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BSDES WITH WEAK TERMINAL CONDITION

BY BRUNO BOUCHARD1,2, ROMUALD ELIE1 AND ANTONY RÉVEILLAC

ENSAE-ParisTech, University Paris-Dauphine and University Paris-Est

We introduce a new class of backward stochastic differential equations in
which the T -terminal value YT of the solution (Y,Z) is not fixed as a random
variable, but only satisfies a weak constraint of the form E[�(YT )] ≥ m, for
some (possibly random) nondecreasing map � and some threshold m. We
name them BSDEs with weak terminal condition and obtain a representa-
tion of the minimal time t-values Yt such that (Y,Z) is a supersolution of
the BSDE with weak terminal condition. It provides a non-Markovian BSDE
formulation of the PDE characterization obtained for Markovian stochastic
target problems under controlled loss in Bouchard, Elie and Touzi [SIAM J.
Control Optim. 48 (2009/10) 3123–3150]. We then study the main properties
of this minimal value. In particular, we analyze its continuity and convexity
with respect to the m-parameter appearing in the weak terminal condition,
and show how it can be related to a dual optimal control problem in Meyer
form. These last properties generalize to a non-Markovian framework previ-
ous results on quantile hedging and hedging under loss constraints obtained
in Föllmer and Leukert [Finance Stoch. 3 (1999) 251–273; Finance Stoch. 4
(2000) 117–146], and in Bouchard, Elie and Touzi (2009/10).

1. Introduction. Solving a backward stochastic differential equation (here-
after BSDE), with terminal data ξ ∈ L2(FT ) and driver g, consists in finding a
pair of predictable processes (Y,Z), with certain integrability properties, such that
the dynamics of Y satisfies dYt = −g(t, Yt ,Zt ) dt + Zt dWt and YT = ξ (where
W denotes a standard Brownian motion). It can be rephrased in: find an initial data
Y0 and a control process Z such that the solution YZ of the controlled stochastic
differential equation

YZ
t = Y0 −

∫ t

0
g
(
s, YZ

s ,Zs

)
ds +

∫ t

0
Zs dWs, 0 ≤ t ≤ T ,(1.1)

satisfies YZ
T = ξ . In cases where the previous problem does not admit a solution,

a weaker formulation is to find an initial data Y0 and a control Z such that

YZ
T ≥ ξ, P-a.s.(1.2)
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In most applications, one is interested in the minimal initial condition Y0 and in
the associated control Z. This is for instance the case in the financial literature in
which Y0 represents the cost of the cheapest super-replication strategy for the con-
tingent claim ξ , and Z provides the associated hedging strategy; see, for example,
El Karoui, Peng and Quenez (1997).

Motivated by situations where this minimal value Y0 is too large for practical
applications, it was suggested to relax the strong constraint (1.2) into a weaker one
of the form

E
[
�
(
YZ

T − ξ
)] ≥ m,(1.3)

where m is a given threshold and � is a nondecreasing map. For �(x) = 1{x≥0},
this corresponds to matching the criteria YZ

T ≥ ξ at least with probability m. In
financial terms, this is the so-called quantile hedging problem; see Föllmer and
Leukert (1999).3 More generally, � is viewed as a loss function, one typical exam-
ple being �(x) := −(x−)q with q ≥ 1; see Föllmer and Leukert (2000) for general
non-Markovian but linear dynamics. Such problems were coined “stochastic target
problems with controlled loss” by Bouchard, Elie and Touzi (2009/10) who con-
sider a nonlinear Markovian formulation in a Brownian diffusion setting; see also
Moreau (2011) for the jump diffusions setting.

The aim of this paper is to study the nonlinear non-Markovian setting in which
the terminal constraint is of the form

E
[
�

(
YZ

T

)] ≥ m.(1.4)

In the above, m ∈ R and � is a (possibly random) nondecreasing real-valued map.
Our problem can then be written as the following:

Find the minimal Y0 such that (1.1) and (1.4) hold for some Z.(1.5)

This leads to the Introduction of a new class of BSDEs which we call BSDEs with
weak terminal condition. More precisely, we refer to this problem by saying that
we want to solve the BSDE with driver g and weak terminal condition (�,m) to
insist on the fact that the terminal condition YZ

T is not fixed as a random variable,
but only has to satisfy the weak constraint (1.4).

The first step in our analysis lies in a reformulation based on the martingale
representation theorem, as suggested in Bouchard, Elie and Touzi (2009/10). More
precisely, if Y0 and Z are such that (1.4) holds, then the martingale representation
theorem implies that we can find an element α in the set A0, of predictable square
integrable processes, such that

�
(
YZ

T

) ≥ Mα
T := m +

∫ T

0
αs dWs.

3In fact, their original formulation also imposes a budget constraint YZ
T ≥ 0,P-a.s., which can be

taken into account by imposing a criteria of the form (1.4) with �(YZ
T ) := 1{YZ

T −ξ≥0} −∞1{YZ
T <0}.
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On the other hand, since � is nondecreasing, one can introduce its left-continuous
inverse � and note that the solution (Y α,Zα) of the BSDE

Yα
t = �

(
Mα

T

) +
∫ T

t
g
(
s, Y α

s ,Zα
s

)
ds −

∫ T

t
Zα

s dWs, 0 ≤ t ≤ T ,(1.6)

actually solves (1.1) and (1.4). We indeed show that the solution of (1.5) is given
by

inf
{
Yα

0 , α ∈ A0
}
.(1.7)

This leads to study its dynamical counterpart

Yα
τ := ess inf

{
Yα′

τ , α′ ∈ A0 s.t. α′ = α on [[0, τ ]]}, 0 ≤ τ ≤ T .(1.8)

We verify that the family {Yα,α ∈ A0} satisfies a dynamic programming principle
which can be seen as a counterpart of the geometric dynamic programming prin-
ciple of Soner and Touzi (2002) used in Bouchard, Elie and Touzi (2009/10). In
particular, this implies that {Yα,α ∈ A0} is a g-submartingale family to which we
can apply the nonlinear Doob–Meyer decomposition of Peng (1999). This provides
a representation of the family {Yα,α ∈ A0} in terms of minimal supersolutions to a
family of BSDEs with driver g and (strong) terminal conditions {�(Mα

T ),α ∈ A0}.
This representation allows in particular to characterize the family {Yα,α ∈ A0}
uniquely. Under additional convexity assumptions on the coefficients g and �,
we observe that the essential infimum in (1.8) is attained. Hence, there exists an
optimal α̂ ∈ A0 such that solving the BSDE with weak terminal condition (�,m)

boils down to solving the BSDE with dynamics (1.6) and strong terminal condition
�(Mα̂

T ). In a Markovian framework, our approach provides in particular a BSDE
formulation for the PDEs derived in Bouchard, Elie and Touzi (2009/10).

We then study in details important properties of this family and focus in partic-
ular on the regularity of Yα with respect to the threshold parameter m. We exhibit,
under weak conditions, a stability property of the solution with respect to the vari-
ations of the parameter m. We also observe that Yα is convex with respect to the
threshold parameter. This observation allows us in particular to conclude that �

(whenever it is deterministic) can be replaced by its more regular convex envelope
in order to compute Yα on [0, T ). This was already observed in the restrictive
Markovian setting of Bouchard, Elie and Touzi (2009/10), in which it is proved by
using PDE technics. We provide here a pure probabilistic argument. Similarly, it
was also observed in Föllmer and Leukert (1999, 2000) and Bouchard, Elie and
Touzi (2009/10) that (1.5) admits a dual linear problem when g is linear. We ex-
tend this result via probabilistic arguments to the semilinear setting, for which the
dual formulation takes the form of a stochastic control problem in Meyer form.

The rest of the paper is organized as follows. In Section 2, we provide a precise
formulation for (1.5) and relate this problem to a g-submartingale family satisfying
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a dynamic programming principle. Attainability of the optimal control α̂ ∈ A0 is
also discussed. Section 3 collects the continuity and convexity properties as well
as the dual formulation of the problem. Finally, Section 4 contains the proof of the
BSDE representation for {Yα,α ∈ A0}.

We close this Introduction with a series of notation that will be used all over
this paper. Let d ≥ 1 and T > 0 be fixed. We denote by W := (Wt)t∈[0,T ] a d-
dimensional Brownian motion defined on a probability space (�,F,P) with P-
augmented natural filtration F = (Ft )t∈[0,T ]. The components of W will be de-
noted by W = (W 1, . . . ,Wd) and E will stand for the expectation with respect
to P. For simplicity, we assume that F = FT . Throughout the paper, we will make
use of the following spaces.

− Lp(U,G) denotes the set of p-integrable G-measurable random variables with
values in U , p ≥ 0, U a Borel set of Rn for some n ≥ 1 and G ⊂ F . When U

and G can be clearly identified by the context, we omit them. This will be in
particular the case when G = F .

− T denotes the set of F-stopping times in [0, T ]. For τ1 ∈ T , Tτ1 is the set of
stopping times τ2 in T such that τ2 ≥ τ1,P-a.s. The notation Eτ [·] stands for
the conditional expectation given Fτ , τ ∈ T .

− S2 denotes the set of R-valued, càdlàg4 and F-adapted stochastic processes
X = (Xt)t∈[0,T ] such that ‖X‖S2 := E[supt∈[0,T ] |Xt |2]1/2 < ∞.

− H2 denotes the set of Rn-valued, F-predictable stochastic processes X =
(Xt)t∈[0,T ] such that ‖X‖H2 := E[∫ T

0 |Xt |2 dt]1/2 < ∞. In the following, the
dimension n will be given by the context.

− K2 denotes the set of nondecreasing R-valued and F-adapted stochastic pro-
cesses X = (Xt)t∈[0,T ] such that ‖X‖S2 < ∞.

Inequalities between random variables are understood in the P-a.s.-sense.

2. BSDE with weak terminal condition.

2.1. Definitions and problem reformulation. We first define the main object of
this paper.

DEFINITION 2.1 (Solution to a BSDE with weak terminal condition). Given a
measurable map � :R×� 	→ U , with U ⊂ R∪{−∞}, τ ∈ T and μ ∈ L0(U,Fτ ),
we say that (Y,Z) ∈ S2 × H2 is a supersolution of the BSDE with generator
g :� × [0, T ] × R × Rd → R and weak terminal condition (�,μ, τ), in short
BSDE(g,�,μ, τ), if for any 0 ≤ s ≤ t ≤ T ,

Ys ≥ Yt +
∫ t

s
g(r, Yr,Zr) dr −

∫ t

s
Zr dWr and(2.1)

Eτ

[
�(YT )

] ≥ μ.(2.2)

4Right-continuous with left limits.
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Before discussing the well-posedness of equations (2.1)–(2.2), let us emphasize
that the difference with classical BSDEs lies in the fact that we do not prescribe
a terminal condition to Y in the classical P-a.s.-sense but only impose a weak
condition in expectation form (which justifies the terminology of BSDE with weak
terminal condition). Even if we were asking for equalities in (2.1)–(2.2), this would
obviously be too weak to expect uniqueness, as any random variable ξ satisfying
Eτ [�(ξ)] = μ could serve as a terminal condition.

However, when � is nondecreasing, the set

	(τ,μ)
(2.3)

:= {
Yτ : (Y,Z) ∈ S2 × H2 is a supersolution of BSDE(g,�,μ, τ)

}
,

defined for any τ ∈ T and μ ∈ L0(U,Fτ ), can be characterized by its lower-bound,
whenever it is achieved.

Throughout the paper, we shall restrict to the case where g is Lipschitz contin-
uous with linear growth, �+ is bounded, and the domain of � is bounded from
below, in order to avoid unnecessary technicalities.

Standing assumption (H� ): For P-a.e. ω ∈ �, the map y ∈ R 	→ �(ω,y) is
nondecreasing, right-continuous, valued in [0,1] ∪ {−∞} and its left-continuous
inverse �(ω, ·) satisfies � :� × [0,1] 	→ [0,1] is measurable.

By left-continuous inverse, we mean the left-continuous map defined for ω fixed
by

�(ω,x) := inf
{
y ∈ R,�(ω,y) ≥ x

}
,

which satisfies

� ◦ � ≤ Id ≤ � ◦ �.(2.4)

The left-hand side follows from the definition of �, the right-hand side holds by
right-continuity of � . Note that the above assumption implies �(ω, ·) = −∞
on (−∞,0) and �(ω, ·) = 1 on [1,∞). In particular, the constraint in expecta-
tion (2.2) implies YT ≥ 0,P-a.s. Obviously, the set [0,1] is chosen for ease of
notation and can be replaced by any closed interval.

Standing assumption (Hg): g is a measurable map from �×[0, T ]×R×Rd to
R and g(·, y, z) is F-predictable, for each (y, z) ∈R×Rd . There exists a constant
Kg > 0 and a random variable χg ∈ L2(R+), such that∣∣g(t,0,0)

∣∣ ≤ χg, P-a.s.,∣∣g(t, y1, z1) − g(t, y2, z2)
∣∣ ≤ Kg

(|y1 − y2| + |z1 − z2|),
P-a.s. ∀(t, yi, zi) ∈ [0, T ] ×R×Rd, i = 1,2.

Let Aτ,μ denote the set elements α ∈ H2 such that

M(τ,μ),α := μ +
∫ τ∨·
τ

αs dWs takes values in [0,1].(2.5)
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Then (2.2) is equivalent to �(YT ) ≥ M
(τ,μ),α
T for some α ∈ Aτ,μ. In view of (2.4),

this is equivalent to YT ≥ �(M
(τ,μ),α
T ) for some α ∈ Aτ,μ. This implies that su-

persolutions of BSDE(g,�,μ, τ) can be characterized in terms of g-expectations
whose definition is recalled below.

DEFINITION 2.2 (g-expectation). Given τ2 ∈ T and ξ ∈ L2(R,Fτ2), let
(Y,Z) ∈ S2 × H2 denote the solution of

Y = ξ +
∫ τ2

·∧τ2

g(s, Ys,Zs) ds −
∫ τ2

·∧τ2

Zs dWs.

Then we define the (conditional) g-expectation of ξ at the stopping time τ1 ≤ τ2
as Eg

τ1,τ2[ξ ] := Yτ1 . When τ2 ≡ T , we only write Eg
τ1[ξ ], and say that (Y,Z) solves

BSDE(g, ξ).

Note that existence and uniqueness hold under assumption (Hg). In the follow-
ing, we shall adopt the terminology of Peng (2004) and call g-martingale (resp.,
g-submartingale) a process Y such that Eg

t,s[Ys] = Yt (resp., Eg
t,s[Ys] ≥ Yt ), for all

t ≤ s ≤ T .

PROPOSITION 2.1. Fix τ ∈ T ,μ ∈ L0([0,1],Fτ ). Then, (Y,Z) ∈ S2 × H2 is
a supersolution of BSDE(g,�,μ, τ) if and only if (Y,Z) satisfies (2.1) and there
exists α ∈ Aτ,μ such that Yt ≥ Eg

t [�(M
(τ,μ),α
T )] for t ∈ [0, T ],P-a.s.

PROOF. Let (Y,Z) be a supersolution of BSDE(g,�,μ, τ). Then there ex-
ists some element ρ in L0([0,1],Fτ ) with ρ ≥ μ, P-a.s. and α̃ in Aτ,ρ such that

�(YT ) = M
(τ,ρ),α̃
T . Set θ α̃ := inf{s ≥ τ,M

(τ,μ),α̃
s = 0}. It is clear that θ α̃ belongs to

T and that α := α̃1[0,θ α̃) belongs to Aτ,μ and satisfies M
(τ,ρ),α̃
T ≥ M

(τ,μ),α
T , P-a.s.,

since M
(τ,ρ),α̃
T ≥ 0 by definition of Aτ,ρ . The monotonicity of � and (2.4) imply

that

YT ≥ (� ◦ �)(YT ) ≥ �
(
M

(τ,μ),α
T

)
.

By comparison for Lipschitz BSDEs, we obtain Yt ≥ Eg
t [�(M

(τ,μ),α
T )] for t ∈

[0, T ]. Conversely, let α ∈ Aτ,μ be such that Yt ≥ Eg
t [�(M

(τ,μ),α
T )] for t ∈ [0, T ]

and assume that (Y,Z) satisfies (2.1). Then (2.4) implies

�(YT ) ≥ (� ◦ �)
(
M

(τ,μ),α
T

) ≥ M
(τ,μ),α
T .

Taking the conditional expectation on both sides leads to (2.2). �

In view of Proposition 2.1, the lower bound of 	(τ,μ) [which we recall, has
been defined in (2.3)] can be expressed in terms of

Yτ (μ) := ess inf
α∈Aτ,μ

Eg
τ

[
�

(
M

(τ,μ),α
T

)]
, τ ∈ T ,μ ∈ L0

([0,1],Fτ

)
.(2.6)

This is the statement of the next corollary.
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COROLLARY 2.1. ess inf	(τ,μ) = Yτ (μ), ∀τ ∈ T , μ ∈ L0([0,1],Fτ ).

PROOF. The fact that Yτ ∈ 	(τ,μ) implies Yτ ≥ Yτ (μ) follows from Proposi-
tion 2.1. On the other hand, the same proposition implies that each
Eg

τ [�(M
(τ,μ),α
T )] with α ∈ Aτ,μ belongs to 	(τ,μ). �

REMARK 2.1. For later use, note that the assumptions (Hg) and (H� ) ensure
that we can find η ∈ S2 such that |Eg

t [�(M)]| ∨ |Yt (μ)| ≤ ηt , for all t ≤ T and
μ ∈ L0([0,1],Ft ), M ∈ L0([0,1]). See (i) of Proposition A.2 in the Appendix.

REMARK 2.2. Note that Yτ (μ) = Yτ (μ1)1A + Yτ (μ2)1Ac whenever μ :=
μ11A + μ21Ac for A ∈ Fτ , μ1,μ2 ∈ L0([0,1],Fτ ), and τ ∈ T . Indeed, α :=
1[τ,T ](α11A + α21Ac) ∈ Aτ,μ for all αi ∈ Aτ,μi

with i = 1,2. Since

Eg
τ [�(M

(τ,μ),α
T )] = Eg

τ [�(M
(τ,μ1),α1
T )]1A + Eg

τ [�(M
(τ,μ2),α2
T )]1Ac , this implies

Yτ (μ) ≤ Yτ (μ1)1A + Yτ (μ2)1Ac . The converse inequality follows from the pre-
vious identity applied with α1 := α1A and α2 := α1Ac for any α ∈ Aτ,μ so that
αi ∈ Aτ,μi

for i = 1,2.

REMARK 2.3. Before going on with the study of the set 	, let us notice that a
similar analysis can be carried out for weak constraints of the form Eh

τ [�(YT )] ≥ μ

in place of Eτ [�(YT )] ≥ μ in (2.2), with Eh defined as the h-expectation associ-
ated to some random map h satisfying similar conditions as g. In finance, the latter
condition interprets as a risk-measure constraints [see, e.g., Peng (2004)], while
our condition is more related to expected loss constraints, see Föllmer and Leukert
(2000). Again, we try to avoid un-necessary additional technicalities and stick to
the case h ≡ 0.

2.2. BSDE characterization of the minimal initial condition. The main result
of this section is a BSDE characterization for the lower bound of the set 	(τ,μ)

of time-τ initial conditions of supersolutions of BSDE(g,�,μ, τ). In particular,
this extends to a non-Markovian framework the PDE characterization of Bouchard,
Elie and Touzi (2009/10).

For ease of notation, we now fix mo ∈ [0,1] and set{
Mα

t := M
(0,mo),α
t , Aα

τ := {
α′ ∈ Aτ,Mα

τ
:α′ = α dt × dP on [[0, τ ]]},

A0 := A0,mo and Yα
t := Yt

(
Mα

t

)
for α ∈ A0, t ∈ [0, T ],

where we recall that M(0,mo),α and A0,mo are given in (2.5).

THEOREM 2.1. For any α ∈ A0, Yα is a g-submartingale, it is làdlàg 5 on
countable sets, and the following dynamic programming principle holds:

5Left- and right-limited according to the french celebrated acronym.
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(i) Yα
τ1

= ess infᾱ∈Aα
τ1
Eg

τ1,τ2[Y ᾱ
τ2

], for each τ1 ∈ T , τ2 ∈ Tτ1 . Under the addi-
tional assumption that

m ∈ [0,1] 	→ �(ω,m) is continuous for P-a.e. ω ∈ �,(2.7)

the following holds:
(ii) Yα is indistinguishable from a càdlàg g-submartingale, for each α ∈ A0.

(iii) There exists a family (Zα,Kα)α∈A0 ⊂ H2 × K2 satisfying

sup
α∈A0

∥∥(
Yα,Zα,Kα)∥∥

S2×H2×K2
< ∞,(2.8)

and such that, for all α ∈ A0, we have

Yα = �
(
Mα

T

) +
∫ T

·
g
(
s,Yα

s ,Zα
s

)
ds −

∫ T

·
Zα

s dWs +Kα −Kα
T ,(2.9)

Kα
τ1

= ess inf
ᾱ∈Aα

τ1

E
[
Kᾱ

τ2
|Fτ1

] ∀τ1 ∈ T , τ2 ∈ Tτ1(2.10)

and (
Yα,Zα,Kα)

1[[0,τ ]] = (
Y ᾱ,Z ᾱ,Kᾱ)

1[[0,τ ]] ∀τ ∈ T , ᾱ ∈ Aα
τ .(2.11)

(iv) (Yα,Zα,Kα)α∈A0 is the unique family of S2 × H2 × K2 satisfying (2.8)–
(2.11) for all α ∈ A0.

The proof of this theorem is reported in Section 4.

REMARK 2.4. (i) The precise continuity assumption needed in the proof is:
�(M

αn

T ) converges in L2 to �(Mα
T ) whenever ‖Mαn

T − Mα
T ‖L2 tends to 0, for

any sequence (αn)n ⊂ A0. However, this condition implies that � is continuous,
as soon as random variables with nonabsolute continuous law with respect to the
Lebesgue measure might be considered (which is the case here).

(ii) We shall see in Proposition 3.3 below that � can be replaced by its m-convex
envelope, under mild assumptions. In this case, the continuity assumption of the
second part of Theorem 2.1 is not required anymore because the convex envelope
of � is continuous; see Remark 3.1 below.

2.3. Representation as a BSDE with strong terminal condition. The previous
section raises in particular one natural question: Does there exist an admissible
control α̂ on the whole time interval [0, T ] allowing to match all time t-values of
the minimal solution of a BSDE with weak terminal condition? Rephrasing, we
wonder about the existence of a control α̂ in A0 such that

Y α̂
t = Eg

t

[
�

(
Mα̂

T

)]
, 0 ≤ t ≤ T .
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Hereby, solving the BSDE with weak terminal condition (�,mo,0) boils down to
solving the classical BSDE with the optimal strong terminal one �(Mα̂

T ): along
the optimal path α̂, the compensator Kα̂ of the BSDE (2.9) must degenerate to 0.

Not surprisingly, the existence of an optimal control requires the addition of
convexity assumptions on the coefficients of the BSDE. We shall therefore assume
that:

(Hconv). For all (λ,m1,m2, t, y1, y2, z1, z2) ∈ [0,1] × [0,1]2 × [0, T ] × R2 ×
[Rd ]2, the following holds P-a.s.:

�
(
λm1 + (1 − λ)m2

) ≤ λ�(m1) + (1 − λ)�(m2),

g
(
t, λy1 + (1 − λ)y2, λz1 + (1 − λ)z2

) ≤ λg(t, y1, z1) + (1 − λ)g(t, y2, z2).

REMARK 2.5. We recall the following result which is based on standard
comparison arguments; see, for example, Rosazza Gianin (2006), Proposition 7.
For any τ ∈ T , the map Eg

τ [�(·)] : L0([0,1]) → L0 is convex under assumption
(Hconv).

PROPOSITION 2.2. Assume that assumptions (Hconv) and (2.7) hold. Then,
for any (τ, α) ∈ T × H2, there exists α̂τ,α ∈ Aα

τ such that

Yα
τ = Eg

τ

[
�

(
Mα̂τ,α

T

)] = Eg

τ,τ ′
[
Y α̂τ,α

τ ′
] ∀τ ′ ∈ Tτ .

REMARK 2.6. As detailed in Remark 3.2 below, the convexity assumption
on the terminal map � can be avoided in some cases. In particular, if � is deter-
ministic, then it can be replaced by its convex envelope. Then, only the convexity
assumption on g, has to hold.

PROOF OF PROPOSITION 2.2. Lemma 4.1 below provides a sequence (αn)n
valued in Aα

τ such that

Yα
τ = lim

n→∞ ↓ Eg
τ

[
�

(
Mαn

T

)]
, P-a.s.(2.12)

Since the sequence (Mαn

T )n is bounded in [0,1], we can find sequences of non-
negative real numbers (λn

i )i≥n with
∑

i≥n λn
i = 1, such that only a finite number of

λn
i do not vanish, for each n, and such that the sequence of convex combinations

(M̃n
T )n given by

M̃n
T := ∑

i≥n

λn
i M

αi

T(2.13)

converges P-a.s. to some M̂T ∈ L0([0,1]). By dominated convergence, the conver-
gence holds in L2, in particular Eτ [M̂T ] = Mα

τ , and the martingale representation
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theorem implies that we can find α̂ ∈ Aα
τ such that M̂T = Mα̂

T . Using the convexity
of � and g (see Remark 2.5), we deduce that

Ỹ n
τ := ∑

i≥n

λn
i Eg

τ

[
�

(
Mαi

T

)] ≥ Eg
τ

[
�

(
M̃n

T

)]
.

By (2.12), Ỹ n
τ → Yα

τ ,P-a.s. On the other hand, the convergence M̃n
T → Mα̂

T in L2

combined with the boundedness and a.s. continuity of � implies that �(M̃n
T ) →

�(Mα̂
T ) in L2, after possibly passing to a subsequence. Therefore, the convergence

Eg
τ [�(M̃n

T )] → Eg
τ [�(Mα̂

T )],P-a.s. follows by Proposition A.1 below. This gives
Yα

τ ≥ Eg
τ [�(Mα̂

T )], while the converse holds by definition of Yα
τ .

It remains to show that Yα
τ = Eg

τ,τ ′ [Y α̂
τ ′ ], for τ ′ ∈ Tτ . To see this, first note that

the above implies that Yα
τ = Eg

τ,τ ′ [Eg

τ ′ [�(Mα̂
T )]] ≥ Eg

τ,τ ′ [Y α̂
τ ′ ] by standard compar-

ison arguments and the fact that Eg

τ ′ [�(Mα̂
T )] ≥ Y α̂

τ ′ by definition. As above, we
can find a sequence (α̂n) ∈ Aα̂

τ ′ such that Eg

τ ′ [�(Mα̂n

T )] → Y α̂
τ ′,P-a.s. In view of

Remark 2.1, the convergence holds in L2 and Proposition A.1 below implies

Yα
τ ≤ Eg

τ,τ ′
[
Eg

τ ′
[
�

(
Mα̂n

T

)]] → Eg

τ,τ ′
[
Y α̂

τ ′
]
,

where we used the fact that α̂n ∈ Aα̂
τ ′ ⊂ Aα

τ to obtain the left-hand side. �

3. Main properties of the minimal initial condition process. In this section,
we emphasize remarkable properties of the map Yt :μ ∈ L0([0,1],Ft ) 	→ Yt (μ),
for t ∈ [0, T ). We first derive the continuity of this map under a weak continu-
ity assumption on Eg[�(·)]. Then we verify that this map (or more precisely its
l.s.c. envelope) is convex, and discuss the propagation of the convexity property to
the time boundary T −. Finally, we retrieve, in this non-Markovian setting, a dual
representation of the map Y0, using solely probabilistic arguments.

3.1. Continuity. Our continuity result is stated in terms of the quantities

Errt (η) := ess sup
{
Rt

(
M,M ′) :M,M ′ ∈ L0

([0,1]),Et

[∣∣M − M ′∣∣2] ≤ η
}
,

defined for η ∈ L0([0,1]), in which

Rt

(
M,M ′) := ∣∣Eg

t

[
�(M)

] − Eg
t

[
�

(
M ′)]∣∣.

Observe that classical a priori estimates on BSDEs ensure that Errt (ηn) → 0 as
ηn → 0,P-a.s. with (ηn)n ⊂ L0([0,1]), whenever � is a deterministic Lipschitz
map; see, for example, Proposition A.1 below. This observation remains valid
when � is simply continuous, via a classical convolution density argument for
Lipschitz maps on bounded domains. The next result indicates that this property
ensures the regularity of the map: μ 	→ Yt (μ).
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PROPOSITION 3.1. Let t < T , μ1,μ2 ∈ L0([0,1],Ft ). Then∣∣Yt (μ1) −Yt (μ2)
∣∣ ≤ Errt

(
�(μ1,μ2)

) + Errt
(
�(μ2,μ1)

)
,

where

�(μi,μj ) :=
(

1 − μi

μj

)
1{μi<μj } + μi − μj

1 − μj

1{μi>μj }, i, j = 1,2.

Moreover, ∣∣Yt (μ1) −Yt (μ2)
∣∣1{μ1=0} ≤ Rt (μ2,0)

and ∣∣Yt (μ1) −Yt (μ2)
∣∣1{μ1=1}

≤ ess sup
{
Rt (1,M) :M ∈ L0

([0,1]),Et

[|1 − M|2] ≤ 1 − μ2
}
.

In particular, if Errt (ηn) → 0,P-a.s. as ηn → 0,P-a.s., for all (ηn)n ⊂ L0([0,1]),
then μ ∈ L0((0,1),Ft ) 	→ Yt (μ) is continuous for the sequential P-a.s. conver-
gence and the strong L2 convergence.

PROOF. Step 1. Fix μ1,μ2 ∈ L0([0,1],Ft ). Given α2 ∈ At,μ2 , we define

λ := 1 − μ1

1 − μ2
1{μ2<μ1} + μ1

μ2
1{μ1<μ2} + 1{μ1=μ2},

which is by construction valued in [0,1]. Since M(t,μ2),α2 takes values in [0,1],
M(t,μ1),λα2 = μ1 − λμ2 + λM(t,μ2),α2 ∈ [

μ1 − λμ2,μ1 + λ(1 − μ2)
] ⊂ [0,1].

In particular, λα2 ∈ At,μ1 . Thus, (2.6) leads to

Yt (μ1) ≤ Eg
t

[
�

(
M

(t,μ2),α2
T

)]
(3.1)

+ (
Eg

t

[
�

(
M

(t,μ1),λα2
T

)] − Eg
t

[
�

(
M

(t,μ2),α2
T

)])
.

Besides,

M
(t,μ1),λα2
T − M

(t,μ2),α2
T = μ1 − λμ2 + (λ − 1)M

(t,μ2),α2
T

so that, since M
(t,μ2),α2
T belongs to [0,1], we have

μ1 − 1 + λ(1 − μ2) ≤ M
(t,μ1),λα2
T − M

(t,μ2),α2
T ≤ μ1 − λμ2.

In addition,

μ1 − λμ2 = 0 if μ1 < μ2 and

μ1 − 1 + λ(1 − μ2) = 0 if μ1≥μ2.
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This directly leads to

Et

[∣∣M(t,μ1),λα2
T − M

(t,μ2),α2
T

∣∣] ≤ �(μ1,μ2).

Since these two processes belong to [0,1], we get

Et

[∣∣M(t,μ1),λα2
T − M

(t,μ2),α2
T

∣∣2] ≤ �(μ1,μ2).

Hence, the arbitrariness of α2 ∈ At,μ2 together with (2.6) and (3.1) provides

Yt (μ1) ≤ Yt (μ2) + Errt
(
�(μ1,μ2)

)
.

Interchanging the roles of μ1 and μ2 leads to

Yt (μ2) ≤ Yt (μ1) + Errt
(
�(μ2,μ1)

)
.

Step 2. We next consider the case where P[μ1 = 0] > 0. Without loss of gener-
ality, we can assume that μ1 ≡ 0. Fix α ∈ At,μ2 . Since At,μ1 = {0}, M

(t,μ2),α
T ≥ 0

and � is nondecreasing, comparison implies that

Yt (0) = Eg
t

[
�(0)

] ≤ Eg
t

[
�

(
M

(t,μ2),α
T

)]
.

In particular, Yt (0) = Eg
t [�(0)] ≤ Yt (μ2) ≤ Eg

t [�(M
(t,μ2),0
T )] = Eg

t (�(μ2)).
Step 3. We now consider the case where P[μ1 = 1] > 0. Again, we can assume

that μ1 ≡ 1 so that At,μ1 = {0}. By comparison as above, one has

Yt (1) = Eg
t

[
�(1)

] ≥ Yt (μ2).

On the other hand, since M(t,μ2),α is a martingale taking values in [0,1], we have

Et

[∣∣1 − M
(t,μ2),α
T

∣∣2] ≤ Et

[
1 − M

(t,μ2),α
T

] = 1 − μ2, α ∈ At,μ2,

from which the result follows. �

3.2. Convexity. In Bouchard, Elie and Touzi (2009/10) and Moreau (2011), it
is shown that the map m ∈ [0,1] 	→ Y0(m) is convex. This is done in a Markovian
framework using PDE arguments. In this section, we provide a probabilistic proof
of this result which hereby extends to our setting. The result is stated for the lower-
semicontinuous envelope Yt∗ of Yt defined as

Yt∗(μ) := lim
ε→0

ess inf
{
Yt

(
μ′) :

∣∣μ′ − μ
∣∣ ≤ ε,μ′ ∈ L0

([0,1],Ft

)}
,(3.2)

for any t ∈ [0, T ]. We refer to Proposition 3.1, the discussion before it and to (ii)
of Remark 2.4 for conditions ensuring that Y∗ = Y .

We first make precise the notion of convexity adapted to our non-Markovian
setting. Fix a time t ∈ [0, T ].

DEFINITION 3.1 (Ft -convexity).

(i) In the following, we say that a subset D ⊂ L∞(R,Ft ) is Ft -convex if
λμ1 + (1 − λ)μ2 ∈ D, for all μ1,μ2 ∈ D and λ ∈ L0([0,1],Ft ).
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(ii) Let D be an Ft -convex subset of L∞(R,Ft ). A map J :D 	→ L2(R,Ft )

is said to be Ft -convex if

Epi(J ) := {
(μ,Y ) ∈ D × L2(R,Ft ) :Y ≥ J (μ)

}
is Ft -convex.

(iii) Let Epic(Yt ) be the set of elements of the form
∑

n≤N λn(μn,Yn) with
(μn,Yn, λn)n≤N ⊂ Epi(Yt ) × L0([0,1],Ft ) such that

∑
n≤N λn = 1, for some

N ≥ 1. We then denote by Epi
c
(Yt ) its closure in L2. Finally, the Ft -convex enve-

lope of Yt is defined as

Yc
t (μ) := ess inf

{
Y ∈ L2(R,Ft ) : (μ,Y ) ∈ Epi

c
(Yt )

}
.(3.3)

We can now state the convexity property. It requires a right-continuity property
in time, which holds under the conditions of Theorem 2.1(ii); also recall (ii) of
Remark 2.4.

PROPOSITION 3.2. Assume that Yt (μ) = Yt+(μ) for any μ ∈ L0([0,1],Ft )

and t < T . Then the map μ ∈ L0([0,1],Ft ) 	→ Yt∗(μ) is Ft -convex, for all t < T .

PROOF. Fix t ∈ [0, T ) and set D := L0([0,1],Ft ) for ease of notation. The
proof is divided in several steps.

Step 1. (μ,Yc
t (μ)) ∈ Epi

c
(Yt ), for all μ ∈ D.

Indeed, the family F := {Y ∈ L2(R,Ft ) : (μ,Y ) ∈ Epi
c
(Yt )} is directed down-

ward (for every fixed element μ in D) since Y 11{Y 1≤Y 2} + Y 21{Y 1>Y 2} ∈ F ,

by Ft -convexity of Epi
c
(Yt ), for all Y 1, Y 2 ∈ F . It then follows from [Neveu

(1975), Proposition VI.1.1] that there exists a sequence (Y n)n≥1 ⊂ F such that
Yn ↓ Yc

t (μ),P-a.s. Since Y 1 and Yc
t (μ) ∈ L2, the monotone convergence theorem

implies that Yn → Yc
t (μ) in L2, as n goes to infinity. The set Epi

c
(Yt ) being closed

in L2, this proves our claim.
Step 2. Let η ∈ S2 be as in Remark 2.1. Then |Yc

t (μ)| ≤ ηt , for all t ≤ T and
μ ∈ D.

We first observe that Y ≥ Yc by construction. Remark 2.1 thus implies that
Yc

t (μ) ≤ ηt . On the other hand, let (Y n)n≥1 be as in the step above. We claim
that it satisfies Yn ≥ −ηt , for each n ≥ 1. Then the lower bound Yc

t (μ) ≥ −ηt is
obtained by passing to the limit. To see this, it suffices to prove this property for
any Y ∈ L2(R,Ft ) such that (μ,Y ) ∈ Epi

c
(Yt ). But, such an element (μ,Y ) is

obtained by taking the L2 limit of elements of the form
∑

n≤N λn(μn,Yn) with
(μn,Yn, λn)n≤N ⊂ Epi(Yt ) × L0([0,1],Ft ), such that

∑
n≤N λn = 1. Each Yn of

the latter family is bounded from below by −ηt by Remark 2.1, and hence so is Y .
Step 3. The map μ ∈ D 	→ Yc

t (μ) is Ft -convex.
Fix μ1,μ2 ∈ D and λ ∈ L0([0,1],Ft ). Step 1 implies that (μi,Yc

t (μi)) ∈
Epi

c
(Yt ) for i = 1,2. Clearly, Epi

c
(Yt ) is Ft -convex. It follows that (λμ1 + (1 −
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λ)μ2, λYc
t (μ1)+ (1−λ)Yc

t (μ2)) ∈ Epi
c
(Yt ), so that λYc

t (μ1)+ (1−λ)Yc
t (μ2) ≥

Yc
t (λμ1 + (1 − λ)μ2). Now, for any Y i such that (μi, Y i) ∈ Epi(Yc

t ), one has
Y i ≥ Yc

t (μi), i = 1,2. This fact combined with the previous inequality thus im-
plies λY 1 + (1 − λ)Y 2 ≥ Yc

t (λμ1 + (1 − λ)μ2). This means that Epi(Yc
t ) is Ft -

convex.
Step 4. Yt∗(μ) ≥ Yc

t (μ), for all μ ∈ D.
Fix ε > 0 and set Dε

μ := {μ′ ∈ L0([0,1],Ft ), |μ′ − μ| ≤ ε}. It follows from Re-
mark 2.2 that the family {Yt (μ

′) :μ′ ∈ Dε
μ} is directed downward. Then we can

find a sequence (με
n)n≥1 ⊂ Dε

μ such that

Yt

(
με

n

) → Zε(μ) := ess inf
{
Yt

(
μ′) :μ′ ∈ Dε

μ

}
, P-a.s.

Since (Zε(μ))ε>0 is nondecreasing, limN→∞ Z1/N(μ) = Yt∗(μ), recall (3.2).

Note that Remark 2.1 implies that (Yt (μ
1/N
n ))n≥1 →n Z1/N(μ) in L2 and define

kN := min
{
n ≥ 1 :

∥∥Yt

(
μ1/N

n

) − Z1/N(μ)
∥∥

L2 ≤ 1/N
}
.

Then (μ
1/N
kN

,Yt (μ
1/N
kN

)) → (μ,Yt∗(μ)) in L2 as N → ∞. Since Epi(Yt ) ⊂
Epi

c
(Yt ) and the latter is closed under L2-convergence, this implies that (μ,

Yt∗(μ)) ∈ Epi
c
(Yt ). We conclude by appealing to the definition of Yc

t in (3.3).
Step 5. Yc

t (μ) ≥ Yt∗(μ), for all μ ∈ D.
In view of steps 3 and 4, the result of step 5 actually proves that Yt∗ = Yc

t is
Ft -convex.

We now proceed to the proof of step 5 which is itself divided in two parts.
Step 5(a). It follows from step 1 that there exists a sequence(

μn,Yn,λ
N
n

)
n≥1,N≥1 ⊂ Epi(Yt ) × L0

([0,1],Ft

)
(3.4)

such that
∑

n≤N λN
n = 1, for all N , and

(μ̂N , ŶN) := ∑
n≤N

λN
n (μn,Yn) → (

μ,Yc
t (μ)

)
in L2.(3.5)

Fix N ≥ 1 and ε > 0. Let α̂N ∈ H2 be such that μ̂N = mo + ∫ t
0 α̂N

s dWs . Since the
family (λN

n )n≤N is composed of Ft -measurable random variables summing to 1,
one can find αN ∈ H2 and a random variable ξε

N ∈ L2(Ft+ε) such that

μ̂N +
∫ t+ε

t
αN

s dWs = ξε
N and P

[
ξε
N = μn|Ft

] = λN
n for n ≤ N.(3.6)

Without loss of generality, we can assume that αN = α̂N dt ×dP on [0, t]. Then (i)
of Theorem 2.1 and Remark 2.2 yield

Yt (μ̂N) = Y α̂N

t ≤ Eg
t,t+ε

(
YαN

t+ε

) = Eg
t,t+ε

(
Yt+ε

(
ξε
N

))
(3.7)

= Eg
t,t+ε

( ∑
n≤N

1ξε
N=μn

Yt+ε(μn)

)
.
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We claim that

lim inf
ε→0

Eg
t,t+ε

( ∑
n≤N

1ξε
N=μn

Yt+ε(μn)

)
≤ ∑

n≤N

λN
n Yt (μn).(3.8)

Then (3.7), (3.8), (3.4) and (3.5) lead to

Yt (μ̂N) ≤ ∑
n≤N

λN
n Yt (μn) ≤ ∑

n≤N

λN
n Yn = ŶN .

Appealing to (3.5), we deduce that

lim inf
N→∞ Yt (μ̂N) ≤ Yc

t (μ).

Since μ̂N → μ,P-a.s., this together with Remark 2.2 implies that

Zε(μ) ≤ lim inf
N→∞ Yt (μ̄N) = lim inf

N→∞
(
Yt (μ̂N)1{|μ̂N−μ|≤ε} +Yt (μ)1{|μ̂N−μ|>ε}

)
≤ Yc

t (μ),

for all ε > 0, where

μ̄N := μ̂N1{|μ̂N−μ|≤ε} + μ1{|μ̂N−μ|>ε} ∈ Dε
μ,

see step 4 for the definitions of Zε(μ) and Dε
μ. Since Zε(μ) ↑ Yt∗(μ) as ε goes

to 0 by (3.2), this shows the required result.
Step 5(b). It finally remains to prove the claim (3.8).
Remark 2.1 and (ii) of Proposition A.2 in the Appendix imply that

Eg
t,t+ε

( ∑
n≤N

1ξε
N=μn

Yt+ε(μn)

)
≤ Et

[ ∑
n≤N

1ξε
N=μn

Yt+ε(μn)

]
+ ηε

≤ Et

[ ∑
n≤N

1ξε
N=μn

Yt (μn)

]
+ ηε

+ ∑
n≤N

Et

[∣∣Yt+ε(μn) −Yt (μn)
∣∣],

where ηε → 0,P-a.s. as ε → 0. The right-hand side of (3.6) then leads to

Eg
t,t+ε

( ∑
n≤N

1ξε
N=μn

Yt+ε(μn)

)
≤ ∑

n≤N

λN
n Yt (μn) + ηε

+ ∑
n≤N

Et

[∣∣Yt+ε(μn) −Yt (μn)
∣∣].

Recall that Yt+(μn) = Yt (μn) by assumption, and that (Y(μn))n is bounded by
some η ∈ S2; see Remark 2.1. Sending ε → 0 in the above inequality and appealing
to the Lebesgue dominated convergence theorem proves (3.8). �
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In the context of PDEs, convexity in the domain propagates up to the bound-
ary, which leads to a boundary layer phenomenon. In Bouchard, Elie and Touzi
(2009/10) and Moreau (2011), this translates in the fact that the natural T -time
boundary condition should be stated in terms of the m-convex envelope of �. We
observe hereafter that this property extends to our non-Markovian setting, when-
ever � is deterministic.

We recall from Theorem 2.1(i) that Y is làdlàg on countable sets. Under the
following condition, it will actually be càdlàg up to undistinguishability. As op-
posed to Proposition 3.2, we shall not need to impose any right-continuity for the
following.

PROPOSITION 3.3. Assume that � is deterministic and let �̂ denote its convex
envelope. Then

lim
t↑T

Yα
t = �̂

(
Mα

T

)
and Yα

τ = ess inf
α′∈Aα

τ

Eg
τ

[
�̂

(
Mα′

T

)]
,

for all α ∈ A0 and τ ∈ T such that τ < T .

Before proving this result, let us make some observations.

REMARK 3.1. Since � is nondecreasing, its convex envelope is continuous
on [0,1). Moreover, � is left-continuous, so that �̂ has to be continuous at 1 as
well.

REMARK 3.2. In Section 2.3, we observed that the essential infimum in the
dynamic programming principle is attained whenever � and g are convex. Hence,
the previous proposition allows straightforwardly to avoid the convexity require-
ment on �, whenever it is deterministic.

REMARK 3.3. The proof below can easily be adapted to the case where
�(ω,m) = φ(m)ξ(ω) for some nonnegative random variable ξ and a deterministic
map φ. This is due to the fact that the m-convex envelope of � is fully character-
ized by the convex envelope φ̂ of φ : �̂(ω,m) = φ̂(m)ξ(ω). This allows one to fol-
low the construction used in our proof. In particular, in the quantile hedging prob-
lem of Föllmer and Leukert (1999), one has �(ω,m) = 1{m>0}ξ(ω) (m ∈ [0,1]),
with ξ taking nonnegative values, so that �̂(ω,m) = mξ(ω); see also Bouchard,
Elie and Touzi (2009/10).

PROOF OF PROPOSITION 3.3. We prove each assertion separately.
Step 1. By definition of the convex envelope, we can find a measurable map m ∈

[0,1] 	→ (℘(m),℘(m), ε(m)) ∈ [0,1]3 such that ℘(m) ≤ m ≤ ℘(m), ε(m)℘(m)+
(1 − ε(m))℘(m) = m and

�̂(m) = ε(m)�
(
℘(m)

) + (
1 − ε(m)

)
�

(
℘(m)

)
,
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for any m ∈ [0,1]. Let tn ↑ T . Then one can find αn ∈ Aα
tn

and ξn ∈ L0([0,1])
such that Mαn

T = Mα
tn

+∫ T
tn

αn
s dWs = ξn, where P[ξn = ℘(Mα

tn
)|Ftn] = ε(Mα

tn
) and

P[ξn = ℘(Mα
tn
)|Ftn] = 1 − ε(Mα

tn
). It follows from the above and (iii) of Proposi-

tion A.2 in the Appendix that

Yα
tn

≤ Etn

[
�

(
ξn)] + ηn = �̂

(
Mα

tn

) + ηn,

where ηn → 0 as n → ∞. Since Y is làdlàg on countable sets (by Proposition 4.2),
passing to the limit implies that

lim
n→∞Yα

tn
≤ �̂

(
Mα

T

)
.(3.9)

We now prove the converse inequality. We use (iii) in Proposition A.2 in the Ap-
pendix and Jensen’s inequality to deduce that

Yα′
tn

:= Eg
tn,T

[
�

(
Mα′

T

)] ≥ Etn

[
�̂

(
Mα′

T

)] − η̄n ≥ �̂
(
Mα

tn

) − η̄n, α′ ∈ Aα
tn
,

where η̄n → 0 as n → ∞. Combining the arbitrariness of α′ ∈ Aα
tn

with the làdlàg
property of Y on countable sets, we get that

lim
n→∞Yα

tn
≥ lim inf

n→∞ ess inf
α′∈Aα

tn

Y α′
tn

≥ �̂
(
Mα

T

)
.

Step 2. It follows from Theorem 2.1(i) that

Yα
τ = ess inf

α′∈Aα
τ

Eg
τ,tn∨τ

[
Yα′

tn∨τ

]
, n ∈ N.

The process Yα′
·∨τ being làdlàg on the set {tn, n ≥ 1}, limn→∞Yα′

tn∨τ is well de-

fined and coincides with limn→∞Yα′
tn

. Moreover, it follows from the bound in
Remark 2.1 that the convergence holds in L2. In view of the stability result of
Proposition A.1 and step 1. above, passing to the limit as n → ∞ leads to

Yα
τ ≤ ess inf

α′∈Aα
τ

Eg
τ

[
lim

n→∞Yα′
tn

]
= ess inf

α′∈Aα
τ

Eg
τ

[
�̂

(
Mα′

T

)]
.

Since � ≥ �̂, the reverse inequality holds by definition of Yα
τ in (2.6). Since

�̂ is continuous by Remark 3.1, we can now appeal to the second statement
of Proposition 4.2 to assert that, up to indistinguishability, Yα is càdlàg, so that
limt↑T Yα

t = limn→∞Yα
tn

. �

3.3. Dual representation. In this section, we provide a dual formulation for
the minimal initial condition at time 0, m 	→ Y0(m). It requires the introduction of
the Fenchel transforms of g and �.

We therefore define

�̃ : (ω, l) ∈ � ×R 	→ sup
m∈[0,1]

(
ml − �(ω,m)

)
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and

g̃ : (ω, t, u, v) ∈ � × [0, T ] ×R×Rd 	→ sup
(y,z)∈R×Rd

(
yu + z�v − g(ω, t, y, z)

)
.

REMARK 3.4. It follows from the assumption (Hg) that the domain of
g̃(ω, t, ·), dom(g̃(ω, t, ·)), is contained in [−Kg,Kg]d+1 for P-a.e. ω ∈ � and all
t ≤ T . The assumption (H� ) ensures that the domain of �̃(ω, ·) is the all real line,
P-a.s.

In the following, we denote by � the set of predictable processes λ with values
in R×Rd such that λt (ω) ∈ dom(g̃(ω, t, ·)) for Leb × P-a.e. (ω, t) ∈ � × [0, T ].

To λ = (ν,ϑ) ∈ �, we associate the process Lλ defined by

Lλ
t = 1 +

∫ t

0
Lλ

s νs ds +
∫ t

0
Lλ

s ϑs dWs, t ∈ [0, T ].
Our dual formulation for Y0 is stated in terms of

X0(l) := inf
λ∈�

Xl,λ
0 , l > 0,

where

Xl,λ
0 := E

[∫ T

0
Lλ

s g̃(s, λs) ds + Lλ
T �̃

(
l/Lλ

T

)]
, λ ∈ �, l > 0.

The fact that the Fenchel transform of X0 provides a lower bound for Y0 is
straightforward, and detailed in Proposition 3.4 below for the convenience of the
reader. For ease of notation, we now write Am for A0,m, Mm,α for M(0,m),α , and
denote by (Ym,α,Zm,α) the solution of the BSDE(g,�(M

m,α
T )), α ∈ Am.

PROPOSITION 3.4. Y0(m) ≥ supl>0(lm −X0(l)), for all m ∈ [0,1].

PROOF. Fix α ∈ Am and λ = (ν,ϑ) ∈ �. Then it follows from the definition
of �̃ and g̃ that

E
[
Y

m,α
T Lλ

T

] = Y
m,α
0 + E

[∫ T

0
Lλ

s

(
νsY

m,α
s + ϑ�

s Zm,α
s − g

(
s, Ym,α

s ,Zm,α
s

))
ds

]

≤ Y
m,α
0 + E

[∫ T

0
Lλ

s g̃(s, λs) ds

]

and

Y
m,α
T Lλ

T = �
(
M

m,α
T

)
Lλ

T ≥ lM
m,α
T − Lλ

T �̃
(
l/Lλ

T

)
,

for l > 0. Note that, in the above, we have cancelled the expectation of the local
martingale part

∫ T
0 (Lλ

s Z
m,α
s +Ym,α

s Lλ
s ϑs) dWs although LλZm,α might not belong

to H2. If not, one may use a localization argument since all other terms belongs to
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L1 uniformly in time. Combining the above and using the martingale property of
Mm,α yields

Y
m,α
0 ≥ lm − E

[∫ T

0
Lλ

s g̃(s, λs) ds + Lλ
T �̃

(
l/Lλ

T

)] = lm − X
l,λ
0 .

The result follows from the arbitrariness of l > 0, λ ∈ � and α ∈ Am. �

We now show that equality is satisfied in Proposition 3.4 whenever existence
holds in the dual problem. This is proved under the following assumptions. Let C1

b

be the set of continuously differentiable maps with bounded first derivatives.
Assumption (H1

d). The following holds for Leb × P-a.e. (t,ω) ∈ [0, T ] × �:

(a) the maps �̃(ω, ·) and g̃(ω, ·) are C1
b on their domain, and dom(g̃(ω, t, ·)) is

closed;
(b) |∇�̃(ω, ·)| + |∇g̃(ω, t, ·)| ≤ χ�̃,g̃(ω), for some χ�̃,g̃ ∈ L2(R);

(c) �(ω,m) = supl>0(lm − �̃(ω, l)), for all m ∈ [0,1];
(d) g(ω, t, y, z) = max(u,v)∈dom(g̃(ω,t,·))(yu + z�v − g̃(ω, t, u, v)), for all

(y, z) ∈ R×Rd .

In the above, ∇�̃ and ∇g̃ stands for the gradient with respect to l and (u, v),
respectively.

Note that (a) and (b) are of technical nature, while (c) and (d) mean that � and g

are convex, that is, coincide with their bidual. The latter is a minimal requirement
if one wants the duality to hold.

PROPOSITION 3.5. Let assumption (H1
d) hold. Assume further that there ex-

ists l̂ > 0 and λ̂ ∈ � such that

sup
l>0

(
lm −X0(l)

) = l̂m −X0(l̂) = l̂m − Xl̂,λ̂
0 .(3.10)

Then there exists α̂ ∈ Am such that

Y0(m) = Y
m,α̂
0 = l̂m −X0(l̂).

It satisfies

g
(·, Ym,α̂,Zm,α̂) = λ̂�(

Ym,α̂,Zm,α̂) − g̃(·, λ̂),
(3.11)

�
(
M

m,α̂
T

) = M
m,α̂
T l̂

L

λ̂

T
− �̃

(
l̂/Lλ̂

T

)
.

Before to provide the proof, let us make the following observation which per-
tains for the case of a linear driver g.
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REMARK 3.5. Assume that g is linear, that is, there exist bounded pre-
dictable processes AY and AZ such that g : (ω, t, y, z) 	→ g(ω, t,0,0)+AY

t (ω)y +
AZ

t (ω)z. In this case, � = {(AY ,AZ)} and, therefore,

X0(l) = E

[∫ T

0
Lsg̃

(
s,AY

s ,AZ
s

)
ds + LT �̃(l/LT )

]
,

with L given by

Lt = 1 +
∫ t

0
LsA

Y
s ds +

∫ t

0
LsA

Z
s dWs, t ∈ [0, T ].

Then the dual formulation of Proposition 3.5 above drops down to finding l̂ which
maximizes lm −X0(l). This generalizes the result of Föllmer and Leukert (1999)
and Bouchard, Elie and Touzi (2009/10) obtained for quantile hedging problems
in linear models of financial markets.

PROOF OF PROPOSITION 3.5. We split the proof in two steps.
Step 1. For ease of notation, we set L̂ := Lλ̂. By optimality of l̂, one has

l̂m − E
[
L̂T �̃(l̂/L̂T )

] ≥ m(l̂ + ι) − E
[
L̂T �̃

(
(l̂ + ι)/L̂T

)]
,

for all ι > −l̂. Since �̃ is by construction P-a.s. convex, this implies that ζι :=
∇�̃((l̂ + ι)/L̂T ) satisfies mι ≤ E[ζι]ι, for all ι > −l̂, recall (H1

d)(a) and (b). Tak-
ing ι of the form −1/n and then 1/n, for n → ∞, and using (H1

d)(a) and (b) then
leads to

m = E[ζ ] where ζ := ∇�̃(l̂/L̂T ).(3.12)

We now appeal to (H1
d)(c) to deduce that

�(ζ) = ζ(l̂/L̂T ) − �̃(l̂/L̂T ).(3.13)

By construction, �̃ is P-a.s. 1-Lipschitz and nondecreasing, that is, ζ ∈
L0([0,1]). In view of (3.12), the martingale representation theorem then implies
that we can find α̂ ∈ Am such that M̂T := M

m,α̂
T = ζ .

Step 2. We now write (ν̂, ϑ̂) := λ̂ and fix λ = (ν, θ) ∈ � to be chosen later
on. Clearly, � is convex. Hence, λε := (1 − ε)(ν̂, ϑ̂) + ε(ν,ϑ) ∈ �, ε ∈ [0,1].
Moreover, direct computations show that

∂

∂ε
Lλε

∣∣∣∣
ε=0

= L̂R̂ where R̂ :=
∫ ·

0
(δνs − δϑsϑ̂s) ds +

∫ ·
0

δϑs dWs,

in which we use the notation δλ := (δν, δϑ) := (ν − ν̂, ϑ − ϑ̂).
Recalling that elements of � take bounded values (see Remark 3.4, and arguing

as in step 1), one easily checks that the optimality condition Xl̂,λε

0 ≥ Xl̂,λ̂
0 , for all
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ε ∈ [0,1], implies that η̂ := ∇g̃(·, λ̂) satisfies

0 ≤ E

[∫ T

0
L̂s

(
R̂s g̃(s, λ̂s) + η̂�

s δλs

)
ds + R̂T L̂T �̃(Î /L̂T )

]

+ E
[−R̂T L̂T (Î /L̂T )∇�̃(Î /L̂T )

]
(3.14)

= E

[∫ T

0
L̂s

(
R̂s g̃(s, λ̂s) + η̂�

s δλs

)
ds − R̂T L̂T �(M̂T )

]
,

in which we used (3.12), (3.13) and the relation ζ = M̂T to deduce the second
equality. Let (Ŷ , Ẑ) be defined by

Ŷ := L̂−1E·
[
L̂T �(M̂T ) −

∫ T

·
L̂s g̃(s, λ̂s) ds

]
and Ẑ := Z̄ − Ŷ ϑ̂,(3.15)

where Z̄ ∈ H2 is implicitly given by

L̂t Ŷt = L̂T �(M̂T ) −
∫ T

t
L̂s g̃(s, λ̂s) ds −

∫ T

t
L̂sZ̄s dWs,

(3.16)
0 ≤ t ≤ T .

The above combined with (3.14) implies

0 ≤ E

[∫ T

0
L̂s

(
R̂s g̃(s, λ̂s) + η̂�

s δλs

)
ds − R̂T L̂T ŶT

]
.

Recalling the definition of R̂ and η̂ and applying Itô’s lemma, this leads to

0 ≤ E

[∫ T

0
L̂s

(
η̂s − (Ŷs, Ẑs)

)�
δλs ds

]
(3.17)

= E

[∫ T

0
L̂s

(∇g̃(s, λ̂s) − (Ŷs, Ẑs)
)�

δλs ds

]
.

By assumption (H1
d)(a), Remark 3.4 and [Aliprantis and Border (2006), Theo-

rem 18.19, page 605], one can choose λ̄ ∈ � such that

λ̄ = argmin
{
f (·, u, v), (u, v) ∈ dom

(
g̃(·))}, Leb × P-a.e.,

where

f : (ω, s, u, v) 	→ (∇g̃
(
ω, s, λ̂s(ω)

) − (
Ŷs(ω), Ẑs(ω)

))�(
u − ν̂s(ω), v − ϑ̂s(ω)

)
.

Considering now relation (3.17) with λ chosen to be equal to λ̄1{f (·,λ̄)<0}, we see

that, for Leb×P-a.e. (ω, t) ∈ �×[0, T ], the gradient �t(ω) at λ̂t (ω) of the convex
map

(u, v) ∈ dom
(
g̃(ω, t, ·)) 	→ F(ω, t, u, v) := g̃(ω, t, u, v) − uŶt (ω) − v�Ẑt (ω)
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satisfies

�t(ω)�
(
b − λ̂t (ω)

) ≥ 0 for all b ∈ dom
(
g̃(ω, t, ·)).

This implies that λ̂t (ω) minimizes F(ω, t, ·) for Leb × P-a.e. (ω, t) ∈ � × [0, T ]
and, therefore, we compute

g̃(·, λ̂) = λ̂�(Ŷ , Ẑ) − g(·, Ŷ , Ẑ), Leb × P-a.e.

by (H1
d)(d). Combining the above identity with (3.16) leads to (Ŷ , Ẑ) = (Ym,α̂,

Zm,α̂). Then, by using (3.12), (3.13) and (3.15), in which L̂0 = 1, we obtain

Y
m,α̂
0 = E

[
L̂T �(M̂T ) −

∫ T

0
L̂s g̃(s, λ̂s) ds

]

= E

[
L̂T

(
ζ l̂/L̂T − �̃(l̂/L̂T )

) −
∫ T

0
L̂s g̃(s, λ̂s) ds

]

= l̂m − E

[
L̂T �̃(l̂/L̂T ) +

∫ T

0
L̂s g̃(s, λ̂s) ds

]
.

In view of Proposition 3.4, this completes the proof. �

We now state the reciprocal statement: existence in the primal problem provides
existence in the dual one. Here again, we need to impose some additional technical
conditions.

Assumption (H2
d). The following holds for Leb × P-a.e. (t,ω) ∈ [0, T ] × �:

(a) the maps �(ω, ·) and g(ω, t, ·) are C1
b on [0,1] and R×Rd , respectively;

(b) |∇�(ω, ·)| ≤ χ�(ω), for some χ� ∈ L2(R).

PROPOSITION 3.6. Let assumption (H2
d) hold. Let l > 0 be fixed and assume

that there exists m̂ ∈ [0,1] and α̂ ∈ Am̂ such that

sup
m∈[0,1]

sup
α∈Am

(
ml −Y0(m)

) = m̂l − Y
m̂,α̂
0 .(3.18)

Then there exists λ̂ ∈ � such that

Y0(m̂) = m̂l −X0(l) = m̂l − Xl,λ̂
0 ,

and λ̂ satisfies (3.11) with m = m̂ and l̂ = l.

PROOF. Given ε ∈ [0,1], a martingale M with values in [0,1], m := M0, we
set mε := m̂ + ε(m − m̂), Mε := M̂ + ε(M − M̂), where M̂ := Mm̂,α̂ . For ease
of notation, we set (Ŷ , Ẑ) := (Y m̂,α̂,Zm̂,α̂) and denote by (Y ε,Zε) the solution of
BSDE(g,�(Mε

T )), δm := m − m̂, (δM, δY ε, δZε) := (M − M̂,Y ε − Ŷ ,Zε − Ẑ).
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Step 1. We first show that ε−1(δY ε
s , δZε

s ) converges in S2 × H2 as ε → 0 to the
solution (∇Y,∇Z) of

∇Yt = ∇�(M̂T )δMT +
∫ T

t
∇g(s, Ŷs, Ẑs)

�(∇Ys,∇Zs)ds

(3.19)

−
∫ T

t
∇Zs dWs.

First note that existence and uniqueness of the solution to the above BSDE in
guaranteed by assumption (H2

d).
Letting ξε := ε−1(�(Mε

T ) − �(M̂T )), one easily checks that ε−1(δY ε
s , δZε

s )

solves
δY ε

s

ε
= ξε −

∫ T

s

δZε
r

ε
dWr +

∫ T

s

(
AY,ε

r

δY ε
r

ε
+ AZ,ε

r

δZε
r

ε

)
dr,

where

AY,ε
r :=

∫ 1

0
∂yg

(
r, Ŷr + θδY ε

r , Ẑr

)
dθ and

AZ,ε
r :=

∫ 1

0
∂zg

(
r, Y ε

r , Ẑr + θδZε
r

)
dθ.

In the above, ∂yg and ∂zg denotes respectively the partial gradients of g with re-
spect to y and z, recall (H2

d). Assumption (Hg) implies |AY,ε| + |AZ,ε| ≤ Kg .
We now set Uε := ε−1δY ε

s − ∇Y , V ε := ε−1δZε
s − ∇Z and ζ ε := ξε −

∇�(M̂T )δM . The pair (Uε,V ε) is an element of S2 × H2 and solves

Uε
s = ζ ε −

∫ T

s
V ε

r dWr +
∫ T

s

(
AY,ε

r Uε
r + AZ,ε

r V ε
r + Rε

r

)
dr, 0 ≤ s ≤ T ,

with

Rε
r := ∇Zr

(
AZ,ε

r − ∂zg(r, Ŷr , Ẑr )
) + ∇Yr

(
AY,ε

r − ∂yg(r, Ŷr , Ẑr )
)
, 0 ≤ r ≤ T .

Hence, by stability for Lipschitz BSDEs (see Proposition A.1 in the Appendix),
there exists a constant C > 0 (which does not depend on ε) such that∥∥Uε

∥∥2
S2

+ ∥∥V ε
∥∥2

H2
≤ C

(∥∥ζ ε
∥∥2

L2
+ ∥∥Rε

r

∥∥2
H2

)
.(3.20)

The result of step 1 will follow if we prove that the right-hand side of the inequal-
ity (3.20) vanishes as ε tends to zero. The convergence of ‖Rε

r ‖2
H2

to 0 follows

from assumption (H2
d) and the convergence of Mε

T to MT . As for the second term,
it suffices to prove that (Y ε,Zε)ε converges in S2 × H2 to (Ŷ , Ẑ), and to appeal
to (Hg) and (H2

d). The latter is obtained by standard stability results (see Proposi-
tion A.1 below), which imply the existence of a constant C > 0 (which does not
depend on ε) such that∥∥Y ε − Ŷ

∥∥2
S2

+ ∥∥Zε − Ẑ
∥∥2

H2
≤ C

∥∥�(
Mε

T

) − �(M̂T )
∥∥2

L2
−→ε→0 0.
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In the latter, the convergence follows from Lebesgue’s dominated convergence
theorem and assumption (H2

d).
Step 2. By optimality of (m̂, α̂), Y ε

0 −mεl − Ŷ0 + m̂l ≥ 0, for any ε > 0. In view
of step 1, dividing by ε > 0 and sending ε → 0 leads to

0 ≤ ∇�(M̂T )δMT − lδm +
∫ T

0
∇g(s, Ŷs, Ẑs)

�(∇Ys,∇Zs)ds −
∫ T

0
∇Zs dWs

= ∇Y0 − lδm,

after possibly passing to a subsequence.
Set L̂ := Lλ̂ where λ̂ := ∇g(·, Ŷ , Ẑ). Observe that the latter belongs to �. For

later use, also notice that

g(·, Ŷ , Ẑ) = (ν̂, ϑ̂)�(Ŷ , Ẑ) − g̃(·, ν̂, ϑ̂),(3.21)

see, for example, Rockafellar (1997). Then it follows from (3.19) that L̂∇Y is a
martingale. The previous inequality thus implies that

0 ≤ L̂0∇Y0 − lδm = E[L̂T ∇YT ] − lδm = E
[
L̂T δMT

(∇�(M̂T ) − l/L̂T

)]
,

in which we used the fact that L̂0 = 1 and E[δMT ] = δm. Since MT can be any
arbitrary random variable with values in [0,1], this shows that, P-a.s., M̂T (ω)

minimizes m ∈ [0,1] 	→ �(ω,m) − ml/L̂T (ω). Hence,

M̂T l − L̂T �(M̂T ) = L̂T �̃(l/L̂T ),

see, for example, Rockafellar (1997). Combining the above identity together

with (3.21) and using Itô’s lemma leads to lm̂ − Ŷ0 = Xl̂,λ̂
0 . One concludes by

appealing to Proposition 3.4. �

4. Proof of Theorem 2.1. In all of this section, we use the notation intro-
duced at the beginning of Section 2.2. The first main result provides a dynamic
programming principle for the family {Yα

τ , τ ∈ T , α ∈ A0}.

PROPOSITION 4.1. For all (τ1, τ2, α) ∈ T × T × A0 such that τ1 ≤ τ2, we
have

Yα
τ1

= ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[
Yα′

τ2

]
.

PROOF. We prove the two corresponding inequalities separately.
Step 1. Yα

τ1
≥ ess infα′∈Aα

τ1
Eg

τ1,τ2[Yα′
τ2

].
It follows from Lemma 4.1 below that there exists (αn)n in Aα

τ1
such that the

sequence (Eg
τ1,T

[�(Mαn

T )])n is nonincreasing and

lim
n→∞Eg

τ1,T

[
�

(
Mαn

T

)] = Yα
τ1

, P-a.s.(4.1)
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Since αn ∈ Aαn

τ2
for every n ≥ 1, we deduce that

Yαn

τ2
≤ Eg

τ2,T

[
�

(
Mαn

T

)]
.

By comparison for BSDEs with Lipschitz continuous drivers on the time interval
[τ1, τ2], this implies

Eg
τ1,τ2

[
Yαn

τ2

] ≤ Eg
τ1,τ2

[
Eg

τ2,T

[
�

(
Mαn

T

)]] = Eg
τ1,T

[
�

(
Mαn

T

)]
,

leading to

ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[
Yα′

τ2

] ≤ Eg
τ1,T

[
�

(
Mαn

T

)]
.

Letting n go to infinity in the above inequality, (4.1) provides directly

ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[
Yα′

τ2

] ≤ Yα
τ1

.

Step 2. Yα
τ1

≤ ess infα′∈Aα
τ1
Eg

τ1,τ2[Yα′
τ2

].
Fix α′ in Aα

τ1
. Lemma 4.1 below ensures the existence of a sequence (α′

n)n in

Aα′
τ2

such that (Eg
τ2,T

[�(Mα′n
T )])n is nonincreasing and

lim
n→∞Eg

τ2,T

[
�

(
M

α′
n

T

)] = Yα′
τ2

, P-a.s.

In view of Remark 2.1, the convergence holds in L2 as well. Thus, the stabil-

ity result of Proposition A.1 below indicates that Eg
τ1,T

[�(M
α′

n

T )] converges to

Eg
τ1,τ2[Yα′

τ2
] in L2. In addition, α′

n ∈ Aα′
τ2

⊂ Aα
τ1

by construction. Combining the
above leads to

Eg
τ1,τ2

[
Yα′

τ2

] = lim
n→∞Eg

τ1,T

[
�

(
M

α′
n

T

)] ≥ Yα
τ1

.

The arbitrariness of α′ ∈ Aα
τ1

allows one to conclude

ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[
Yα′

τ2

] ≥ Yα
τ1

.
�

LEMMA 4.1. Fix θ, τ ∈ T , with θ ≥ τ , μ ∈ L0([0,1],Fτ ) and α ∈ Aτ,μ.
Then, there exists a sequence (α′

n) ⊂ Aθ,α
τ,μ := {α′ ∈ Aτ,μ,α′1[0,θ) = α1[0,θ)} such

that limn ↓ Eg
θ,T [�(M

τ,μ,α′
n

T )] = Yα
θ (M

τ,μ,α
θ ),P-a.s.

PROOF. It suffices to show that the family {J (α′) := Eg
θ,T [�(M

τ,μ,α′
T )], α′ ∈

Aθ,α
τ,μ} is directed downward; see, for example, Neveu (1975). Fix α′

1, α
′
2 in Aθ,α

τ,μ

and set

α̃′ := α1[0,θ) + 1[θ,T ]
(
α′

11A + α′
21Ac

)
,
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where A := {J (α′
1) ≤ J (α′

2)} ∈Fθ , so that α̃′ ∈ Aθ,α
τ,μ and

J
(
α̃′) = Eg

θ,T

[
�

(
M

τ,μ,α′
1

T

)
1A + �

(
M

τ,μ,α′
2

T

)
1Ac

] = min
{
J

(
α′

1
)
, J

(
α′

2
)}

. �

We now observe that the family (Yα)α∈H2 is làdlàg on countable sets. If in addi-
tion � is assumed to be continuous, the process (Yα)α∈H2 is even indistinguishable
from a càdlàg process.

PROPOSITION 4.2. Fix α ∈ A0. Then Yα is làdlàg on countable sets. Besides,
if m ∈ [0,1] 	→ �(ω,m) is continuous for P-a.e. ω ∈ �, then Yα is indistinguish-
able from a càdlàg process.

PROOF. Fix α ∈ A0. Proposition 4.1 and Remark 2.1 imply that −Yα is a
−g(−·)-supermartingale in the sense of Chen and Peng (2000) [a g-submartingale
in the sense of Peng (1999)]. It follows from the nonlinear up-crossing lemma [see
Chen and Peng (2000), Theorem 6]6 that the following limits

lim
s∈D∩(t,T ]↓t

Yα
s and lim

s∈D∩[0,t)↑t
Yα

s

are well defined for every t in [0, T ], P-a.s., and for all countable set D. So is the
process

Ȳα
t := lim

s∈Q∩(t,T ]↓t
Yα

s , t ∈ [0, T ].

Besides, Ȳα is by definition càd. Assuming that � is continuous, we will prove
that, for every stopping time τ , it holds that

Ȳα
τ = ess inf

α′∈Aα
τ

Eg
τ,T

[
�

(
Mα′

T

)](= Yα
τ

)
, P-a.s.(4.2)

By Delacherie and Meyer (1978), Chapter IV. (86), page 220, the relation (4.2)
entails that Yα and Ȳα are undistinguishable showing that Yα is undistinguishable
from a càdlàg process. The rest of the proof is devoted to prove (4.2).

For this purpose, let us introduce (τn)n, a decreasing sequence of stopping times
with values in [0, T ] ∩Q such that τ ≤ τn ≤ τ + n−1 and Ȳα

τ = limn→∞Yα
τn

.

Step 1. Ȳα
τ ≤ ess infα′∈Aα

τ
Eg

τ,T [�(Mα′
T )].

6Note that Chen and Peng (2000), Theorem 6, restricts to positive g-supermartingales. However,
the proof can be reproduced without difficulty under the integrability condition of Remark 2.1. In
addition, Chen and Peng (2000), Theorem 6, implies that EQ[Db

a(Yα,n)] ≤ Yα
0 ∧ b ≤ b, where

Db
a(Yα,n) denotes the number of down crossing of Yα from an interval [a, b] on a discrete time-

grid 0 = t0 ≤ t1 ≤ · · · ≤ tn = T and Q is a particular measure absolutely continuous with respect
to P. To conclude, it is enough to reproduce the proof of [Delacherie and Meyer (1978), Chapter VI
Theorem (2) point 1].
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(a) Fix α′ ∈ Aα
τ and set

λn :=
(

Mα
τn

Mα′
τn

∧ 1 − Mα
τn

1 − Mα′
τn

)
1{Mα

τn
/∈{0,1}} ∈ [0,1],

with the convention a/0 = ∞ for a > 0. Using the fact that Mα′
τn

+ ∫ T
τn

α′
s dWs =

Mα′
T ∈ [0,1], direct computations lead to

0 ≤ Mα
τn

− λnM
α′
τn

≤ Mα
τn

+ λn

∫ T

τn

α′
s dWs ≤ Mα

τn
+ λn

(
1 − Mα′

τn

) ≤ 1.

We set α′
n := α1[0,τn) + λnα

′1[τn,T ]. The above implies that α′
n belongs to Aα

τn
.

(b) Now we prove that M
α′

n

T converges Mα′
T in L2 as n goes to infinity, possibly

up to a subsequence. Since both have norms bounded by 1, it suffices to show the
P-a.s. convergence, possibly up to a subsequence. To see this, first note that

M
α′

n

T − Mα′
T = Mα

τn
− Mα′

τn
+

∫ T

τn

(λn − 1)α′
s dWs,

from which we deduce that

M
α′

n

T − Mα′
T = Mα

τn
− Mα′

τn
+ (λn − 1{Mα

τn
/∈{0,1}})

∫ T

τn

α′
s dWs

− 1{Mα
τn

∈{0,1}}
∫ T

τn

α′
s dWs.

Since τn → τ,P-a.s. and α′ = α on [[0, τ ]], the above construction implies that
limn→∞ Mα

τn
− Mα′

τn
= 0,P-a.s. and limn→∞ λn = limn→∞ 1{Mα

τn
/∈{0,1}},P-a.s.

It thus only remains to prove that 1{Mα
τn

∈{0,1}}
∫ T
τn

α′
s dWs → 0,P-a.s. First note

that α′1[τn,T ] = 0 on {Mα′
τn

∈ {0,1}}. This follows from the martingale property
of this process with values in [0,1]. Hence, it suffices to consider
1{Mα′

τn
�=Mα

τn
∈{0,1}}

∫ T
τn

α′
s dWs . But, since Mα′

τ = Mα
τ ,

P
[
Mα′

τn
�= Mα

τn
∈ {0,1}] ≤ P

[
Mα′

τn
�= Mα

τn

] = P

[∣∣∣∣
∫ τn

τ

(
αs − α′

s

)
dWs

∣∣∣∣ > 0
]

→n→∞ 0.

(c) Now, since � is continuous and M
α′

n

T ∈ L0([0,1]), we get that �(M
α′

n

T ) →
�(Mα′

T ) in L2, after possibly passing to a subsequence. The stability property for
Lipschitz BSDEs given in Proposition A.1 implies that∥∥Eg

τn,T

[
�

(
M

α′
n

T

)] − Eg
τn,T

[
�

(
Mα′

T

)]∥∥
L2

→n→∞ 0.(4.3)

On the other hand, the bound of Remark 2.1 implies that∥∥Eg
τn,T

[
�

(
Mα′

T

)] − Eg
τ,T

[
�

(
Mα′

T

)]∥∥
L2

→n→∞ 0,(4.4)
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by Lebesgue’s dominated convergence theorem and by continuity of the process
Eg

·,T [�(Mα′
T )]. Combining (4.3) and (4.4) leads to

Ȳα
τ = lim

n→∞Yα
τn ≤ lim

n→∞Eg
τn,T

[
�

(
M

α′
n

T

)] = Eg
τ,T

[
�

(
Mα′

T

)]
.

We conclude by arbitrariness of α′ ∈ Aα
τ .

Step 2. Ȳα
τ ≥ ess infα′∈Aα

τ
Eg

τ,T [�(Mα′
T )].

Applying on [τ, τn] the stability result of Proposition A.1 for the BSDEs with
parameters (Ȳα

τ ,0) and (Yα
τn, g1[0,τn)), we get

∥∥Ȳα
τ − Eg

τ,τn

[
Yα

τn

]∥∥
L2

≤ C

(∥∥Ȳα
τ −Yα

τn

∥∥
L2

+ E

[∫ τn

τ

∣∣g(
s, Ȳα

τ ,0
)∣∣2 ds

])

≤ C
∥∥Ȳα

τ −Yα
τn

∥∥
L2

+ C

n
, n ∈ N,

for some C > 0, since the bound of Remark 2.1 holds for Ȳα
τ , recall that assump-

tion (Hg) is in force. Therefore, Eg
τ,τn[Yα

τn] converges to Ȳα
τ as n goes to infinity.

Proposition 4.1 implies Eg
τ,τn[Yα

τn] ≥ Yα
τ . Passing to the limit leads to the required

inequality: Ȳα
τ ≥ Yα

τ = ess infα′∈Aα
τ
Eg

τ,T [�(Mα′
T )]. �

In the rest of this section, we complete the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Items (i) and (ii) are already proved in Proposi-
tions 4.1 and 4.2, it remains to prove (iii) and (iv). For α ∈ A0, it follows from
Propositions 4.1, 4.2 and standard comparison results for BSDEs that Yα is a
càdlàg strong g-submartingale in the sense of Peng (1999). Hence, the existence
of a process (Zα,Kα) ∈ H2 × K2 such that (2.9) holds follows from Peng (1999),
Theorem 3.3. We now verify successively that the family (Yα,Zα,Kα)α∈H2 satis-
fies (2.8), (2.10), (2.11) and the uniqueness of solution for (2.8)–(2.11).

The bound (2.8) follows directly from Remark 2.1 and the representation Theo-
rem 3.3 in Peng (1999); note that the driver function g does not depend on α ∈ A0.

Step 1. The irrelevance of future property (2.11). For (α, τ ) ∈ A0 × T , ob-
serve that Aα′

· = Aα· on [0, τ ] when α′ ∈ Aα
τ . The definition of Y thus implies

that Yα1[0,τ ] = Yα′
1[0,τ ] for α′ ∈ Aα

τ . Hence, (2.11) follows from the uniqueness
of the representation provided in Peng (1999), Theorem 3.3.

Step 2. The minimality property (2.10). We follow the arguments in the proof
[Soner, Touzi and Zhang (2012), Theorem 4.6]. We fix (α, τ1, τ2) ∈ H2 × T × T
such that τ1 ≤ τ2. For any α′ ∈ Aα

τ1
, we denote by (Y α′

,Zα′
) the solution of the

classical BSDE

Yα′
t = �

(
Mα′

T

) +
∫ T

t
g
(
s, Y α′

s ,Zα′
s

)
ds −

∫ T

t
Zα′

s dWs, 0 ≤ t ≤ T .
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Let Lα′
be the process whose dynamics is given by

Lα′
t = exp

(∫ t

τ1

�z
s dWs +

∫ t

τ1

(
�y

s − |�z
s |2
2

)
ds

)
, τ1 ≤ t ≤ T ,

where (�y,�z) is the linearization process given by

�y := g(Yα′
s ,Zα′

s ) − g(Yα′
s ,Zα′

s )

Yα′
s − Yα′

s

1{Yα′ �=Yα′ },

�z := g(Yα′
s ,Zα′

s ) − g(Yα′
s ,Zα′

s )

|Zα′
s − Zα′

s |2
(
Zα′ − Zα′)

1{Zα′ �=Zα′ }.

This linearization procedure implies that Yα′
τ1

−Yα′
τ1

rewrites as

Yα′
τ1

−Yα′
τ1

= Eτ1

[
Lα′

τ2

(
Yα′

τ2
−Yα′

τ2

)] + Eτ1

[∫ τ2

τ1

Lα′
s dKα′

s

]
(4.5)

≥ Eτ1

[(
Kα′

τ2
−Kα′

τ1

)
inf[τ1,τ2]

Lα′]
,

where we used the fact that Yα −Yα ≥ 0. Using Hölder inequality, this implies

Eτ1

[(
Kα′

τ2
−Kα′

τ1

)]3

≤ Eτ1

[(
Kα′

τ2
−Kα′

τ1

)
inf[τ1,τ2]

Lα′]
Eτ1

[
sup

[τ1,τ2]
(
1/Lα′)]

Eτ1

[(
Kα′

τ2
−Kα′

τ1

)2]

≤ CEτ1

[(
Kα′

τ2
−Kα′

τ1

)2](
Yα′

τ1
−Yα′

τ1

)
,

for some C > 0 that depends on the uniform bounds on (�y,�z), recall (Hg).
Hence, the estimate (2.8) together with the monotonicity of K implies

0 ≤ Eτ1

[(
Kα′

τ2
−Kα′

τ1

)] ≤ Cη′
τ1

(
Yα′

τ1
−Yα′

τ1

)1/3
, α′ ∈ Aα

τ1
,(4.6)

where

η′
τ1

:= ess sup
ᾱ∈Aα

τ1

Eτ1

[(
Kᾱ

τ2
−Kᾱ

τ1

)2]1/3
.

By the same arguments as in Lemma 4.1, we can find a sequence (α′
n)n ⊂ Aα

τ1
such

that

η′
τ1

= lim
n→∞ ↑ Eτ1

[(
Kα′

n
τ2 −Kα′

n
τ1

)2]1/3
.

The monotone convergence theorem together with Jensen’s inequality and rela-
tion (2.8) imply that

E
[
η′

τ1

] = lim
n→∞ ↑ E

[(
Kα′

n
τ2 −Kα′

n
τ1

)2]1/3
< ∞.
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Since η′
τ1

is in addition nonnegative, it is a.s. bounded. Hence, combining (2.11)
and (4.6), we obtain for α′ ∈ Aα

τ1

0 ≤ Eτ1

[
Kα′

τ2

] −Kα′
τ1

≤ C
(
Eg

τ1,τ2

[
Yα′

τ2

] −Yα
τ1

)1/3

= C
(
Eg

τ1

[
�

(
Mα′

T

)] −Yα
τ1

)1/3
.

Taking the essential infimum in the above inequality and appealing to (2.6) leads
to (2.10).

Step 3. The uniqueness property for (2.8)–(2.11). Let us now consider a family
(Ỹ α, Z̃α, K̃α)α∈A0 of S2 × H2 × K2 satisfying (2.8)–(2.11). Then (2.6) together
with (2.9)–(2.11) applied to (Ỹ α, Z̃α, K̃α)α∈A0 imply via a direct comparison ar-
gument that

Yα
t = ess inf

α′∈Aα
t

Eg
t

[
�

(
Mα′

T

)] ≥ Ỹ α
t , α ∈ A0,0 ≤ t ≤ T .(4.7)

On the other hand, following the exact same line of arguments as the one developed
in step 2 in order to derive (4.5), one easily shows that there exists a S2-uniformly
bounded family of processes (L̃α)α∈A0 such that

Eg
t

[
�

(
Mα

T

)] − Ỹ α
t = Et

[∫ T

t
L̃α

s dK̃α
s

]
≤ CEt

[∣∣K̃α
T − K̃α

t

∣∣2]1/2

for all α ∈ A0,0 ≤ t ≤ T , for some C > 0.
Now observe that (2.10), applied to K̃α , and the same arguments as in

Lemma 4.1 provide the existence of (α̂n)n ⊂ Aα
t such that Et [K̃α̂n

T − K̃α
t ] → 0,

P-a.s. Hence, (2.8) ensures that Et [|K̃α̂n

T − K̃α
t |2] → 0. Since (2.11) implies

(Ỹ α̂n

t , K̃α̂n

t ) = (Ỹ α
t , K̃α

t ) for n ∈ N, we deduce

Eg
t

[
�

(
Mα̂n

T

)] − Ỹ α
t ≤ CEt

[∣∣K̃α̂n

T − K̃α
t

∣∣2]1/2 →n→∞ 0.

Combined with (4.7), this shows that

Ỹ α
t = ess inf

α′∈Aα
t

Eg
t

[
�

(
Mα′

T

)] = Yα
t , α ∈ H2,0 ≤ t ≤ T .

The fact that (Z̃α, K̃α)α∈A0 = (Zα,Kα)α∈A0 then follows from the uniqueness of
the nonlinear Doob–Meyer decomposition of Peng (1999), Theorem 3.3. �

APPENDIX

We report here some standard results for Lipschitz BSDEs. The first one can be
found in, for example, Theorem 1.5 in Pardoux (1998). The second one is proved
for completeness, and by lack of a good reference.
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PROPOSITION A.1 (Stability for Lipschitz BSDEs). Let (Y 1,Z1) and (Y 2,

Z2) in S2 ×H2 be solutions on [0, T ] of Lipschitz BSDEs associated to parameters
(ξ1, g1) and (ξ2, g2). Then the following stability result holds:∥∥Y 1 − Y 2∥∥2

S2
+ ∥∥Z1 − Z2∥∥2

H2

≤ C

(∥∥ξ1 − ξ2∥∥2
L2

+
∫ T

0
E

∣∣g1 − g2∣∣2(
t, Y 1

t ,Z1
t

)
dt

)
,

for some constant C > 0 depending only on T and on the Lipschitz constants of g1

and g2.

PROPOSITION A.2. Let the conditions (Hg) hold. Then:

(i) There exists C > 0 which only depends on Kg and T such that

ess sup
ξ∈L0([0,1])

∣∣Eg
t [ξ ]∣∣ ≤ C

(
1 + Et

[|χg|2]1/2)
, 0 ≤ t ≤ T .

(ii) For some ξ ∈ L2 and t ∈ [0, T ], consider a family (ξε)ε≥0 ⊂ L0(R
d) sat-

isfying |ξε| ≤ ξ and ξε ∈ L0(F(t+ε)∧T ), for any ε > 0. Then there exists a family
(ηε)ε>0 ⊂ L0(R) which converges to 0,P-a.s. as ε → 0 such that∣∣Eg

t,t+ε

[
ξε] − Et

[
ξε]∣∣ ≤ ηε ∀ε ∈ [0, T − t].

(iii) Let (ξε)ε>0 and t ∈ [0, T ] be as in (ii). Then there exists a family (ηε)ε>0 ⊂
L0(R) which converges to 0,P-a.s. as ε → 0 such that∣∣Eg

t−ε,t

[
ξε] − Et

[
ξε]∣∣ ≤ ηε ∀ε ∈ [0, t].

PROOF. (a) We first prove (ii) [property (iii) being similar] using the standard
linearization argument. Fix t ∈ [0, T ] and set Y ε := Eg

·,t+ε[ξε]. Assumption (Hg)
implies that we can find a family of predictable processes (ρε, γ ε) with values in
[−Kg,Kg]d+1 such that

LεY ε +
∫ ·
t

Lε
rg(r,0,0) dr

is a martingale on [t, t + ε], with

Lε
s = 1 +

∫ s

t
ρε

r L
ε
r dr +

∫ s

t
γ ε
r Lε

r dWr, t ≤ s ≤ t + ε.

In particular,

Eg
t,t+ε

[
ξε] = Lε

t Y
ε
t = Et

[
Lε

t+εξ
ε +

∫ t+ε

t
Lε

rg(r,0,0) dr

]
.

Condition (Hg) and the assumption on (ξε)ε>0 thus leads to∣∣Eg
t,t+ε

[
ξε] − Et

[
ξε]∣∣ ≤ ηε,
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in which

ηε := Et

[
ξ
∣∣Lε

t+ε − Lε
t

∣∣ + χg

∫ t+ε

t
Lε

r dr

]
.

We have

|ηε| ≤ Et

[|ξ |2]1/2
Et

[∣∣Lε
t+ε − Lε

t

∣∣2]1/2

+ Et

[|χg|2]1/2
Et

[∣∣∣∣
∫ t+ε

t
Lε

r dr

∣∣∣∣
2]1/2

(A.1)

≤ Et

[|ξ |2]1/2
Et

[∣∣Lε
t+ε − Lε

t

∣∣2]1/2 + εEt

[|χg|2]1/2
Et

[
sup

t≤s≤t+ε

∣∣Lε
s

∣∣2]1/2
.

In addition,

Et

[∣∣Lε
t+ε − Lε

t

∣∣2] ≤ CEt

[∫ t+ε

t

∣∣Lε
r

∣∣2 dr

]

≤ εCEt

[
sup

t≤r≤t+ε

∣∣Lε
r

∣∣2]
.

Hence,

Et

[∣∣Lε
t+ε − Lε

t

∣∣2] ≤ εC
(
1 + Et

[
sup

t≤r≤t+ε

∣∣Lε
r − Lε

t

∣∣2])
.

Since γ ε and ρε are bounded, the quantity supt≤τ≤t+ε Eτ [|Lε
t+ε − Lε

τ |2] is
uniformly bounded. Plugging back this estimate in (A.1) and recalling that
supt∈[0,T ] Et [ξ2] is finite P-a.s. we get that Et [|ξ |2]1/2Et [|Lε

t+ε − Lε
t |2]1/2 tends

to 0 uniformly in t , P-a.s. as ε goes to 0. The second term of (A.1) can be estimated
in the same way.

(b) We now prove (i). Pick any t ∈ [0, T ] and ξ ∈ L0([0,1]). The same argu-
ments as above yield

∣∣Eg
t [ξ ]∣∣ ≤

∣∣∣∣Et

[
L

ξ
T ξ +

∫ T

t
Lξ

r g(r,0,0) dr

]∣∣∣∣ ≤ Et

[∣∣Lξ
T

∣∣ + T |χg| sup
r≤T

∣∣Lξ
r

∣∣dr
]
,

where Lξ solves

Lξ
s = 1 +

∫ s

t
ρξ

r Lξ
r dr +

∫ s

t
γ ξ
r Lξ

r dWr, t ≤ s ≤ T ,

for some predictable processes (ρξ , γ ξ ) with values in [−Kg,Kg]d+1. Hence,∣∣Eg
t [ξ ]∣∣ ≤ Et

[∣∣Lξ
T

∣∣ + T |χg| sup
t≤r≤T

∣∣Lξ
r

∣∣dr
]
.

Since (ρξ , γ ξ ) are valued in [−Kg,Kg]d+1, standard estimates imply that we can

find C > 0, which only depends on Kg such that Et [supt≤r≤T |Lξ
r |2] ≤ C2,P-a.s.

The above leads to ∣∣Eg
t [ξ ]∣∣ ≤ (

C + T CEt

[|χg|2]1/2)
,

and the arbitrariness of ξ ∈ L0([0,1]) concludes the proof. �
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