D from y1 to x1 has distance at least 4ε from the counterclockwise segment
S2 of ∂D from x2 to y2 and let Aε be the event that η1 (resp., η2) has distance at
least ε from S2 (resp., S1). Let με be given by μ conditioned on Aε . We note that
from the form of the Markov chain described just above and the stationarity of μ

it is easy to see that μ(Aε) > 0. We further note that με is stationary under the
Markov chain as defined just above except in each step we resample each of the
paths conditioned on Aε . We will call this the “ε-Markov chain.”
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FIG. 13. The first step in the proof of Theorem 4.1 is to reduce to the case that the initial and
terminal points of η1 and η2 are distinct. This is accomplished as follows. Conditional on η2, we
know that η1 is an SLEκ (ρL) process in the left connected component D2 of D \ η2. This implies
that there exists an SLE16/κ (ρ′) process η′

1 in D2 such that η1 is almost surely the right boundary of
η′

1 (recall Figure 7). Fix ε > 0, let τε = inf{t ≥ 0 : η1(t) /∈ B(x, ε)}, τ ′
ε = inf{t ≥ 0 : η′

1(t) /∈ B(y, ε)},
Aε = η1([0, τε]), and A′

ε = η′
1([0, τ ′

ε]). Then η1 almost surely merges into (and never separates
from) the right boundary of A′

ε before hitting y. Let ψ be a conformal map which takes the connected
component of D \ (Aε ∪ A′

ε) which contains x+ and y− on its boundary to D. Let ρL = ∑
i ρi,L.

Then the law of ψ(η1) conditional on ψ(η2) is an SLEκ (ρL, κ
2 − 2 − ρL;κ − 4) process with the

extra force points located at the image under ψ of the left and right most points of A′
ε ∩ ∂D (see

Figure 7). Let y1 be the image of the tip y′ of A′
ε under ψ and y2 = ψ(y−). Then ψ(η1) almost

surely first exits D in (y1, y2) (since η1 almost surely merges into the right boundary of A′
ε before

hitting y) and ψ(η2) exits at y2. Conditional on ψ(η1), ψ(η2) is an SLEκ (ρR) process.

To be concrete, we view με as a Borel probability measure on the space of
pairs of closed, connected sets (K1,K2) in D equipped with the Hausdorff dis-
tance where the distance between K1 (resp., K2) and S2 (resp., S1) is at least ε

and xj , yj ∈ Kj for j ∈ {1,2}. We equip the space of such measures with the weak
topology. Let Sε be the set of all such stationary probability measures. Then Sε is
clearly convex. We claim that Sε is in fact compact. To see this, we suppose that
(νn) is a sequence in Sε which converges weakly to ν. We will argue that ν ∈ Sε .
Suppose that (Kn

1 ,Kn
2 ) has law νn and (K1,K2) has law ν. By the Skorohod repre-

sentation theorem, we can put (Kn
1 ,Kn

2 ) and (K1,K2) onto a common probability
space so that Kn

j → Kj almost surely as n → ∞ for j ∈ {1,2} with respect to the
Hausdorff distance. Let V n

j (resp., Vj ) be the component of D \Kn
j (resp., D \Kj )

which contains x3−j , y3−j on its boundary.
Assume that wj has been fixed in Sj and is distinct from xj , yj . Let ϕ1:V1 → D

be the unique conformal map which takes x2 to −i, w2 to 1, and y2 to i. Since the
distance between K1 and S2 is at least ε, we note that there exists ζ > 0 depending
only on ε, D, x2, w2, and y2 such that ϕ1(K1) is contained in the counterclockwise
segment T1 of ∂D from ei(π/2+ζ ) to ei(3π/2−ζ ). For each δ > 0, we let Ũ δ

1 be the set



IMAGINARY GEOMETRY II 1675

of points z ∈ D whose distance from T1 is at least δ. Finally, we let Uδ
1 = ϕ−1

1 (Ũ δ
j ).

We define Uδ
2 analogously.

Let Fj = σ(Kj ,K
n
j : n ∈ N) be the σ -algebra generated by Kj and all of the

Kn
j for n ∈ N. In what follows, we will always be conditioning on Fj (so that

Kj and all of the Kn
j for n ∈ N are fixed). By the convergence of Kn

j → Kj with
respect to the Hausdorff distance, we have that there exists n0 ∈ N such that n ≥ n0

implies that Uδ
1 ⊆ V n

1 . Note that both n0 and Uδ
j are Fj -measurable.

For each n, we let hn
j be an instance of the GFF on V n

j with the boundary
conditions so that its flow line from x3−j to y3−j has the correct law to perform
the resampling operation. We define hj analogously for Vj . We assume that the hn

j

(for all n ∈ N) and hj are coupled together on a common probability space so that,
given Fj , we have that the hn

j (for all n ∈ N) and hj are conditionally independent.
Fix δ > 0. We will now argue that, given Fj , the total variation distance between
the law of hn

j |Uδ
j

and the law of hj |Uδ
j

almost surely tends to 0 as n → ∞. That

is, if we let L(X|Fj ) denote the conditional law of a random variable X given Fj

and ‖ · ‖TV denote the total variation distance, we have almost surely that

lim
n→∞

∥∥L(
hn

j |Uδ
j
|Fj

) −L(hj |Uδ
j
|Fj )

∥∥
TV = 0.(4.1)

To see this, we fix δ̂ ∈ (0, δ/4). Assume that n is such that Uδ̂
j ⊆ V n

j (note that we
can choose n in an Fj -measurable way). By the Markov property for hn

j (resp.,

hj ) we can write hn
j (resp., hj ) as the sum of a zero boundary GFF ĥn

j (resp.,

ĥj ) on Uδ̂
j and the harmonic extension hn

j (resp., hj ) of the boundary values of

hn
j (resp., hj ) from ∂Uδ̂

j to Uδ̂
j . We let φ̂δ

j be a C∞
0 function which is supported

in U
δ/2
j with φ̂δ

j |Uδ
j

≡ 1 and then take φ
n,δ,̂δ
j = (hn

j − hj )φ̂
δ
j . (We note that we

can choose φ̂δ
j in an Fj -measurable way.) We can transform from L(hj |Uδ

j
|Fj )

to L(hn
j |Uδ

j
|Fj ) by weighting the former by exp((ĥj , φ

n,δ,̂δ
j )∇) (this is the infinite

dimensional analog of the fact that weighting the law of Z ∼ N(0,1) by eμx yields

a N(μ,1)). We emphasize that exp((ĥj , φ
n,δ,̂δ
j )∇) is a measurable function of the

pair hj ,h
n
j because it is determined by ĥj , hn

j and hj . In particular, hn
j and hj

can be constructed from hn
j and hj via a series expansion where the coefficients

are computed by taking (·, ·)∇ -inner products of hj and hn
j with an orthonormal

basis of those functions in H(Vj ) and H(V n
j ) which are harmonic in Uδ̂

j . Given

hn
j and hj , hence φ

n,δ,̂δ
j , we can determine (ĥj , φ

n,δ,̂δ
j )∇ by representing both ĥj

and φ
n,δ,̂δ
j in terms of an orthonormal basis of H(Vj ) and then taking the sum of

the products of the coefficients. It is not difficult to see that for each δ, ε′ > 0 there
exists δ̂0 > 0 and n0 ∈ N (both Fj -measurable) such that δ̂ ∈ (0, δ̂0) and n ≥ n0
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implies that

P
[

sup
z∈U

δ/4
j

∣∣hn
j (z) − hj (z)

∣∣ ≤ ε′∣∣Fj

]
≥ 1 − ε′.

By applying a (non-random) conformal transformation to all of D, we may assume
without loss of generality that D ⊆ H and that ∂Vj \Kj = ∂V n

j \Kn
j is given by an

interval of R. Since hn
j −hj is harmonic on U

δ/4
j and vanishes on ∂Vj \Kj = ∂V n

j \
Kn

j , we can extend it to a function gn
j which is harmonic on U

δ/4
j ∪ (U

δ/4
j )∗ where

(U
δ/4
j )∗ = {z : z ∈ U

δ/4
j }. Since gn

j is harmonic on U
δ/4
j ∪ (U

δ/4
j )∗, its derivatives

can be bounded in terms of its supremum on compact sets. Since the closure of
U

δ/2
j ∪ (U

δ/2
j )∗, (U

δ/2
j )∗ = {z : z ∈ U

δ/2
j }, is a compact subset of U

δ/4
j ∪ (U

δ/4
j )∗, it

follows that for each δ, ε′ > 0 there exists δ̂0 > 0 and n0 ∈ N (both Fj -measurable)
such that δ̂ ∈ (0, δ̂0) and n ≥ n0 implies that

P
[∥∥gn

j |Uδ/2
j ∪(U

δ/2
j )∗

∥∥∇ ≤ ε′|Fj

] ≥ 1 − ε′.

It therefore follows the same is true for ‖(hn
j −hj )|Uδ/2

j

‖∇ . By the Cauchy–Schwarz

inequality, we thus have that for each δ, ε′ > 0 there exists δ̂0 > 0 (Fj -measurable)
such that δ ∈ (0, δ̂0) implies that

P
[∥∥φn,δ,̂δ

j

∥∥∇ ≤ ε′|Fj

] ≥ 1 − ε′.(4.2)

Combining (4.2) with the form of the Radon–Nikodym derivative implies the
claimed convergence in total variation (4.1).

We will now deduce from the claim established in the previous paragraph that
the conditional law given Fj of the flow line from x3−j to y3−j generated using
hn

j almost surely converges in total variation as n → ∞ to the conditional law
given Fj of the flow line from x3−j to y3−j generated using hj . Fix ε′ > 0. Then
there exists δ > 0 (Fj -measurable) such that the conditional probability given Fj

that the flow line of the latter stays in Uδ
j is at least 1 − ε′/2. By the total varia-

tion convergence established in the previous paragraph, we can find n0 ∈ N (Fj -
measurable) such that n ≥ n0 implies that∥∥L(

hn
j |Uδ

j
|Fj

) −L(hj |Uδ
j
|Fj )

∥∥
TV ≤ ε′

2
.

Combining this with [18], Theorem 1.2, implies that for n ≥ n0 we have that the
total variation distance between the conditional laws of the two aforementioned
flow lines given Fj is at most ε′ (as we can couple the paths onto a common prob-
ability space, given Fj , to be equal with probability at least 1 − ε′). The claimed
total variation convergence given Fj follows since ε′ > 0 was arbitrary. In partic-
ular, the conditional probability given Fj of the event that the former has distance
at least ε from Sj converges to the corresponding conditional probability given Fj
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for the latter. This implies that the conditional law of the former given Fj and con-
ditioned on having distance at least ε from Sj converges in total variation to the
conditional law given Fj of the latter conditioned on the same event. Since total
variation convergence implies weak convergence, we therefore have that the one
step transition kernel for the ε-Markov chain is continuous, which implies that ν

is stationary. This proves that Sε is compact.
As Sε is a compact and convex subset of a locally convex space, Choquet’s

theorem (see, e.g., [22], Section 3) thus implies that με can be uniquely expressed
as a superposition of extremal (or ergodic measures) in Sε . That is, there exists a
probability measure mε on Sε supported on the extremal elements ν of Sε such
that

με =
∫

ν dmε(ν).

It is clear from the definition of the ε-Markov chain that με is supported on pairs of
non-crossing paths in D connecting x1, y1 and x2, y2. Therefore, mε is necessarily
supported on such measures. To show that Sε consists of a single such element, it
suffices to show that there is only one extremal such element of Sε . Suppose that
ν, ν̃ are extremal elements of Sε .

We will now show that if ν, ν̃ are distinct then ν, ν̃ are necessarily mutually
singular. Lebesgue’s decomposition theorem implies that we can uniquely write
ν = ν0 + ν1 where ν0 (resp., ν1) is absolutely continuous (resp., singular) with
respect to ν̃. If both ν0 and ν1 are non-zero, then they can be normalized to be
probability measures which are both stationary for the ε-Markov chain (by the
uniqueness of the Lebesgue decomposition). This contradicts that ν is an extremal
measure. We also need to rule out the possibility that ν is absolutely continuous
with respect to ν̃. We suppose for contradiction that ν is absolutely continuous
with respect to ν̃ and let f = dν/dν̃ be the Radon–Nikodym derivative of ν with
respect to ν̃.

Suppose that, given X0, we sample (Xk) using the ε-Markov chain defined
above. We will write Eν (resp., Eν̃) for the expectation under the law where the
distribution of X0 is given by ν (resp., ν̃). Fix a bounded function g. Then we have
that

Eν

[
g(X1)f (X0)

] = Eν̃

[
g(X1)

] = Eν̃

[
g(X0)

]
= Eν

[
g(X0)f (X0)

] = Eν

[
g(X1)f (X1)

]
.

It therefore follows that

Eν

[
g(X1)Eν

[
f (X0)|X1

]] = Eν

[
g(X1)f (X1)

]
for all bounded functions g. This implies that Eν[f (X0)|X1] = f (X1) under ν

almost surely. More generally, the same argument implies that Eν[f (Xn)|Xn+1] =
f (Xn+1) for all n under ν almost surely. As (Xk) is a Markov chain, we have for
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each n that Xn is conditionally independent of Xm for m ≥ n+2 given Xn+1. This
implies that

Eν

[
f (Xn)|Xm,m ≥ n + 1

] = Eν

[
f (Xn)|Xn+1

] = f (Xn+1)

which, in turn, implies that Mn
k = f (Xn−k) for 0 ≤ k ≤ n is a martingale un-

der Eν . By stationarity, we have for all n1, n2 ∈ N that Mn1 |[0,n] d= Mn2 |[0,n] where
n = n1 ∧ n2. Therefore, by the Kolmogorov extension theorem there exists a pro-

cess M̃k which is defined for all k such that M̃|[0,n] d= Mn for all n. As M̃ is a
non-negative martingale, the martingale convergence theorem implies that limn M̃n

almost surely exists. In particular, we almost surely have that M̃n − M̃n−1 → 0 as
n → ∞. Fix δ > 0. Then we have that

Pν

[∣∣f (X0) − f (X1)
∣∣ ≥ δ

] = lim
n→∞ Pν

[∣∣Mn
n − Mn

n−1

∣∣ ≥ δ
]

= lim
n→∞ P

[|M̃n − M̃n−1| ≥ δ
] = 0.

That is, f (X0) = f (X1) almost surely under ν. If ν, ν̃ are distinct then there exists
a > 0 such that both {f > a} and {f ≤ a} have positive ν̃-measure. We can write
ν = μ0 +μ1 where μ0 (resp., μ1) is the measure with Radon–Nikodym derivative
with respect to ν̃ given by f 1{f >a} (resp., f 1{f ≤a}). The above argument implies
that μ0,μ1 can be normalized to be probability measures in Sε , which contradicts
that ν is extremal.

We will now argue that ν = ν̃ by showing that they cannot be mutually singu-
lar. Suppose that we have two initial configurations (γ1, γ2) ∼ ν and (γ̃1, γ̃2) ∼ ν̃,
sampled independently. Let (γ n

1 , γ n
2 ) and (γ̃ n

1 , γ̃ n
2 ) be the nth step of the ε-Markov

chain described above with the initial data (γ1, γ2) and (γ̃1, γ̃2) (corresponding to
n = 0), respectively, coupled as follows. Fix n ≥ 0. We sample the same value of
in+1 for both pairs (γ n

1 , γ n
2 ) and (γ̃ n

1 , γ̃ n
2 ) and then take (γ n+1

in+1
, γ̃ n+1

in+1
) to maximize

the probability that they are equal given (γ n+1
jn+1

, γ̃ n+1
jn+1

), where jn+1 = 3 − in+1.

Two applications of Lemma 4.2 imply that P[(γ 2
1 , γ 2

2 ) = (γ̃ 2
1 , γ̃ 2

2 )] > 0. Since
(γ 2

1 , γ 2
2 ) ∼ ν and (γ̃ 2

1 , γ̃ 2
2 ) ∼ ν̃, we thus have that ν is not mutually singular with

respect to ν̃, which in turn implies ν = ν̃. We conclude that Sε consists of a sin-
gle element and therefore the ε-Markov chain has a unique stationary distribution.
Sending ε → 0 implies that the original chain has a unique stationary distribution.

We can explicitly construct a pair of random paths (η̃1, η̃2) whose law is a sta-
tionary distribution to this chain as follows. We let η̃1 be an SLEκ(ρL, κ

2 − 2 −
ρL;2 + ρR, κ − 4 − ρR) process in D from x1 to y1 where the force points on
the left side are at the same location as those of ψ(η1), the first |ρR| force points
on the right side are at the same location as those of ψ(η2), and the force point
with weight κ − 4 − ρR is located at y2. We then take η̃2 to be an SLEκ(ρR) in
the right connected component of D \ η̃1, where the force points are at the same
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location as those of ψ(η2). The justification that (η̃1, η̃2) is stationary follows from
a GFF construction analogous to that considered in Figure 12 (see also Figure 5
and the nearby discussion in Section 2.2). This allows us to write down the law of
η1 given Aε,A

′
ε . It is an SLEκ(ρL, κ

2 − 2 − ρL;2 + ρR, κ − 4 − ρR) process from
η(τε) to η′(τ ′

ε) where ρR = ∑
i ρ

i,R . The extra force points are at the left and right
most points of A′

ε ∩∂D and η′
1(τε). Since the law of such processes are continuous

in the locations of their force points [18], Section 2, sending ε → 0, we see that
η1 has to be an SLEκ(ρL;2 + ρR). This completes the proof since, of course, we
know the conditional law of η2 given η1. �

REMARK 4.3. Theorem 4.1 can be extended to n paths for any n > 2. That
is, suppose h is an instance of the GFF on H with piecewise constant boundary
conditions, and we have a collection of flow lines η1, η2, . . . , ηn of H starting at 0
but with different angles θ1 > θ2 > · · · > θn. Then the joint law is characterized by
the conditional law of each path given the others. In other words, if η̃1, η̃2, . . . , η̃n

is any collection of paths such that the conditional law of each η̃j given the others
is the same as the law of a flow line of the appropriate component of H\ (

⋃
k �=j η̃k)

(with the corresponding boundary conditions) then the η̃j have the same joint law
as the ηj . This can be shown by induction. Assume the statement is true for n − 1
paths. Then given η1, the inductive hypothesis implies that the conditional law of
each of the other paths is determined. Moreover, given η2, the conditional law of
η1 is determined. This in particular determines the marginal law of η1. The result
then follows since, as already mentioned, the conditional of the other paths given
η1 is determined.

REMARK 4.4. In the context of the proof of Theorem 4.1, a natural question
to ask is how long it takes the Markov chain in question to converge to stationarity
(after we have separated the initial and terminal points of the paths). It turns out
that it is possible to construct a coupling between two different realizations of the
chain which requires a finite number of steps to couple with positive probability
uniformly in the initial configuration. Although we will not need this statement for
our main results, we sketch a proof in Figure 14.

5. Paths conditioned to avoid the boundary.

5.1. Weighting by martingales. As illustrated later in Figures 29 and 30, an
SLEκ(ρL;ρR) process from the bottom to top of the vertical strip V can also be
understood as a flow line of a Gaussian-free field on V with boundary conditions
of −a on the left side ∂LV of V and b on the right side ∂RV of V , where ρL =
κ
4 − 2 + a

λ
and ρR = κ

4 − 2 + b
λ

. Recalling (2.7), the constraint that ρq > −2 for
q ∈ {L,R} corresponds to a > −λ′ and b > −λ′. If this constraint holds, then the
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FIG. 14. It is in fact possible to use another coupling in the proof of Theorem 4.1 which requires
only a finite number of steps to couple with positive probability which is uniform in the initial con-
figuration (the coupling described there couples with positive probability, but this probability a pri-
ori depends on the initial configuration). The idea to prove this is the following. Let (γ n

1 , γ n
2 ) and

(γ̃ n
1 , γ̃ n

2 ) denote the nth step of this Markov chain with initial data (γ1, γ2) and (γ̃1, γ̃2), respec-
tively. We couple together the two chains by taking in to be the same for both. When in+1 = 1,

we pick γ n+1
1 , γ̃ n+1

1 to maximize the probability that they are equal, and when in+1 = 2, we pick

γ n+1
2 , γ̃ n+1

2 independently unless γ n
1 = γ̃ n

1 , in which case we take them to be the same. It is possible

to argue that when in+1 = 2, with positive probability uniform in the realization of γ n+1
1 and γ̃ n+1

1 ,

we have that both γ n+1
2 and γ̃ n+1

2 lie in the right side of D (to the right of L2 depicted in the left

panel). Conditional on this event happening, γ n+2
1 , γ̃ n+2

1 can be coupled to be equal with uniformly
positive probability. The technical estimate that this proof requires is a quantitative estimate on the
Radon–Nikodym derivative which appears implicitly in the proof of Lemma 4.2.

path hits both ∂LV and ∂RV almost surely provided that ρq < κ
2 −2 for q ∈ {L,R},

which corresponds to a < λ′ and b < λ′.
In this section, we explore the following question: what does it mean to con-

sider such a path conditioned not to hit ∂LV and ∂RV? One has to be care-
ful with this question because it involves conditioning on an event of probabil-
ity zero. We would like to argue that after this conditioning, appropriately in-
terpreted, the SLEκ(ρL;ρR) process becomes an SLEκ(ρ̂L; ρ̂R) process where
ρ̂q = (κ − 4) − ρq for q ∈ {L,R}.

Observe that ρq and ρ̂q are equidistant from the critical value κ
2 − 2 for bound-

ary intersection. We note that the effect that the conditioning has on the weights
of the force points is natural in view of the some standard facts about Bessel pro-
cesses. The driving function for a boundary-intersecting one-sided SLEκ(ρ) from
0 to ∞ in H can be described completely in terms of a Bessel process X of di-
mension δ < 2 as in (2.6), where Xt reaches zero precisely at the times when the
curve hits the boundary. The reader may recall that |Xt |α is a local martingale
when α = 2 − δ > 0 [23]. Girsanov’s theorem then implies that if |X0| > 0 then
conditioning |Xt | to reach N before 0 amounts to adding a drift term to Xt given
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by the spatial derivative of log |Xt |α , that is, adding (α/Xt) dt to the RHS of (3.1),
which changes Xt from a Bessel process of dimension δ to a Bessel process of
dimension δ + 2α = 4 − δ. This corresponds to changing the weight of the force
point to (κ − 4) − ρ.

Alternatively, one can note that conditioning on the curve avoiding the boundary
until a given capacity time t is equivalent to conditioning X on the event �+

t =
{X|[0,t] > 0}, an event that has positive probability as long as the initial force point
is not the SLE seed. A similar argument shows that the conditional law of X given
�+

t converges as t → ∞ to a Bessel process of dimension 4 − δ.
The following proposition (expressed using H instead of V) will give us one

way to make sense of this conditioning in the two-sided case.

PROPOSITION 5.1. Consider an SLEκ(ρL;ρR) process η in H from 0 to ∞
with the initial force points xL < 0 and xR > 0, where ρq < κ

2 − 2 for q ∈ {L,R},
so that at least one of the force points is almost surely absorbed in finite time. Let
V L

t ,V R
t denote the evolution of the force points corresponding to xL, xR , respec-

tively, under the Loewner flow. If we weight the law of η by the local martingale

Mt := 1

Z
∣∣V L

t − Wt

∣∣(κ−4−2ρL)/κ ∣∣V R
t − Wt

∣∣(κ−4−2ρR)/κ

(5.1)
× ∣∣V R

t − V L
t

∣∣(κ−4−ρL−ρR)(κ−4)/2κ
,

where Z is chosen so that M0 = 1, then we obtain an SLEκ(ρ̂L; ρ̂R) process with
ρ̂q = (κ − 4) − ρq for q ∈ {L,R}. In particular, we obtain a process in which the
force points are almost surely not absorbed in finite time.

PROOF. This is essentially shown in [31], Theorem 6, and [31], Remark 7.
In that paper, the Radon–Nikodym derivative of SLEκ(ρL;ρR) with respect to
ordinary SLEκ (stopped at an appropriate stopping time) was computed for any ρL

and ρR . Taking the ratio of this quantity for SLEκ(ρL;ρR) and for SLEκ(ρ̂L; ρ̂R)

yields the Radon–Nikodym derivative of one of these processes with respect to the
other provided the curve has not hit the boundary—and this has the form given
in (5.1). Alternatively, the fact that Mt is a local martingale—and that weighting
the law of an SLEκ(ρL;ρR) by Mt produces an SLEκ(ρ̂L; ρ̂R)—can be verified
directly with Itô/ calculus. �

A similar argument yields the following.

PROPOSITION 5.2. Consider an SLEκ(ρL;ρR) process η in H from 0 to ∞
with the initial force points xL < 0 and xR > 0, where ρq < κ

2 − 2 for q ∈ {L,R}
so that at least one of the force points, say xL, is almost surely absorbed in fi-
nite time. Let V L

t ,V R
t denote the evolution of the force points corresponding to
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xL, xR , respectively, under the Loewner flow. If we weight the law of η by the local
martingale

M1
t := 1

Z
∣∣V L

t − Wt

∣∣(κ−4−2ρL)/κ ∣∣V R
t − V L

t

∣∣(κ−4−2ρL)ρR/2κ
,(5.2)

where Z is chosen so that M1
0 = 1, then we obtain an SLEκ(ρ̂L;ρR) process with

ρ̂L = (κ − 4) − ρL. In particular, we obtain a process in which the left force point
is almost surely not absorbed in finite time.

Note that in the setting of Proposition 5.1, Mt vanishes precisely when η touches
either (−∞, xL] or [xR,∞). (Similarly, in the setting of Proposition 5.2 M1

t van-
ishes precisely when η touches (−∞, xL].) For each N ≥ 0, we let τN = inf{t ≥
0 : Mt = N}. Since Mt∧τN∧τ0 is a bounded and continuous martingale (provided
N ≥ 1), the optional stopping theorem implies that E[MτN∧τ0] = 1, and hence
the event EN := {τN < τ0} occurs with probability 1/N . Reweighting the law of
ηt∧τN∧τ0 by MτN∧τ0 corresponds to conditioning on EN . Thus, Proposition 5.1 im-
plies that ηt∧τN∧τ0 conditioned on EN evolves as an SLEκ(ρ̂L; ρ̂R) process from
0 to ∞ until time τN . Since Mt is a continuous local martingale, it evolves as a
Brownian motion when parameterized by its quadratic variation. Conditioning Mt

to stay positive for all time (by conditioning it to stay positive until τN and tak-
ing the N → ∞ limit) corresponds to replacing this Brownian motion by a Bessel
process of dimension 3. (Recall that a Bessel process of dimension 1 evolves a
Brownian motion when it is away from 0, and that conditioning it to stay non-
negative produces a Bessel process of dimension 4 − 1 = 3.) As explained above,
this amounts to replacing the SLEκ(ρL;ρR) process by an SLEκ(ρ̂L; ρ̂R) pro-
cess. In this sense, at least, Proposition 5.1 implies that an SLEκ(ρL;ρR) process
conditioned not to hit the boundary is an SLEκ(ρ̂L; ρ̂R) process. [And Proposi-
tion 5.2 yields an analogous statement for SLEκ(ρL;ρR) conditioned not to hit
one side of the boundary.] Note also that Propositions 5.1 and 5.2 make sense even
for ρq ≤ −2, which is the threshold for which an SLEκ(ρL;ρR) process cannot
be continued after hitting the boundary [18], Section 2.

Finally, we point out that in fact both of the above results are special cases of
the following more general proposition, which also follows from [31], Theorem 6
and [31], Remark 7 (and exactly the same argument given in the proof of Proposi-
tion 5.1).

PROPOSITION 5.3. Consider an SLEκ(ρ) process η in H from 0 to ∞ with
finitely many initial force points xj,L < 0 and finitely many force points xi,R > 0.
Let V

j,q
t denote the evolution of the force point corresponding to xj,q under the

Loewner flow. For notational purposes, we also write V
0,0
t := Wt and ρ0,0 := 2

and treat this as an “extra force point.” Let ρ̃ be obtained from ρ by replacing
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some subset of the weights ρj,q (other than ρ0,0) with the “dual weights” ρ̂j,q :=
κ − 4 − ρj,q . Define the local martingale

Mt := ∏∣∣V j,q
t − V

j ′,q ′
t

∣∣(ρ̃j,q ρ̃j ′,q′−ρj,qρj ′,q′
)/2κ

,(5.3)

where the product is taken over all distinct pairs (j, q) and (j ′, q ′) corresponding
to force points [including the “extra” one (0,0)] and where Z is chosen so that
M0 = 1. Then if we weight the law of η by Mt we obtain an SLEκ(ρ̃) process.

5.2. A single path avoiding the boundary. Let η be a flow line started at 0 and
targeted at ∞ of a GFF h on H with piecewise constant boundary conditions. Then
η is an SLEκ(ρ) process. Let x = (xL;xR) denote the locations of the force points
of η. By adding zero-weight force points if necessary, we may assume without
loss of generality that x1,L = 0− and x1,R = 0+. Let I = [x2,L, x2,R]. Then the
boundary conditions for h are constant on the left and right sides of I \ {0}, which
we denote by IL = [x2,L,0) and IR = (0, x2,R]. Assume that either h|IL

> −λ +
πχ or h|IR

< λ − πχ so that η can hit at least one of IL or IR (or immediately
hits the continuation threshold); see Figure 8. We would like to define the law of η

conditioned not to hit I before reaching ∞. Since this amounts to conditioning on
an event of probability zero, we have to state carefully what we mean.

The main result of this subsection is the following proposition which states that
one can characterize the law by a “Gibbs property” that says if we are given any
initial segment of the path, then the conditional law of the remainder of the path
is what we expect it to be. We will assume that the boundary conditions for h are
such that given a finite (boundary avoiding) segment of η, the continuation of η as
a flow line would have a positive probability of reaching ∞ before hitting the con-
tinuation threshold. Concretely, this means that the boundary data for h is constant
on (−∞, xk,L) for k = |ρL| and at most −λ + πχ and constant in (x�,R,∞) for

� = |ρR| and at least λ − πχ . Equivalently, we have both
∑k

i=1 ρi,L ≥ κ
2 − 2 and∑�

i=1 ρi,R ≥ κ
2 − 2 [see (2.5) and Figure 8].

PROPOSITION 5.4. Suppose that ρ = (ρL;ρR) is a collection of weights cor-
responding to force point locations x = (xL;xR). Assume that x1,L = 0−, x1,R =
0+, that both ρ1,L < κ

2 − 2 and ρ1,R < κ
2 − 2, and that both

∑k
i=1 ρi,L ≥ κ

2 − 2
and

∑�
i=1 ρi,R ≥ κ

2 − 2 where k = |ρL| and � = |ρR|. There is at most one law

for a random continuous path η in H from 0 to ∞ with the following Gibbs prop-
erty. For every almost surely positive stopping time τ , the conditional law of η

given η([0, τ ]) is that of an ordinary SLEκ(ρ) process in H \ η([0, τ ]) from η(τ)

to ∞ conditioned on the positive probability event that it reaches ∞ before hitting
I = [x2,L, x2,R]. (See Figure 15 for an illustration.)
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FIG. 15. In both panels, η is “conditioned” in some sense to avoid hitting the intervals with
values c1,L and c1,R before reaching ∞. In the left panel, the boundary conditions are such that
given the portion of the path shown, there is a positive probability that its continuation after hitting
∂B(0,1) will reach ∞ before hitting these intervals. Concretely, this means that ck,L ≤ −λ + πχ

and c�,R ≥ λ − πχ [see (2.5) and Figure 8]. The law of a path segment that ends on ∂B(0,1) and
avoids the boundary is characterized by a certain path-resampling invariance (Proposition 5.4). In
the right panel, the intervals with values c1,L and c1,R are infinite, and the “conditioning not to
hit” these intervals is achieved by weighting by a martingale (recall Proposition 5.1) that amounts to
replacing the corresponding ρ1,L and ρ1,R with ρ̂1,L and ρ̂1,R , respectively. The law of the bound-
ary-avoiding path on the right is simply that of an SLEκ (ρ̂1,L; ρ̂1,R) process up until the first time
that it exits the unit disk. The idea of the proof of Proposition 5.4 is to show that the law described
on the left side (assuming it exits) is absolutely continuous with respect to the law on the right side
and we will explicitly identify the Radon–Nikodym derivative.

We note that Proposition 5.4 is stated for SLEκ(ρ) processes which can hit both
immediately to the left and right of 0 (or immediately hit the continuation thresh-
old). The same proof, however, works in the case that the curve can only hit on one
side or is conditioned not to hit only one side. Before we give its proof, we will
need to prove several auxiliary lemmas; we recommend that the reader skips to the
main body of the proof of Proposition 5.4 on a first reading to see how everything
fits together. Throughout, we let � be the set of simple, continuous, boundary
avoiding path segments in H which connect 0 to ∂B(0,1), modulo reparameteri-
zation. By [18], Proposition 6.12, we know that if γ ∈ � then γ (parameterized by
capacity) admits a continuous Loewner driving function W : [0, T ] → R. We equip
� with the following metric. For γi ∈ � for i = 1,2 with continuous Loewner
driving functions Wi : [0, Ti] → R, we write

d(γ1, γ2) = ∥∥W1(· ∧ T1) − W2(· ∧ T2)
∥∥∞ + |T1 − T2|.

Then (�,d) is a metric space.

LEMMA 5.5. Let D:� → R be the function which associates γ : [0, T ] → H
in � with the distance of its tip γ (T ) in ∂B(0,1) to ∂H, that is, Im(γ (T )). Then
D is a continuous function on (�,d).

PROOF. Suppose that (γn) is a sequence in � converging to γ ∈ � with re-
spect to the topology induced by d . Let un be the tip of γn in ∂B(0,1) and u

the tip of γ . We are actually going to show that un converges to u. By passing
to a subsequence, we may assume without loss of generality that un converges to
u0 ∈ ∂B(0,1). It suffices to show that u0 = u. For each n, let gn be the conformal
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map which takes H \ γn to H with gn(z) = z + o(1) as z → ∞ and let g be the
corresponding conformal map for H \ γ . Then [13], Proposition 4.43, implies that
gn converges to g in the Caratheodory sense; see [13], Section 4.7. This means
that for each compact set K ⊆ H \ γ , there exists n = n(K) such that n ≥ n(K)

implies that K ⊆ H \ γn and gn → g uniformly on K . In particular, if z ∈ ∂B(0,1)

is not equal to u, there exists a compact neighborhood Kz of z in H \ γ which γn

does not intersect for all sufficiently large n. Hence, u0 �= z and, therefore, u0 = u,
which completes the proof. �

For each ε > 0, we let �ε = {γ ∈ � : D(γ ) ≥ ε} be the set of continuous,
boundary avoiding, simple paths in H connecting 0 to ∂B(0,1) whose tip on
∂B(0,1) has distance at least ε from ∂H, modulo reparameterization. Note that
Lemma 5.5 implies that �ε is a closed subset of (�,d).

LEMMA 5.6. Suppose that γ ∈ � and let (gt ) be the corresponding Loewner
chain. Let W be the Loewner driving function of γ and V L

t ,V R
t be the images

of 0−,0+, respectively, under gt . There exists 0 < C1
ε ≤ C2

ε < ∞ depending only
ε > 0 such that

C1
ε ≤ ∣∣V q

τ1
− Wτ1

∣∣ ≤ C2
ε for q ∈ {L,R},

where τ1 is the first time t that γ exits B(0,1).

PROOF. Let B be a Brownian motion starting at z ∈ ∂B(0,1) with Im(z) =
ε/2. It is easy to see that the probability that B first exits H \ γ in (−∞,0) [resp.,
in (0,∞), the left side of γ , or the right side of γ ] is at least a positive constant
p = p(ε) which depends only on ε. Consequently, the desired result follows by
the conformal invariance of Brownian motion as well as elementary derivative
estimates [13], Theorem 3.20 and Corollary 3.23, for conformal maps which imply
that gτ1(z) is not too close to ∂H (see Figure 16 for additional explanation). �

LEMMA 5.7. For each ε,M > 0, there exists p = p(ε,M) > 0 such that the
following is true. Let ρ = (ρL;ρR) be weights such that |∑j

i=1 ρi,q | ≤ M for all
1 ≤ j ≤ |ρq | and

∑
i ρ

i,q ≥ κ
2 − 2 for q ∈ {L,R}. Let x = (xL;xR) be a corre-

sponding vector of force point locations in ∂H with |xi,q | ≤ M for all 1 ≤ i ≤ |ρq |
and q ∈ {L,R}. Let P :� → [0,1] be the probability that an SLEκ(ρ) process in
H \ γ starting at the tip of γ in ∂B(0,1) with force points of weight ρ located at x

makes it to ∞ without otherwise hitting ∂H. Then P |�ε ≥ p > 0.

PROOF. This can be seen by viewing η as a flow line of a GFF on H \ γ and
then invoking the absolute continuity properties of the GFF [18], Proposition 3.4
and Remark 3.5. In particular, if σδ is the first time t that Im(η(t)) = δ for δ > 0,
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FIG. 16. Let �ε be the set of boundary avoiding, continuous, simple paths in H which connect 0 to
∂B(0,1), modulo reparameterization whose endpoint on ∂B(0,1) has distance at least ε to ∂H. Fix
γ ∈ �ε . Since γ is simple, it admits a continuous Loewner driving function W [18], Proposition 6.12.
Let (gt ) be the corresponding Loewner chain and let V L

t (resp., V R
t ) be the image of 0− (resp., 0+)

under gt . Then there exists positive and finite constants C1
ε ≤ C2

ε which depend only on ε > 0 such

that C1
ε ≤ |V q

τ1 − Wτ1 | ≤ C2
ε for q ∈ {L,R} where τ1 is the first time that γ hits ∂B(0,1). To see

this, we let z be the point on ∂B(0,1 + ε) closest to −1 with Im(z) = ε/2. Then it is easy to see
that there exists p = p(ε) > 0 such that a Brownian motion starting at z has probability at least
p(ε) of exiting H \ γ in (−∞,0) [resp., the left side of γ , the right side of γ , or (0,∞)]. Thus,
the conformal invariance of Brownian motion implies that the probability that a Brownian motion
starting at gτ1(z) first exits H in (−∞,V L

τ1
) [resp., (V L

τ1
,Wτ1), (Wτ1 ,V

R
τ1

), or (V R
τ1

,∞)] is also at
least p. Since gτ1(z) = z+o(1) as z → ∞, it follows from [13], Theorem 3.20, that there exists finite
and positive constants D1

ε ≤ D2
ε depending only on ε > 0 such that D1

ε ≤ |g′
τ1

(z)| ≤ D2
ε . Thus, [13],

Corollary 3.23, then implies that there exists a constant Eε > 0 depending only on ε > 0 such that
Im(gτ1(z)) ≥ Eε . Combining everything implies the claim.

then the law of η|[0,σδ] is mutually absolutely continuous with respect to that of an
SLEκ(ρL;ρR) process with force points ρL,ρR located at 0−,0+, respectively,
where ρq = ∑

i ρ
i,q for q ∈ {L,R} stopped at the corresponding time. Under the

latter law, the probability of the event {σδ = ∞} converges to 1 as δ ↓ 0 because
such processes do not hit the boundary and are transient [18], Theorem 1.3. �

Let (�,d) be the completion of the metric space (�,d). Then (�,d) consists
of all growth processes in H targeted at ∞ which admit a continuous Loewner
driving function [13], Proposition 4.44, stopped upon first hitting ∂B(0,1).

LEMMA 5.8. Suppose that η ∈ �. For each r ∈ (0,1), let τr be the first time
that η hits ∂B(0, r) and let ηr = η([0, τr ]). Let νr be the law of an SLEκ(ρL;ρR)

process in H \ ηr with ρL,ρR > −2 starting at the tip of ηr and with force
points located at 0− and 0+ stopped upon exiting B(0,1). Let ν be the law of
an SLEκ(ρL;ρR) process in H from 0 to ∞ with force points located at 0−,0+,
also stopped upon exiting B(0,1). Then νr , viewed as a measure on � equipped
with the topology induced by d , converges to ν weakly as r → 0.

PROOF. This is proved in [18], Section 2. �

Lemma 5.8 holds more generally for SLEκ(ρ) processes. The reason that we
introduced the space � just before its statement was to allow for the possibility of
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boundary hitting curves, though in its application below we will only need to refer
to the space �.

PROOF OF PROPOSITION 5.4. It suffices to show that the Gibbs property de-
termines the law μ of η([0, τ ]) where τ is some almost surely positive stopping
time (since the Gibbs property determines the law of η|[τ,∞) given η([0, τ ])). By
rescaling if necessary, we may assume without loss of generality that [−1,1] is
contained in the interior of I . For concreteness, we take τ to be the first time that
η reaches ∂B(0,1). Fix r ∈ (0,1), let τr be the first time that η exits B(0, r), and
let ηr = η([0, τr ]). Conditional on ηr , we let μ(·;ηr) be the law of η|[τr ,τ ] given
ηr . Let ρ̂1,L = κ − 4 − ρ1,L ≥ κ

2 − 2 and ρ̂1,R = κ − 4 − ρ1,R ≥ κ
2 − 2 be the

reflected values of ρ1,L and ρ1,R , respectively. We let ν(·;ηr) be the law of an
SLEκ(ρ̂1,L; ρ̂1,R) process in H \ ηr starting at η(τr) with force points located at
0− and 0+ stopped upon exiting B(0,1). We view μ(·;ηr) and ν(·;ηr) as proba-
bility measures on �.

We are now going to compute Zr(·) = dμ(·;ηr)/dν(·;ηr), the Radon–
Nikodym derivative of μ(·;ηr) with respect to ν(·;ηr). We will do so by com-
puting both Z

μ
r (·) = dμ(·;ηr)/dν̃(·;ηr) and Zν

r (·) = dν(·;ηr)/dν̃(·;ηr) where
ν̃(·;ηr) is the law of an SLEκ(ρ1,L;ρ1,R) process in H \ ηr starting at η(τr)

and stopped upon exiting B(0,1), viewed as a probability on � by including
the initial segment ηr . Recall from Proposition 5.1 that we know how to weight
an SLEκ(ρ1,L;ρ1,R) process by a martingale in a way that makes the path non-
boundary intersecting and amounts to changing (one or both of the) ρ1,q to ρ̂1,q .

That is, Zν
r = Mτ1

Mτr
where Mt = Mt(γ ) is the functional associated with the mar-

tingale described in (5.1) [since γ ∈ �, it follows that the quantities Wt,V
L
t ,V R

t

in the definition of Mt(γ ) make sense for γ ]. Note that Mτr (γ ) depends only on

γ until it first hits ∂B(0, r). We can write Z
μ
r = c

μ
r P

Fτ1
Fτr

where:

1. c
μ
r is a normalizing constant,

2. Ft = Ft(γ ) is the martingale which weights an SLEκ(ρL;ρR) process in H
starting at 0 and targeted at ∞ with force points located at 0−,0+ to yield the
law of an SLEκ(ρL;ρR) process in H with force points located at x [31], and

3. P = P(γ ) is the probability that an SLEκ(ρL;ρR) process in H \ γ starting
at γ (τ1) and with force points located at x makes it to ∞ without otherwise
hitting ∂H [in particular, P(γ ) = 0 if γ hits ∂H].

Therefore,

Zr = crZ̃ where Z̃ = Fτ1P

Mτ1

,

where cr is a normalizing constant which depends only on ηr . We emphasize that
Fτ1 , Mτ1 , and P are functions � → (0,∞) which do not depend on r , so that
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Z̃ does not depend on r . Our goal now is to take a limit as r → 0 to argue that
dμ/dν = Z where Z = cZ̃ for some constant c > 0. In order to do so, we are
going to argue that Z̃ is continuous on (�,d), that Z̃ is positive and bounded on
�ε , and that cr is bounded as r → 0 (explained in the next three paragraphs).

We begin by showing that Z̃ is a continuous function on (�,d) by observing
that Mτ1 , Fτ1 , and P are each individually continuous. Indeed, it is clear that γ �→
Mτ1(γ ) is a continuous because Lemma 3.3 implies that V

q
t for q ∈ {L,R} is

given by the Loewner flow associated with γ , which is a continuous function of the
Loewner driving function W of γ . That Fτ1 is continuous follows from the same
argument: all the terms in the formula for Fτ1 [31] can all be expressed in terms
of the Loewner flow, so continuously depend on W . We now turn to argue that P

is continuous on (�,d). Fix γ ∈ � and let g be the conformal map which takes
H \ γ to H with g(z) = z + o(1) as z → ∞. Then P(γ ) is equal to the probability
that an SLEκ(ρ) process in H with force points located at y = g(x) makes it to ∞
without otherwise hitting ∂H. Let W be the Loewner driving function of γ . Then
we know from [18], Proposition 4.43, that g depends continuously on W hence on
γ , so we just need to argue that this probability depends continuously on y. This
in turn can be seen through the coupling of SLEκ(ρ) with the GFF: jiggling the
force points y corresponds to jiggling the boundary data of the field, which affects
its law continuously away from y (see [18], Proposition 3.4 and Remark 3.5, as
well as Section 8).

Next, we are going to argue that there exists positive and finite constants C1
ε ≤

C2
ε which only depend on ε > 0 such that

C1
ε ≤ Z̃(γ ) ≤ C2

ε for all γ ∈ �ε.

Observe that on �ε , Fτ1 is bounded between two positive and finite constants
C1

ε ≤ C2
ε (this is clear from the explicit formula for Fτ1 given in [31]; it is also

possible to see this using the GFF discussion in Section 8). By possibly decreasing
C1

ε and increasing C2
ε , Lemma 5.6 implies that Mτ1 is bounded from below and

above by C1
ε and C2

ε , respectively, on �ε . Lemma 5.7 gives the corresponding
bound for P . Hence, by possibly again decreasing C1

ε and increasing C2
ε , the same

holds for Z̃ (in particular, the bounds do not depend on either ηr or r).
Finally, we will show that cr has a limit c as r → 0 and simultaneously complete

the proof. Note that, for each ε > 0 and r ≥ 0, �ε is a continuity set for ν(·;ηr).
This means that ν(∂�ε;ηr) = 0; the reason for this is that ∂�ε consists of those
paths in � which terminate at either of the two points in H ∩ ∂B(0,1) with dis-
tance ε to ∂H and the probability that an SLEκ(ρ) process exits H ∩ ∂B(0,1) at a
particular (interior) point is zero. Thus, since ν(·;ηr) → ν(·) weakly (Lemma 5.8),
the Portmanteau theorem implies that we have that ν(�ε;ηr) → ν(�ε) as r ↓ 0.
Since ν(�) = 1 and � = ⋃

ε>0 �ε , it thus follows that for each δ > 0 there exists
ε0 = ε0(δ) > 0 such that ν(�ε;ηr) ≥ 1 − δ for every r ∈ (0, 1

2) and ε ∈ (0, ε0).
Let D be the function as in Lemma 5.5 and let Gε:� → [0,∞) be the function
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which is equal to 0 if D(γ ) ≤ ε, equal to 1 if D(γ ) ≥ 2ε, and given by linearly
interpolating between 0 and 1 for D(γ ) ∈ [ε,2ε]. Since Gε can be expressed as a
composition of a continuous function [0,∞) → [0,1] with D, Lemma 5.5 implies
that it is a bounded, continuous function on (�,d). Thus, since

Gε dμ(·;ηr) = crZ̃Gε dν(·;ηr)(5.4)

it follows that

crC
1
ε (1 − δ) ≤ μ(�ε;ηr) ≤ 1

for each δ > 0, all r ∈ (0, 1
2), and all ε ∈ (0, ε0(δ)). Therefore, there exists Y <

∞ non-random which does not depend on r such that cr ≤ Y for all r ∈ (0, 1
2).

Consequently, there exists a sequence (rk) in (0, 1
2) so that limk→∞ rk = 0 and

limk→∞ crk = c ≤ Y , almost surely for μ. Using (5.4) and that ν(·;ηr) → ν(·)
as r → 0 (Lemma 5.8), we have that Gε dμ = ZGε dν where Z = cZ̃. Since this
holds for any ε > 0, we see that dμ/dν = Z. Therefore, any measure satisfying the
resampling property must be an SLEκ(ρ̂1,L; ρ̂1,R) process weighted by Z, which
completes the proof. �

REMARK 5.9. We remark that the proof of Proposition 5.4 does not imply the
existence of SLEκ(ρ) conditioned not to hit the boundary. Rather, the proof shows
that if this process exists, then the Radon–Nikodym derivative of its initial stub
with respect to the law of the corresponding stub of an SLEκ(ρ̂1,L; ρ̂1,R) process
has to take a specific form. Namely, it must be by Z̃, times a normalizing constant.
In order to establish existence, one must show that the ν expectation of Z̃ is finite,
so that an appropriate choice of normalizing constant indeed produces a probability
measure. One way to establish this would be to show that the cr of (5.4) converges
to a positive constant as r → 0.

5.3. A pair of paths avoiding each other. We will now present Proposi-
tion 5.10, which is a version of Proposition 5.4 but instead of having one path that
we condition not to hit the boundary, we have two paths that we condition not to
hit each other (see Figure 17). The proof is very similar to that of Proposition 5.4.
Since we will reference a modification of this result at the end of Section 8, we are
careful to spell out the necessary modifications.

PROPOSITION 5.10. Fix points x = (xL;xR) in ∂H and constants c =
(cL; cR). We assume that x1,L = 0−, x1,R = 0+, |xL| = |cL|, and |xR| = |cR|.
Suppose that y1 = xj1+1,R and y2 = xj2+1,L for some 0 ≤ j1 ≤ |xR| − 1 and
0 ≤ j2 ≤ |xL| − 1. There exists at most one measure on pairs of non-intersecting
paths (η1, η2) where ηi connects 0 to yi for i = 1,2 such that for every pair of
positive stopping times τ1, τ2 for η1, η2, respectively, the following is true. The law
of the pair (η1, η2) conditional on η1([0, τ1]) and η2([0, τ2]) is given by the flow
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FIG. 17. Suppose that y2 < 0 < y1. In Proposition 5.10, we prove that there exists at most one
measure on pairs of non-intersecting paths (η1, η2) in H where ηi connects 0 to yi for i = 1,2
which satisfies the following Gibbs property. Suppose that τi for i = 1,2 is a positive and finite
stopping time for ηi . Then the conditional law of (η1, η2) given (η1([0, τ1]), η2([0, τ2])) is given by
the flow lines of a GFF h on H\ (η1([0, τ1])∪η2([0, τ2])) whose boundary data is as depicted above
starting at ηi(τi) and with angle θi , i = 1,2, conditioned on the positive probability event that they
do not hit each other and terminate at y1, y2, respectively. We assume that θ2 − θ1 < 2λ′/χ so that
η1 and η2 can hit each other with positive probability (recall Figure 8).

lines of the GFF h on H \ (η1([0, τ1]) ∪ η2([0, τ2])) starting at ηi(τi), i = 1,2,
with angles θi satisfying θ2 − θ1 < 2λ′/χ , whose boundary data is as depicted in
Figure 17 conditioned on the positive probability event that they do not hit each
other and terminate at y1, y2, respectively.

We note that Proposition 5.10 only has content in the case that the boundary data
of h is such that conditional on the initial segments of η1, η2, the corresponding
flow lines of h terminate at y1 and y2 with positive probability. This translates into
the following requirements [see Figures 8 and 9, and (2.5)]:

1. cj2,L + θ2χ < λ [η2 does not hit the continuation threshold upon hitting
[xj2,L, xj2−1,L)],

2. cj2+1,L + θ2χ > −λ + 2πχ (upon hitting [xj2+1,L, xj2,L), η2 can be contin-
ued toward y2),

3. cj1,R + θ1χ > −λ (η1 does not hit the continuation threshold upon hitting
[xj1−1,R, xj1,R)), and

4. cj1+1,R +θ1χ < λ−2πχ (upon hitting [xj1,R, xj1+1,R), η1 can be continued
toward y1).

PROOF OF PROPOSITION 5.10. We let � be the set which consists of the pairs
(γ1, γ2) where γi is a simple, continuous, path in H which connects 0 to ∂B(0,1)

for i = 1,2, modulo reparameterization. We also assume that γ1 intersects γ2 only
at 0 (though γi may hit ∂H, in contrast to the space � considered in the previous

subsection). We note that � ⊆ �
2

where � is the completion of � under d , as in
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FIG. 18. Suppose that h is a GFF on H whose boundary data is as depicted in the left side (this can
be viewed as the change of coordinates of a simplified version of the setup described in Figure 17).
For angles θ1, θ2, we let ηi be the flow line of h starting at 0 with angle θi , i = 1,2. Assume that
θ1, θ2 are chosen so that η1 can hit η2, that is, θ2 − θ1 < 2λ′/χ (recall Figure 8). Let gs,t be the
conformal map which takes the unbounded connected component of H \ (η1([0, s]) ∪ η2([0, t]))
back to H satisfying gs,t (z) = z + o(1) as z → ∞. Let V i

s,t for i ∈ {1, . . . ,5} be the image points
shown. Let ρi be such that as one traces R from left to right, the heights in the right figure jump
by ρiλ at the points V i

s,t . Proposition 5.3 implies that if we are given the paths in the figure up to
some positive stopping times and then we generate their continuations as flow lines, then the product

Ms,t := ∏
j �=3 |V j

s,t −V 3
s,t |(ρ̂3−ρ3)ρj evolves as a martingale in each of s and t separately. Moreover,

Proposition 5.3 implies that reweighting the law of the pair of paths (η1, η2) by Ms,t yields the law of
a new pair of paths which do not intersect each other. When one path is fixed the evolution of the other
in the weighted law is the same as in the unweighted law except with ρ3 replaced by ρ̂3 = κ −4−ρ3.
This new pair of paths can be constructed as flow lines of a GFF with modified boundary data (see
Figure 18).

the previous subsection; we equip � with the product metric induced by �
2
, which

we will also denote by d . Let μ be a law on pairs (η1, η2) ∈ � as described in the
statement of the proposition, where the paths are stopped upon exiting B(0,1),
and let ν be the measure on pairs of paths as described in Figure 19 (or Figure 18
after weighting by the martingale), also stopped upon exiting B(0,1). As in the
proof of Proposition 5.4, we are going to prove the result by explicitly showing
that μ is absolutely continuous with respect to ν and, at the same time, explicitly
identifying the Radon–Nikodym derivative dμ/dν.

Let D:� → R be the function where D(γ1, γ2) is the distance between the tips
of the paths γ1, γ2 in ∂B(0,1). Then, using the same proof as in Lemma 5.5 (uni-
form convergence of Loewner driving functions implies the convergence of the tips
of the paths on ∂B(0,1)), we see that D is a continuous function on (�, d). Con-
sequently, for each ε > 0 the set �ε = {(γ1, γ2) ∈ � : D(γ1, γ2) ≥ ε} is a closed
subset of � and ∂�ε consists of the set of pairs of paths whose tips on ∂B(0,1)

have distance exactly ε. Let Ms,t = Ms,t (γ1, γ2) be the functional on pairs in �

as defined in Figure 18. The same proof as Lemma 5.6 implies that there exists
positive and finite constants C1

ε ≤ C2
ε such that C1

ε ≤ Mτ1,1,τ1,2(γ1, γ2) ≤ C2
ε for

all (γ1, γ2) ∈ �ε where τr,i is the first time that γi hits ∂B(0, r) for r > 0 (sim-
ple Brownian motion estimates imply that the image points under gτ1,1,τ1,2 have
uniformly positive and finite distance from each other for each fixed ε > 0). We
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FIG. 19. (Continuation of Figure 18.) Here, we will describe the law of the pair of paths from
Figure 18 after reweighting by Ms,t as GFF flow lines. Suppose that h is a GFF on H whose bound-
ary data is as depicted above. Let η1 be the flow line of h with angle θ1 − � and let η2 be the
flow line of h with angle θ2, both starting from 0. Assume, as in Figure 18, that θ2 − θ1 < 2λ′/χ .
We choose � as follows. First, we take ρ3λ = (θ2 − θ1)χ − 2λ (recall the right side of Figure 18),
then take ρ̂3 = κ − 4 − ρ3 so that ρ̂3λ = −2πχ − ρ3λ, and then set � = (ρ̂3 − ρ3)λ/χ . Explicitly,
� = 4λ/χ +2(θ1 −θ2 −π). Then the law of the pair (η1, η2) is equal to the law of the corresponding
pair from Figure 18 after weighting by Ms,t (and taking a limit as the initial segments tend to 0).

let P :� → [0,1] be the probability that the pair of flow lines (η1, η2) of a GFF
in H \ (γ1 ∪ γ2) with boundary data as described in the statement of the proposi-
tion starting at the tips of γ1, γ2 with angles θ1, θ2, respectively, terminate at y1, y2
without hitting each other. Then the same proof as Lemma 5.7 implies that there
exists p > 0 which depends only on ε > 0 and x such that P |�ε ≥ p. Finally, we
define Fs,t = Fs,t (γ1, γ2) to be the two-sided martingale which reweights a pair
(η1, η2) of flow lines of a GFF on H with boundary data which is constant c1,L to
the left of 0 and constant c1,R to the right of 0 with angles θ1, θ2 (as in the statement
of the proposition) to the corresponding pair of flow lines of a GFF whose bound-
ary data is as in the statement of the proposition (see Figure 18 for a similar mar-
tingale). By adjusting C1

ε ≤ C2
ε if necessary, we also have that C1

ε ≤ Fτ1,1,τ1,2 ≤ C2
ε

on �ε (this can be seen from the explicit form of F ; it can also be seen via the GFF
as in Section 8).

Assume that (η1, η2) ∼ μ. Let ηr,i = ηi([0, τr,i]) where τr,i is as defined in
the previous paragraph. Let μ(·;ηr,1, ηr,2) denote the conditional law of (η1, η2)

stopped upon exiting B(0,1) given ηr,1 and ηr,2. Let ν(·;ηr,1, ηr,2) denote the law
of the pair of flow lines as described in the right side of Figure 20 given that their
initial segments up to hitting ∂B(0, r) are given by ηr,1, ηr,2, respectively (i.e.,
conditioned not to hit by weighting by the martingale Ms,t ). The same argument
as was used in the proof of Proposition 5.4 implies that

Zr := dμ(·;ηr,1, ηr,2)

dν(·;ηr,1, ηr,2)
= crZ̃ where Z̃ = Fτ1,1,τ1,2P

Mτ1,1,τ1,2

,

where cr is a normalizing constant. The reference measure ν̃(·;ηr,1, ηr,2) that we
use in this computation is given by the flow lines of a GFF on H \ (ηr,1 ∪ηr,2) with
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FIG. 20. The strategy to prove Proposition 5.10 is similar to that used to prove Proposition 5.4. In
particular, we will show that the law of the pair of paths (η1, η2) stopped at times τ1, τ2 (left side)
is mutually absolutely continuous with respect to the another pair (η̃1, η̃2) stopped at the corre-
sponding times (right side) and simultaneously identify the Radon–Nikodym derivative explicitly. For
concreteness, we take τ1, τ2 to be the first time that η1, η2 exit B(0,1), respectively. We take η̃1, η̃2 to
be the flow lines of the GFF whose boundary data is on the right side with angles θ1, θ2, respectively,
conditioned to avoid each other (see Figures 18 and 19). In the right figure, given initial segments of
the paths we can accomplish the conditioning by reweighing by the martingale M described in Fig-
ure 18. In analogy with the proof of Proposition 5.4, this means that the Radon–Nikodym derivative
takes the form FP/M where F accounts for the change in boundary data of the GFFs and P is the
conditional probability that the paths make it to their target point without touching each other.

constant boundary data c1,L, c1,R to the left and right of 0, respectively, stopped
upon exiting ∂B(0,1) though without any conditioning (see the right side of Fig-
ure 20).

As in the proof of Lemma 5.8, the results of [18], Section 2, also imply that
ν(·;ηr,1, ηr,2) → ν(·) weakly as r ↓ 0. The reason is that these results imply that
we have the desired weak convergence for the law of η1 given (ηr,1, ηr,2) as r → 0
as well as the weak convergence of the conditional law of η2 given η1 and ηr,2 as
r → 0. Since �ε is a continuity set for ν(·;ηr,1, ηr,2) for all r ∈ (0,1) as well as
for ν(·) (conditional on η1([0, τ1,1]), the probability that η2 exits ∂B(0,1) ∩ H at
a point with distance exactly ε to η1(τ1,1) is zero), we know, using the same argu-
ment as in the proof of Proposition 5.4, that cr ≤ Y for Y < ∞ non-random and all
r ∈ (0, 1

2). The rest of the argument of Proposition 5.4 goes through verbatim. �

REMARK 5.11. The statement of Proposition 5.10 also holds (by the same
proof) in the case that η1 and η2 are conditioned to exit H in intervals I1 and I2,
respectively. The same result holds if we replace one (or both) of the ηi with a
counterflow line. We will make use of this in Section 8.

5.4. Resampling properties and dual flow lines. The purpose of this subsec-
tion is to establish another type of resampling result. Throughout, we will often
use the half-infinite vertical strip V+ = [−1,1] × R+ as our ambient domain. We
will write ∂LV+ = −1 + iR+ for its left boundary and ∂RV+ = 1 + iR+ for its
right boundary. We let η be an SLEκ(ρ̂L; ρ̂R) process with ρ̂L, ρ̂R > κ

2 − 2 in V+
starting at x ∈ (−1,1). By Proposition 5.4, we can view η as a flow line of a GFF
on V+ whose boundary data is as depicted in Figure 22 with a, b ∈ (−λ′ −πχ,λ′)
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FIG. 21. Assume a, b ∈ (−λ′ − πχ,λ′); this is precisely the range of boundary data so that a flow
line of a GFF with the boundary data above can hit both the left and right sides of the vertical strip
V (recall Figure 8). In the left panel, η is an SLEκ (ρ̂L; ρ̂R) process from the bottom to the top of V
interpreted as a flow line of a GFF with the given boundary data conditioned not to hit ∂V . Let τ be
a stopping time for η, z = η(τ), τ ′ a reverse stopping time for η|[τ,∞), and w = η(τ ′). Given η, we
let ηL,ηR be flow lines from w of a GFF in V \η with the boundary conditions as shown with angles
π , −π , respectively. We prove in Proposition 5.12 that given ηL, ηR , η([0, τ ]) and η([τ ′,∞)) the
conditional law of η is that of an SLEκ ( κ

2 − 2; κ
2 − 2) process in the region of V \ η([0, τ ]) which

lies between ηL and ηR . We can resample each of the blue paths given both the other and η|[τ ′,∞)

(and, as we just mentioned, we can resample the red path given both blue paths). The same result
holds when τ ′ = ∞ so that the dual flow lines emanate from ∞ and/or when τ = 0 so that z = −∞.
We will explain in the proof of Theorem 6.1 that this resampling property characterizes the joint law
of these paths. In order to avoid mentioning τ and η([0, τ ]), throughout this section we will work on
the half infinite vertical strip V+ by applying the conformal change of coordinates ψ which takes
V \ η([0, τ ]) to the half-infinite vertical strip V+ where +∞ is fixed and the left and right sides of
−∞ are sent to −1 and +1, respectively; x = ψ(z) ∈ (−1,1).

conditioned not to hit the boundary. Let τ ′ be any reverse stopping time for η, that
is, a stopping time for the filtration FR

t = σ(η(s) : s ≥ t). The main result of this
subsection is Proposition 5.12 (stated in the slightly more general setting of an
SLEκ(ρ̂L; ρ̂R) process on the vertical strip V+), which gives us a way to resample
the initial segment η|[0,τ ′] of η.

PROPOSITION 5.12. Suppose that we sample η as an SLEκ(ρ̂L; ρ̂R) process
in the vertical strip V from −∞ to ∞, interpreted as a flow line of the GFF on
V with boundary conditions −a and b for a, b ∈ (−λ′ − πχ,λ′) conditioned not
to hit the left and right boundaries ∂LV, ∂RV , as in the left side of Figure 21. Let
τ be a forward stopping for η and let τ ′ be a reverse stopping time for η|[τ,∞).
Then, conditioned on η, we sample ηL and ηR as flow lines of a GFF in V \ η

starting from η(τ ′) targeted at −∞ with the boundary conditions as shown in the
left side of Figure 21 (the angles of ηL,ηR are ±π ). Given ηL, ηR and η([0, τ ]),



IMAGINARY GEOMETRY II 1695

the conditional law of η is that of an SLEκ(κ
2 − 2; κ

2 − 2) process starting at η(τ)

and targeted at η(τ ′) in the region of S \ (ηL ∪ ηR ∪ η([0, τ ])) bounded between
ηL and ηR with force points at the left and right sides of −∞. The same statement
also holds if we take τ ′ = ∞, which corresponds to drawing the dual flow lines ηL

and ηR all the way from the top to the bottom of V (one on either side of η), and/or
we take τ = 0.

In the setting of Proposition 5.12, once we have fixed a forward stopping time τ ,
we can apply a conformal map ψ :V \ η([0, τ ]) → V+ which takes the left and
right sides of −∞ to ±1, respectively, and fixes +∞. Then ψ(η|[τ,∞)) is an
SLEκ(ρ̂L; ρ̂R) process in V+ starting from x = ψ(η(τ)) ∈ (−1,1) to +∞, as
is depicted on the right side of Figure 21. This perspective has the notational ad-
vantage that we do not need to refer to the stopping time τ or the initial segment
of η. For this reason, we will work on V+ throughout the rest of this section and
think of η as an SLEκ(ρ̂L; ρ̂R) process on V+ from a point x ∈ (−1,1) to ∞ with
force points located at ±1.

We remark that if we instead sample η as an ordinary flow line (so that we are
not conditioning η to be boundary avoiding), then due to the choice of boundary
data in Proposition 5.12, the dual flow lines ηL and ηR may intersect both ∂LV+
and ∂RV+, but almost surely terminate upon reaching ±1 (see Figure 8). The proof
of Proposition 5.12 has two steps. The first is Lemma 5.13 (see Figure 22), which
proves a statement analogous to Proposition 5.12 except for η ∼ SLEκ(ρL;ρR)

rather than η ∼ SLEκ(ρ̂L; ρ̂R) (recall that ρ, ρ̂ are related to each other by ρ̂ =
κ − 4 − ρ and ρ̂ ≥ κ

2 − 2 corresponds to the non-boundary intersecting case). This
can be thought of as the analogous result but for the unconditioned path. The bulk
of the remainder of the proof is contained in Lemmas 5.14–5.17, which we will
show ultimately imply that the result of Lemma 5.13 holds even when we condition
η not to hit the boundary (in the sense of Proposition 5.4).

LEMMA 5.13. Suppose that h is a GFF on V+ with boundary data as in
Figure 22 with a, b ∈ (−λ′−πχ,λ′). Recall that the flow line η of h starting from x

is an SLEκ(ρL;ρR) process with force points located at −1 and 1, respectively.
Moreover, η almost surely intersects either ∂LV+ or ∂RV+; let σ be the time of
the first such intersection. Let τ ′ be any reverse stopping time for η|[0,σ ], that is, a
stopping time for the filtration FR

t = σ(η(s) : s ∈ [t, σ ]), and let ηL and ηR be the
left and right dual flow lines of h starting at η(τ ′). The conditional law of η|[0,τ ′]
given ηL, ηR , and η|[τ ′,∞) is an SLEκ(κ

2 − 2; κ
2 − 2) process in the connected

component of V+ \ (ηL ∪ ηR) which contains x.

Recall Figure 7, which tells us that a flow line of a GFF h from x to y with
angle −π

2 is equal to the right boundary of the counterflow line of the same GFF
starting at y. An equivalent formulation of this fact is that the zero angle flow line
is equal to the right boundary of the counterflow line η′

L of h + π
2 χ . Moreover,
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FIG. 22. Suppose that h is a GFF on the half-infinite vertical strip V+ with boundary data as
shown above. Let η be the flow line of h from x targeted at ∞. Then η is an SLEκ (ρL;ρR) with
force points at −1 and 1 which almost surely hits either the left or the right side of the strip (∂LV+,
∂RV+, resp.). Let σ be the first time that this occurs, let τ ′ be any reverse stopping time for η|[0,σ ],
and let ηL,ηR be the left and right dual flow lines of h which start at η(τ ′) (i.e., flowing at angles π

and −π , respectively) and are targeted at −1 and 1, respectively. Due to the choice of boundary data,
ηL,ηR almost surely reach ±1, although they may bounce off both ∂LV+ and ∂RV+. We prove in
Lemma 5.13 that the conditional law of η given ηL and ηR is that of an SLEκ ( κ

2 − 2; κ
2 − 2) process

targeted at η(τ ′) in the connected component of V+ \ (ηL ∪ ηR) which contains x. The idea of the
proof is that ηL can be realized as the left outer boundary of a counterflow line η′

L of h starting from
−1 and targeted at x. That is, if τ ′

L is the first time that η′
L hits η(τ ′), then ηL is equal to the segment

of the boundary of the component of V+ \ η′
L([0, τ ′

L]) with x on its boundary which runs from −1
to η′(τ ′) in the clockwise direction. (The hull of η′

L([0, τ ′
L]) viewed as a path targeted at x is shaded

green in the illustration.) Likewise, we can view ηR as the right outer boundary of a counterflow line
η′
R of h starting from 1 and targeted at x stopped at the first time τ ′

R that it hits η(τ ′). (The hull of
η′
R([0, τ ′

R]) viewed as a path targeted at x is shaded in light blue in the illustration.) The common
segment of the outer boundaries of η′

L,η′
R is equal to η (recall Figure 7).

the left boundary of this counterflow line is the flow line with angle π—the left
dual flow line emanating from x. Analogously, the zero angle flow line is equal
to the left boundary of the counterflow line η′

R of h − π
2 and the right boundary

of this counterflow line is a flow line with angle −π . This means that η′
L and η′

R

together determine both η as well as the dual flow lines emanating from x, the
seed of η. The idea of the proof of Lemma 5.13 is to extend this one step further,
to show that we can generate η up to any reverse stopping time τ ′ along with the
dual flow lines ηL and ηR emanating from η(τ ′) by stopping η′

L,η′
R at appropriate

times and showing that the result seeing K is local for h. Then we can quote the
results of [18] (which are summarized in Section 2), which allow us to compute
the conditional law of η|[0,τ ′] given K and h|K (this corresponds to conditioning
on a larger σ -algebra than the one generated by just η|[τ ′,∞), ηL, and ηR).

One particularly interesting aspect of the proof is the following. Even though
the coupling of SLEκ(ρ) with the GFF is non-reversible in the sense that reparam-
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eterizing the path in the opposite direction does not yield a flow line of the field
(recall Section 2.3), it is still nevertheless possible to generate a flow line in the
reverse direction by looking at the values of the field in increasing neighborhoods
of its terminal point (unlike when we generate the path in the forward direction,
we need to see values of the field which lie off the path).

PROOF OF LEMMA 5.13. See Figure 22 for an illustration of the setup of the
proof (recall also Figure 7). Let η′

L be the counterflow line of h − π
2 χ starting at

−1 and let η′
R be the counterflow line of h+ π

2 χ starting at 1. We assume that both
η′

L and η′
R are targeted at x.

Both η′
L and η′

R are SLEκ ′(ρ) processes. For the convenience of the reader
(these exact values are not important for the rest of the proof), we are now going to
determine the ρ values for η′

L; one computes the ρ values for η′
R in an analogous

manner. We begin by mapping V+ to H (with −1 sent to 0, x sent to ∞, 1 sent
to −1) via the conformal transformation ψ and then apply (2.5) to h. Note that
ψ(∞) ∈ (−1,0). We then obtain a GFF on H with boundary conditions given by:

• −a + πχ
2 on (ψ(∞),0],

• b + 3πχ
2 on (−1,ψ(∞)],

• λ + 2πχ on (−∞,−1), and
• −λ on (0,∞).

Recall that η′
L (resp., η′

R) is the counterflow line of the field minus πχ
2 (resp., plus

πχ
2 ). We sent x to ∞ because we want to view ψ(η′

L) as the counterflow line
targeted at ∞. That is, the boundary data for ψ(η′

L) is given by:

• −a on (ψ(∞),0],
• b + πχ on (−1,ψ(∞)],
• λ + 3πχ

2 = λ′ + 2πχ on (−∞,−1), and
• −λ − πχ

2 = −λ′ − πχ on (0,∞).

This means that η′
L is an SLEκ ′(ρ3,L, ρ2,L, ρ1,L;ρ1,R) process where

ρ1,R = πχ

λ′ = κ ′

2
− 2,

ρ1,L = − a

λ′ − 1 ∈
(
−2,

κ ′

2
− 2

)
,

ρ1,L + ρ2,L = b + πχ

λ′ − 1 ∈
(
−2,

κ ′

2
− 2

)
,

ρ1,L + ρ2,L + ρ3,L = 2πχ

λ′ = κ ′ − 4.

The force point for η′
L which corresponds to ρ1,R is located immediately to the

right of −1, the one to ρ1,L is immediately to the left of −1, the one to ρ2,L is
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at ∞, and the one to ρ3,L is at 1. These values imply that η′
L cannot hit (−1, x)

and also cannot hit (x,1) but it eventually terminates at x. On the other hand, η′
L

necessarily hits both ∂LV+ and ∂RV+. (Recall Figure 8.)
One can similarly calculate the ρ values for η′

R and see that η′
R cannot hit

(−1, x) or (x,1) but eventually terminates at x and that η′
R hits both ∂LV+

and ∂RV+. This, of course, makes sense in view of what is proved below: that
η is given by the intersection of the right boundary of η′

L and the left boundary of
η′

R and a, b are such that η can hit both the left and right sides of ∂V+.
It follows from [18], Theorem 1.4, that η([0, σ ]) is equal to the right outer

boundary of η′
L as well as to the left outer boundary of η′

R (see also Figure 7). That
is, η([0, σ ]) is equal to the segment of the boundary of the component of V+ \ η′

L

with x on its boundary which runs in the counterclockwise direction from x to
η(σ) and η([0, σ ]) is also equal to the segment of the boundary of the component
of V+ \ η′

R with x on its boundary which runs in the clockwise direction from x

to η(σ). Let τ ′
q be the first time t that η′

q hits η(τ ′) for q ∈ {L,R}. Then ηL is
equal to the segment of the boundary of the connected component A′

L of V+ \
η′

L([0, τ ′
L]) which contains x on its boundary which runs from −1 to η′(τ ′

L) =
η(τ ′) in the counterclockwise direction. Similarly, ηR is equal to the segment of
the boundary of the connected component A′

R of V+ \ η′
R([0, τ ′

R]) which contains
x on its boundary which runs from 1 to η′

R(τ ′
R) = η(τ ′) in the clockwise direction.

Moreover, we also have that the right outer boundary of η′
L([0, τ ′

L]) is equal to
η([τ ′, σ ]). That is, η([τ ′, σ ]) is equal to the segment of ∂A′

L which runs in the
counterclockwise direction from η′

L(τ ′
L) = η(τ ′) to η(σ). Likewise, the left outer

boundary of η′
R([0, τ ′

R]) is also equal to η([τ ′, σ ]). That is, η([τ ′, σ ]) is equal to
the segment of ∂A′

R which runs in the clockwise direction from η′
R(τ ′

R) = η(τ ′)
to η(σ). Combining, we have that η([τ ′, σ ]) is equal to ∂A′

L ∩ ∂A′
R , that is, the

common part of the outer boundaries of η′
L([0, τ ′

L]) and η′
R([0, τ ′

R]).
We are now going to compute the conditional law of η|[0,τ ′] given K = K(τ ′) =

η′
L([0, τ ′

L]) ∪ η′
R([0, τ ′

R]). The first step is to show that K is a local set for h (the
notion of a local set is explained in [18], Section 3.2; an argument similar to the one
that we will give here is used to prove [18], Lemma 7.7). To see this, we will check
the criteria of [18], Lemma 3.6. Fix any open set U ⊆ V+ and, for q ∈ {L,R}, we
let (τU

q )′ be the first time t that η′
q hits U . Then η′

L|[0,(τU
L )′] and η′

R|[0,(τU
R )′] are both

determined by h|Uc by [18], Theorem 1.2. (In particular, this implies that given
h|Uc , η′

L|[0,(τU
L )′] and η′

R|[0,(τU
R )′] are independent of the orthogonal projection of

h onto the closure of the space of functions compactly supported in U .) Since η′
L

and η′
R hit the points of η|[0,σ ] in reverse chronological order, it follows that the

event {K ∩ U = ∅} is determined by η′
L|[0,(τU

L )′] and η′
R|[0,(τU

R )′] hence also by

h|Uc (by looking at the intersection of the right boundary of η′
L|[0,(τU

L )′] and the

left boundary of η′
R|[0,(τU

R )′] we can tell whether or not η([τ ′, σ ]) is contained in

V+ \ U ). Therefore, K is a local set for h, as desired.
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Let D be the complementary connected component of K which contains x (note
that this is the same as the complementary connected component of ηL ∪ηR which
contains x). Then the law of h|D conditional on K and h|K is that of a GFF on
D whose boundary conditions are as depicted in Figure 22. Indeed, [18], Proposi-
tion 3.8, implies that h|D does in fact have this boundary behavior at every point,
except possibly at η(τ ′), since at other boundary points we can compare the con-
ditional mean of h|D with that of h given η′

q([0, s]) for q ∈ {L,R} and s ≥ 0. One
could worry that the boundary behavior exhibits pathological behavior right at
η(τ ′), though the argument used to prove [18], Lemma 7.8, rules this out (we draw
η′

L up to time r > τ ′
L, η′

R up to time s < τ ′
R , and then use [18], Proposition 6.5, to

get the continuity in the conditional mean as we first take the limit s ↑ τ ′
R and then

take the limit t ↓ τ ′
L). Since ηL and ηR almost surely do not hit η|[0,τ ′], it follows

from [18], Proposition 6.12, that η|[0,τ ′] has a continuous Loewner driving function
viewed as a path in D. Thus, [18], Theorem 2.4 and Proposition 6.5, together im-
ply that the conditional law of η given K and h|K is that of an SLEκ(κ

2 − 2; κ
2 − 2)

process in the complementary component which contains x, where the extra force
points are as described in the lemma statement (recall also Figures 5 and 6).

Moreover, this holds when we condition on η|[τ ′,σ ] because [18], Proposi-
tion 3.9, implies that the conditional law of h|D given K and h|K is equal to
the conditional law of h|D given K , h|K , along with K ′ and h|K ′ where K ′ is
another local set for h with K ′ ∩ D = ∅ almost surely. In particular, if τ ′′ is any
reverse stopping time for η|[0,σ ] with τ ′′ < τ ′, the conditional law of h|D given K

and h|K is equal to the conditional law of h|D given K , h|K , K(τ ′′), and h|K(τ ′′).
This implies that the conditional law of η|[0,τ ′] given K and h|K is the same as the
conditional law of η|[0,τ ′] given K , h|K , K(τ ′′), and h|K(τ ′′). The claim follows
since we can apply this to the collection of reverse stopping times which are of the
form r ∨ τ ′ for r is a positive rational and it is clear that η|[τ ′,σ ] is determined by
σ(K(r ∨ τ ′), h|K(r∨τ ′) : r ∈ Q, r > 0). This completes the proof. �

The purpose of the next series of results, Lemmas 5.14–5.17, is to justify that
the result of Lemma 5.13 holds when we condition η not to hit the boundary (in the
sense of Proposition 5.4). For simplicity, we will restrict our attention to reverse
stopping times of the form τ ′

r—the first time that the time-reversal of η|[0,σ ] hits
the horizontal line through ir . We will first prove in Lemma 5.14 that the law of the
triple (η, ηL, ηR) conditional on the event that the martingale Mt of Proposition 5.1
hits level N before hitting 0 converges as N → ∞ to the corresponding triple
where η is replaced with an SLEκ(ρ̂L; ρ̂R) process. Lemma 5.15 is a basic result
about continuous time martingales which will then be used to prove Lemma 5.16.
The latter states that Mt(γ ) (the functional of Proposition 5.1 applied to a simple
path γ ) does not change much when we jiggle the initial segment of γ . This is
then employed in Lemma 5.17 to show that resampling η|[0,τ ′

r ] does not affect
the probability that Mt = Mt(η) will exceed a certain large threshold. We then
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combine all of these ingredients to complete the proof of Proposition 5.12 at the
end of the subsection.

LEMMA 5.14. Suppose that η is an SLEκ(ρL;ρR) process interpreted as
a flow line of a GFF on V+ with boundary conditions −a and b for a, b ∈
(−λ′ − πχ,λ′) as in Figure 22. Let Mt be the martingale as in Proposition 5.1
which, upon reweighting the law of η by M , yields an SLEκ(ρ̂L; ρ̂R) process. For
each N ≥ 0, let τN = inf{t ≥ 0 : Mt = N} and let σ be the first time that η hits
either ∂LV+ or ∂RV+. For each r ≥ 0, we let τ ′

r be the largest time t ≤ σ that
Im(η(t)) = r (this corresponds to the first time that the time-reversal of η|[0,σ ] hits
the horizontal line through ir). Let ηL and ηR be the left and right dual flow lines
of h conditional on η([0, σ ]) emanating from η(τ ′

r ) (i.e., the flow lines with angles
π and −π ). Then the law of the triple (η, ηL, ηR) conditional on EN = {τN < τ0}
converges weakly as N → ∞ to the corresponding triple with η replaced by an
SLEκ(ρ̂L; ρ̂R) process with respect to the topology of local uniform convergence,
modulo parameterization.

PROOF. Conditional on EN , Proposition 5.1 implies that η evolves as an
SLEκ(ρ̂L; ρ̂R) process up until time τN ; afterward it evolves as an SLEκ(ρL;ρR)

process. We first observe that, for every t > 0,

lim inf
N→∞ P[τN ≥ t |EN ] = 1.

Indeed, the reason for this is that if Mt ≥ N then either |V L
t −Wt | ≥ Nα or |V R

t −
Wt | ≥ Nα for α = α(ρL,ρR) > 0. It follows from the definition of the driving
function of an SLEκ(ρ̂L; ρ̂R) process [18], Section 2, that with ξN = inf{t ≥ 0 :
|V L

t −Wt | ∧ |V R
t −Wt | ≥ Nα} we have that limN→∞ P[ξN ≥ t |EN ] = 1 for every

t > 0. Let V+
r = {z ∈ V+ : Im(z) ≤ r} and Fr,N = {η(τN) /∈ V+

r }. By the transience
of SLEκ(ρ̂L; ρ̂R) processes [18], Theorem 1.3, it thus follows that

lim inf
N→∞ P[Fr,N |EN ] = 1 for every r > 0.

With Gr,N = {η([τN,σ ]) ∩ V+
r = ∅}, we further claim that

lim inf
N→∞ P[Gr,N |EN ] = 1 for every r > 0.(5.5)

To see this, we let ψ be the conformal map from V+ \ η([0, τN ]) to the horizon-
tal strip S with ψ(η(τN)) = 0, ψ(−1) = −∞, and ψ(1) = ∞ (see Figure 23).
For T > 0, we let ST = {z ∈ S : |Re(z)| ≤ T }. We are going to use Brownian
motion estimates and the conformal invariance of Brownian motion to show that
P[ψ(V+

r ) ⊆ Sc
T |EN ] → 1 as N → ∞ but with r, T > 0 fixed. Let w = ψ−1(1

2 i).
By symmetry, the probability that a Brownian motion starting at 1

2 i first exits S
in (−∞,0) is 1

4 (the same is likewise true for (0,∞)). Consequently, by the con-
formal invariance of Brownian motion, the probability that a Brownian motion
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FIG. 23. The setup for the proof of Lemma 5.14. Suppose that a, b ∈ (−λ′ − πχ,λ′) and let h be
a GFF whose boundary data is as depicted on the left side. Then the flow line η of h starting at x

is an SLEκ (ρL;ρR) process with force points at −1 and 1 of weight ρL,ρR ∈ ( κ
2 − 4, κ

2 − 2). Let
Mt be the martingale as in the statement of Proposition 5.1 which upon reweighting the law of η

by yields an SLEκ (ρ̂L; ρ̂R) process. For each N ≥ 0, let τN be the first time that M hits N and let
EN = {τN < τ0}. Let σ be the first time that η hits either ∂LV+ or ∂RV+ and let τ ′

r be the largest
time that η|[0,σ ] hits the horizontal line with height r . Let ηL and ηR be the dual flow lines emanating
from η(τ ′

r ). We prove in Lemma 5.14 that the law of ηL and ηR converge to what it would be if η were
an SLEκ (ρ̂L; ρ̂R) process. The idea of the proof is to argue that Im(η(τN )) is likely to be very large
compared to r and that η quickly exits V+ after time τN so that the law of the dual flow lines is not
affected by η|[τN ,σ ]. The argument for this last point is illustrated above. In particular, we let ψ be
the conformal map from V+ \ η([0, τN ]) to the horizontal strip S = R × [0,1] with ψ(η(τN )) = 0,
ψ(−1) = −∞, and ψ(1) = ∞. Brownian motion estimates then imply that the part of V+ which
lies below height r is mapped by ψ very far away from 0. The claim follows since ψ(η|[τN ,σ ]) is an

SLEκ (ρL;ρR) process on S which almost surely hits its upper boundary in finite time; by continuity,
it with high probability does so without traveling far in the lateral direction.

starting at w first exits V+ \ η([0, τN ]) on the left side of η([0, τN ]) or in [−1, x]
is 1

4 (the same is likewise true for the right side of η([0, τN ]) or [x,1]). Moreover,
the probability that a Brownian motion starting at w exits first in ∂LV+ ∪ ∂RV+ is
1
2 (since a Brownian motion starting at 1

2 i in S first exits S in R + i with probabil-
ity 1

2 ). The Beurling estimate [13], Theorem 3.69, thus implies that there exists a
universal constant d0 > 0 such that∣∣Im(

η(τN)
) − Im(w)

∣∣ ≤ d0.(5.6)

Indeed, if Im(w) differs from Im(η(τN)) by too much, the Beurling estimate im-
plies that it is much more likely for a Brownian motion starting from w either to hit
one side of η([0, τN ]) or ∂LV+ ∪ ∂RV+ before hitting the other side of η([0, τN ]).
Using the Beurling estimate again, we also see that for every ε > 0 there exists
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r ′
0 = r ′

0(r, ε) such that for all r ′ ≥ r ′
0 on the event Fr ′,N the probability that a Brow-

nian motion starting at w first exits V+ \ η([0, τN ]) in V+
r is at most ε. The reason

for this is that (5.6) implies that, on Fr ′,N , we have that Im(w) ≥ r ′ − d0. Conse-
quently, conformal invariance of Brownian motion implies that, for each T > 0,
there exists ε0 = ε0(T ) > 0 such that for all ε ∈ (0, ε0) we have that ψ(V+

r ) ⊆ Sc
T

on Fr ′,N for r ′ ≥ r0.
Note that ψ(η|[τN ,σ ]) has the law of an SLEκ(ρL;ρR) process in S with force

points at ±∞ which almost surely hits the upper boundary of S . By the continuity
of such processes [18], Theorem 1.3, it follows that P[ψ(η|[τN ,σ ]) ⊆ ST ] → 1 as
T → ∞. This completes the proof of (5.5).

It follows from what we have shown far that, for each S > 0, the conditional
law of the GFF h given η and EN restricted to V+

S \ η converges in the N → ∞
limit to the corresponding GFF with η replaced by an SLEκ(ρ̂L; ρ̂R) process. The
result follows since the continuity of ηL and ηR [18], Theorem 1.3, implies that
P[ηL ∪ηR ⊆ V+

S |EN ] can be made as close to 1 as we like for large enough S. �

LEMMA 5.15. Suppose that Mt is a continuous time martingale taking values
in [0,∞) with continuous sample paths. For each α ≥ 0, let τα = inf{t ≥ 0 : Mt =
α}. Assume that P[τα < ∞] > 0 for all α > 0. Then for each ε > 0, we have that

P[τ(1+ε)α < τ0|τα < τ0] = 1

1 + ε
.

PROOF. This is a basic fact about martingales. Indeed, we let Ft be the filtra-
tion generated by M . The optional stopping theorem implies that

E[Mτ(1+ε)α∧τ0 |Fτα ]1{τα<τ0} = α1{τα<τ0}.
On the other hand, we also have that

E[Mτ(1+ε)α∧τ0 |Fτα ]1{τα<τ0} = (1 + ε)αP[τ(1+ε)α < τ0|Fτα ]1{τα<τ0}.
Combining the two equations implies the result. �

LEMMA 5.16. Suppose that γ is a simple path in H which admits a contin-
uous Loewner driving function W(γ ); let gt be the corresponding family of con-
formal maps. For each t , let V L

t (γ ) (resp., V R
t (γ )) be the image under gt of the

leftmost (resp., rightmost) point of γ ([0, t]) ∩ R. Let

Mt(γ ) = ∣∣V L
t (γ ) − Wt(γ )

∣∣αL
∣∣V R

t (γ ) − Wt(γ )
∣∣αR

∣∣V L
t − V R

t

∣∣αLR

for constants αL,αR,αLR ∈ R (this should be thought of as the functional on paths
described in Proposition 5.1 applied to γ ([0, t])). For every r, ε > 0, there exists
R0 = R0(r, ε) > 0 such that for every R ≥ R0 the following is true. Suppose that
γ, γ̃ are simple paths in H which agree with each other after exiting B(0, r). As-
sume further that γ, γ̃ are parameterized so that with τr , τ̃r the first time that each
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FIG. 24. Suppose that r > 0 and that γ, γ̃ are simple paths in H starting at 0 that agree
with each other after leaving B(0, r). Let τr , τ̃r be the first time that γ, γ̃ exit B(0, r), respec-
tively. By reparameterizing γ, γ̃ , we may assume without loss of generality that τr = τ̃r and that
γ |[τr ,∞) = γ̃[τr ,∞). Let Mt(γ ) be the functional on paths described in Proposition 5.1 applied

to γ ([0, t]). That is, if Wt(γ ) is the Loewner driving function of γ and V L
t (γ ) [resp., V R

t (γ )]
denotes the image of the leftmost (resp., rightmost) point of γ ([0, t]) ∩ R under the Loewner
flow, then Mt(γ ) = |V L

t (γ ) − Wt(γ )|αL |V R
t (γ ) − Wt(γ )|αR |V L

t (γ ) − V R
t (γ )|αLR for constants

αL,αR,αLR ∈ R. We prove in Lemma 5.16 that for every ε, r > 0 there exists R0 = R0(r, ε) > 0
such that for every R ≥ R0 we have that 1 − ε ≤ Mτ (γ )/Mτ (γ̃ ) ≤ 1 + ε where τ ≥ τr is a time such
that γ (τ ) = γ̃ (τ ) /∈ B(0,R).

exits B(0, r), we have that τr = τ̃r and γ |[τr ,∞) = γ̃ |[τ̃r ,∞). Let τ ≥ τr be a time so
that γ (τ) = γ̃ (τ ) /∈ B(0,R). Then

1 − ε ≤ Mτ(γ )

Mτ (γ̃ )
≤ 1 + ε.

See Figure 24 for an explanation of the setup of Lemma 5.16. The idea of the
proof is to use a Brownian motion estimate to show that the ratio of |V q

τ (γ ) −
Wτ(γ )|/|V q

τ̃ (γ̃ ) − Wτ̃ (γ̃ )| is close to 1 for q ∈ {L,R}.

PROOF OF LEMMA 5.16. Since |V R
t (γ ) − V L

t (γ )| = |V R
t (γ ) − Wt(γ )| +

|Wt(γ ) − V L
t (γ )| (and likewise with γ̃ in place of γ ), it suffices to show that

there exists R0 = R0(r, ε) > 0 such that R ≥ R0 implies

1 − ε ≤ |V q
τ (γ ) − Wτ(γ )|

|V q
τ (γ̃ ) − Wτ(γ̃ )| ≤ 1 + ε for q ∈ {L,R}.

Let Lt(γ ) [resp., Rt(γ )] be the left (resp., right) side of γ ([0, t]) and let
Lt(γ̃ ),Rt (γ̃ ) denote the analogous quantities with γ̃ in place of γ . Let Piy de-
note the law of a Brownian motion B starting at iy and let ζ(t;γ ) be the first time
that B exits H \ γ ([0, t]). The conformal invariance of Brownian motion implies
that ∣∣V q

t (γ ) − Wt(γ )
∣∣ = lim

y→∞yPiy

[
Bζ(t;γ ) ∈ qt (γ )

]
for q ∈ {L,R}
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and likewise with γ̃ in place of γ . Thus, it suffices to show that there exists R0 =
R0(r, ε) > 0 such that R ≥ R0 implies

1 − ε ≤ Piy[Bζ(τ ;γ ) ∈ qτ (γ )]
Piy[Bζ(τ ;γ̃ ) ∈ qτ (γ̃ )] ≤ 1 + ε(5.7)

for all large y > 0 and q ∈ {L,R}.
To see that (5.7) holds, we are going to argue that by making R large enough, the

conditional probability that B first exits H \ γ ([0, τ ]) in the left side of γ ([0, τr ])
given that it first exits in Rτ (γ ) is at most ε (the case when R and L are swapped
is analogous). Let ζR be the first time t that B hits the connected component of
∂B(0, 1

2R)\γ ([0, τ ]) which lies to the right of γ ([0, τ ]). We are going to establish
our claim by arguing that there exists constants C1,C2 > 0 such that

PBζR

[
Bζ(τ ;γ ) ∈ Rτ (γ )

] ≥ C1 arg(BζR
)

and

PBζR

[
Bζ(τ ;γ ) ∈ Rτr (γ )

] ≤ C2
(
arg(BζR

− r) − arg(BζR
+ r)

)
.

This suffices because by making R sufficiently large, we can make the latter as
small as we want relative to the former uniformly in the realization of BζR

. To see
the former, we note that it is easy to see that PBζR

[Bζ(τ ;γ ) ∈ Rτ (γ )] is at least a
constant C1 > 0 times the probability that a Brownian motion starting at BζR

first
exits H in (−∞,0]. This probability is explicitly given by 1

π
arg(BζR

). To see the
latter, we also note that it is also easy to see that PBζR

[Bζ(τ ;γ ) ∈ Rτr (γ ))] is at
most a constant C2 > 0 times the probability a Brownian motion starting at BζR

first exits H in [−r, r]. This probability is explicitly given by 1
π
(arg(BζR

− r) −
arg(BζR

+ r)), which completes the proof. �

LEMMA 5.17. We suppose that we have the same setup as described in the
statement of Lemma 5.14. Let Mt(γ ) be the functional on paths described in
Proposition 5.1 (so that Mt := Mt(η) is a martingale for η ∼ SLEκ(ρL;ρR)).
Fix r > 0 and let ηL,ηR be the left and right dual flow lines emanating from
η(τ ′

r ). For a simple path γ , let τN(γ ) = inf{t ≥ 0 : Mt(γ ) = N}. Let EN,r be
the event that

⋂
γ {τN(γ ) < τ0(γ )} where the intersection is over the set of paths

γ which can be written as a concatenation of a simple path which connects x

to η(τ ′
r ) and lies in the region of V+ between ηL and ηR with η|[τ ′

r ,∞). Then
lim infN→∞ P[EN,r |EN ] = 1.

PROOF. This follows by combining Lemmas 5.14–5.16. Indeed, Lemma 5.14
implies that the law of the dual flow lines ηL and ηR conditional on EN has a limit
as N → ∞. This in turn implies that the maximal height Yr reached by ηL and
ηR before exiting V+ is tight conditional on EN as N → ∞. By the argument in
the proof of Lemma 5.14, we also know that Im(η(τN)) converges to ∞ condi-
tional on EN as N → ∞. Consequently, Lemma 5.16 implies that if γ is any path
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which arises by concatenating any simple path which lies between ηL and ηR and
connects x to η(τ ′

r ) with η|[τ ′
r ,σ ] then

MτN
(γ )

MτN
(η)

= 1 + o(1)(5.8)

with high probability conditional on EN as N → ∞. The result now follows
since Lemma 5.15 implies that, on the event {τN < τ0} we have that {τ(1+ε)N <

τ0} occurs with probability (1 + ε)−1. Combining this with (5.8) implies that
lim infN→∞ P[EN,r |EN ] ≥ (1 + ε)−1. This completes the proof of the result since
this holds for all ε > 0. �

We now have all of the ingredients to complete the proof of Proposition 5.12.

PROOF OF PROPOSITION 5.12. Fix r > 0. We first assume that our reverse
stopping time τ ′ satisfies τ ′ ≤ τ ′

r , the first time that the reversed path hits the hori-
zontal line through ir . Once we prove the result for reverse stopping times of this
form, the result follows for general reverse stopping times because we can take
a limit as r → ∞. Let η be the flow line of a GFF h whose boundary data is as
depicted in Figure 23 and we let Mt be the martingale as in Proposition 5.1. For
each N ≥ 0, let τN = {t ≥ 0 : Mt = N} and let EN = {τN < τ0}. Then, for N ≥ 1,
the law of η conditional on EN is an SLEκ(ρ̂L; ρ̂R) process until time τN , after
which it evolves as an SLEκ(ρL;ρR) process. Lemma 5.13 implies that the law
of the (unconditioned) triple (η, ηL, ηR) is invariant under the kernel K which re-
samples η|[0,τ ′] as an SLEκ(κ

2 − 2; κ
2 − 2) process in the connected component of

V+ \ (ηL ∪ηR) which contains x. This implies that the law of the triple (η, ηL, ηR)

conditional on EN is invariant under the kernel KN which resamples η|[0,τ ′] as an
SLEκ(κ

2 − 2; κ
2 − 2) process but restricted to the set of paths which do not affect

whether the event EN occurs. The result then follows from Lemma 5.17. �

6. The time-reversal satisfies the conformal Markov property. We are now
ready to prove the special case of Theorem 1.1 for ordinary SLEκ by showing that
the time-reversal of SLEκ satisfies the domain Markov property and is conformally
invariant. This suffices since it was proved by Schramm [26] that these properties
characterize SLEκ (the value of κ is preserved because the almost sure Hausdorff
dimension of the SLEκ trace is 1 + κ

8 [1] and this property is obviously invariant
under time-reversal). We will subsequently explain how this argument can be ex-
tended to prove that the time-reversal of SLEκ(ρ) for ρ ∈ (−2,0] also satisfies the
domain Markov property and is conformally invariant. The proof that SLEκ(ρ)

[and more generally that SLEκ(ρ1;ρ2)] is reversible will be postponed until the
next section, however, since we will need some additional machinery.

THEOREM 6.1. Suppose that D is a Jordan domain and x, y ∈ ∂D are dis-
tinct. Suppose that η is an SLEκ process in D from x to y. Then the law of the
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FIG. 25. Suppose that η is an SLEκ process in a Jordan domain D from x to y with x, y ∈ ∂D dis-
tinct. Let τ ′ be a reverse stopping time for η and let η1 = η|[0,τ ′] and η2 = η|[τ ′,∞). Let ηL and ηR

be the dual flow lines starting at z = η(τ ′) as in the statement of Proposition 5.12 (conditional on η,
we sample a GFF in the left and right complementary connected components with the boundary data
as shown and take ηL,ηR to be the flow lines starting at η(τ ′) with angles π,−π , resp.). Proposi-
tion 5.12 implies that if we condition on η2 ∪ηL ∪ηR , we can resample η1 as an SLEκ ( κ

2 −2; κ
2 −2)

process. Similarly, if we condition on η1 ∪ η2, we can resample either ηL or ηR as described above.
As explained in the proof of Theorem 6.1, this invariance under resampling uniquely determines the
conditional law of the triple (ηL,ηR,η1), given η2. In particular, this implies that η1 is an SLEκ

process in D \η2 from x to z since SLEκ from x to z in D \η2 satisfies the same resampling property.

time-reversal R(η) of η has the law of an SLEκ process from y to x in D, up to
reparameterization. In other words, ordinary SLEκ has time-reversal symmetry.

PROOF. It is enough to show a reverse domain Markov property by [26]
namely that if (in the setting of Figure 25) we condition on η2 = η|[τ ′,∞) where
τ ′ is a reverse stopping time for η, then the conditional law of η1 = η|[0,τ ′] is that
of an ordinary SLEκ in D \ η2 from x to z = η(τ ′). Let ηL,ηR be dual flow lines
emanating from z = η(τ ′) as in the statement of Proposition 5.12 (see Figure 25
for further explanation of the setup).

We know how to resample any one of η1 or ηL or ηR given the realization of the
other two (η2 is fixed). We claim that these resampling rules determine the joint law
of these three paths. Indeed, if we condition on initial segments of ηL and ηR , then
the fact that the resampling law determines the law of the remainder of these paths
and of η1 follows from argument used to prove Theorem 4.1. To be more explicit,
the conditional law of (η1, ηL, ηR) (given the two initial segments) must be that of
ordinary flow lines off a GFF conditioned on the positive probability event that ηL

and ηR do not intersect (since this conditioned law satisfies the same resampling
properties). In particular, the law of ηL and ηR is in the setting of Proposition 5.10,
so it is indeed determined; and given these two paths, we know how to sample η1.
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FIG. 26. The left side of the figure is the same as Figure 25 except with an additional path: a flow
line of angle θ > 0 from x to y that goes to the left η1 ∪η2. (Note that ηθ either crosses ηL, as shown
in the figure, or stays to its left, depending on θ .) We can conformally map D \ η2 to the half-infinite
vertical strip V+ in the right panel, just as in Figure 25. The right panel has four marked boundary
points, and we already have a recipe for producing the paths: namely, we draw ψ(η1) as an ordinary
SLEκ , then we sample the GFF with the illustrated boundary conditions, and then draw the other
paths as flow lines with illustrated angles. This recipe immediately implies that law of the triple
(ψ(ηθ ),ψ(η1),ψ(ηL)) is a conformal invariant that does not depend on the point labeled α on the
right. In particular, this implies that the conditional law of ψ(η1) given ψ(ηθ ) does not depend on
α. We have not given an explicit description of this law but we will not need one. One indirect way to
describe it (that actually uses α) is to fix ψ(ηθ ) and note that we have a recipe for resampling each
of the paths ψ(η1), ψ(ηR) and ψ(ηL) (stopped when it first hits ψ(ηθ )) as GFF flow lines once we
condition on the other two. By Proposition 5.12, this determines the law of the triple given ψ(ηθ ),
and in particular the law of ψ(η1) given ψ(ηθ ).

This completes the proof of the domain Markov property because we know that
ordinary SLEκ in D \ η2 from x to z satisfies the same resampling rule.

The conformal Markov characterization implies that R(η) is an SLEκ̃ process
from some κ̃ . We note that κ̃ = κ (the same value as for η) because the dimen-
sion of an SLEκ process is almost surely 1 + κ

8 [1] and this property is obviously
preserved under time-reversal. �

We are now going to extend the proof of Theorem 6.1 to show that the time-
reversal of an SLEκ(ρ) process for ρ ∈ (−2,0] is conformally invariant and satis-
fies the domain Markov property with one extra marked point (see also Figure 26).

THEOREM 6.2. Let D ⊆ C be a Jordan domain and fix x, y ∈ ∂D distinct.
Suppose that κ ∈ (0,4) and ρ ∈ (−2,0]. Let η be an SLEκ(ρ) process in D from
x to y with the single force point located at x. Then the time-reversal R(η) of η
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is conformally invariant and satisfies the domain Markov property with one extra
marked point.

We remark that it is possible to extend the proof of Theorem 6.2 to include the
case that ρ > 0. The reason we chose to omit this particular case is that, using a
technique which will be relevant for proving the reversibility of SLEκ(ρL;ρR), we
are also able to deduce the reversibility of SLEκ(ρ) for ρ > 0 from the reversibility
of SLEκ(ρ) for ρ ∈ (−2,0]. We also note that it is possible to extend the proof of
Theorem 6.2 to show that the law of an SLEκ(ρL;ρR) process given the realization
of a terminal segment is conformally invariant and satisfies the domain Markov
property with two extra marked points. We do not include this here because these
properties actually do not single out the class of SLEκ(ρ1;ρ2) processes and we
use another approach in the next section to prove reversibility in this setting.

PROOF OF THEOREM 6.2. As explained in the caption of Figure 26, we can
take η = η1 ∪ η2 to be an ordinary SLEκ process from x to y in D, coupled with
the GFF in the usual way, and then draw a flow line ηθ with angle θ > 0 to its
left. By Figure 5, we know that the conditional law of η given ηθ is that of an
SLEκ(θχ/λ − 2) process in the right connected component of D \ ηθ . We want
to show that the law of η1 given η2 ∪ ηθ is a conformal invariant of the connected
component of the domain D \ (η2 ∪ ηθ ) which contains x that depends only on the
three points on the boundary: x, z and the first place w after x at which ηθ hits η2.
Since we know how to resample η1 given ηθ and η2 (as explained in Figure 25,
it follows that the law of η1 given η2 ∪ ηθ is conformally invariant and depends
on four boundary points (x, z, w and the right side of y). Thus, we just need to
show that the right side of y is irrelevant. This is explained in caption of Figure 26,
which completes the proof. �

7. Proof of Theorem 1.1. The completion of the proof of Theorem 1.1 will
require several steps. First, we will observe that with a little thought, Theorem 6.2
implies the reversibility of SLEκ(ρ) with a single force point of any weight ρ ∈
(−2,0]. Then we will make use of more conditioning tricks using flow lines of the
GFF in order to obtain the result for all ρ > −2, and more generally, two force
points ρL,ρR > −2.

7.1. One boundary force point; ρ ∈ (−2,0]. Suppose that η ∼ SLEκ(ρ) in
a Jordan domain D from x to y with a single force point at x+ with weight ρ ∈
(−2,0]. By Theorem 6.2, we know that the time-reversal R(η) of η is conformally
invariant and satisfies the domain Markov property with one force point. Moreover,
[18], Lemma 7.16, implies that η ∩ D almost surely has zero Lebesgue measure if
∂D is smooth. Therefore, Theorem 1.4 implies that there exists ρ̃ such that R(η) ∼
SLEκ(ρ̃) in D from y to x. We know that the value of κ associated with R(η) is the
same as that associated with η since the Girsanov theorem implies that the law of η
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is mutually absolutely continuous with respect to the law of ordinary SLEκ when it
is not hitting the boundary. Since the latter almost surely has Hausdorff dimension
1+ κ

8 [1], so does the former. The claim follows because this property is obviously
invariant under time-reversal. Thus, to complete the proof of Theorem 1.1 in this
case, we just need to show that ρ = ρ̃.

Let P = P(κ) be the set weights ρ > −2 such that there exists ρ̃ > −2 so
that the time-reversal of an SLEκ(ρ) process is an SLEκ(ρ̃) process. Note that
(−2,0] ⊆ P . Let R:P → P be the function that maps ρ ∈ P to the corresponding
weight for the time-reversal. We are now going to argue that R is the identity.
Observe that R has the following properties:

(1) R(R(ρ)) = ρ [the time-reversal of the time-reversal is the original path];
(2) R is injective [if R(ρ) = R(ρ̃) then ρ = R(R(ρ)) = R(R(ρ̃)) = ρ̃];

(3) R is continuous [if ρn → ρ and ηn ∼ SLEκ(ρn), then ηn
d→ η ∼ SLEκ(ρ)

so R(ηn)
d→ R(η); the convergence is weak convergence with the topology in-

duced by local uniform convergence on the Loewner driving function];
(4) R(0) = 0 (the time-reversal symmetry of ordinary SLEκ is Theorem 6.1

and was already known [6, 42]);
(5) limρ↓−2 R(ρ) = −2 [if ρn ↓ −2 and ηn ∼ SLEκ(ρn), then ηn converges to

R+ so that R(ηn) converges to R+; recall Figure 5].

Properties (2) and (3) imply that R|(−2,0] is monotonic and properties (4) and (5)
imply that R|(−2,0] is increasing. The only increasing function on (−2,0] satis-
fying (1) is the identity. Indeed, if R(ρ) > ρ for some ρ > −2, then since R is
increasing, we must have that R(R(ρ)) > R(ρ). But R(R(ρ)) = ρ, an obvious
contradiction. Likewise, it cannot be that ρ > R(ρ).

7.2. Two boundary force points. We are now going to complete the proof of
Theorem 1.1 by deducing the reversibility of SLEκ(ρL;ρR) for all ρL,ρR > −2
from the reversibility of SLEκ(ρ) for ρ ∈ (−2,0]. This will require two steps. We
will first prove the reversibility of SLEκ(ρL;ρR) when ρL > −2 and ρR ≥ 0. This,
in particular, will fill in the missing gap of the reversibility of SLEκ(ρ) when ρ ≥ 0.
We will prove this by considering a configuration of flow lines ηθ1, ηθ2 of a GFF
such that ηθ1 is reversible given ηθ2 and ηθ2 is reversible given ηθ1 and then use
Theorem 4.1, our characterization of bi-chordal SLE, to deduce the reversibility
of the whole configuration. Second, we will deduce from this the reversibility of
SLEκ(ρL;ρR) for general ρL,ρR > −2 by considering another configuration of
flow lines.

LEMMA 7.1. Suppose that D ⊆ C is a Jordan domain and fix x, y ∈ ∂D dis-
tinct. Suppose that η ∼ SLEκ(ρL;ρR) from x to y with ρL > −2 and ρR ≥ 0 and
with the weights located at x−, x+, respectively. The time-reversal R(η) of η is an
SLEκ(ρR;ρL) process in D with the weights located at y−, y+, respectively.
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FIG. 27. Fix ρL,ρR ∈ (−2,0]. The configuration of paths used to prove the reversibility of
SLEκ (ρL;ρR + 2) and SLEκ (ρL + 2;ρR) is illustrated above. Suppose that h is a GFF on a
Jordan domain D with the boundary data depicted above. Let ηθ1 , ηθ2 be the flow lines of h with
angles θ1 = λ/χ and θ2 = −λ/χ . Then ηθ1 ∼ SLEκ (ρL;2 + ρR). Moreover, the conditional law
of ηθ1 given ηθ2 is an SLEκ (ρL) and the conditional law of ηθ2 given ηθ1 is an SLEκ (ρR).
Consequently, by the one boundary force point case for ρ ∈ (−2,0], the conditional law of the
time-reversal R(ηθ1 ) given the time-reversal R(ηθ2 ) of ηθ2 is an SLEκ (ρL) and the conditional
law of R(ηθ2) given R(ηθ1) is an SLEκ (ρR). By Theorem 4.1, this characterizes the law of
(R(ηθ1),R(ηθ2 )) and, in particular, implies that R(ηθ1) ∼ SLEκ (2 + ρR;ρL) from y to x in D

and similarly R(ηθ2) ∼ SLEκ (ρR;2 + ρL). By iterating this argument, by can prove the reversibil-
ity of SLEκ (ρL;ρR) for all ρL > −2 and ρR ≥ 0.

PROOF. Fix ρL,ρR ∈ (−2,0]. Suppose that h is a GFF on D whose boundary
data is as described in Figure 27. Let θ1 = λ/χ and θ2 = −λ/χ . For i = 1,2, let
ηθi

be the flow line of h with angle θi . Then ηθ1 is an SLEκ(ρL;2+ρR) process in
D from x to y with the force points located at x−, x+, respectively, and likewise
ηθ2 is an SLEκ(2 + ρL;ρR) process. Moreover, the law of ηθ1 given ηθ2 is an
SLEκ(ρL;0) in the left connected component D2 of D \ ηθ2 and the law of ηθ2

given ηθ1 is an SLEκ(0;ρR) in the right connected component D1 of D \ ηθ1 (see
Figure 5). Therefore, by Theorem 1.1 for one boundary force point whose weight
is in (−2,0], which we proved in the previous subsection, we know that the law
of the time-reversal R(ηθ1) of ηθ1 given the time-reversal R(ηθ2) of ηθ2 has the
law of an SLEκ(0;ρL) in D2 from y to x. Likewise, the law of R(ηθ2) given
R(ηθ1) is that of an SLEκ(ρR;0) in D1 from y to x. By Theorem 4.1, we therefore

have that (R(ηθ1),R(ηθ2))
d= (η̃1, η̃2) where η̃1 ∼ SLEκ(2 + ρR;ρL) and η̃2 ∼

SLEκ(ρR;2 + ρL). This proves the statement of the lemma when ρL ∈ (−2,0]
and ρR ∈ [0,2).

The argument in the previous paragraph in particular implies the reversibility of
SLEκ(ρ) processes for ρ ∈ (0,2). Thus, we can re-run the argument but now with
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FIG. 28. The configuration of paths used to prove the reversibility of SLEκ (ρL;ρR) process for
ρL,ρR > −2 assuming Lemma 7.1. Suppose that h is a GFF on a Jordan domain D with the
boundary data depicted above for ρL > −2 and ρ > 0 very large. Let η be the flow line of h

and ηθ the flow line with angle θ < 0 chosen so that ρR = −θχ/λ − 2. Then η ∼ SLEκ (ρL;ρ),
so R(η) ∼ SLEκ (ρ;ρL) since ρ is large. Moreover, conditionally on R(η), we know from Fig-
ure 5 that ηθ ∼ SLEκ (−θχ/λ − 2;ρ + θχ/λ). Thus, the law of R(ηθ ) conditionally on R(η) is an
SLEκ (ρ + θχ/λ;−θχ/λ − 2). Therefore, we know the joint law of (R(η),R(ηθ )), from which it is
easy to see that R(η) conditionally on R(ηθ ) is an SLEκ (ρR;ρL) process. This proves the theorem
since η conditionally on ηθ is an SLEκ (ρL;ρR) process (again by Figure 5).

the restriction ρL,ρR ∈ (−2,2). Iterating this proves the result for all ρL > −2
and ρR ≥ 0. �

We now have all of the ingredients needed to complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose that h is a GFF on D whose boundary
data is as indicated in Figure 28 where ρ > 0 is very large and ρL > −2. Fix
ρR > −2 and let θ < 0 be such that ρR = −θχ/λ − 2. Let η be the flow line of
h and let ηθ be the flow line of h with angle θ . Then η ∼ SLEκ(ρL;ρ) and the
law of ηθ given η is an SLEκ(−θχ/λ − 2;ρ + θχ/λ) from x to y in the right
connected component D0 of D \ η (recall Figure 5). Thus, assuming we chose ρ

large enough, Lemma 7.1 implies R(η) ∼ SLEκ(ρ;ρL) from y to x in D and the
law of R(ηθ ) given R(η) is an SLEκ(ρ + θχ/λ;−θχ/λ − 2) from y to x in D0.
This implies that the law of R(η) given R(ηθ ) is an SLEκ(ρR;ρL) from y to x in
the left connected component D1 of D \ ηθ (recall Figure 5). The theorem follows
since the law of η given ηθ is an SLEκ(ρL;ρR) in D1 from x to y by Figure 5.

�

7.3. Whole plane SLE and variants. If η: [0,∞] → C is a continuous path
from 0 to ∞, then we consider the map R(η)(t) = [1/η(1/t)] (up to monotone
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reparameterization of time) to be the “time-reversal” of η. We state Theorem 7.2
below as a contingent result about whole-plane time-reversal: the conclusion will
depend on the existence and uniqueness of a law for a random pair of paths that
has certain properties. In a subsequent work, we will explicitly construct pairs of
paths with these properties as flow lines of the Gaussian- free field (plus a multiple
of the argument function) and establish the uniqueness of their laws an arguments
similar to the one used for bichordal SLE processes here [20]. One result of this
form was already proved by Zhan in [44].

THEOREM 7.2. Suppose that η1 and η2 are random continuous paths in C
from 0 to ∞ for which the following hold:

1. Conditioned on η2, the law of η1 is that of an SLEκ(ρL;ρR) from 0 to ∞ in
C \ η2.

2. Conditioned on η1, the law of η2 is that of an SLEκ(ρR;ρL) from 0 to ∞ in
C \ η1.

If η1 and η2 are the unique random paths that have these properties, then the law
of the pair (η1, η2) is equal to the law of its time-reversal (R(η1),R(η2)) (up to
monotone reparameterization).

PROOF. The law of the pair of paths is invariant under the operation of succes-
sively resampling the two paths as SLEκ(ρL;ρR) and SLEκ(ρR;ρL) processes,
which have time-reversal symmetry by Theorem 1.1. We conclude (R(η1),R(η2))

satisfies the properties described in the theorem statement, which were assumed to
uniquely characterize the law of (η1, η2). Thus, the pair (R(η1),R(η2)) must have
the same law as the pair (η1, η2). �

In particular, this will imply that each of η1 and η2 separately has time-reversal
symmetry. As we show in [20], there is a natural one-parameter family of laws
for η1 that can be constructed in this way, by considering the Gaussian-free field
couplings of Section 8 but replacing the strip with a cylinder on which a multi-
valued version of the Gaussian-free field is defined (so that height changes by a
constant as one makes a revolution around the cylinder), and taking η1 and η2 to
be flow lines of different angles.

8. Multiple force points.

8.1. Time reversal and free field perturbations. In this section, we will make
a series of observations that will lead to a proof of Theorem 1.5. We will now il-
lustrate what Theorem 1.1 tells us about the couplings of SLEκ(ρL;ρR) processes
with the GFF described in Section 2.2 and [18]. Consider the infinite vertical strip
V = [−1,1] × R with boundary conditions −a on the left side ∂LV and b on the
right side ∂RV , as in the left panel of Figure 29.
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FIG. 29. Consider a GFF h on the infinite vertical strip V = [−1,1] × R whose boundary values
are depicted on the left side above. The flow line η of h from the bottom to the top is an SLEκ (ρL;ρR)

process (we will calculate the values of ρL,ρR in Figure 30). To go from the left side of the figure
to the right side, we add to h on the left side of η the harmonic function whose boundary values are
equal to 2λ′ along left side of η and 2a along the left strip boundary ∂LV . On the right side of η,
we add to h the harmonic function whose boundary values are equal to −2λ′ along the right side
of η and −2b along the right strip boundary ∂RV . By the reversibility of SLEκ (ρL;ρR) processes
(Theorem 1.1), the resulting field is a GFF with the boundary data indicated on the right side and
the time-reversal R(η) of η is the flow line of this new field from the top to the bottom.

By Figure 4, the flow line path corresponds to an SLEκ(ρL;ρR) process from
the bottom of V to the top with the ρL and ρR values described in Figure 30 and
initial force points at the seed of the path. If we consider the boundary conditions
on the right side of Figure 29 and draw a path in the reverse direction, then the
path corresponds to an SLEκ(ρR;ρL) process from the top of V to the bottom,
with initial force points at the seed of the path. Theorem 1.1 implies that (up to

FIG. 30. Extending the black and red paths horizontally at the bottom (as though the domain were
the half strip V+ = [−1,1] × R+) we find that the gap between the heights (red height minus black
height) along the lower boundary is −λ+a − π

2 χ = a −λ−λ(4 −κ)/4 = a − (2 −κ/4)λ. Dividing

by λ gives a force point strength of ρL = a/λ − 2 + κ/4 (see Figure 4). Symmetrically, we find
ρR = b/λ + κ/4 − 2. In particular, if a = b = λ′ we find ρL = ρR = κ

2 − 2.
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FIG. 31. To go from the left figure to the right figure, add the constant function 2λ′ to left side of V
minus the path and −2λ′ to the right side.

time-reversal) the law of the path on the left and the law of the path on the right are
exactly the same. This implies that the transformation depicted in Figure 29 is a
measure preserving map from the space of GFF configurations with the boundary
conditions on the left (recall from [18], Theorem 1.2, that the GFF determines the
path almost surely) to the space of GFF configurations with the boundary condi-
tions on the right (which again determine the path shown). That is, if we sample an
instance h1 of the GFF with the left boundary conditions, and we then transform
it according to the illustrated rule, then we obtain an instance h2 of the GFF with
the right boundary conditions. This produces a coupling of the two Gaussian-free
fields h1 and h2 in such a way that the flow line on the left is the time-reversal
of the flow line on the right and the two fields agree (up to harmonic functions)
in the complement of the paths. Indeed, h1 − h2 is the harmonic extension of the
function that is −2a on ∂LV , −2λ′ on the left side of the path 2λ′ on the right side
of the path and 2b on ∂RV .

This construction takes a particularly simple form when we take a = b = λ′ as
shown in Figure 31. In this case, we have ρL = ρR = −πχ/λ = −(4 − κ)/2 =
κ
2 − 2 (i.e., the ρ value corresponding to a “half-turn”). The SLEκ(ρL;ρR) is non-
boundary intersecting in this case, but these values are critical for that to be the
case (i.e., if the ρq were any smaller then we would have boundary intersection; see
[18], Figure 4.1). What makes this case simpler than the general one in Figure 29
is that the functions one adds to the left and right sides of the path, in order to
map from one type of boundary condition to another, are constant, as explained in
Figure 31. In this case, h1 −h2 is simply −2λ′ to the left of the path and 2λ′ to the
right of the path.

Now, what happens if we consider the simple setting of Figure 31 but we replace
h with h + φ where φ is a smooth function whose Laplacian is supported on a
subset S contained in the interior of V? This is equivalent to weighting the law of
h by (a constant times) e(h,φ)∇ [this follows, e.g., by (2.3)]. By integrating by parts,
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we note that (h,φ)∇ = (h,−�φ). Write A = ∫
S −�φ(z)dz. We thus observe the

following.

PROPOSITION 8.1. The Radon–Nikodym derivative of the forward flow line η

of h1 + φ with respect to the reverse flow line of h2 + φ, as depicted in Figure 29,
is given by e(h1−h2,−�φ) conditioned on the event that η does not hit the boundary.

One interesting observation is that on the event that the path goes completely
to the right of S we have deterministically (h1,−�φ)∇ − (h2,−�φ)∇ = −2λ′A.
Since this is a constant, we find that the Radon–Nikodym derivatives of the two
weighted measures with respect to each other are constant on this event. In partic-
ular, this means that the law of a forward flow line of h1 +φ is equal to the law of a
reverse flow line of h2 +φ on the event that the path goes to the left of S. A similar
result holds when we condition on the event that the path goes to the right of S, or
when we write S = S1 ∪ S2 and condition the path to go left of S1 and right of S2.

Now suppose that φ̃ is a function that is harmonic on V (with non-zero boundary
conditions on some compact subset I of the boundary, zero boundary conditions
elsewhere). We can then find a function φ that agrees with φ̃ outside of a neigh-
borhood UI of I , has Laplacian supported inside of UI , has finite Dirichlet energy,
and extends continuously to zero on ∂V . Using the arguments above for φ allows
us to conclude that the time-reversal of the flow line of h1 + φ̃ has a law that agrees
with that of the flow line of h2 + φ̃ run in the reverse direction on the event that the
path does not hit I . Indeed, this can be written as a limit of the functions discussed
above, which allows us to deduce similarly that the flow line of h1 + φ has the
same law as the reverse flow line of h2 + φ (as in Figure 32) if we condition on
the path staying outside of UI . Since this holds for arbitrarily small choices of UI ,
this proves the following.

FIG. 32. In this case, the boundary conditions (on the left side) are equal to −λ′ on ∂LV and λ′
on ∂RV except along compact intervals where they disagree. To go from the left figure to the right
figure, add 2λ′ to left side of V minus the path and −2λ′ to right side.
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FIG. 33. In this case, the boundary conditions (on the left side) are equal to −λ′ on ∂LV except
along a compact intervals where they disagree. On ∂RV , the boundary conditions are given by a
constant c. To go from the left figure to the right figure, add 2λ′ to left side of V minus the path. On
the right side, add the harmonic function that is equal to −2c on ∂RV and −2λ′ on the right side of
the path.

LEMMA 8.2. Theorem 1.5 holds in the setting depicted in Figure 32, that is,
provided the boundary conditions are −λ′ and λ′ outside of the finite interval.

Note that in this setting there is no difficulty in making the statement of Theo-
rem 1.5 precise because the event that the path avoids the boundary has positive
probability. The same argument also applies in the setting of Figure 33, where the
boundary conditions are equal to some constant c on the right side and on the left
side are equal to −λ′ outside of a finite interval.

8.2. Time reversals and shields. In this section, we describe another way to
prove Lemma 8.2. First, we observe that if we are given zero boundary conditions
on the right side of a strip and piecewise constant boundary conditions on the left
side of a strip (with finitely many pieces), then we can draw a collection of flow
lines on the left side of the strip (which necessarily avoid the right side) so that
conditioned on these flow lines the boundary conditions are 0 (plus winding) on
the left boundary of the original strip minus this collection of flow lines). This is
illustrated and explained in Figure 34. Using this construction, the remainder of
the alternate proof of Lemma 8.2 is sketched in Figure 35.

The resampling characterization in Figure 34 suggests a way to make sense of
Theorem 1.5 in a more general setting.

DEFINITION 8.3. Given piecewise constant boundary conditions on V (with
finitely many pieces), we say that a random path η from the bottom to top of the
strip has the law of a flow line conditioned to avoid the boundary if its law is
invariant under the following resampling procedure: first resample the GFF off η

and generate the corresponding shields, as explained in Figures 34 and 35. Then
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FIG. 34. Procedure for producing a matching height condition on the opposite side of a strip. In
the left figure, one draws a certain flow line η1 from the bottom to the top of the strip as shown,
but whenever the flow line reaches a boundary location where the height is greater than or equal
to zero (i.e., it reaches the continuation threshold) it is allowed to “skip” along the boundary of the
strip to the first point where this is no longer the case and then start again at that point. The path η1
disconnects all of the left boundary intervals on which the height is strictly less than zero from the
right boundary of the strip. As shown on the right, we can repeat the same procedure with a path η2
from top to bottom, which necessarily disconnects all intervals on which the height is strictly greater
than zero from the right side of the strip. Both ηi avoid the right boundary of the strip almost surely
so that the strip minus the pair of paths contains a “large component” that has the right boundary
of the strip as its right boundary. The angles are chosen so that conditioned on the paths the GFF
boundary conditions on the left boundary of this component are 0 (plus winding).

resample the GFF in the region between the shields and take η to be the new flow
line going from the bottom to the top of the in-between region.

When we use Definition 8.3, Theorem 1.5 is immediate from the argument in
Figure 35. However, Definition 8.3 is not entirely satisfying because we have not
shown that there exists a unique law for η with this resampling property. To remedy
this, we need the following.

PROPOSITION 8.4. Given any set of piecewise constant boundary conditions
on V (with finitely many pieces), there exists a unique law for a random path η that
satisfies the conditions of Definition 8.3.

PROOF. In the special case that the boundary data is constant on each of the
two sides of V , Proposition 8.4 is an obvious consequence of our reversibility and
bi-chordal results. The general proof essentially builds on this observation. The
proof is rather similar to other proofs given in this paper, so we will only sketch
the argument here.

First, we note that Definition 8.3 can be equivalently formulated using “stubs”
instead of entire shields, as illustrated in Figure 36. Once we condition on the four
stubs up to any positive stopping times, we know the conditional laws of the entire
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FIG. 35. This illustrates an alternate proof of Lemma 8.2. In the left figure, the red flow line avoids
the boundary. In the middle figure, the shields (drawn using the procedure described in Figure 34)
are “open” in the sense that their union does not contain a crossing of the strip. Given that the
shields are open, the red path is almost surely boundary avoiding. Conversely, given that the red path
is boundary avoiding, the shields are almost surely open, so these events are equivalent. One can fix
the shields and resample the GFF in between as a GFF (producing a new red flow line) or fix the red
flow line and resample the GFF on either side (producing new shields). The argument used to prove
Theorem 4.1 shows that this resampling invariance characterizes the joint law of the shields and the
red path. The third figure above is obtained by adding 2λ′ to the left of the red path and subtracting
2λ′ from the right, reversing the orientation of the red path. We can view this as a reversed red
path conditioned to be boundary avoiding (with the modified boundary conditions). The resampling
characterization mentioned above and the time reversal symmetry of SLEκ ( κ

2 − 2; κ
2 − 2) imply that

the law is the same as in the second picture, which implies Lemma 8.2.

shields: namely, they can be drawn using flow or counterflow lines of the Gaussian-
free field conditioned on a (conditionally positive probability) event that the union
of the two shields leaves a space for flow line to get from one endpoint to the other
without hitting the boundary. Given this formulation, we will prove that there is at
most one law satisfying the conditions of Definition 8.3 using a variant of the proof
of Proposition 5.10 that involves four stubs instead of two. To explain this, recall
that in the proof of Proposition 5.10, we started with a measure ν that was (in a
natural sense) the law of two GFF flow lines conditioned not to ever intersect each
other (where the boundary conditions for this GFF are constant on the two sides of
the strip) with the law restricted to the portion of the paths that occurs before the
first time they exit some small ball. Precisely, ν was just a coupled pair of stopped
SLEκ(ρ1, ρ2) curves with parameters depending on the boundary values of the
field near the corresponding endpoint. We then showed that the joint law of the
paths in the measure μ we wanted to understand must be absolutely continuous
with respect to ν, with a Radon–Nikodym derivative we could explicitly write
down.

In this proof, we replace ν with ν1 ⊗ ν2, where ν1 corresponds to the law of a
pair of flow-or-counterflow lines started from the lower endpoint x, conditioned
not to intersect each other, and ν2 is a law (independent of ν1) of a pair of flow-or-
counterflow lines started from the lower endpoint x, conditioned not to intersect
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FIG. 36. Consider a version of Figure 35 in which the non-matching intervals (where height is not
±λ′) extend all the way to infinity on each side. In this case, the “shields” go all the way to the top
and bottom of the strip; each shield is potentially made up of two types of flow lines, as illustrated
in Figure 34, but within each shield there is only one type reaching the lower endpoint, and one type
reaches the upper endpoint. Depending on the type, we can trace small pieces of the shield near the
endpoints of the red path (conditioned on the red path itself) by using either flow lines or counterflow
lines (with the shield as a boundary) as shown. Definition 8.3 then admits an alternate but equivalent
formulation: instead of resampling the entire shield given the red path, and then resampling the red
path given the shield, we can sample these four stubs given the red path (up to some small stopping
times), and then resample the red path given the four stubs as a path conditioned on the (positive
probability) event that it avoids the boundary and the stubs.

each other. Again, each νi has precisely the law of the ν in the proof Proposi-
tion 5.10, given the boundary data near the corresponding endpoint. As before,
it is the law we get by conditioning the paths not to intersect each other while
pretending that their are no other force points.

Then we let μ be the law of the quadruple of stubs in Figure 36 (where stubs are
stopped when they exit the same ball). The exact arguments used in the proof of
Proposition 5.10 and Remark 5.11 then give us a formula for the Radon–Nikodym
derivative of μ with respect to ν (up to multiplicative constant).

The existence half of Proposition 8.4 can then be established by showing that
the ν expectation of the Radon–Nikodym derivative discussed above is finite. In
other words, we must show that the μ defined by this Radon–Nikodym derivative
is not an infinite measure. One way to prove this is to start with a configuration as
in Figure 35 (but with shields running all the way to the endpoints as in Figure 34)
and repeatedly resample. In the middle diagram of Figure 35, the Gibbs properties
assumed and the bi-chordal theorem imply that we can fix all of the “downward
going” paths in the shields and resample the upward ones and red flow line as
flow lines of the same GFF without any additional conditioning. (Alternatively, we
can just forget about the red flow line and sample the upward going lines of the
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shield from this law.) We can also alter boundary conditions to those of the right
diagram of Figure 35 and resample all of the downward going paths of the shields
as ordinary GFF flow lines without additional conditioning. It is now not hard to
show that, uniformly in the choice of downward-going lines, the probability that
the upward-going lines go below some level −R tends to zero as R → ∞. A simi-
lar result holds for downward going lines going above level R. Using Remark 4.4,
one can then see that no matter how many times we alternate between resampling
the downward and upward lines, the law of paths below −R and above R is still
reasonably “nice” and in particular, the analog of the sets �ε in the proofs Propo-
sition 5.4 and Proposition 5.10 have measures that do not tend to zero. Since the
Radon–Nikodym derivative of μ with respect to ν on these sets is bounded (as in
the proofs mentioned above), it follows that μ cannot be an infinite measure. �
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