
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2016, Vol. 52, No. 1, 323–354
DOI: 10.1214/14-AIHP646
© Association des Publications de l’Institut Henri Poincaré, 2016

Systems of Brownian particles with asymmetric collisions

Ioannis Karatzasa,b, Soumik Palc and Mykhaylo Shkolnikova,d

aINTECH Investment Management, One Palmer Square, Princeton, NJ 08542, USA
bDepartment of Mathematics, Columbia University, New York, NY 10027, USA. E-mail: ik@enhanced.com; ik@math.columbia.edu

cDepartment of Mathematics, University of Washington, Seattle, WA 98195, USA. E-mail: soumikpal@gmail.com
dDepartment of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA. E-mail: mshkolni@gmail.com

Received 30 August 2013; revised 11 September 2014; accepted 19 September 2014

Abstract. We study systems of Brownian particles on the real line which interact by splitting the local times of collisions among
themselves in an asymmetric manner. We prove strong existence and uniqueness of such processes and identify them with the
collections of ordered processes in a Brownian particle system, in which the drift coëfficients, the diffusion coëfficients, and the
collision local times for the individual particles are assigned according to their ranks. These Brownian systems can be viewed as
generalizations of those arising in first-order models for equity markets in the context of stochastic portfolio theory, and are able
to correct for several shortcomings of such models while being equally amenable to computations. We also show that, in addition
to being of interest in their own right, such systems of Brownian particles arise as universal scaling limits of systems of jump
processes on the integer lattice with local interactions. A key step in the proof is the analysis of a generalization of Skorokhod
maps which include “local times” at the intersection of faces of the nonnegative orthant. The result extends the convergence of the
totally asymmetric simple exclusion process (TASEP) to its continuous analogue. Finally, we identify those among the Brownian
particle systems which have a probabilistic structure of determinantal type.

Résumé. Nous étudions des systèmes de particules browniennes sur l’axe réel qui interagissent de façon asymétrique en fonction
de leurs temps locaux de collision. Nous prouvons l’existence et l’unicité au sens fort de tels processus et les identifions avec un
système de particules constitué d’une famille de processus browniens ordonnés où les coefficients de dérive et de diffusion, ainsi que
les temps locaux de collision entre les particules, dépendent de leurs rangs. Ces systèmes browniens peuvent être compris comme
des généralisations de processus stochastiques issus des marchés boursiers et de la gestion de portefeuilles. Nous pouvons pallier
certaines lacunes de ces modèles tout en conservant la possibilité d’effectuer des calculs explicites. Nous montrons aussi, qu’en plus
de leur intérêt intrinsèque, de tels systèmes de particules browniennes apparaissent comme des limites universelles de processus de
sauts sur un réseau avec des interactions locales. Une étape clef dans la preuve est l’analyse d’une généralisation des applications
de Skorokhod qui inclut les temps locaux à l’intersection des faces de l’orthant positif. Le résultat généralise la convergence du
processus d’exclusion simple totalement asymétrique (TASEP) vers sa version continue. Finalement, nous identifions parmi les
systèmes de particules browniennes ceux qui possèdent une structure probabiliste déterminantale.
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1. Introduction

Systems of Brownian particles with various types of interactions have been studied widely, and for some time. Re-
cently, Brownian particles with electrostatic repulsion (Dyson’s Brownian motion, see for instance Section 4.3 in [1])
have played a central rôle in the understanding of the universality properties of large Hermitian random matrices with
independent entries (Wigner matrices, see the survey [9] and the references there). In addition, systems of Brownian
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particles interacting through their ranks, which were originally introduced in the context of the piecewise-linear fil-
tering problem and in the resulting study of diffusions with piecewise-constant characteristics (see [4]), have been of
great importance in the study of large equity markets within stochastic portfolio theory (see [10,12]). Finally, systems
of Brownian particles interacting by stickiness have been recently introduced as continuous analogues of a certain
random evolution for the distribution of mass on the integer lattice (see [19] and the references there).

As a starting point towards the formulation of our setup, we recall from Section 13.1 in [12] that the ordered pro-
cesses in a system of Brownian particles interacting through their ranks are given by independent Brownian motions,
which have constant drift and diffusion coëfficients and collide in a symmetric fashion; that is, each collision local
time is split equally between the two colliding particles. In contrast, the particles in the process introduced by Warren
in [34] evolve as independent Brownian motions with constant drift and diffusion coëfficients, and collide in a totally
asymmetric manner; that is, the collision local time is assigned entirely to one of the two colliding particles.

1.1. The continuum setup

The dynamics of (1.1) below give the formal description of a system of ordered Brownian particles on the line, which
move as independent Brownian motions with constant drift and diffusion coëfficients and collide asymmetrically; that
is, the collision local times are apportioned unequally, in a manner that depends on the ranks of the particles involved
in the collisions.

Consider a continuous, n-dimensional semimartingale R(·) = (R1(·),R2(·), . . . ,Rn(·)) with values in the Weyl
chamber Wn = {(r1, r2, . . . , rn): ∞ > r1 ≥ r2 ≥ · · · ≥ rn > −∞}, and with dynamics of the form

Rk(t) = Rk(0) + bkt + σkβk(t) + q−
k Λ(k,k+1)(t) − q+

k Λ(k−1,k)(t), 0 ≤ t < ∞ (1.1)

for k = 1,2, . . . , n. Here the drifts b1, b2, . . . , bn are given real numbers; the dispersions σ1, σ2, . . . , σn are given
strictly positive real numbers; the collision parameters q±

1 , q±
2 , . . . , q±

n are given strictly positive real numbers satis-
fying

q−
k + q+

k+1 = 1, k = 1,2, . . . , n − 1; (1.2)

and the processes β1(·),β2(·), . . . ,βn(·) are independent standard Brownian motions. On the other hand, for each
k = 1,2, . . . , n − 1 the process

Λ(k,k+1)(·) ≡ LRk−Rk+1(·;0) (1.3)

is the right-sided local time accumulated at the origin by the nonnegative semimartingale Rk(·) − Rk+1(·); we set
Λ(0,1)(·) ≡ Λ(n,n+1)(·) ≡ 0. The “regulating” rôle of these local times in (1.1) is to make sure the resulting process
R(·) takes values in the wedge W

n at all times. This process can thus be regarded as Brownian motion with reflection
on the faces of the polyhedral domain W

n, in the sense of Harrison and Williams (cf. [17,35]).
We now discuss how the processes in (1.1) can be seen as describing the order statistics in Brownian particle

systems, in which the particles are allowed to exchange their ranks. As we explain below, the latter can be used as
models for the logarithmic capitalizations in large equity markets, and generalize the so-called “first order models”
of stochastic portfolio theory. Consider an n-dimensional process X(·) = (X1(·),X2(·), . . . ,Xn(·)) that satisfies the
system of stochastic differential equations

dXi(t) =
n∑

k=1

1{rX(t)(Xi(t))=k}bk dt +
n∑

k=1

1{rX(t)(Xi(t))=k}σk dWi(t)

+
n∑

k=1

1{rX(t)(Xi(t))=k}
(
q−
k − (1/2)

)
dΛ(k,k+1)(t)

−
n∑

k=1

1{rX(t)(Xi(t))=k}
(
q+
k − (1/2)

)
dΛ(k−1,k)(t). (1.4)
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Here W1(·),W2(·), . . . ,Wn(·) are independent standard Brownian motions; the rank function (x, xi) �→ rx(xi) gives
the rank of the coordinate xi among the coordinates x1, x2, . . . , xn of the vector x = (x1, x2, . . . , xn) with lexicographic
resolution of ties (for example, rx(xi) = i, i = 1,2, . . . , n when x = (1,1, . . . ,1)); whereas we write RX

1 (·) ≥ RX
2 (·) ≥

· · · ≥ RX
n (·) for the descending order statistics of X1(·),X2(·), . . . ,Xn(·), and denote by

Λ(k,�)(·) ≡ LRX
k −RX

� (·;0), � ≥ k + 1 (1.5)

the local time accumulated at the origin by the nonnegative semimartingale RX
k (·) − RX

� (·).
We shall discuss in detail the solvability of the system (1.4) in Theorem 5 below. For now, let us assume that a

weak solution to this system exists and satisfies

Leb
({

t ≥ 0|∃1 ≤ i < j ≤ n: Xi(t) = Xj(t)
})= 0 (1.6)

almost surely, where Leb denotes the Lebesgue measure on [0,∞). Then with the notation Nk(t) for the set of indices
of particles at the location of the kth ranked particle at time t , the Banner and Ghomrasni [3] formula

dRX
k (t) =

n∑
i=1

1{rX(t)(Xi(t))=k} dXi(t) + 1

|Nk(t)|

(
n∑

�=k+1

dΛ(k,�)(t) −
k−1∑
�=1

dΛ(�,k)(t)

)
(1.7)

(cf. Theorem 2.3 in [3]) shows that the process of spacings

ZX(·) := (RX
1 (·) − RX

2 (·),RX
2 (·) − RX

3 (·), . . . ,RX
n−1(·) − RX

n (·)), (1.8)

when away from the boundary of the nonnegative orthant (R+)n−1, moves according to the multidimensional process
((b1 − b2)t + σ1β

X
1 (t) − σ2β

X
2 (t), . . . , (bn−1 − bn)t + σn−1β

X
n−1(t) − σnβ

X
n (t)), t ≥ 0. Here the processes

βX
k (·) :=

n∑
i=1

∫ ·

0
1{rX(t)(Xi(t))=k} dWi(t), k = 1,2, . . . , n (1.9)

are independent standard Brownian motions, by virtue of the P. Lévy theorem (see Section 3 in [2] for a very similar
derivation). But on the strength of Lemma 1 below, which generalizes the boundary property of reflected Brownian
motion established by Reiman and Williams in [30], the triple- or higher-order collision local times Λ(k,�)(·) vanish
for all � ≥ k + 2, so the expression in the Banner–Ghomrasni [3] formula (1.7) simplifies to

dRX
k (t) =

n∑
i=1

1{rX(t)(Xi(t))=k} dXi(t) + 1

2
dΛ(k,k+1)(t) − 1

2
dΛ(k−1,k)(t)

=
n∑

i=1

1{rX(t)(Xi(t))=k}
n∑

�=1

1{rX(t)(Xi(t))=�}
(
b� dt + σ� dWi(t)

)
+

n∑
i=1

1{rX(t)(Xi(t))=k}
n∑

�=1

1{rX(t)(Xi(t))=�}
(
q−
� − (1/2)

)
dΛ(�,�+1)(t)

−
n∑

i=1

1{rX(t)(Xi(t))=k}
n∑

�=1

1{rX(t)(Xi(t))=�}
(
q+
� − (1/2)

)
dΛ(�−1,�)(t)

+ 1

2
dΛ(k,k+1)(t) − 1

2
dΛ(k−1,k)(t), k = 1,2, . . . , n.

Evaluating the sums of this expression over i and � and recalling the notation of (1.9), we get the dynamics (1.1) for
the descending order statistics RX

1 ,RX
2 , . . . ,RX

n .
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1.2. Interpretation and ramifications

We shall think of the processes X1(·),X2(·), . . . ,Xn(·) as representing the positions of a finite collection of Brownian
particles, whose drift and dispersion coëfficients are assigned according to the ranks occupied by the particles when
ordered from right to left. When the particles collide, they interact asymmetrically with their nearest neighbors through
the collision local times at the origin, in the specific manner of (1.4) and with the notation of (1.5). We shall speak of the
R

n-valued semimartingale X(·) = (X1(·), . . . ,Xn(·)) as the process of “names” (positions of individual particles), and
of the components of the W

n-valued semimartingale R(·) = (R1(·), . . . ,Rn(·)) as the associated “ranked processes”
(descending order statistics).

If we denote by rXt (i) the rank occupied by particle i within the configuration of particles X1(t),X2(t), . . . ,Xn(t)

at time t , we can write the system of equations (1.4) in the very informal, yet suggestive and slightly more compact
form

dXi(t) = brX
t (i) dt + σrX

t (i) dWi(t) + (q−
rX
t (i)

− (1/2)
)

dΛ(rX
t (i),rX

t (i)+1)(t)

− (q+
rX
t (i)

− (1/2)
)

dΛ(rX
t (i)−1,rX

t (i))(t). (1.10)

To wit: at any given time t , every particle i gets assigned drift and dispersion parameters according to its current
rank rXt (i), and feels an upward (respectively, downward) local-time-like pressure, or “drag,” when colliding with the
particle right below it (respectively, right above it) in proportion to q∓

rX
t (i)

− (1/2).

As we show in Section 3, Brownian particle systems of the type (1.1) arise as universal scaling limits for systems
of jump processes on the integer lattice with local interactions. Consider on the integer lattice a system of n particles
moving according to (possibly asymmetric) continuous time simple jump processes, which are independent as long
as the particles are located at n different sites. When two or more particles land at the same site (we will refer to such
events as “collisions”), the jump rates of the particles change in a manner that preserves the order of the particles, but
is allowed to depend on the identities of the particles involved in the collision. In particular, if one adds 1 to the
spacings between any two consecutive particles, one obtains a particle system known as an exclusion process with
speed change (see Section VIII.6.1 in [26] for an extensive list of references on the latter). Special cases of such
particle systems include the well-known asymmetric simple exclusion process (ASEP) and the gradient type exclusion
processes with speed change studied by Funaki et al. in [13].

As we explain in Section 3, all such particle systems converge under a diffusive rescaling of time and space to
the solution of a stochastic equation of the type (1.1). As a special case this result includes the convergence of the
totally asymmetric simple exclusion process (TASEP) to its continuous analogue (Brownian TASEP) introduced in
[34] and thereby recovers a result from [14] (see also the introduction of [27] for a discussion of this connection and its
relatives in the setting of random polymers at positive temperature). The proof of the convergence result necessitates a
detailed study of Skorokhod maps that transform noise to processes constrained to stay in the nonnegative orthant, but
might involve “local time” push from the intersection of multiple faces of the orthant. Along the way, we generalize
the boundary property of reflected Brownian motion established in [30] (see Lemma 1 below) and the invariance
principle for reflected Brownian motion of [36] (see Proposition 9 below).

1.3. Some special cases

It is instructive to compare the system (1.4) in the two-dimensional case n = 2 with the systems of equations studied
by Fernholz, Ichiba and Karatzas in [11] (see the systems of equations (1.2), (1.3) and (4.13), (4.14) of that paper). As
one can see by comparing the coëfficients of the local time terms, in the case n = 2 the system (1.4) is a special case
of the system of equations (4.13) and (4.14) in [11], namely

dX1(t) = 1{X1(t)≥X2(t)}
(
b1 dt + σ1 dW1(t)

)+ 1{X1(t)<X2(t)}
(
b2 dt + σ2 dW2(t)

)+ κ dL|X1−X2|(t),

dX2(t) = 1{X1(t)<X2(t)}
(
b1 dt + σ1 dW1(t)

)+ 1{X1(t)≥X2(t)}
(
b2 dt + σ2 dW2(t)

)+ κ dL|X1−X2|(t)

with κ = q−
1 −(1/2) = (1/2)−q+

2 . The inequalities in the indicators reflect the convention on lexicographic resolution
of ties we referred to earlier.
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In particular, with Υ (·) = X1(·) − X2(·), Ξ(·) = X1(·) + X2(·), λ1 = b1 − b2 and λ2 = b1 + b2, we have R1(·) −
R2(·) = |Υ (·)|, and the processes

W(t) = Υ (t) − λ1

∫ t

0
sgn
(
Υ (s)
)

ds, V (t) = Ξ(t) − λ2t − 2κL|Υ |(t), 0 ≤ t < ∞

are now Brownian motions with diffusion coëfficients
√

σ 2
1 + σ 2

2 and with covariation 〈W,V 〉(·) = (σ 2
1 − σ 2

2 ) ×∫ ·
0 sgn(Υ (t))dt .

Let us also remark that the solution to the above two-dimensional system can be realized as the solution of the
system of equations (1.2) and (1.3) in [11] with

κ = q−
1 − 1

2
= 1

2
− q+

2 = 1 − η1

2
= 1 − η2

2
= 1 − ζ1

2
= 1 − ζ2

2
, (1.11)

and with η1, η2, ζ1, ζ2 the parameters introduced in [11]. In particular, the condition (1.5) in [11], which is necessary
and sufficient for the well-posedness of the system of equations (1.2) and (1.3) in [11], is here fulfilled.

• Now, suppose that we have, formally at least,

b1 = · · · = bn = 0, σ1 = · · · = σn = 1 and q−
1 = · · · = q−

n = 0, q+
1 = · · · = q+

n = 1.

In this case one can think of the particles as having masses that decrease from right to left, so that the mass of each
particle is negligible compared to the mass of its right neighbor. To wit, whenever a particle collides with its right
neighbor, it is reflected off this considerably “heavier” particle. In this situation, the vector of ranked processes R(·)
is given by the continuous version of the Totally Asymmetric Simple Exclusion Process (TASEP). We refer the reader
to Section 4 in [34] for some of the properties of this process, and to [14] for its appearance as the scaling limit of
TASEP.

• Let us also note that the special case

q±
k = 1

2
, k = 1,2, . . . , n, (1.12)

in which all local times disappear from (1.4), (1.10) and get equal weights in (1.1), and all collisions of ranked
particles are symmetric, was studied in detail by Ichiba, Karatzas and Shkolnikov in [22]; in this case, individual
particles collide with each other without feeling any local time drag from their nearest neighbors.

1.4. Outline

The rest of the paper is organized as follows. In Section 2.1 we show the strong existence and uniqueness of the
solution to the system of equations (1.1) for the “ranks.” Subsequently, in Section 2.2 we prove the appropriate
generalization of the boundary property of reflected Brownian motion established in [30] to processes involving local
times accumulated on lower-dimensional faces of the boundary. The attainability of lower-dimensional parts of the
boundary is explored in Section 2.3.

These results are combined in Section 2.4 to prove the strong existence and uniqueness of the solution to the system
of equations (1.4) for the “names,” under the explicit conditions on nonattainability of lower-dimensional boundaries
derived in Section 2.3. Then, in Section 2.5 we view the solution to the system of equations (1.4) as a model for the
logarithmic capitalizations in large equity markets, and analyze the resulting capital distributions.

Section 3 identifies the processes in (1.1) as universal scaling limits of systems of one-dimensional continuous
time jump processes with local interactions, which include many well-known interacting particle systems such as the
asymmetric exclusion process and various exclusion processes with speed change. Finally, in Section 4 we characterize
the sets of collision parameters for which the solution to (1.1) has a probabilistic structure of determinantal type. These
results generalize those of [34], on Brownian particle systems with totally asymmetric collisions.
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1.5. Comparison with existing literature

Some of our results are significant extensions of existing results in a well-explored field. For the benefit of the reader
the following list compares the former to the latter.

(i) The result in Section 2.2 is a generalization of Theorem 7.7 in [5] with a shorter proof. Our result allows for
arbitrary constant drift vectors, diffusion matrices, and directions of reflection. The simplicity of our argument
is mainly due to a very natural assumption (2.8) which we believe to be a tool of independent interest. More
significantly, while the results in [5] are restricted to having zero local time on lower-dimensional parts of the
boundary, we also analyze the attainability of the latter. In the context of [5] it is not obvious whether the reflected
Brownian motion can hit the lower-dimensional parts of the boundary at positive times, whereas this is certainly
possible in our more general context.

(ii) The existence or absence of triple collisions is a recurrent theme in this paper. The results of Section 2.3 greatly
extend those of [4,22] and [32] (within our setup, the first two only address the case (1.12), whereas the last one
only addresses the case of rank-independent parameters).

(iii) Part of Section 3 is devoted to an extension of the invariance principle of [36] (see Proposition 9 and its proof).
The class of discrete processes for which we derive the scaling limits admits the possibility of triple and higher
order collisions. These present the main difficulty in our analysis. Some results in a similar direction can be
found in [24], which allows for generic domains with piecewise smooth boundaries. But, in the case of the
orthant, the results in [24] assume very special reflection directions on lower-dimensional parts of the boundary
and, in particular, do not allow for the kind of reflections resulting from triple collisions of particles in our setup.

2. Analysis of the continuous process

2.1. Ranks

We start with the construction of the vector R(·) = (R1(·), . . . ,Rn(·)) of ranked semimartingales as in (1.1). We note
first that, due to the positivity of the coëfficients q±

1 , q±
2 , . . . , q±

n , there exist positive constants c1, c2, . . . , cn such
that the process

∑n
i=1 ciRi(t), t ≥ 0 is a Brownian motion with drift, that is, the contribution of the local times to

its dynamics vanishes. This observation allows us to construct the ranked processes R1(·),R2(·), . . . ,Rn(·) using the
following procedure: first, we define the auxiliary Brownian motion R̃(·) = (R̃1(·), R̃2(·), . . . , R̃n(·)), for which

d

(
n∑

k=1

ckR̃k(t)

)
=
(

n∑
k=1

ckbk

)
dt +

n∑
k=1

ckσk dβk(t)

and

d
(
R̃k(t) − R̃k+1(t)

)= (bk − bk+1)dt + σk dβk(t) − σk+1 dβk+1(t)

for k = 1,2, . . . , n − 1. Next, we introduce the process

Y(·) :=
(

n∑
k=1

ckR̃k(·), R̃1(·) − R̃2(·), . . . , R̃n−1(·) − R̃n(·)
)

and apply the Harrison–Reiman [16] version of the Skorokhod reflection map Ψ HR for the orthant (R+)n−1 to the last
(n − 1) components of Y(·), using the reflection matrix

R = In−1 −Q, where Q :=

⎛⎜⎜⎝
0 q−

2 0 0
q+

2 0 q−
3 0

0
. . .

. . .
. . .

0 0 q+
n−1 0

⎞⎟⎟⎠ (2.1)

and In−1 is the unit (n − 1) × (n − 1) matrix.
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The main observation here, is that the spectral radius of the matrix Q is strictly less than 1. Indeed, the transpose
Q′ is an irreducible substochastic matrix, and can be made into a stochastic matrix by adding an absorbing point (here
and throughout this paper, the superscript ′ denotes matrix transposition). Hence, by virtue of the Perron–Frobenius
Theorem, the spectral radius of Q′, and hence also of Q, is strictly less than 1.

All in all, we see that Theorem 1 of [16] is applicable here. We can now complete the definition of the process
R(·) = (R1(·), . . . ,Rn(·)) by imposing

n∑
k=1

ckRk(·) =
n∑

k=1

ckR̃k(·),
(
R1(·) − R2(·), . . . ,Rn−1(·) − Rn(·)

)= Ψ HR(R̃1(·) − R̃2(·), . . . , R̃n−1(·) − R̃n(·)
)
.

Next, let us observe that the process of spacings

Z(·) := (R1(·) − R2(·),R2(·) − R3(·), . . . ,Rn−1(·) − Rn(·)
)

(2.2)

for the process R(·) we just constructed in the manner of (1.1), is a reflected Brownian motion (RBM) in the nonneg-
ative orthant (R+)n−1, with drift vector (b1 − b2, . . . , bn−1 − bn), covariance matrix

A=

⎛⎜⎜⎜⎝
σ 2

1 + σ 2
2 −σ 2

2 0 0

−σ 2
2 σ 2

2 + σ 2
3 −σ 2

3 0

0
. . .

. . .
. . .

0 0 −σ 2
n−1 σ 2

n−1 + σ 2
n

⎞⎟⎟⎟⎠ , (2.3)

and reflection matrix R = In−1 − Q given as in (2.1). In particular, the components Zk(·) := Rk(·) − Rk+1(·), k =
1, . . . , n − 1 of this vector process are continuous, nonnegative semimartingales

Zk(t) = Zk(0) + (bk − bk+1)t + σkβk(t) − σk+1βk+1(t)

− q+
k Λ(k−1,k)(t) − q−

k+1Λ
(k+1,k+2)(t) + Λ(k,k+1)(t), 0 ≤ t < ∞

with quadratic variations 〈Zk〉(t) = (σ 2
k + σ 2

k+1)t , thus also

(
σ 2

k + σ 2
k+1

)∫ ∞

0
1{Zk(t)=0} dt =

∫ ∞

0
1{Zk(t)=0} d〈Zk〉(t) = 0, a.s. (2.4)

(cf. Exercise 3.7.10, p. 225 in Karatzas and Shreve [25]). The continuous, adapted and nondecreasing processes
Λ(k,k+1)(·) satisfy the “flat off” condition∫ ∞

0
1{Zk(t)>0} dΛ(k,k+1)(t) = 0, a.s., (2.5)

and we set Λ(0,1)(·) ≡ Λ(n,n+1)(·) ≡ 0. Now the local time accumulated at the origin by this nonnegative semimartin-
gale is

LRk−Rk+1(·) = LZk (·) =
∫ ·

0
1{Zk(t)=0} dZk(t)

=
∫ ·

0
1{Zk(t)=0}

[
(bk − bk+1)dt + dΛ(k,k+1)(t) − q+

k dΛ(k−1,k)(t) − q−
k+1 dΛ(k+1,k+2)(t)

]
(Karatzas and Shreve [25], p. 223). In this last expression, the first (Lebesgue) integral vanishes because of (2.4),
whereas the second (Stieltjes) integral is equal to Λ(k,k+1)(·) on account of (2.5). As for the third and fourth (Stieltjes)
integrals, they also vanish, because∫ ·

0
1{Zk(t)=0} dΛ(k−1,k)(t) =

∫ ·

0
1{Zk(t)=0=Zk−1(t)} dΛ(k−1,k)(t) ≡ 0



330 I. Karatzas, S. Pal and M. Shkolnikov

and ∫ ·

0
1{Zk(t)=0} dΛ(k+1,k+2)(t) =

∫ ·

0
1{Zk(t)=0=Zk+1(t)} dΛ(k+1,k+2)(t) ≡ 0

hold on account of (2.5) and of Theorem 1, in Reiman and Williams [30]. We conclude from all this LRk−Rk+1(·) ≡
Λ(k,k+1)(·), to wit, the identification of (1.3).

Finally, the strong uniqueness for the system of equations (1.1), (1.3) follows from the uniqueness of the solution
to the multi-dimensional Skorokhod reflection problem in Harrison and Reiman [16], Reiman [29]; see Theorem 1
of [16].

2.2. A boundary property of reflected Brownian motion

Throughout this paper we shall rely frequently on a generalization of a boundary property of reflected Brownian
motion which was established in [30] and is of interest in its own right.

Consider a continuous semimartingale Q(·) taking values in the orthant (R+)n−1 and satisfying

Q(·) = B(·) +
n−1∑
k=1

R(k)Y(k)(·), (2.6)

where B(·) is an (n − 1)-dimensional Brownian motion with a constant drift vector and a constant, nondegenerate
diffusion matrix. Here, for each k ∈ {1,2, . . . , n − 1} and with

m =
(

n − 1
k

)
,

R(k) is an (n − 1) × m matrix with real entries; whereas Y(k)(·) is a continuous (R+)m-valued process, whose com-
ponents are indexed by the sets J ⊂ {1,2, . . . , n − 1} with k elements, start at Y(k)(0) = 0, are nondecreasing and
satisfy∫ ∞

0

∑
j∈J

1{Qj (t)>0} dY(k)
J (t) = 0, J ⊂ {1,2, . . . , n − 1}, |J | = k, (2.7)

∀0 ≤ s < t : Y
(|J2|)
J2

(t) −Y
(|J2|)
J2

(s) ≤Y
(|J1|)
J1

(t) −Y
(|J1|)
J1

(s), for any J1 ⊂ J2 ⊂ {1,2, . . . , n − 1}. (2.8)

We recall from [30] the following notion: the matrix R(1) is called completely-S , if there exists a vector λ ∈
[0,∞)n−1 such that R(1)λ ∈ [1,∞)n−1, and the same property holds for every principal submatrix of R(1). It is well-
known that matrices of Harrison–Reiman type [16], in particular the matrix R(1) of (2.1), are completely-S (see e.g.
the discussion on p. 88 of [30]). In the following lemma we show that the completely-S property allows to identify
the semimartingale Q(·) of (2.4) with a reflected Brownian motion in the sense of [17,35].

Lemma 1. Let Q(·) be a process as in (2.6), and suppose that the matrix R(1) is completely-S . Then all processes
Y(k)(·), k = 2,3, . . . , n − 1 are identically zero.

In particular, Q(·) is then a reflected Brownian motion in the orthant (R+)n−1 with reflection matrix R(1).

Proof. The proof is similar to that of Reiman and Williams in Theorem 1 of [30]. In view of Girsanov’s Theorem, it
suffices to consider the case that the drift vector of B(·) is equal to zero. We consider the functions φε(·), ε ∈ (0,1)

defined in the proof of Lemma 4 in [30]:

φε(x) =
{

1
3−n

∫ 1
ε

rn−3((x + rα)′A−1(x + rα))(3−n)/2 dr, if n ≥ 4,
1
2

∫ 1
ε

log((x + rα)′A−1(x + rα))dr, if n = 3.
(2.9)
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Here A is the diffusion matrix of (2.3), α =Aλ, and λ ∈ [0,∞)n−1 is as in the definition of the completely-S property
for (R(1))′ (note that the completely-S property is preserved under transposition, see Lemma 3 in [30]). The functions
φε(·), ε ∈ (0,1) are harmonic for the generator of B(·) and bounded on compact subsets of (R+)n−1, uniformly over
ε ∈ (0,1). We claim that, for any k = 1,2, . . . , n and any column v of the matrix R(k), there is a constant Ck < ∞
depending only on the matrices R, R(k) and the diffusion matrix of B(·), such that

∀ε > 0, x ∈ (R+)n−1: v · ∇φε(x) ≥ −Ck. (2.10)

Indeed, one can argue exactly as on p. 94 of [30] in the derivation of the bound (24) there. Now, define the stopping
times

τm = min

(
m, inf

{
t ≥ 0:

∥∥Q(t)
∥∥+

n−1∑
k=1

∥∥Y(k)(t)
∥∥≥ m

})
, m ∈ N,

where we wrote ‖ · ‖ for the Euclidean norm. Applying Itô’s formula to the semimartingale Q(·), and recalling that
the functions φε(·) are harmonic with respect to the generator of B(·), one obtains for all ε ∈ (0,1) and m ∈ N the
identity

φε

(
Q(τm)

)− φε

(
Q(0)
)= ∫ τm

0
∇φε

(
Q(t)
) · dB(t) +

n−1∑
k=1

∑
J∈Jk

∫ τm

0
vJ · ∇φε

(
Q(t)
)

dY(k)
J (t).

Here Jk stands for the set of all subsets of {1,2, . . . , n− 1} with k elements, and vJ denotes the J th column of R(|J |).
Finally, taking the expectation on both sides and using the bound (18) in [30] and the bound (2.10) above, one ends
up with

E
[
φε

(
Q(τm)

)]−E
[
φε

(
Q(0)
)]

≥ −(log ε + 1)

n−1∑
j=1

cjE

[∫ τm

0
1{‖Q(t)‖<εβj } dY(1)

j (t)

]
−

n−1∑
k=1

Ck

∑
J∈Jk

E
[
Y

(k)
J (τm)

]
,

where the positive constants cj , βj , j = 1,2, . . . , n−1 are defined as in [30] and the constants Ck , k ∈ {1,2, . . . , n−1}
are as in (2.10). Dividing both sides of the latter inequality by (log ε + 1) and taking the limit ε ↓ 0 gives

lim
ε↓0

n−1∑
j=1

cjE

[∫ τm

0
1{‖Q(t)‖<εβj } dY(1)

j (t)

]
≤ 0.

Thus, by Fatou’s Lemma and the nonnegativity of the integrand, one can conclude∫ τm

0
1{Q(t)=0} dY(1)

j (t) = 0, j = 1,2, . . . , n − 1,

with probability one for every m ∈ N, and therefore also∫ ∞

0
1{Q(t)=0} dY(1)

j (t) = 0, j = 1,2, . . . , n − 1, (2.11)

with probability one. Finally, the backward induction argument of Lemma 5 in [30] allows us to strengthen this
statement to

∀j0 ∈ J ⊂ {1,2, . . . , n − 1}:
∫ ∞

0
1{Qj (t)=0,j∈J } dY(1)

j0
(t) = 0, (2.12)

almost surely. In view of (2.7) and (2.8), this finishes the proof. �
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2.3. Absence of triple collisions

This subsection, and the one that follows, are devoted to the construction of the solution to the system of stochastic
equations (1.4), when one of the following two conditions holds:

(A) (1 − q−
k )σ 2

k ≥ q−
k σ 2

k+1,
(
1 − q+

k

)
σ 2

k ≥ q+
k σ 2

k−1, k = 2,3, . . . , n − 1.

(B) q−
k = q+

k =
(

1 + σ 2
k−1 + σ 2

k+1

2σ 2
k

)−1

, k = 2,3, . . . , n − 1.

As we show below, each of these conditions prevents collisions of three or more particles. It is not hard to see that
neither of these two conditions implies the other.

When all the collision parameters are equal to 1/2, as in (1.12), condition (B) mandates that the graph of the
variances-by-rank k �→ σ 2

k be linear; thus, under condition (B), Proposition 3 below generalizes the results in [21] on
the absence of triple collisions to situations where particles feel local-time-like drag from their immediate neighbors,
when they collide with each other.

We start with a result ruling out triple collisions in the case n = 3 under the condition (2.13) below; in this three-
dimensional case, condition (2.13) is weaker than each of the conditions (A) and (B).

Proposition 2. Suppose that n = 3 and R1(0) − R3(0) > 0.

(i) If the condition

2σ 2
2 ≥ q−

2

(
σ 2

2 + σ 2
3

)+ q+
2

(
σ 2

1 + σ 2
2

)
(2.13)

holds, then we have

P
(∃t ≥ 0: R1(t) = R2(t) = R3(t)

)= 0. (2.14)

(ii) Conversely, if (2.14) holds, then (2.13) holds as well.

Proof. We consider the reflected Brownian motion (R1(·) − R2(·),R2(·) − R3(·)) in the nonnegative quadrant, with
the reflection matrix R = I2 − Q of (2.1) and the covariance matrix A of (2.3) with n = 3. Moreover, let O be the
2 × 2 orthogonal matrix such that L := O′AO is a diagonal matrix. Then the process

L−1O
(
R1(·) − R2(·),R2(·) − R3(·)

)′ (2.15)

is a reflected Brownian motion in a wedge, in the sense of Varadhan and Williams in [33]. Letting

D := diag(A) (2.16)

be the diagonal matrix whose diagonal entries coincide with those of A, and following the computations in Sec-
tion 3.2.1 of [21], one concludes that the normal vectors to the two sides of the wedge are given by the columns of the
matrix

N := L1/2OD−1/2; (2.17)

whereas the reflection matrix of the new reflected Brownian motion in the sense of [33] is given by

Q := L−1/2ORD1/2 −N .

Furthermore, as observed in the proof of Lemma 3.2 in [21], the corner of the wedge is attainable by the new reflected
Brownian motion, if and only if the sum of the two off-diagonal entries of the matrix N ′Q is nonnegative. Next, we
note that

N ′Q =D−1/2RD1/2 −N ′N . (2.18)
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Moreover, both off-diagonal entries of N ′N are given by the negative cosine of the angle between the two sides of
the wedge, which can be computed to be

− (A−1e1)
′e2

((A−1e1)′e1)1/2((A−1e2)′e2)1/2
,

where e1, e2 is the canonical basis of R2. Putting everything together, we can compute the sum of the two off-diagonal
entries of the matrix N ′Q as

−q−
2

√
σ 2

2 + σ 2
3√

σ 2
1 + σ 2

2

− q+
2

√
σ 2

1 + σ 2
2√

σ 2
2 + σ 2

3

+ 2σ 2
2√

(σ 2
1 + σ 2

2 )(σ 2
2 + σ 2

3 )

.

Simplifying this expression, we obtain the condition (2.13) of the proposition. �

Now, we turn our attention to the case of general n ≥ 3.

Proposition 3. Suppose that n ≥ 3, and that either condition (A) or condition (B) holds. Then no triple collisions are
possible, that is,

P
(∃t ≥ 0,1 ≤ i < j < k ≤ n: Ri(t) = Rj (t) = Rk(t)

)= 0. (2.19)

The proof relies on an inductive argument and the following lemma.

Lemma 4. Let n ≥ 3. Then, condition (A) is equivalent to the following condition:

∀1 ≤ j, k ≤ n − 1, j �= k:
[
A−1(In−1 −Q)

]
jk

≥ 0. (2.20)

Proof. We start by recalling that the entries of A−1 can be computed by the formula

A−1
jk = (−1)j+k det(Aj,k)

det(A)
, 1 ≤ j, k ≤ n − 1, (2.21)

where Aj,k is the (n − 2) × (n − 2) submatrix of the symmetric matrix A in (2.3), that one obtains by removing the
j th row and the kth column from A. Next, we introduce the notation

Π
k2
k1

:=
(

k2∏
k=k1

σ 2
k

)(
k2∑

k=k1

1

σ 2
k

)
, 1 ≤ k1 ≤ k2 ≤ n, (2.22)

and claim that the determinants det(Aj,k), 1 ≤ j ≤ k ≤ n − 1 are given by

(−1)j+k det
(
Aj,k
)= σ 2

1 σ 2
2 · · ·σ 2

n

(
j∑

�=1

1

σ 2
�

)(
n∑

�=k+1

1

σ 2
�

)
= Π

j

1

(
k∏

�=j+1

σ 2
�

)
Πn

k+1. (2.23)

This claim can be verified easily, using induction over n and distinguishing the cases k ≥ j + 2, k = j + 1 and k = j .
Therefore, for any fixed 1 ≤ j < k ≤ n − 1, the inequality[

A−1(In−1 −Q)
]
jk

≥ 0 (2.24)

of condition (2.20) can be rewritten in the equivalent form

Π
j

1

(
k∏

�=j+1

σ 2
�

)
Πn

k+1 ≥ q−
k Π

j

1

(
k−1∏

�=j+1

σ 2
�

)
Πn

k + (1 − q−
k

)
Π

j

1

(
k+1∏

�=j+1

σ 2
�

)
Πn

k+2. (2.25)
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In view of the strict positivity of the variances, the inequality (2.25) simplifies to

σ 2
k Πn

k+1 ≥ q−
k Πn

k + (1 − q−
k

)
σ 2

k σ 2
k+1Π

n
k+2. (2.26)

Now, we note the following relations among Πn
k , Πn

k+1 and Πn
k+2:

Πn
k+1 = Πn

k+2σ
2
k+1 + σ 2

k+2σ
2
k+3 · · ·σ 2

n , (2.27)

Πn
k = Πn

k+2σ
2
k σ 2

k+1 + (σ 2
k+1 + σ 2

k

)
σ 2

k+2σ
2
k+3 · · ·σ 2

n . (2.28)

Plugging these into (2.26) and simplifying further, we end up with(
1 − q−

k

)
σ 2

k ≥ q−
k σ 2

k+1. (2.29)

An analogous computation, now with 1 ≤ k < j ≤ n − 1, shows that the inequality (2.24) in this case is equivalent
to (

1 − q+
j

)
σ 2

j ≥ q+
j σ 2

j−1. (2.30)

We conclude that condition (2.20) is equivalent to condition (A). �

Proof of Proposition 3. We note first that, by the same application of Girsanov’s Theorem as in Section 2.2 of [21],
or as in the proof of Lemmata 6 and 7 in [22], we need only consider the case b1 = b2 = · · · = bn = 0 in (1.1).

• We start by assuming that condition (A) is satisfied, and proceed by induction over n ≥ 3. For n = 3, very simple
computation shows that condition (A) implies condition (2.13). The statement of the proposition for n = 3 follows
then directly from Proposition 2.

Next, we assume that n ≥ 4, and that the statement of the proposition holds under condition (A) for all ν =
3,4, . . . , n − 1 (the “induction hypothesis”). Introducing the stopping times

τδ = inf
{
t ≥ 0: max

k=1,2,...,n−1

(
Rk(t) − Rk+1(t)

)≤ δ
}
, δ > 0, (2.31)

we claim that

P
(∃0 ≤ t < τδ,1 ≤ i < j < k ≤ n: Ri(t) = Rj(t) = Rk(t)

)= 0, δ > 0. (2.32)

Indeed, for any fixed δ > 0, the time interval [0, τδ) can be written as

[0, τδ) =
M⋃

m=0

[
τm
δ , τm+1

δ

)
(2.33)

for some M ∈N∪ {∞} and with stopping times 0 = τ 0
δ < τ 1

δ < · · · satisfying

∃k = k(m) ∈ {1,2, . . . , n − 1}: Rk(t) − Rk+1(t) ≥ δ, t ∈ [τm
δ , τm+1

δ

)
. (2.34)

Moreover, on each of the time intervals [τm
δ , τm+1

δ ), 0 ≤ m < M , the system (1.1) splits into two subsystems of the
same type which evolve independently, conditional on R1(τ

m
δ ),R2(τ

m
δ ), . . . ,Rn(τ

m
δ ). Hence, (2.32) is a consequence

of the induction hypothesis.
In view of (2.32), in order to show (2.19) and complete the induction argument, it suffices to show

P

(
lim
δ↓0

τδ = ∞
)

= 1. (2.35)

To this end, we introduce the functions F,G : (R+)n−1 \ {0} → R+ given by

F(z) := (G(z)
)(3−n)/2

, G(z) := 〈A−1z, z
〉
. (2.36)
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Next, we apply the change of variable formula of Theorem 2 in [16] to the function F and the reflected Brownian
motion with drift Z(·) formed by the spacings (see (2.2) and (1.8)), noting that the function F is harmonic with respect
to the generator of the Brownian motion driving these spacings. We obtain the semimartingale decomposition

F
(
Z(·))= F

(
Z(0)
)+ M(·) + V (·),

where M(·) is a real-valued local martingale of the form M(·) =∑n
k=1

∫ ·
0 ξk(t)dβk(t), and

V (·) =
n−1∑
�=1

∫ ·

0

(
∂z�

− q+
� ∂z�−1 − q−

� ∂z�+1

)
F
(
Z(t)
)

dΛ(�,�+1)(t)

= 3 − n

2

∫ ·

0

(
G
(
Z(t)
))(1−n)/2

n−1∑
�,k=1

Zk(t)
(
A−1

k� − q+
� A−1

k(�−1) − q−
�+1A

−1
k(�+1)

)
dΛ(�,�+1)(t),

a process of finite variation on compact intervals. We also note that the processes ξk(·∧ τδ) are all uniformly bounded,
so the stopped local martingale M(· ∧ τδ) is in fact a martingale.

In view of Lemma 4, condition (A) ensures that, in this last expression for the finite variation process V (·), the
coëfficients appearing in front of the local time processes are all nonpositive, so we conclude

∀t ≥ 0, δ > 0: E
[
F
(
Z(t ∧ τδ)

)]≤ E
[
F
(
Z(0)
)]

. (2.37)

Moreover, if the limit limδ↓0 τδ were finite with positive probability, then for any given real number c > 0 there would
exist real numbers t > 0 sufficiently large, and δ > 0 sufficiently small, such that the value of the left-hand side in
(2.37) would exceed c; but this would then contradict (2.37). We conclude that (2.35) holds, and thus the proposition
is established under condition (A).

• Condition (B) simply paraphrases the skew-symmetry condition for the (n − 1)-dimensional Brownian motion
Z(·) with reflection on the faces of the nonnegative orthant in the sense of Harrison and Williams (cf. [17,18,35] as
well as Section 2.5 below), and the result of Proposition 3 in this case can be found in Theorem 1.1(iii) of [35]. �

Remark 1. In the course of the editorial review process for this paper, the result of Proposition 3 has been improved
by A. Sarantsev in Theorem 1.4 of [31]. It is shown there that the requirement

2σ 2
k+1 ≥ q−

k+1

(
σ 2

k+1 + σ 2
k+2

)+ q+
k+1

(
σ 2

k + σ 2
k+1

)
, k = 1,2, . . . , n − 2

(that is, condition (2.13) applied to any three consecutive ranks) is both necessary and sufficient for the absence of
triple collisions.

2.4. Names

We can now combine the results of the previous two sections with those in [11], to construct a strong solution for the
system of equations (1.4) subject to the condition (1.6), and to show that pathwise uniqueness holds for this system.

Theorem 5. Suppose that either condition (A) or condition (B) is satisfied. Then the system (1.4) has a strong solution
satisfying (1.6), and such a solution is pathwise unique.

Proof. We start with the proof of strong existence, which proceeds by induction over n. As remarked in Section 1.3,
for n = 2, the system of equations (1.4) is a special case of the system (4.13) and (4.14) in [11]. Therefore, we may
deduce strong existence for n = 2 from Theorem 4.2 in [11]. Moreover, it is shown in that paper (see (6.13)–(6.15) in
[11]) that the distributions of the random variables X1(t) − X2(t), t ≥ 0 have a density with respect to the Lebesgue
measure on R for every t ∈ (0,∞), and therefore

E
[
Leb
({

t ≥ 0: X1(t) = X2(t)
})]= 0 (2.38)

by Fubini’s theorem. Hence, X1(·),X2(·) satisfy (1.6).
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We now consider n ≥ 3, and assume that a strong solution to the system (1.4) satisfying (1.6) has already been
constructed for all ν = 2,3, . . . , n − 1 and all choices of drift, dispersion and collision parameters obeying condition
(A) or (B) (the “induction hypothesis”). We shall construct a strong solution (X1(·),X2(·), . . . ,Xn(·)) of the system
(1.4) consecutively on the random time intervals[

η0
2−p , η1

2−p

)
,
[
η1

2−p , η2
2−p

)
, . . . ,
[
η

M(p)

2−p , η
M(p)

2−p

)
, p ∈N, (2.39)

where ηm
2−p , m = 0,1, . . . ,M(p), p ∈N are stopping times such that

lim
m↑M(p)

ηm
2−p = inf

{
t ≥ 0: max

k=1,...,n−1

(
RX

k (t) − RX
k+1(t)

)≤ 2−p
}

= τ2−p , p ∈N0,

∀p ∈N,m = 0, . . . ,M(p),∃k = k(p,m): RX
k+1(t) − RX

k (t) ≥ 2−p, t ∈ [ηm
2−p , ηm+1

2−p

)
and M(p) ∈ N ∪ {∞}, p ∈ N. We have recalled here the notation of (2.31), and the fact that the process of ranks
(RX

1 (·),RX
2 (·), . . . ,RX

n (·)) solves the system of equations (1.1) (recall the discussion in Section 1 for more details).
On each interval [ηm

2−p , ηm+1
2−p ), we define (X1(·),X2(·), . . . ,Xn(·)) by letting the processes (X1(·),X2(·), . . . ,

Xk(p,m)(·)) evolve as a strong solution of the k(p,m)-dimensional system corresponding to the first k(p,m) equations
in (1.4), started at the point (X1(η

m
2−p ), . . . ,Xk(p,m)(η

m
2−p )); and by letting (Xk(p,m)+1(·), . . . ,Xn(·)) evolve as a strong

solution of the (n− k(p,m))-dimensional system corresponding to the last (n− k(p,m)) equations in (1.4), started at
(Xk(p,m)+1(η

m
2−p ), . . . ,Xn(η

m
2−p )). Note that the strong solutions to the lower-dimensional systems exist by the induc-

tion hypothesis. The resulting process (X1(·),X2(·), . . . ,Xn(·)) is a strong solution to the system of equations (1.4),
up to the random time

lim
p↑∞ lim

m↑M(p)
ηm

2−p = lim
p↑∞ τ2−p . (2.40)

We can conclude from Proposition 3 that the quantity in (2.40) must be equal to infinity with probability one. Thus,
we have constructed a strong solution to (1.4) for all t ∈ [0,∞). Finally, it is clear that this solution satisfies (1.6) by
the induction hypothesis and its construction.

To prove pathwise uniqueness, we argue again by induction over n. For n = 2, pathwise uniqueness is a conse-
quence of Theorem 4.2 in [11]. Now, let n ≥ 3 and assume that pathwise uniqueness holds for all ν = 2,3, . . . , n − 1
and all choices of drift, dispersion and collision parameters satisfying condition (A) or condition (B) (the new induc-
tion hypothesis). Next, suppose that X̃(·) = (X̃1(·), X̃2, . . . , X̃n(·)) is another strong solution of (1.4) satisfying (1.6),
defined on the same probability space as the strong solution X(·) = (X1(·),X2(·), . . . ,Xn(·)) constructed above. Con-
sidering the intervals in (2.39) consecutively and employing the induction hypothesis, we conclude that X̃(·) = X(·)
must hold up to the time given by (2.40). However, as we have seen above, the latter must be infinite with probability
one, by virtue of Proposition 3. This yields the desired pathwise uniqueness. �

Remark 2. A careful reading of the proof of Theorem 5 shows that for any choice of the parameters the solution
of the system (1.4), (1.6) is pathwise unique up to the first occurence of a triple collision. Whether or not pathwise
uniqueness fails after such a collision is currently an open problem.

2.5. Skew-symmetry and invariant measures

From Ichiba et al. (see equation (5.8) in [23]), we know that the reflected Brownian motion of spacings in (2.2) is
skew-symmetric in the sense of Harrison and Williams (cf. [17,18]), if the following condition is satisfied

2(D −A) =QD +DQ (2.41)

with the notation D = diag(A) of (2.16). Plugging in these equations the expressions for the matrices A and Q from
(2.3) and (2.1), respectively, we can simplify this condition to

q−
k = q+

k =
(

1 + σ 2
k−1 + σ 2

k+1

2σ 2
k

)−1

, k = 2,3, . . . , n − 1, (2.42)

that is, exactly the condition (B).
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Fig. 1. Variances by rank.

Fig. 2. Increments of log-variances with respect to log-rank.

In view of our assumption (1.2), the condition (2.42) amounts to the requirement

2σ 2
2

σ 2
1 + σ 2

3

= σ 2
2 + σ 2

4

2σ 2
3

= 2σ 2
4

σ 2
3 + σ 2

5

= · · · . (2.43)

Figure 1 shows the variances σ 2
k , k = 1,2, . . . , n, and Figure 2 the slopes

k �→ log(σ 2
k+1 − σ 2

1 ) − log(σ 2
k − σ 2

1 )

logk − log(k − 1)

of the function logk �→ log(σ 2
k+1 − σ 2

1 ), for n = 100 and a nonlinear choice of initial parameters σ 2
1 , σ 2

2 , σ 2
3 , namely

σ 2
1 = 0.1, σ 2

2 = 0.11, σ 2
3 = 0.121. One can see that these slopes can be made to deviate significantly from 1 even when

one only slightly perturbs a linear specification (all the slopes would be equal to 1 in a skew-symmetric specification
of a model with symmetric collisions: q±

k = 1/2, k = 1,2, . . . , n − 1).
Under the skew-symmetry condition (2.43), one can compute the invariant distribution of the spacings process (2.2)

explicitly, using Lemma 3.6 in the dissertation of Ichiba [20]; one ends up with a product of exponential distributions
with parameter vector

γ = 2
[
diag(A)

]−1R−1(b2 − b1, b3 − b2, . . . , bn − bn−1)
′. (2.44)
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Fig. 3. Capital distribution curve.

Note that, by virtue of (1.2) and (2.42), the matrix R takes the form

R = In−1 −Q =

⎛⎜⎜⎜⎜⎝
1 −q 0 0 0

−q 1 −(1 − q) 0 0
0 −(1 − q) 1 −q 0

0 0 −q 1
. . .

0 0 0
. . .

. . .

⎞⎟⎟⎟⎟⎠ , (2.45)

where

q := q−
2 =
(

1 + σ 2
1 + σ 2

3

2σ 2
2

)−1

. (2.46)

Remark 3. An interesting special case is the specification

b1 = b2 = · · · = bn−1 = 0, bn = gn for some g > 0. (2.47)

Under this specification, the model of (1.4) might be called a q-Atlas model by analogy with the term “Atlas model”
introduced by Fernholz in [10] and studied further by Banner, Fernholz and Karatzas in [2]. Figure 3 shows on a
log–log plot the capital distribution curve

k �→ eRk(t)∑n
�=1 eR�(t)

, k = 1,2, . . . ,100 (2.48)

for such a q-Atlas model with n = 100, g = 1, σ 2
1 = 0.1, σ 2

2 = 0.11, σ 2
3 = 0.121, when the spacings process (R1(·) −

R2(·),R2(·) − R3(·), . . . ,Rn−1(·) − Rn(·)) takes the mean value under its stationary distribution. By comparing with
the plots of real-world capital disribution curves from U.S. equity market data of the Center of Research in Securities
Prices (CRSP) at the University of Chicago (see Figure 5.1 on p. 95 of [10]), one sees that a q-Atlas model can capture
the concave shape of the capital distribution curve, as well as its linear structure at the top.

We also note that, since the mapping

(b2 − b1, b3 − b2, . . . , bn − bn−1) �→ γ (2.49)

is bijective, one can determine the drifts up to an additive constant by fitting the vector γ to the observed capital
distribution curves, such as the ones in Figure 5.1 on p. 95 of [10].
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3. Scaling limit of asymmetrically colliding random walks

Let us return to the processes corresponding to the system of stochastic equations (1.1), (1.3). Our objective in this
section is to show that such processes with asymmetric local time components arise as scaling limits of random walks
with asymmetric interactions upon “collision.” We start with the following informal description.

Consider an n-dimensional continuous-time jump process Γ (·) = (Γ1(·), . . . ,Γn(·)) on the wedge

Hn = {(z1, . . . , zn) ∈ Z
n: z1 ≥ z2 ≥ · · · ≥ zn

}
.

The process registers the positions on the integer lattice of n particles that always maintain their order. We will label
the particles by the elements of the set [n] = {1,2, . . . , n}, where 1 refers to the rightmost particle and n refers to the
leftmost.

The movement of particles can be described as follows. Consider nonnegative parameters {ak, bk, θ
L
k , θR

k , k ∈ [n]}.
If there are no other particles at the current site of particle k, then this particle moves to the right at rate ak and to the
left at rate bk , independently of every other particle. On the other hand, suppose that particles k, k + 1, . . . , k + � are
currently at the same location (a phenomenon we call “collision”), and this is the maximum length of the tie in the
sense that the (k − 1)st and the (k + � + 1)st particles are not at that site. Then, at rate θR

k ak , particle k jumps to the
right; and, at rate θL

k+�bk+�, particle (k + �) jumps to the left, while the particles in between do not move.
We wish to take a diffusion limit of such systems. Before we go on, let us give a few examples which display the

variety of behavior that can be expected from such particle systems.

Example 1. Suppose each particle evolves according to a Poisson process with parameter a until a collision occurs.
Thus every ak ≡ a, every bk ≡ 0, and the values of θL

k , k ∈ [n] are irrelevant.
Consider, first, θR

k ≡ 2, k ∈ [n]. This essentially corresponds to the order statistics of a system of Poisson particles
moving independently (the two systems differ in their behavior when triple or higher-order collisions of particles
occur, but these events will be shown to prevail for an amount of time which is negligible in the diffusion limit). On
the other hand, when each θR

k ≡ 1, the higher particle blocks the movement of the lower one when they collide. The
resulting particle system then evolves as the well-known TASEP process (except that in TASEP collisions occur when
particles are at adjacent sites instead of at the same site).

Example 2. Suppose the particles move according to i.i.d. simple symmetric random walks until collision. That is,
ak ≡ bk ≡ 1, k ∈ [n]. Moreover, we take θL

k ≡ θR
k ≡ θ , k ∈ [n]. Thus, when a particle is involved in a collision, this

simply changes the rate of its next jump. The case θ = 2 yields the ordered system of i.i.d. random walks. When θ ≈ 0,
the particles get “sticky,” while when θ is very large, the particles can be thought of as repelling one another.

Example 3. Consider, as before, particles moving according to i.i.d. simple symmetric random walks until collision.
That is, ak ≡ bk ≡ 1, k ∈ [n]. Fix an � ∈ [n], say � = 2. Choose the θL

2 , θR
2 parameters to be much larger than the

rest of the collision parameters. Thus, whenever particle 1 or particle 3 collides with particle 2, the latter will almost
immediately move away. Hence, particle 2 will remain invisible to its neighbors.

Now, consider the triple collisions of particles 1, 2 and 3. Note that, with θL
2 and θR

2 being very large, such triple
collisions will happen for about the same duration of time as collisions between particle 1 and particle 3 in the
particle system obtained by removing particle 2. In other words, if one removes particle 2, this should not influence
the behavior of the other particles in a significant way.

Example 4. We let the particles evolve according to i.i.d. standard Poisson processes until collision, as in Example 1.
However, now we set θR

2 ≡ 0, with all other collision parameters being positive. Then particle 2 and particle 3 freeze
forever the first time they collide. Thereafter, particle 1 moves as a standard Poisson process independently from the
rest of the particle system, while particles 4,5, . . . , n eventually all coalesce at the site of particle 2.

Physical heuristics: To develop a feel for these processes, let us discuss briefly the mechanics involved in these
collisions. In classical models of collision (see [15]), the particles behave as hard billiard balls of infinitesimally small
radius. This models elastic collision which we now explain.



340 I. Karatzas, S. Pal and M. Shkolnikov

Suppose two particles collide on the line. Particle 1, on the right, has mass m1 and velocity u1 right before the
collision. Particle 2, coming from the left, has mass m2 and velocity u2. In elastic collisions the momentum and the
kinetic energy are preserved before and after the collision. These two preserved quantities uniquely determine the
velocities v1 and v2 of the two particles right after the collision, i.e.,

v1 = u1(m1 − m2) + 2m2u2

m1 + m2
, v2 = u2(m2 − m1) + 2m1u1

m1 + m2
.

Consider again our jump processes. We follow the heuristics of [15] and assume that particles jump together at
discrete times. A similar but slightly more lengthy analysis can be done for continuous time, when we let one particle
stay still and get hit by the other particle. We consider the Einsteinian viewpoint, that the n particles are bombarded
on all sides by other small particles which lead to their random motions. Suppose particles k and k + 1 are adjacent
and are of masses m1 and m2 respectively. We will think of the rate of jumps as the speed in the appropriate direction.

In the next small time interval, these two particles either do not collide, and move away from one another at velocity
ak and −bk+1 respectively; or they collide, and u1 = −bk , u2 = ak+1. Thus, if the collision is elastic, we will observe
that the velocity (total jump rate to the right) for particle k is

δk := ak + −bk(m1 − m2) + 2m2ak+1

m1 + m2
,

and the total jump rate to the left for particle (k + 1) is

δk+1 := −bk+1 + ak+1(m2 − m1) − 2m1bk

m1 + m2
.

Clearly, unless we impose specific constraints on the parameters, these are not equal to θR
k ak and −θL

k+1bk+1, respec-
tively. Hence, these collisions are not elastic in general.

Certain special cases are worth mentioning. Suppose all masses are equal to one. Then, under elastic collision,
δk = ak + ak+1 and δk+1 = −bk − bk+1. This is the case when particles exchange velocities and can be thought of, via
relabeling, as crossing over. A specific choice of θR

k and θL
k+1 would capture this scenario as in the case of θR

k = 2 in
Example 1 and θ = 2 in Example 2 above.

On the other hand, suppose that all ak and bk are equal to 1. Then, under elastic collision, θR
k = δk = 4m2/(m1 +

m2) and θL
k+1 = δk+1 = 4m1/(m1 +m2). In particular, if one of the quantities θR

k +θL
k+1, k = 1, . . . , n−1 is greater (or

less) than 4, the mechanics generates excess energy (or absorbs energy) that cannot be explained by elastic collision.
Under suitable assumptions on the parameters of the model, we establish in Theorem 11 diffusion limits similar

to (1.1) for these particle systems. There is an apparent paradox here. Consider that diffusion limit for ak ≡ bk ≡ 1,
k ∈ [n]; somewhat surprisingly, the limit turns out to depend only on the ratio θR

k /θL
k+1. In other words, the diffusion

limit is the same whether θR
k + θL

k+1 is equal to 4 or not. The collisions among the limiting diffusion particles are
always elastic, and the quantities q−

k ’s and q+
k ’s can be thought of as the proportions of total mass shared by the

colliding particles. This is a consequence of the fact that the occupation time of collisions has Lebesgue measure zero
in the limit, as will be made clear in the proof.

To get a true inelastic limit, one has to let θR
k , θL

k go to zero suitably in the diffusion scaling. Such a regime has
been studied in [28], in which case one obtains sticky colliding Brownian particles in the limit.

3.1. The modified Skorokhod problem

We start with a set of parameters: a, b, (λL
k , σL

k , θL
k , k ∈ [n]), (λR

k , σR
k , θR

k , k ∈ [n]). At this point we only assume that
σL

k , σR
k are stricly positive and θL

k , θR
k are nonnegative for every k.

Taking a diffusion limit requires considering a sequence of interacting jump processes as described above. We
shall generalize the setup by allowing nonexponential waiting times for the jumps. Let the sequence of interacting
jump processes be indexed by N > 0. We fix a value of N and a probability space rich enough to support mutually
independent sequences of i.i.d. random variables (uL

k (i), i ∈ N), k ∈ [n] and (uR
k (i), i ∈ N), k ∈ [n], all taking only
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positive values. These random variables denote the inter-jump times of the particles (the superscripts “L” and “R”
standing for leftward and rightward jumps, respectively). Assume that, for any fixed k ∈ [n],

E
[
uL

k (1)
]= (b + λL

k√
N

)−1

, Var
[
uL

k (1)
]= (σL

k

)2
,

(3.1)

E
[
uR

k (1)
]= (a + λR

k√
N

)−1

, Var
[
uR

k (1)
]= (σR

k

)2
.

Next, we define the corresponding partial sum processes

UL
k (0) = 0, UL

k (j) =
j∑

i=1

uL
k (i), j ∈ N, k ∈ [n],

UR
k (0) = 0, UR

k (j) =
j∑

i=1

uR
k (i), j ∈N, k ∈ [n],

and the corresponding renewal processes

SL
k (t) = max

{
j ≥ 0: UL

k (j) ≤ t
}
, t ≥ 0, k ∈ [n],

SR
k (t) = max

{
j ≥ 0: UR

k (j) ≤ t
}
, t ≥ 0, k ∈ [n].

Finally, we denote by (Ft , t ≥ 0) the filtration generated by the processes SL
k (·), SR

k (·), k ∈ [n]. Informally, for each
k ∈ [n], the process SL

k (·) (resp., SR
k (·)) records the leftward (respectively, rightward) jumps of the kth particle from

the right, as long as this particle is not involved in a collision.
To describe the effect of collisions we shall use a stochastic time change. The following lemma encapsulates the

idea that the leftward (respectively, rightward) movement for particle k can either be blocked, or proceed at a different
rate, depending on whether there is a collision with particle (k + 1) (resp., with particle (k − 1)). Such results are
standard in the Queueing Theory literature (e.g., Section 2 in the seminal article [29] by Reiman), so we omit the
proof.

Lemma 6. For every N ∈N, and any (γ1, γ2, . . . , γn) ∈Hn, there exists a system of jump processes Γ (·) ≡ (Γk(·), k ∈
[n]) taking values in Hn and progressively measurable with respect to (Ft , t ≥ 0), that satisfies the following set of
equations pathwise:

Γk(t) = γk − SL
k

(
T L

k (t)
)+ SR

k

(
T R

k (t)
)
, where

T L
k (t) =

∫ t

0
1{Qk−1(s)>0} dTk(s) + θL

k

∫ t

0
1{Qk−1(s)=0} dTk(s), and (3.2)

T R
k (t) =

∫ t

0
1{Qk(s)>0} dTk−1(s) + θR

k

∫ t

0
1{Qk(s)=0} dTk−1(s),

k ∈ [n]. We have denoted here by

Q(·) ≡ (Qk(·), k ∈ [n − 1])≡ (Γk(·) − Γk+1(·), k ∈ [n − 1]) (3.3)

the process of gaps, and have set

Tk(t) =
∫ t

0
1{Qk(s)>0} ds, k = 0,1, . . . , n,

with the convention 1{Q0(·)>0} ≡ 1{Qn(·)>0} ≡ 1.
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It should be noted that, although we have suppressed the index N from the notation in the lemma above, this
parameter determines the drifts of the coördinate processes. The key to passing to the scaling limit is to understand
the time-changes involved. Our strategy is the following: (i) express the process of gaps as a Skorokhod map applied
to a suitable “noise process”; (ii) show that the sequence of distributions of gaps is tight; (iii) and finally, show that
tightness implies the convergence of the appropriately rescaled process Γ (·) to a semimartingale of the type described
in (1.1).

We start by analyzing the process of gaps. To this end, we define the centered processes

S
L

k (t) = SL
k (t) − bt, t ≥ 0, S

R

k (t) = SR
k (t) − at, t ≥ 0

for all k ∈ [n]. We define also the following processes, which measure the time spent in the various collisions:

Ik(t) := t − Tk(t), t ≥ 0, k = 0,1, . . . , n,

Ik,k+1(t) :=
∫ t

0
1{Qk(s)=Qk+1(s)=0} ds, k = 0,1, . . . , n − 1.

With this notation, the gaps can be written as

Qk(t) = γk − γk+1 − SL
k

(
T L

k (t)
)+ SR

k

(
T R

k (t)
)+ SL

k+1

(
T L

k+1(t)
)− SR

k+1

(
T R

k+1(t)
)

= γk − γk+1 − S
L

k

(
T L

k (t)
)+ S

R

k

(
T R

k (t)
)+ S

L

k+1

(
T L

k+1(t)
)− S

R

k+1

(
T R

k+1(t)
)

− b
(
T L

k (t) − T L
k+1(t)

)+ a
(
T R

k (t) − T R
k+1(t)

)
, k ∈ [n − 1].

Moreover, for all k ∈ [n] we have

T L
k (t) = Tk(t) + (θL

k − 1
)∫ t

0
1{Qk−1(s)=0,Qk(s)>0} ds

= t − Ik(t) + (θL
k − 1
)(

Ik−1(t) −
∫ t

0
1{Qk−1(s)=Qk(s)=0} ds

)
= t − Ik(t) + (θL

k − 1
)
Ik−1(t) − (θL

k − 1
)
Ik−1,k(t), t ≥ 0 (3.4)

and

T R
k (t) = t − Ik−1(t) + (θR

k − 1
)
Ik(t) − (θR

k − 1
)
Ik−1,k(t), t ≥ 0. (3.5)

Next, we introduce the process X(·) ≡ (Xk(·), k ∈ [n − 1]) via

Xk(·) := −S
L

k

(
T L

k (·))+ S
R

k

(
T R

k (·))+ S
L

k+1

(
T L

k+1(·)
)− S

R

k+1

(
T R

k+1(·)
);

this will play the rôle of “noise process,” to which a Skorokhod map will be applied to obtain the process of gaps
Q(·) ≡ (Qk(·), k ∈ [n − 1]).

Combining everything so far, we obtain the representation for these gaps

Qk(t) = γk − γk+1 + Xk(t) − b
(
Ik+1(t) − Ik(t)

)− b
(
θL
k − 1
)
Ik−1(t) + b

(
θL
k − 1
)
Ik−1,k(t)

+ b
(
θL
k+1 − 1

)
Ik(t) − b

(
θL
k+1 − 1

)
Ik,k+1(t)

+ a
(
Ik(t) − Ik−1(t)

)+ a
(
θR
k − 1
)
Ik(t) − a

(
θR
k − 1
)
Ik−1,k(t)

− a
(
θR
k+1 − 1

)
Ik+1(t) + a

(
θR
k+1 − 1

)
Ik,k+1(t), k ∈ [n]. (3.6)

Now, it is very convenient to write this equation in a more transparent, matrix–vector notation, so we introduce
suitable “reflection matrices.” Let R be the (n − 1) × (n − 1) matrix such that, for every k ∈ [n − 1], all entries in the
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kth row of R are zero, except the (k − 1)st, the kth and the (k + 1)st. These are given by

Rk,k−1 = −a + b(θL
k − 1)

aθR
k−1 + bθL

k

, Rk,k = 1, Rk,k+1 = −b + a(θR
k+1 − 1)

aθR
k+1 + bθL

k+2

. (3.7)

Note that the columns of the matrix In−1 − R add up to one. Similarly, define the (n − 1) × (n − 2) matrix R̃ such
that, for each k ∈ [n − 1], all entries in the kth row of R̃ are zero, except for the (k − 1)st and the kth, which are given
as

R̃k,k−1 = −a
(
θR
k − 1
)+ b
(
θL
k − 1
)
, R̃k,k = a

(
θR
k+1 − 1

)− b
(
θL
k+1 − 1

)
. (3.8)

Finally, we introduce the stochastic processes

Yk(·) ≡ (aθR
k + bθL

k+1

)
Ik(·), k ∈ [n − 1], Ỹk(·) ≡ Ik,k+1(·), k ∈ [n − 2]. (3.9)

With this notation, we have the following cleaner matrix–vector analogue of (3.6):

Q(·) = Q(0) + X(·) +RY(·) + R̃Ỹ(·). (3.10)

We shall refer to this equation as the modified Skorokhod representation for the gap processes in (3.3).

3.2. The diffusion limit

To be able to pass to the diffusion limit, we make the following assumptions on the parameters.

Assumption 1. Assume that a > 0, b > 0,

(i) the entries of R satisfy

a + b(θL
k − 1)

aθR
k−1 + bθL

k

∈ (0,∞),
b + a(θR

k+1 − 1)

aθR
k+1 + bθL

k+2

∈ (0,∞), k ∈ [n − 1];

(ii) there is a k0 ∈ [n + 1] such that the numbers a(θR
k − 1) − b(θL

k − 1), k ∈ [n] are nonpositive for all k < k0 and
nonnegative for all k ≥ k0;

(iii) for some ε > 0, we have

sup
N∈N

max
k∈[n]
(
E
[
uL

k (1)2+ε
]+E
[
uR

k (1)2+ε
])

< ∞.

Part (i) of the assumption ensures that R is a reflection matrix of Harrison–Reiman type; part (ii) turns out to be an
appropriate compatibility condition on the matrices R and R̃ under which the contribution of triple and higher-order
collisions becomes negligible in the diffusion limit; finally, part (iii) is a standard moment assumption which ensures
that the random walks driving the particles converge to Brownian motions in the diffusion limit. A simple case, in
which parts (i) and (ii) of Assumption 1 are satisfied, is given by θL

k = θR
k ≥ 1, k ∈ [n].

For each m ∈ N, we write Dm[0,∞) for the space of right-continuous Rm-valued functions on [0,∞) having left
limits, endowed with the topology of uniform convergence on compact sets. On the strength of part (iii) of the above
assumption, the following result follows from Theorem 14.6 in [6] (note that one can improve the topology in the
conclusion of Lemma 7 to the locally uniform topology, by noting the path continuity of the limit process, modifying
the paths of the jump processes to continuous, piecewise linear functions, and using the fact that the Skorokhod
topology relativized to the space of continuous functions coincides with the locally uniform topology there).

Lemma 7. The distribution of the process(
1√
N

S
L

k (Nt), t ≥ 0,
1√
N

S
R

k (Nt), t ≥ 0, k ∈ [n]
)

converges weakly in D2n[0,∞) to the law of the vector of independent processes (ZL
k (·),ZR

k (·), k ∈ [n]).
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Here, for each k ∈ [n], ZL
k (·) is a Brownian motion with drift coëfficient λL

k and diffusion coëfficient b3/2σL
k , while

ZR
k (·) is a Brownian motion with drift coëfficient λR

k and diffusion coëfficient a3/2σR
k .

Next, we introduce the rescaled versions of the gap process by

QN(·) ≡ (QN
k (·), k ∈ [n − 1])≡ ( 1√

N
Qk(Nt), t ≥ 0, k ∈ [n − 1]

)
and define YN(·), ỸN(·) accordingly. Then,

QN(·) = QN(0) + X
N

(·) +RYN(·) + R̃ỸN(·), (3.11)

where

X
N

k (t) ≡ −1√
N

[
S

L

k

(
T L

k (Nt)
)− S

R

k

(
T R

k (Nt)
)− S

L

k+1

(
T L

k+1(Nt)
)+ S

R

k+1

(
T R

k+1(Nt)
)]

, (3.12)

t ≥ 0, k ∈ [n − 1]. We can state now our main limit theorem for the process of gaps.

Theorem 8. Suppose Assumption 1 holds, and that limN→∞ QN(0) = ξ(0) in distribution for some random vector
ξ(0). Let ξ(·) be a reflected Brownian motion in (R+)n−1 with initial condition ξ(0), drift vector

b = (−λL
k + λR

k + λL
k+1 − λR

k+1, k ∈ [n − 1]), (3.13)

diffusion matrix A = (Ak,�)1≤k,�≤n−1 given by

Ak,l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−a3(σR

k+1)
2 − b3(σL

k+1)
2 if � = k + 1, k ∈ [n − 2],

−a3(σR
k )2 − b3(σL

k )2 if � = k − 1, � ∈ [n − 2],
a3(σR

k )2 + a3(σR
k+1)

2 + b3(σL
k )2 + b3(σL

k+1)
2 if k = � ∈ [n − 1],

0 otherwise,

(3.14)

and reflection matrix R as in (3.7).
Then, the processes QN(·), N > 0 converge in distribution to ξ(·), as N → ∞, in Dn−1[0,∞). Moreover, the

processes(
YN

k (·), k ∈ [n − 1])= ((aθR
k + bθL

k

)∫ ·

0
1{QN

k (s)=0} ds, k ∈ [n − 1]
)

(3.15)

converge in distribution in Dn−1[0,∞) to the process of local times accumulated by ξ(·) on the respective faces of
the orthant (R+)n−1, and the processes(

ỸN
k (·), k ∈ [n − 2])= (∫ ·

0
1{QN

k (s)=QN
k+1(s)=0} ds, k ∈ [n − 2]

)
(3.16)

tend to zero in distribution in Dn−2[0,∞).

We remark at this point that the limit process can be viewed as the process of gaps for a semimartingale as in (1.1)
upon the appropriate identification of parameters (see Theorem 11 below for the details).

The proof of Theorem 8 relies heavily on an extension of the invariance principle of Williams [36], which we
introduce and prove in the following subsection.

3.3. Oscillation estimates for modified Skorokhod maps

In this subsection, we consider families (QN(·),XN
(·),YN(·), ỸN(·)), N > 0 of processes with right-continuous

paths having left limits, which satisfy the following properties. The processes QN(·), N > 0 take values in the orthant
(R+)n−1; the components of the processes YN(·), N > 0 and ỸN(·), N > 0 are nondecreasing and start at 0; the
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modified Skorokhod representation

QN(·) = X
N

(·) +RYN(·) + R̃ỸN(·) (3.17)

holds for each N > 0, where R and R̃ are as in (3.7) and (3.8), respectively; and the following are true for a suitable
constant c < ∞:∫ ∞

0
1{QN

k (s)>0} dYN
k (s) = 0, k ∈ [n − 1], (3.18)∫ ∞

0
(1{QN

k (s)>0} + 1{QN
k+1(s)>0})dỸN

k (s) = 0, k ∈ [n − 2], (3.19)

∀0 ≤ s < t : ỸN
k (t) − ỸN

k (s) ≤ c min
(
YN

k (t) −YN
k (s),YN

k+1(t) −YN
k+1(s)

)
. (3.20)

In this situation, we have the following extension of the invariance principle of [36].

Proposition 9. Under parts (i) and (ii) of Assumption 1, suppose that the initial conditions QN(0) = XN(0), N > 0
converge in distribution to a random vector ξ(0). Then:

(a) If the family of processes X
N

(·), N > 0 is tight on Dn−1[0,∞), then the same is true for (QN(·),XN
(·),YN(·),

ỸN(·)), N > 0 on D4n−5[0,∞).
(b) In the situation of part (a), any limit point (Q∞(·),X∞

(·),Y∞(·), Ỹ∞(·)) with continuous paths satisfies

(i) Q∞(t) = X
∞

(t) +RY∞(t) + R̃Ỹ∞(t) ∈ (R+)n−1, t ≥ 0.
(ii) The components of Y∞(·) and Ỹ∞(·) are nondecreasing, and satisfy Y∞(0) = 0, Ỹ∞(0) = 0 with proba-

bility 1.
(iii) The following two identities hold with probability 1:∫ ∞

0
1{Q∞

k (s)>0} dY∞
k (s) = 0, k ∈ [n − 1], (3.21)∫ ∞

0
(1{Q∞

k (s)>0} + 1{Q∞
k+1(s)>0})dỸ∞

k (s) = 0, k ∈ [n − 2]. (3.22)

The proof will follow the ideas in [36], with additional complications caused by the last summand on the right-hand
side of (3.17). As there, for any m ∈ N and any function f ∈ Dm[0,∞), we introduce the notation

Osct2
t1
(f ) := sup

t1≤s<t≤t2

max
1≤k≤m

∣∣fk(t) − fk(s)
∣∣. (3.23)

The proof of Proposition 9 is based on the following lemma.

Lemma 10. Suppose that the functions q(·), x(·),y(·) ∈ Dn−1[0,∞), ỹ(·) ∈ Dn−2[0,∞) fulfill the analogue

q(·) = x(·) +Ry(·) + R̃ỹ(·) (3.24)

of (3.17). Moreover, suppose that the function q(·) takes values in (R+)n−1, y(0) = 0, ỹ(0) = 0, all components of
y(·), ỹ(·) are nondecreasing and with a suitable constant c < ∞∫ ∞

0
1{qk(s)>0} dyk(s) = 0, k ∈ [n − 1], (3.25)∫ ∞

0
(1{qk(s)>0} + 1{qk+1(s)>0}) d̃yk(s) = 0, k ∈ [n − 2], (3.26)

∀0 ≤ s < t : ỹk(t) − ỹk(s) ≤ c min
(
yk(t) − yk(s),yk+1(t) − yk+1(s)

)
. (3.27)
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Then, there is a constant C ∈ (0,∞) depending only on R, R̃ and c (but not on the particular functions q(·), x(·),
y(·), ỹ(·)) such that

∀0 ≤ t1 < t2: Osct2
t1
(q) + Osct2

t1
(y) + Osct2

t1
(̃y) ≤ C Osct2

t1
(x). (3.28)

Proof. We proceed by induction over the dimension n ≥ 2. For n = 2, the lemma is a direct consequence of Theo-
rem 5.1 in [36], since ỹ(·) ≡ 0 in this case. From now on, we take n ≥ 3 and assume that the lemma holds for all
ν = 2, . . . , n − 1. Consider first the case that there exists a k ∈ [n − 1] such that yk(t2) = yk(t1). Then, (3.27) shows
that ỹk(t2) = ỹk(t1) and ỹk−1(t2) = ỹk−1(t1). This allows to reduce the dimension of the problem by one and to apply
the induction hypothesis to obtain (3.28) (we refer the reader to pp. 15 and 16 in [36] for a detailed version of such a
dimension reduction argument).

We now claim the existence of a vector λ = (λ1, . . . , λn) ∈ (R+)n−1 such that (λ′R)k ≥ 1 and (λ′R̃)k ≥ 0 for all
k ∈ [n − 1], where λ′ stands for the transpose of λ. Noting that the off-diagonal elements in every column of R are
negative and add up to −1 (see Assumption 1(i)), and that the entries of each column of R̃ add up to 0 and satisfy
Assumption 1(ii), we see that we may choose λ1, λ2, . . . , λn−1 as f (a1), f (a2), . . . , f (an−1) for appropriate numbers
0 = a1 < a2 < · · · < an−1 < 1 and an appropriate strictly concave function f : [0,1] → (0,∞). The latter argument
is the main difference between the proof of Lemma 10 and the proof of the oscillation inequality in [36] and is due to
the presence of an additional reflection term in (3.24).

From this point one can proceed as in the proof of Theorem 5.1 in [36]. For the convenience of the reader, we give
a summary of the argument here. We fix a λ as described above, subtract equation (3.24) at t1 from equation (3.24) at
t2 and use the two inequalities λ satisfies to conclude

∀0 ≤ t1 < t2: Osct2
t1
(y) ≤ λ′(q(t2) − q(t1)

)+(n−1∑
k=1

λk

)
Osct2

t1
(x). (3.29)

We refer to the derivation of the inequality (18) in [36] for a more detailed explanation of this step. Next, equating the
oscillations of the functions on both sides of (3.24) and bounding the oscillation of the right-hand side of (3.24) from
above by using (3.29) and (3.27), we find a constant C < ∞ such that

∀0 ≤ t1 < t2: Osct2
t1
(q) ≤ C

(
Osct2

t1
(x) + max

k∈[n−1]
qk(t2)
)
. (3.30)

Please see the derivation of the estimate (20) in [36] for more details on this step.
Now, we fix 0 ≤ t1 < t2 and let 0 < K < ∞ be a constant, whose value will be determined later. We distinguish

between two cases:

(a) qk(t1) > K Osct2
t1
(x) for some k ∈ [n − 1].

(b) qk(t1) ≤ K Osct2
t1
(x) for all k ∈ [n − 1].

In case (a), let τ be the first time t ∈ [t1, t2] that qk(t) = 0 and set τ = ∞ if the latter event does not occur. If τ = ∞,
then (3.28) holds by the argument in the first paragraph of this proof as a consequence of the induction hypothesis.
Now, suppose that τ �= ∞. Then, the same argument based on the induction hypothesis shows that

Oscτ
t1
(q) ≤ C Oscτ

t1
(x), (3.31)

where we have increased the value of C < ∞ if necessary. Next, let C < K < ∞. Since we are in case (a), we have

qk(τ ) ≥ qk(t1) − Oscτ
t1
(q) ≥ (K − C)Oscτ

t1
(x) > 0, (3.32)

which is a contradiction to τ �= ∞.
In case (b), we distinguish two possibilities:

(i) qk(t) ≤ K Osct2
t1
(x) for all k ∈ [n − 1] and t ∈ [t1, t2].

(ii) qk(t) > K Osct2
t1
(x) for some k ∈ [n − 1] and t ∈ [t1, t2].
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In case (i), the inequality (3.28) follows from

Osct2
t1
(q) ≤ sup

t1≤t≤t2

max
k∈[n−1]

qk(t), (3.33)

(3.29) and (3.27). In case (ii), we let τ be the first time t ∈ [t1, t2] such that qk(t) > K Osct2
t1
(x) for some k ∈ [n − 1].

Then, we split the time interval [t1, t2] into [t1, τ ] and [τ, t2], and argue as in case (i) on [t1, τ ] and as in case (a) on
[τ, t2]. �

Proof of Proposition 9. First, we claim that part (a) of Proposition 9 is a consequence of the inequality (3.28) in
Lemma 10. Indeed, the necessary and sufficient conditions (a) and (b) of Corollary 3.7.4 in [8] hold for any subse-

quence of X
N

(·), N > 0, and carry over to the same subsequence of (QN(·),XN
(·),YN(·), ỸN(·)), N > 0 via the

inequality (3.28). For more details on the same argument, please see the proof of Theorem 4.1 in [36].
Now, we turn to the proof of part (b) of Proposition 9 and let (Q∞(·),X∞

(·),Y∞(·), Ỹ∞(·)) be a limit point as
there. The properties (i) and (ii) for it can be seen by using the Skorokhod Representation Theorem in the form of

Theorem 3.1.8 in [8] (noting the path continuity of the limit) for the subsequence of (QN(·),XN
(·),YN(·), ỸN(·)),

N > 0, which converges to that limit point, and taking the almost sure limit on both sides of the identity (3.17) through
this particular subsequence. To deduce property (iii), we let g : [0,∞) → [0,1] be a continuous function such that,
for some δ > 0, are here g(a) = 0 whenever 0 ≤ a ≤ δ, and g(a) = 1 whenever a ≥ 2δ. By arguing as in the second
half of the proof of Theorem 4.1 in [36], we conclude that the quantities∫ ∞

0
g
(
QN

k (s)
)

dYN
k (s) = 0, k ∈ [n − 1], (3.34)∫ ∞

0
g
(
QN

k (s)
)+ g
(
QN

k+1(s)
)

dỸN
k (s) = 0, k ∈ [n − 2] (3.35)

converge to the quantities∫ ∞

0
g
(
Q∞

k (s)
)

dY∞
k (s), k ∈ [n − 1], (3.36)∫ ∞

0
g
(
Q∞

k (s)
)+ g
(
Q∞

k+1(s)
)

dỸ∞
k (s), k ∈ [n − 2] (3.37)

when we pass to the limit through the same subsequence as before. Now, letting δ ↓ 0, we obtain the property (iii). �

We are now ready for the proof of Theorem 8.

Proof of Theorem 8. Step 1. Consider the family of processes X
N

(·), N > 0 in (3.12). The family of processes

( 1√
N

S
L

k (Nt), t ≥ 0, 1√
N

S
R

k (Nt), t ≥ 0, k ∈ [n]), N > 0, without the time change, is tight by Lemma 7. Moreover, the
time-changes in (3.12) are Lipschitz functions of time. That is, there exists a constant Θ < ∞ such that

∀0 ≤ s < t : max
(
T L

k (t) − T L
k (s), T R

k (t) − T R
k (s)
)≤ Θ(t − s), k ∈ [n].

Hence, using the necessary and sufficient conditions for tightness of Corollary 3.7.4 in [8], the tightness of X
N

(·),
N > 0 is easily verified. However, we still have to identify the limit points.

Step 2. At this stage, we can use Proposition 9 to conclude that the family (QN(·),XN
(·),YN(·), ỸN(·)), N > 0

is tight. Recall now that, for any N > 0, the processes YN(·) and ỸN(·) can be expressed, as in (3.9), in terms of
the times that the particles spend in collisions. The tightness of YN(·), N > 0 and ỸN(·), N > 0 now shows that the
processes

1

N
Ik(Nt), t ≥ 0, k ∈ [n − 1], 1

N
Ik,k+1(Nt), t ≥ 0, k ∈ [n − 2] (3.38)
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all tend to zero in D[0,∞).
Step 3. Putting together the conclusion of Step 2, (3.4) and (3.5), we conclude that each of the processes

1

N
T L

k (Nt), t ≥ 0, k ∈ [n], 1

N
T R

k (Nt), t ≥ 0, k ∈ [n]

converge to the process t , t ≥ 0 in D[0,∞). With the help of the lemma on p. 151 in [6], preceding Theorem 14.4, we
deduce that the joint distributions of(

1√
N

S
L

k

(
T L

k (Nt)
)
, t ≥ 0,

1√
N

S
R

k

(
T R

k (Nt)
)
, t ≥ 0, k ∈ [n]

)
,

now with the time-change, converge on D2n[0,∞) to the limiting distribution described in Lemma 7 (note that we
can improve the topology used in [6] to the topology of uniform convergence on compacts by observing the path
continuity of the limit process, modifying the paths of the jump processes to continuous, piecewise linear paths and
using the fact that the Skorokhod topology relativized to the space of continuous functions coincides with the locally
uniform topology there).

Step 4. Step 3 implies that, in the limit N → ∞, the processes X
N

(·), N > 0 converge vaguely in Dn−1[0,∞) to
a multidimensional Brownian motion with drift and diffusion coëfficients as described in Theorem 8. To conclude the
proof, we note that every limit point (Q∞(·),X∞

(·),Y∞(·), Ỹ∞(·)) of the collection (QN(·),XN
(·),YN(·), ỸN(·)),

N > 0 has continuous paths by (3.28) and the fact that the processes X
N

(·), N > 0 converge to a process with
continuous paths. Thus, by part (b) of Proposition 9, every such limit point satisfies the properties (i), (ii), (iii) there,
with X

∞
(·) being the multidimensional Brownian motion just described. Lastly, by Lemma 1, we can identify Q∞(·)

with ξ(·), Y∞(·) with the boundary local times of ξ(·), and deduce that Ỹ∞(·) ≡ 0. This completes the proof. �

Finally, we consider the limit of the entire collection of jump processes (Γk(·), k ∈ [n]) (we refer the reader to the
expression (3.2)). Let Γ N(·) denote the vector of centered and scaled jump processes given, for every k ∈ [n], by

Γ N
k (t) := 1√

N
Γk(0) + 1√

N

[
SR

k

(
T R

k (Nt)
)− SL

k

(
T L

k (Nt)
)]− (a − b)t

√
N, t ≥ 0.

Theorem 11. Suppose that Assumption 1 holds and that

lim
N→∞N−1/2Γk(0) = R(0) ∈ W

n

in distribution. Further, let R(·) = (R1(·),R2(·), . . . ,Rn(·)) denote the continuous n-dimensional semimartingale
taking values in W

n and satisfying

Rk(t) = Rk(0) + (λR
k − λL

k

)
t + (a3(σR

k

)2 + b3(σL
k

)2)1/2
βk(t)

+ a(θR
k − 1) + b

aθR
k + bθL

k+1

Λ(k,k+1)(t) − b(θL
k − 1) + a

aθR
k−1 + bθL

k

Λ(k−1,k)(t), 0 ≤ t < ∞,

k ∈ [n] with the same notation as in (1.1), (1.3).
Then the processes Γ N(·), N > 0 converge in Dn[0,∞) to the process R(·) described above in the limit N → ∞.

Proof. The main observation is that, for any fixed N > 0, we have

Γ N
k (t) = 1√

N
Γk(0) + 1√

N

[
S

R

k

(
T R

k (Nt)
)− S

L

k

(
T L

k (Nt)
)]

+ a(θR
k − 1) + b

aθR
k + bθL

k+1

YN
k (t) − b(θL

k − 1) + a

aθR
k−1 + bθL

k

YN
k−1(t)

+ (−a
(
θR
k − 1
)+ b
(
θL
k − 1
))
ỸN

k−1(t), t ≥ 0, (3.39)
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k ∈ [n]. The same steps as in the proof of Theorem 8 now show that the processes in the first line of (3.39) converge
jointly, in distribution, to the components of a multidimensional Brownian motion with drift and diffusion coëfficients
as in the statement of this theorem, the process YN(·) converges to the process of boundary local times of a reflected
Brownian motion as in Theorem 8, whereas the process ỸN(·) converges to zero. Therefore, the processes Γ N(·),
N > 0 must also converge in distribution, and one can identify the limit of the “noise part” with the appropriate
multidimensional Brownian motion and the limit of the “local time part” with the local time part in the decomposition
of the process R(·) in the statement of the theorem. This completes the argument. �

4. Additional determinantal structures

This last section studies conditions on the parameters b1, b2, . . . , bn, σ1, σ2, . . . , σn and q±
1 , q±

2 , . . . , q±
n , under which

the process R(·) = (R1(·),R2(·), . . . ,Rn(·)) of ranks as in (1.1), (1.3) has a probabilistic structure of determinantal
type, in the sense that its transition densities are of the generalized Karlin–McGregor form

p(t, r, r̃) =
∑
σ∈Sn

κσ

n∏
k=1

f k,σ (k)(t, r̃σ (k) − rk). (4.1)

Here Sn is the group of permutations of a set with n elements, whereas κσ , σ ∈ Sn and f k,�, 1 ≤ k, � ≤ n are suitable
nonzero real numbers and not identically vanishing functions, respectively.

For the purposes of this section, we extend the framework of Section 1.1 by allowing the collision parameters
q±

1 , q±
2 , . . . , q±

n to take values in [0,1], albeit insisting on the condition (1.2) and assuming that, if q+
k = 1 holds

for some k = 2,3, . . . , n − 1, then q−
� < 1 for all � ≥ k. The latter assumption means that there is no subsystem

of consecutive particles such that its rightmost particle receives a push to the left with collision parameter 1 and
its leftmost particle receives a push to the right with collision parameter 1. This prevents the process from getting
stuck in a situation, where the particles of such a subsystem collide simultaneously with each other and with the
right- and left-neighbors of the subsystem. In fact, the process would cease to exist beyond such an event, since the
reflected Brownian motion comprised by the spacings corresponding to such a collision would violate the completely-
S condition, and would therefore be unable to re-enter the orthant once it hits the corner.

We claim that, in this more general framework, a weak solution to (1.1), (1.3) continues to exist and be unique
in distribution. This is a consequence of Theorem 1.3 in [7], which asserts the weak existence and uniqueness in
distribution for semimartingale reflecting Brownian motions in polyhedral domains. Indeed, the polyhedral domain of
interest to us here is the Weyl chamber Wn; it has (n − 1) faces with normal vectors given by the rows of the matrix

N =
⎛⎜⎝

1 −1 0 0 0
0 1 −1 0 0
0

. . .
. . .

. . .
. . .

0 0 0 1 −1

⎞⎟⎠ ; (4.2)

and the directions of reflection in our case are given by the columns of the matrix

R =

⎛⎜⎜⎜⎜⎝
q−

1 0 0 0
−q+

2 q−
2 0 0

0 −q+
3 q−

3 0

0
. . .

. . .
. . .

0 0 0 −q+
n

⎞⎟⎟⎟⎟⎠ . (4.3)

Moreover, the matrix

(NR)′ =

⎛⎜⎜⎝
1 −q+

2 0 0
−q−

2 1 −q+
3 0

0
. . .

. . .
. . .

0 0 −q−
n−1 1

⎞⎟⎟⎠ (4.4)
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is completely-S . Indeed, it is not hard to check that one can choose the vector λ in the definition of the completely-
S property as (f (x1), f (x2), . . . , f (xn−1)) for a suitable concave function f and points x1, x2, . . . , xn−1, and then
perform a similar construction for all principal submatrices of (NR)′. Since the completely-S property is preserved
under transposition (see Lemma 3 in [30]), the matrix NR is completely-S as well. Consequently, Theorem 1.3 in [7]
applies and guarantees the weak existence and uniqueness in distribution for a reflected Brownian motion in the Weyl
chamber corresponding to (1.1). Finally, the identification (1.3) of the regulating processes as local time processes
can be carried out as in Section 2.1, after noting that the vector of differences of consecutive coordinates in a reflected
Brownian motion on W

n forms a reflected Brownian motion on the orthant (R+)n−1.
The question about the existence of transition densities of the generalized Karlin–McGregor form (4.1) is motivated

by the following two extreme cases:

(i) If one considers b1 = b2 = · · · = bn, σ1 = σ2 = · · · = σn and q±
1 = q±

2 = · · · = q±
n = 1/2, then the ranks evolve

as the ordered system of n Brownian motions, each with drift b1 and dispersion σ1. Therefore, in this case

p(t, r, r̃) =
∑
σ∈Sn

n∏
k=1

ϕb1,σ1(t, r̃σ (k) − rk), (4.5)

where ϕb1,σ1(t, ·) denotes the Gaussian density with mean b1t and variance σ 2
1 t .

(ii) Now, consider the case of b1 = b2 = · · · = bn = 0, σ1 = σ2 = · · · = σn = 1 and

q+
k = 1, k = 1,2, . . . , n, q−

k = 0, k = 1,2, . . . , n. (4.6)

Then, the process of ranks is given by the continuous version of the totally asymmetric simple exclusion process
(TASEP) treated in detail by Warren in Section 4 of [34]. In this case, the transition probability densities are of
the form

p(t, r, r̃) =
∑
σ∈Sn

(−1)sgn(σ )
n∏

k=1

ψk,σ (k)(t, r̃σ (k) − rk) (4.7)

for suitable functions ψk,�, 1 ≤ k, � ≤ n (see Proposition 8 in [34]) and with sgn(σ ) standing for the signum of a
permutation σ ∈ Sn.

The main result of this section is the following proposition.

Proposition 12. Suppose that the nonnegative collision parameters q±
1 , q±

2 , . . . , q±
n satisfy (1.2) and are such that, if

q+
k = 1 holds for some k = 2,3, . . . , n − 1, then q−

� < 1 for all � ≥ k. Suppose that in addition, for every ε > 0, the
transition probability densities of the process in (1.1) belong to the function space Cb((ε,∞) ×W

n ×W
n), and are

continuously differentiable in the first coördinate and twice continuously differentiable in the second coördinate with
derivatives in Cb((ε,∞) ×W

n ×W
n).

Then these transition densities are given by (4.1) with suitable nonzero constants κσ , σ ∈ Sn and not identically
vanishing functions fk,�, 1 ≤ k, � ≤ n, if and only if: b1 = b2 = · · · = bn, σ1 = σ2 = · · · = σn and either

(i) for all k = 1,2, . . . , n − 1 one has q−
k = q+

k+1 = 1/2, or
(ii) there is a k ∈ {1,2, . . . , n} such that q−

� = 1, q+
�+1 = 0 for all � < k and q−

� = 0, q+
�+1 = 1 for all � ≥ k.

Moreover, in case (i) one may choose κσ = 1, σ ∈ Sn and f k,� = ϕb1,σ1 , 1 ≤ k, � ≤ n, and in case (ii) one may choose
κσ = sgn(σ ), σ ∈ Sn and the functions f k,�, 1 ≤ k, � ≤ n, according to the formulas (4.24)–(4.26) below.

Proof. We pick an arbitrary compactly supported continuous function g : Wn → R, an arbitrary real number T > 0,
and consider the martingale∫

Wn

p
(
T − t,R(t), r̃

)
g(̃r) d̃r =: F (T − t,R(t)

)
, 0 ≤ t ≤ T . (4.8)
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By differentiating inside the integral on the left side above, it follows that the function F(t, r) is once continuously
differentiable in the first coordinate and twice continuously differentiable in the second (the property C1,2), with
bounded derivatives continuously extending to the boundary of W

n. By the Whitney extension theorem, one can
consider F(t, r) as the restriction of a function that is C1,2 on the entire R×R

n. This allows us to use Itô’s formula
on the martingale F(T − ·,R(·)).

Thus, we apply Itô’s formula to the right-hand side of (4.8) and differentiate under the integral sign on the left. Start
the process R from an arbitrary point r in the interior of Wn. From the martingale property of the process F(·,R(·))
it follows that the transition probability kernel satisfies the heat equation

∂tp(t, r, r̃) = 1

2

n∑
k=1

σ 2
k ∂2

rk
p(t, r, r̃) +

n∑
k=1

bk∂rkp(t, r, r̃) (4.9)

in the interior of Wn.
On the other hand, if we start the process R from a point r on a boundary hyperplane of Wn, the time point 0 is in

the support of the local time measure at that boundary. This is a consequence of the Skorokhod decomposition and the
fact that the noise is Brownian. Thus, the martingale property of F(·,R(·)) for the semimartingale R satisfying (1.1)
forces the following elastic boundary condition:

q−
k ∂rkp(t, r, r̃) − q+

k+1∂rk+1p(t, r, r̃) = 0 whenever rk = rk+1, (4.10)

for t > 0, (r, r̃) ∈ (Wn)2.
Substituting the expression of (4.1) into (4.10), we deduce

q−
k

∑
σ∈Sn

κσ

∏
��=k

f �,σ (�)(t, r̃σ (�) − r�)D2f
k,σ (k)(t, r̃σ (k) − rk)

− q+
k+1

∑
σ∈Sn

κσ

∏
��=k+1

f �,σ (�)(t, r̃σ (�) − r�)D2f
k+1,σ (k+1)(t, r̃σ (k+1) − rk+1) = 0

whenever rk = rk+1. Here, D2 denotes differentiation with respect to the second argument. Plugging in rk for rk+1 in
this last expression, and grouping together functions that have the same arguments, results in

0 = q−
k κσ D2f

k,�1(t, r̃�1 − rk)f
k+1,�2(t, r̃�2 − rk)

+ q−
k κσ̃ f k+1,�1(t, r̃�1 − rk)D2f

k,�2(t, r̃�2 − rk)

− q+
k+1κσ f k,�1(t, r̃�1 − rk)D2f

k+1,�2(t, r̃�2 − rk)

− q+
k+1κσ̃ D2f

k+1,�1(t, r̃�1 − rk)f
k,�2(t, r̃�2 − rk) (4.11)

for all permutations σ , σ̃ such that σ (k) = �1, σ (k + 1) = �2 and σ̃ = (�1�2)σ . Here (�1�2) is the permutation that
transposes �1 and �2, and (�1�2)σ is the product of the two permutations in the sense of the usual group structure
on Sn.

Let us recall now (1.2), and take the Fourier transform with respect to the variables r̃�1 − rk (parameter a) and
r̃�2 − rk (parameter b), to obtain equations of the form

qκaG(t, a)H(t, b) + qκ̃K(t, a)bL(t, b)

= (1 − q)κG(t, a)bH(t, b) + (1 − q)κ̃aK(t, a)L(t, b), (4.12)

or equivalently

G(t, a)H(t, b)

(−qκa + (1 − q)κb

qκ̃b − (1 − q)κ̃a

)
= K(t, a)L(t, b). (4.13)
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The only cases in which the fraction

−qκa + (1 − q)κb

qκ̃b − (1 − q)κ̃a

can be factored as the product of a function only of a and a function only of b, are given by q = 1/2, q = 1 and q = 0.
Moreover, it follows that there exist nonzero constants ck,�, 1 ≤ k, � ≤ n such that

f k,� = ck,�f
k+1,�, � = 1,2, . . . , n whenever q−

k = 1/2, (4.14)

D2f
k,� = ck,�f

k+1,�, � = 1,2, . . . , n whenever q−
k = 1, (4.15)

f k,� = ck,�D2f
k+1,�, � = 1,2, . . . , n whenever q−

k = 0. (4.16)

Substituting these formulas into (4.11) we conclude that

κσ̃ =
⎧⎨⎩κσ

ck,�1
ck,�2

if σ̃ = (�1�2)σ , σ (k) = �1, σ (k + 1) = �2, q−
k = q+

k+1 = 1
2 ,

−κσ
ck,�1
ck,�2

if σ̃ = (�1�2)σ , σ (k) = �1, σ (k + 1) = �2, q−
k , q+

k+1 ∈ {0,1}. (4.17)

Now, suppose that there is a k such that q−
k = q+

k+1 = 1
2 and q−

k+1, q
+
k+2 ∈ {0,1} (“case (a)”), or q−

k , q+
k+1 ∈ {0,1}

and q−
k+1 = q+

k+2 = 1
2 (“case (b)”). We consider a permutation σ such that σ (k) = �1, σ (k + 1) = �2, σ (k + 2) = �3

and apply the formula (4.17) repeatedly, to obtain

κ(�1�2)(�1�3)(�2�3)σ = κσ
ck+1,�1ck,�1

ck+1,�3ck,�3

, κ(�2�3)(�1�3)(�1�2)σ = −κσ
ck,�1ck+1,�1

ck,�3ck+1,�3

(4.18)

in case (a), and

κ(�1�2)(�1�3)(�2�3)σ = −κσ
ck+1,�1ck,�1

ck+1,�3ck,�3

, κ(�2�3)(�1�3)(�1�2)σ = κσ
ck,�1ck+1,�1

ck,�3ck+1,�3

(4.19)

in case (b). In both cases (�1�2)(�1�3)(�2�3)σ = (�2�3)(�1�3)(�1�2)σ yields a contradiction to the assumption that
the constants κσ , σ ∈ Sn and ck,�, 1 ≤ k, � ≤ n are nonzero.

Next, we introduce the linear parabolic operators

Rk = ∂t − 1

2
σ 2

k ∂2
rk

− bk∂rk , k = 1,2, . . . , n (4.20)

and substitute the expression of (4.1) into (4.9), to obtain

0 =
∑
σ∈Sn

κσ

n∑
k=1

(∏
��=k

f �,σ (�)(t, r̃σ (�) − r�)

)
Rkf

k,σ (k)(t, r̃σ (k) − rk), (4.21)

which shows

Rkf
k,σ (k) = 0, k = 1,2, . . . , n,σ ∈ Sn. (4.22)

This observation and (4.14)–(4.16) imply b1 = b2 = · · · = bn and σ1 = σ2 = · · · = σn. The proof of the “only if” part
is complete.

Conversely, suppose that the conditions on the drift, dispersion and collision parameters in the proposition are
satisfied. If we are in the case

q−
k = 1/2, k = 1,2, . . . , n, (4.23)
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then we just need to argue as in point (i) preceding the statement of the proposition, in order to finish the proof. In all
other cases, we define f k,�, 1 ≤ k, � ≤ n by the formulas

f k,k = ϕb1,σ1, (4.24)

f k+1,� = D2f
k,�, whenever q−

k = 1, q+
k+1 = 0, (4.25)

f k+1,�(t, y) =
∫ y

−∞
f k,�(t, z)dz, whenever q−

k = 0, q+
k+1 = 1. (4.26)

We can express this state of affairs as follows: In order to determine the entry f k,�(t, ·) in (4.1) for � > k, we count
the number u of ones in {q−

k , . . . , q−
�−1} and the number z of zeros in {q−

k , . . . , q−
�−1}; and then compute f k,�(t, ·)

by differentiating the Gaussian probability density function ϕb1,σ1(t, ·) with respect to its second coördinate u times,
and integrating the result with respect to the second coördinate z times. The entries f k,�(t, ·) for � < k are computed
similarly. From this point on, one can argue as in the proofs of Proposition 8 and Lemma 7 in [34] to deduce that the
expression of (4.1) with these choices of f k,�, 1 ≤ k, � ≤ n and κσ = sgn(σ ), σ ∈ Sn gives the transition densities of
the process R(·). In particular, a line-by-line repetition of the proof of Lemma 7 in Section 6 of [34] shows that for
every continuous bounded function g on W

n vanishing in a neighborhood of the boundary of Wn,

lim
t→0

∫
Wn

p(t, r, r̃)g(̃r) d̃r = g(r) (4.27)

holds uniformly in r ∈W
n. �
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