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THE SHAPE OF MULTIDIMENSIONAL BRUNET–DERRIDA
PARTICLE SYSTEMS

BY NATHANAËL BERESTYCKI1 AND LEE ZHUO ZHAO

University of Cambridge

We introduce particle systems in one or more dimensions in which parti-
cles perform branching Brownian motion and the population size is kept con-
stant equal to N > 1, through the following selection mechanism: at all times
only the N fittest particles survive, while all the other particles are removed.
Fitness is measured with respect to some given score function s : Rd → R.
For some choices of the function s, it is proved that the cloud of particles trav-
els at positive speed in some possibly random direction. In the case where s

is linear, we show under some mild assumptions that the shape of the cloud
scales like logN in the direction parallel to motion but at least (logN)3/2

in the orthogonal direction. We conjecture that the exponent 3/2 is sharp. In
order to prove this, we obtain the following result of independent interest: in
one-dimensional systems, the genealogical time is greater than c(logN)3. We
discuss several open problems and explain how our results can be viewed as
a rigorous justification in our setting of empirical observations made by Burt
[Evolution 54 (2000) 337–351] in support of Weismann’s arguments for the
role of recombination in population genetics.

1. Introduction.

1.1. Main results. Let d ≥ 1 and let s :Rd �→R denote a fixed function, which
we will refer to as the score or fitness function in what follows. We consider the
following system of N particles in R

d , (X1(t), . . . ,XN(t)) defined informally by
the following two rules:

• Each particle Xi follows the trajectory of an independent Brownian motion.
• In addition, each particle undergoes binary branching at rate 1. After each

branching event, we remove from the population the particle i with minimal
score, that is, min1≤i≤n s(Xi(t)).

Note in particular that the population size stays constant (equal to N ) throughout
time. Unless otherwise specified, we will always order particles X1(t), . . . ,XN(t)

by decreasing fitness, that is, so that

(1) s
(
X1(t)

)≥ · · · ≥ s
(
XN(t)

)
with arbitrary choice in case of a tie.
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This process can be seen as a multidimensional generalisation of the model of
branching Brownian motion with selection in R introduced by Brunet, Derrida,
Mueller and Munier [10, 11]. The latter is the model which arises as a particular
case of the above description with d = 1 and s(x) = x.

The motivation for this process was the study of the effect of natural selection
on the genealogy of a population. Using nonrigorous methods, Brunet et al. made
several striking predictions, which we summarise below. Ordering the particles
from right to left [so X1(t) ≥ · · · ≥ XN(t)]:

(i) Then for fixed N , limt→∞(X1(t)/t) = limt→∞(XN(t)/t)
def= vN , almost

surely, where vN is a deterministic constant.
(ii) As N → ∞, vN = v∞−c/(logN)2 +o((logN)−2), where v∞ is the speed

of the rightmost particle in a free branching Brownian motion (or free branching
random walk if time is discrete), and c is an explicit constant.

(iii) Finally, the genealogical time scale for this population is (logN)3. More
precisely, the genealogy of an arbitrary sample of the population, resealed by
(logN)3, converges to the Bolthausen–Sznitman coalescent (see, for instance, [6]
for definitions and more discussion about this problem).

The arguments of Brunet et al. [10, 11] relied on a nonrigorous analogy with
noisy Fisher–Kolmogorov–Petrovskii–Piskounov (FKPP) equation

(2)
∂u

∂t
= 1

2

∂2u

∂x2 + u(1 − u),

and relied strongly on ideas developed earlier by Brunet and Derrida [7–9] on the
effect of noise on such an equation. For this reason, this process is sometimes
known as the Brunet–Derrida particle system. From a rigorous point of view,
proofs of (i) and (ii) can be found in the paper of Bérard and Gouéré [2], while
a rigorous proof of (iii) can be found in [4] for a closely related model. How-
ever, (iii) remains open for the original Brunet–Derrida process, though exciting
progress in this direction has been achieved recently by Maillard [20].

The main goal of this paper is to study geometric properties of the d-
dimensional systems and to partly resolve prediction 3 above in the case d = 1.
We start with our results in d dimensions. Our results are valid in two particular
cases:

(Case A) Euclidean case: s(x1, . . . , xd) =
√

x2
1 + · · · + x2

d .

(Case B) Linear case: for some vector λ ∈ R
d , s(x) = 〈λ,x〉.

See Figure 1 for two realisations of the process in the Euclidean case (case A).
The linear case (case B) is particularly relevant from the point of view of appli-
cations, since it is reasonable to assume that when an individual’s total fitness
depends on d ≥ 2 loci (i.e., d specific locations along the DNA sequence of the
individual), the total fitness of that individual is a linear combination of the fit-
nesses of each of the loci. In this interpretation, we thus view each coordinate as
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FIG. 1. Two realisations of the particle system with N = 1000, d = 2, s(x, y) = x2 + y2 and
jump distribution uniform in the unit disk. The particles are plotted after 20, 60, 100, 150 and 200
generations with decreasing brightness.

the fitness of the allele on the corresponding locus, and so the “spatial” position
has nothing to do with the geographical position of that individual in space. See
below for further discussion about the biological relevance of our results.

Simulations in the Euclidean case (case A) suggest that after an initial phase
where the particles live in fragmented clusters on a circle of a given radius (which
increases at linear speed), particles eventually aggregate in one clump, which trav-
els at that speed in a random direction. A similar phenomenon is observed in sim-
ulations for the linear case (case B). Our first result makes this observation rigor-
ous. In order to state it, it is convenient to introduce some notation. If t > 0 and
1 ≤ n ≤ N , write Xn(t) = Rn(t)�n(t), where Rn(t) > 0 and �n(t) ∈ S

d−1 is cho-
sen so that following a given ancestral line yields a continuous function �n(t).
[Note that for d ≥ 2, almost surely Xn(t) 
= 0 for all t > 0 and 1 ≤ n ≤ N .]

THEOREM 1.1. Let N > 1 and consider a Brunet–Derrida process in R
d with

N particles, driven by the Euclidean score function s(x) = ‖x‖ (case A). Then

(3) max
1≤n,m≤N

‖Xn(t) − Xm(t)‖
t

→ 0,

as t → ∞ almost surely.
Moreover,

(4)
R1(t)

t
→ vN, �1(t) → �,

where vN > 0 is a deterministic constant and � is a random variable on S
d−1.

Both these convergences hold almost surely.

REMARK 1.2. In the above theorem, (3) says that the particles eventually ag-
gregate in one clump. On the other hand, (4) says that the clump travels at linear
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speed vN , in a randomly chosen direction �. See Remark 1.6 for the identification
of vN . We will discuss below more precisely the diameter of the cloud of particles,
which (for a fixed N , as t → ∞) stays of order one. Note that if the distribution of
the initial configuration is rotationally symmetric then � is uniformly distributed
on S

d−1.

REMARK 1.3. This theorem is actually true for a more general class of
Brunet–Derrida systems than the ones discussed in this Introduction and, indeed,
in much of the paper. See Remark 2.14 for a discussion of the class of processes
to which our proofs apply.

We are also able to obtain a lower bound for the correct genealogical time for
the one-dimensional process up to some mild conditions on the initial position of
the particles.

A similar result holds in the linear case.

THEOREM 1.4. Let N > 1 and consider a Brunet–Derrida process in R
d with

N particles, driven by the linear score function s(x) = 〈λ,x〉 for some λ ∈ S
d−1

(case B). Then

(5) max
1≤n,m≤N

‖Xn(t) − Xm(t)‖
t

→ 0,

as t → ∞ almost surely.
Moreover,

(6)
X1(t)

t
→ λvN,

almost surely, where vN > 0 is a deterministic constant.

REMARK 1.5. The theorem above says that in this case, the direction of the
cloud of particles is deterministic and is simply λ.

REMARK 1.6. It is not hard to see that the vN appearing in Theorems 1.1
and 1.4 are both equal to the asymptotic speed of a one-dimensional (standard)
Brunet–Derrida system. Hence, adapting a result of Bérard and Gouéré [2] for
branching Brownian motion, we get

(7) vN = √
2 − π2

√
2(logN)2

+ o
(
(logN)−2),

as N → ∞. (The asymptotic behaviour of vN is not needed anywhere in the paper.)
See Lemma 2.7 for the proof.
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FIG. 2. Close-up on the cloud of particles with N = 1000. (Left) s(x, y) = ‖x‖, t = 1000.
(Right) s(x, y) = x + y, t = 200.

Our next results concern the dimensions of the cloud of particles. The simu-
lations above suggest, somewhat counter-intuitively, that the cloud of particles is
more elongated in the direction orthogonal to the fitness gradient (and the limiting
direction of the cloud). This is corroborated by a close-up view of the cloud of
particles (see Figure 2).

We are able to establish this phenomenon under some reasonable assumptions
on the initial condition, in case B. Fix λ ∈ S

d−1 and let H = λ⊥ be the orthogonal
hyperplane. Let pH denote orthogonal projection onto H . Define

diamt = max
1≤m,n≤N

∣∣〈Xn(t) − Xm(t), λ
〉∣∣

and

diam⊥
t = max

1≤m,n≤N

∥∥pH

(
Xn(t)

)− pH

(
Xm(t)

)∥∥.
Finally, for all x ∈R

d let x̂ = 〈λ,x〉.
We introduce an assumption on the initial condition which will be used in sev-

eral results below. Let X1(t), . . . ,XN(t) denote the particles of a Brunet–Derrida
system driven by the linear score function s(x) = x̂. Let X̂n(t) = 〈Xn(t), λ〉, and
label the particles by decreasing fitness X̂1(t) ≥ · · · ≥ X̂N(t). Let x0 ∈R

d be arbi-
trary, μ ≤ √

2, and suppose that for some δ < 1,

(8)
N∑

n=1

eμ(X̂n(0)−x̂0) ≤ Nδ.

THEOREM 1.7. Suppose that (8) holds with μ = √
2 and that there is initially

a particle with fitness greater than x̂0. Then there exists cδ > 0 (depending only
on δ) such that for t = cδ(logN)3, there exists a > 0 such that

(9) lim inf
η→0

lim inf
N→∞ P

(
diamt ≤ a logN,diam⊥

t ≥ η(logN)3/2)= 1.
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The phenomenon above has consequences in population genetics which are dis-
cussed below. Note that in fact we expect that under the same initial condition,
the order of magnitude of diamt really is logN , in the sense that we also have
diamt ≥ a′ logN with probability tending to 1 as N → ∞, for some constant
a′ < a.

We now make a series of comments on the meaning of the initial condition (8).

REMARK 1.8. Intuitively, condition (8) is likeliest to hold when x0 is the po-
sition of a maximal particle. Then (8) says that, after projecting onto Span(λ), for
some ξ < 1, only O(Nξ) particles lie within distance O(logN) of the maximal
particle. More precisely, (8) holds as soon as there exists c > 0 and ξ < 1 such that
at most Nξ particles lie in the interval [X̂1(0) − c logN, X̂1(0)].

REMARK 1.9. An example of an initial condition which satisfies (8) with high
probability for any μ > 0 and x0 being the position of the maximal particleis as
follows: sample X1, . . . ,XN in R

d independently according to a fixed distribution
such that if X̂ = 〈X,λ〉, then for all x > 0,

(10) c1e
−α1x ≤ P(X̂ > x) ≤ c2e

−α2x

for some positive constants c1, c2 and α1, α2.

REMARK 1.10. We believe, but have been unable to prove, that if the initial
condition is as in the above remark then (8) will in fact be satisfied at arbitrary
large times with μ = √

2. Indeed, comparing with results in [4], we expect indeed
that, at “equilibrium” (see Section 1.2 for definition), X̂1(0) = (1/

√
2) logN and

YN =∑
n

e
√

2X̂n(0) ≈ NL

∫ L

0
e
√

2x · e−√
2x sin

(
πx

L

)
dx ∼ cNL2,

where L = (1/
√

2)(logN + 3 log logN). Hence taking x0 = X1(0), the right-hand
side of (8) should be of order L2, and thus (8) should be satisfied at equilibrium,
with lots of room to spare. Thus condition (8) can be thought of as a very weak
condition specifying that the population is in an approximately “metastable” state,
as in [4].

As we will see, the result in Theorem 1.7 is closely related to estimates about
the genealogical timescale (or, more precisely, the time of the most recent com-
mon ancestor) in the population. In fact, Theorem 1.7 will follow easily from the
following result.

THEOREM 1.11. Let N > 1 and consider a Brunet–Derrida system with N

particles driven by the linear score function s(x) = x̂ = 〈x,λ〉. Assume that (8)
holds with μ = √

2 and some x0 ∈ R
d . Then there exists cδ > 0 (depending only

on δ) such that any particle with fitness greater than x̂0 at time 0 has descendants
alive at time cδ(logN)3 with probability tending to 1 as N → ∞.
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By projecting the particle system onto Span(λ), we obtain a one-dimensional
(standard) Brunet–Derrida system. Thus Theorem 1.11 applies verbatim to such
systems, which partly confirms a prediction of [10, 11] [see item (iii) at the start
of the Introduction].

The heart of the proof relies on delicate quantitative estimates concerning
the displacement of the minimal position in one-dimensional (standard) Brunet–
Derrida systems. This is a difficult quantity to study rigorously, as the evolution of
the minimum depends on all the particles nearby, which make up all but a negligi-
ble fraction of the population. In particular, as a process it is non-Markovian in its
own filtration, and not continuous, though in the limit N → ∞ it should become
deterministic and continuous. Our result is as follows.

PROPOSITION 1.12. Consider a (standard) one-dimensional Brunet–Derrida
system with N particles, ordered by decreasing fitness X1(t) ≥ · · · ≥ XN(t). As-
sume that the initial condition satisfies (8) for some arbitrary x0 ∈ R, and with μ

given by

(11) μ =
√

2 − 2π2

(logN)2 .

Then there exists constants cδ > 0, c, and κ > 0 (depending only on δ) such that

(12) P
(
XN(t) ≤ x0 + μt,∀t ≤ cδ(logN)3)≥ 1 − cN−κ .

We note that a corresponding lower bound for the progression of the minimal
position can be established from an intermediate result of Bérard and Gouéré [2],
with their proof adapted for branching Brownian motion.

PROPOSITION 1.13. Consider a (standard) one-dimensional Brunet–Derrida
system with N particles, ordered by decreasing fitness X1(t) ≥ · · · ≥ XN(t). For
all η > 0, there exists cη > 0 such that for any initial condition as N → ∞,

(13) P

(
XN(t) − XN(0) ≤

(√
2 − (1 + η)π2

√
2(logN)2

)
t,∀t ≤ cη(logN)3

)
→ 0.

1.2. Discussion and open problems. Long term behaviour for general fitness
functions. Theorems 1.1 and 1.4 establish the long-term behaviour for the cloud
of particles for the two special cases where the function s is either the Euclidean
norm or a linear function. In both cases, the cloud escapes to ∞ at positive speed
in a possibly random direction. It would be interesting to see how general a phe-
nomenon this is. For instance, assume that s : Rd → R is a smooth, unbounded
convex function. What can be said about the long-term behaviour then? One first
observation is that the cloud of particles should essentially stay concentrated on
level sets of the function s.



658 N. BERESTYCKI AND L. Z. ZHAO

Genealogy. In both cases studied here (Euclidean case or case A, and linear
case or case B), we observe that the population lines up on an essentially one-
dimensional subspace of Rd . For truly one-dimensional systems, it is predicted that
the Bolthausen–Sznitman coalescent describes the genealogy of a finite sample of
size k from the population, after rescaling time by (logN)3 (where k is fixed and
N → ∞). It is therefore reasonable to predict that the same property will hold in
higher dimensions as well, at least in cases A and B and perhaps more generally
as well, suggesting that the Bolthausen–Sznitman coalescent is a universal scaling
limit in all dimensions, subject to assumptions on the function s.

It is also natural to ask about the time τN(t) to the most recent common ancestor
for the entire population at some large time t , and not just for a subset of it. If
we extrapolate the Bolthausen–Sznitman prediction to the entire population, and
using a result of Goldschmidt and Martin [15] (see also Theorem 6.5 in [6]), we
conjecture that

(14) lim
N→∞ lim

t→∞
τN(t)

(logN)3 log logN
= c

exists in probability.
Equilibrium shape in one dimension. Consider the empirical distribution of a

(standard) one-dimensional Brunet–Derrida particle system:

νN
t = 1

N

N∑
n=1

δXN
n (t),

and the associated càdlàg empirical tail distribution

FN(t, x) = 1

N

N∑
n=1

1
{
XN

n (t) > x
}= νN

t

(
(x,∞)

)
.

It is not hard to see that the system of particles, viewed from the minimum po-
sition at time t , has regeneration times where the whole population descends
from the leader in a bounded interval of time. This is a highly atypical event,
but which nonetheless happens with positive frequency for a fixed N as t → ∞;
see Lemma 2.8. It can be shown that this implies that (X1 − XN(t), . . . ,XN −
XN(t); t ≥ 0) is a Harris positive recurrent chain; see Proposition 3.1 in [13] for a
proof in the discrete case of branching random walk. (It is not hard to adapt these
arguments to our branching Brownian motion setup. However, we do not include
the details here as it would unnecessarily burden the exposition and we will not use
this fact anywhere in this paper.) Therefore, for all fixed N > 1, FN(t, x +XN(t))

converges pointwise to some limit distribution FN
eq (x) as t → ∞, wherever FN

eq
is continuous. It is natural to start the particle system in some initial condition
distributed according to FN

eq and ask for its properties. We believe, but have been

unable to prove, that FN
eq satisfies (8). In fact, we make the following conjecture

about FN
eq .
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Reasoning by analogy with the results of Durrett and Remenik [13], and using
the martingale problem for the empirical distributions of a free branching Brow-
nian motion (see, e.g., Lemma 1.10 in Etheridge [14]), we expect FN(t, x) to
converge in distribution to F(t, x), the solution to the free boundary problem

(15)

⎧⎪⎨⎪⎩
∂F

∂t
= 1

2

∂2F

∂x2 + F(t, x) ∀x > γ (t),

F (t, x) = 1 ∀x ≤ γ (t),

where γ : [0,∞) → R is a continuous, increasing function starting from 0, which
is part of the unknown in (15). (Note that Durrett and Remenik’s argument breaks
down for particles that perform Brownian motion, as it is essential in their cou-
pling that particles sit still in between branching events. It is unclear how to adapt
their argument to the case of Brownian motion.) The first equation is simply the
linearised FKPP equation (2), which is satisfied asymptotically as x → ∞ by the
distribution tail of the position of the rightmost particle in a (free) branching Brow-
nian motion. The second equation on the other hand represents the effect of selec-
tion, and γ (t) then describes the limiting position of the minimal particle. Durrett
and Remenik (2011) show the existence of a family of travelling wave solutions
for a class of problems similar to (15). Here, the traveling wave solutions can be
found explicitly: if F(t, x) = W(x − ct) solves (15), we find

−cW ′ = 1

2
W ′′ + W.

This is a second-order differential equation which, as is well known, has positive
solutions only if the speed c of the traveling wave satisfies c ≥ √

2. For c = √
2,

the solution is

(16) W∗(x) = (
√

2x + 1)e−√
2x.

Turning back to FN
eq , stationarity suggests that FN

eq is in the limit as N → ∞ a

traveling wave solution of (15). But by Proposition 1.12 if FN
eq is a travelling wave

solution the speed would have to be at most
√

2, and so equal to
√

2. Therefore,
we conjecture that

(17) FN
eq (x) → W∗(x)

uniformly on compact sets as N → ∞. A referee has noted that this conjecture
independently already appeared in the work of Maillard [19], p. 19, and Groisman
and Jonckheere [16], Conjecture 3.1, which appeared on the arxiv immediately
before this article.

Equilibrium shape in high dimensions. Let d ≥ 1 and fix an arbitrary smooth
selection function s. For reasons similar to above, it is possible to define a notion
of limiting equilibrium shape of the system as t → ∞. Theorem 1.7 gives infor-
mation about the dimensions (width and length) of the limiting shape in case B.
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However, an inspection of the simulations suggests that particles are far from uni-
formly distributed within that shape. In the direction λ, we expect the density of
particles to be close to W∗(x) for the same reasons as above. In the transverse di-
rection λ⊥, however, particles appear somewhat “clustered”. Indeed, this is to be
expected given the hierarchical structure of the Bolthausen–Sznitman coalescent.
Clusters of particles represent groups of particles coming from a close common
ancestor. However, clusters are also intertwined because of heat kernel smoothing.
It is an interesting question to identify the density of particles at equilibrium.

1.3. Biological applications: The effect of recombination. As alluded to in ear-
lier parts of this Introduction, our Brunet–Derrida system in more than one dimen-
sion can be thought of as a model for the effect of selection on multiple linked loci.
In this interpretation, we track the fitness of not one but d loci in a population of
size N . Each particle corresponds to one-half of an individual’s genetic material,
and each of the d coordinates of that particle represents the fitness at the corre-
sponding locus. Her total fitness will then be a function of these d values, typically
just the sum. In this interpretation, we are assuming that the total fitness of each
particle evolves like independent Brownian motions and branch independently of
one another, which is a simplification because in reality, two particles—making up
one individual—will branch simultaneously. For the same reasons, whereas in our
model we only remove one particle at a time, it would make more sense to remove
two particles at once (also making up an individual). But we choose to ignore the
correlations between an individual’s two genetic halves, and still believe that the
model captures some important features of reproduction. Note that, as specified
above, the model ignores the possibility of recombination. We will now explain
the effect of adding (a small amount of) recombination to the model and show
that it leads to an increase in overall fitness through an interesting and indirect
mechanism.

It has been a longstanding problem in evolutionary biology to explain the ubiq-
uitous nature of diploid populations over haploid populations. We very briefly sum-
marise what is a highly complex issue below. In diploid populations, the chance
of a particular gene being transmitted to an offspring is only 50%, whereas it is
100% in haploid populations. This would suggest that haploid populations are far
more advantageous from the point of view of a particular gene. This paradox was
in fact raised soon after the introduction of Darwin’s theory of natural selection
and evolution.

As early as 1889, Weismann [22] advocated that sex functions to provide varia-
tion for natural selection to act upon. However, it is fair to say that no real consen-
sus was achieved in the population genetics community, especially after influential
arguments by Williams [23] raised doubts on Weismann’s theory. The controversy
reached the point where understanding the advantage of sexual reproduction be-
came the “queen of problems in evolutionary biology” [1]. We refer to Burt [12]
for an excellent and highly readable survey of this question.
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FIG. 3. In the presence of recombination, the offspring of two individuals with positions (x1, y1)

and (x2, y2) is either (x1, y2) or (x2, y1). If the fitness across loci is negatively correlated (i.e., if the
shape of the cloud is elongated in the direction transverse to fitness gradient), this leads to an overall
increase in the variance of the fitness distribution, even though the mean in unchanged. In turn, this
results in increased response to natural selection.

In his study of the problem, Burt [12] observed empirically that his models led
to a negative correlation between the fitness on the two chromosomes, which is
equivalent to a cloud of particles being spread out in the direction orthogonal to
the fitness gradient (see Figure 1D of [12]). He then reasoned that a small amount
of recombination would lead to a reduction in this correlation and greater vari-
ance in the overall fitness, ultimately leading to a fitter population, as can be seen
on Figure 3. Here, the implicit assumption is that recombination is sufficiently
rare that we can consider these events one at a time (and in between two such
events the population has the time to come back to equilibrium). Note that af-
ter recombination the average fitness of all particles is the same as immediately
before recombination. However, the variance is now greater. In particular, in our
Brunet–Derrida setting the top-right particle in Figure 3 will typically generate the
whole population, relatively quickly. Indeed, by Theorem 1.7 the top-right particle
will be at a distance of order (logN)3/2 from the minimal particle, after projection
onto Span(1,1). This is much more than is needed to regenerate the population (in
fact, an advance of (1/

√
2)(logN + 3 log logN + A) is presumably enough, for

A a large constant. See [4] for a rigorous proof in the slightly different but related
context of branching Brownian motion with absorption). A single recombination
event thus eventually generates a shift in the overall fitness of the population of
size roughly (logN)3/2.

It is not our purpose here to explain the models considered by Burt [12] and in
what way the Brunet–Derrida systems of this paper are (or are not) related. We
will simply observe that the Brunet–Derrida systems are also models of natural se-
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lection and our Theorem 1.7, in the case s(x, y) = x + y, can be seen as a rigorous
justification in our setting of the empirical observations made in [12] to justify the
Weissmannian proposal. Naturally, this deserves further critical investigation.

2. Asymptotic direction: Proof of Theorems 1.1 and 1.4. We are now ready
to give a proof of Theorems 1.1 and 1.4. In this section N > 1 is fixed.

We first begin with a formal construction of the Brunet–Derrida particle sys-
tem. Let (Ji)i≥0 be the jump times of a Poisson process with rate N with J0 = 0,
and let (Ki)i≥1 be an independent sequence of i.i.d. uniform random variables
on {1, . . . ,N}. The process is started in some given initial condition. Then induc-
tively, for each i ≥ 1, assuming that the system is defined up to time Ji−1 with
s(X1(Ji−1)) ≥ · · · ≥ s(XN(Ji−1)), we define

(18) Xn(t) = Xn(Ji−1) + Zi
n(t − Ji−1), t ∈ [Ji−1, Ji),

where (Zi
n(t), t ≥ 0) are independent Brownian motions in R

d , independent from
(Ki) and (Ji). At time Ji , we duplicate particle XKi

(J−
i ) and remove the particle

min1≤n≤N s(Xn(J
−
i )). Note that if the duplicated particle is the particle of minimal

score, the net effect is that nothing happens. We now relabel the particles over this
interval in the usual convention of descending fitness so

s
(
X1(t)

)≥ · · · ≥ s
(
XN(t)

)
, t ∈ [Ji−1, Ji].

2.1. Proof of Theorem 1.4. We start with a few elementary facts about (free)
branching Brownian motion X1(t), . . . ,XN(t)(t) in R, where N(t) is the number
of particles at time t . In keeping with our convention for this article, we order
particles from right to left. We assume that initially there is one particle at the
origin.

The following lemma is a trivial but useful result to relate the statistics for all
the particles alive in a free branching Brownian motion to a single Brownian mo-
tion and is sometimes known in the literature as the many-to-one lemma (see,
e.g., [17]).

LEMMA 2.1. Let T be a random stopping time of the filtration F t =
σ(Xi(s), i ≤ N(s), s ≤ t), and assume that T is almost surely finite. For s < T

and each i ≤ N(T ), let Y i(s) be the position of the unique ancestor of Xi(T ).
Then for any bounded measurable functional g on the path space C([0,∞)),

E

[ ∑
i≤N(T )

g
((

Y i(s)
)
s≤T

)]= E
[
eT g

(
(Bs)s≤T

)]
,

where (Bs)s≥0 is a standard Brownian motion.

With the many-to-one lemma, we can obtain a naive bound for the maximum
displacement of a particle at time t from its parent at time 0, as well as the running
maximum.
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LEMMA 2.2. For any K > 0,

P
(
X1(t) ≥ √

2t + K
)≤ e−√

2K.

Moreover,

P

(
sup
s≤t

X1(s) ≥ √
2t + K

)
≤ 2e−√

2K.

PROOF. By Lemma 2.1,

P
(
X1(t) ≥ √

2t + K
)≤ E

[ ∑
i≤N(t)

1
{
Xi(t) ≥ √

2t + K
}]

= et
P(Bt ≥ √

2t + K)

≤ ete− 1
2t

(
√

2t+K)2 ≤ e−√
2K,

where we use the well-known tail bound for a standard normal random variable X,
and a > 0,

(19) P(X ≥ a) ≤ e− a2
2 ,

which will be used throughout. For the historic maximum, a similar argument
shows

P

(
sup
s≤t

X1(s) ≥ √
2t + K

)
≤ et

P

(
sup
s≤t

Bs ≥ √
2t + K

)
.

Using the reflection principle,

P

(
sup
s≤t

Bs ≥ √
2t + K

)
= 2P(Bt ≥ √

2t + K),

and the result follows. �

When a Brunet–Derrida system is driven by a score function s(x) = 〈x,λ〉,
where λ ∈ S

d−1, we have already noted that after projecting the particle system
onto Span(λ), we recover a standard one-dimensional Brunet–Derrida system. For
such systems, we have an easy but useful coupling used by Bérard and Gouéré
(Lemma 1 of [2]) in the discrete setup of branching random walk.

LEMMA 2.3. Consider two (standard) one-dimensional Brunet–Derrida sys-
tems, (Xn(t),1 ≤ n ≤ N)t≥0 and (Yn(t),1 ≤ n ≤ N ′)t≥0, N ≤ N ′, which are ini-
tially ordered X(0) ≺ Y(0) in the sense of stochastic domination: that is, there is
a coupling of X(0) and Y(0) such that

Y1(0) ≥ X1(0); . . . ;YN(0) ≥ XN(0).

Then we can couple X(t) and Y(t) for all times t ≥ 0 in such a way that Xi(t) ≤
Yi(t) for all times t ≥ 0 and all 1 ≤ i ≤ N .
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PROOF. Given the initial coupling of X(0) and Y(0) as above, we couple
X(t) and Y(t) for all times using (18), as follows. We use the same family
(Zi

n(t), t ≥ 0)n≤N ′,i≥1 of independent Brownian motions in R, we fix J ′
i the jump

times of a Poisson process with rate N ′, and K ′
i which are uniform on {1, . . . ,N ′}

and independent. At a jump time J ′
i , if K ′

i = k ∈ {1, . . . ,N} then we split the kth
particle in both X(t) and Y(t), while if K ′

i = k > N we split the kth particle only
in Y(t) and nothing happens for X(t). It is easy to check that no particle of X(t)

can overtake a particle of smaller label in Y(t) at any time, by construction, and
hence Xi(t) ≤ Yi(t) still holds for all time and for all 1 ≤ i ≤ N . �

Adapting the (easy) proof of Proposition 2 of [2], one obtains the following.

LEMMA 2.4. Consider a one-dimensional Brunet–Derrida system initially
with X1(0) ≥ · · · ≥ XN(0) = 0. Then

X1(t)

t
→ vN,

almost surely and in L1, where vN > 0 is a deterministic constant.

The argument is based on the monotonicity of Lemma 2.3 and Kingman’s
subadditive ergodic theorem. To see that vN > 0 for N > 1, we observe that
vN ≥ v2 by Lemma 2.3 by monotonicity in N . Moreover, v2 is easily shown
to be strictly positive. Indeed, if Jn is the nth jump time of the system, then
X1(Jn) =∑n

i=1 Zi , where the random variables Zi are i.i.d. and are distributed ac-
cording Zi =d max(B1(T ),B2(T )), for two independent standard Brownian mo-
tions B1,B2 and an independent exponential random variable T with rate 2. Since
E(Zi) > 0, it follows that v2 > 0, and hence vN > 0 for N ≥ 2.

The same argument also applies to XN(t), but a priori the limiting velocity v′
N

might be distinct from vN . In fact, the following lemma, which can be proved in
the same fashion as Proposition 1 of [2], shows that vN = v′

N .

LEMMA 2.5. Let (Xn(s),1 ≤ n ≤ N)s≥0 be a (standard) one-dimensional
Brunet–Derrida system. Then for all ε > 0 and t > (1 + κ) logN for some κ > 0,

lim
N→∞P

(
X1(t) − XN(t) ≥ (3

√
2 + ε) logN

)= 0.

COROLLARY 2.6. For all N > 1 and ε > 0,

lim
s→∞P

(
X1(s) − XN(s)

s
≥ ε

)
= 0

and as t → ∞, XN(t)/t → vN almost surely and in L1.
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We now return to Brunet–Derrida systems in R
d , and start the proof of Theo-

rem 1.4. Let H = {x ∈ R
d : 〈x,λ〉 = 0} be the orthogonal hyperplane to λ and let

pH be the orthogonal projection onto H . In the rest of the article, we will some-
times, with a slight abuse of language, refer to a particle by its position, say Xn(t).
It should be clear from the context what is meant.

Referring back to the construction of the system via (18), conditional on FJi−1

(where Ft is the filtration generated by the whole system up to time t), parti-
cles perform (d − 1)-dimensional Brownian motion on H independent of the mo-
tion in Span(λ) up to time Ji for every i ≥ 1. Moreover, since s(x) = 〈x,λ〉,
pH(Xm(Ji)) is independent of the event that the particle Xm survives a branch-
ing event at time Ji . Together, these two properties imply by induction that the
path of a particle conditioned to survive until time t when projected onto H has
the law of a standard (d − 1)-dimensional Brownian motion. In other words, if
Xn(t) is a surviving particle at time t and Yn(s) is the ancestor of Xn(t) at time
s ≤ t , then (pH (Yn(s)), s ≤ t) is a standard (d − 1)-dimensional Brownian motion
in H . Hence, for some constant c depending only on the dimension, using (19),

P

(
sup

1≤n≤N

sup
s≤t

∥∥Yn(s)
∥∥
H ≥ δt

)
≤ cNe−(δ2/2)t ,

where ‖x‖H = ‖pH(x)‖, and so the same inequality holds with Yn(s) replaced by
Xn(s). The right-hand side of the inequality is summable when t = 1,2, . . .; hence
by the Borel–Cantelli lemma,

sup
1≤n,m≤N

‖Xn(t) − Xm(t)‖H

t
≤ 2 sup

1≤n≤N

‖Xn(t)‖H

t
→ 0,

almost surely as t → ∞. Together with Lemma 2.4, this completes the proof of
Theorem 1.4.

2.2. Proof of Theorem 1.1. Assume now s(x) = ‖x‖. Recall in this setting,
for Xn(t) 
= 0, we write Xn(t) = Rn(t)�n(t) where Rn(t) > 0 and �n(t) ∈ S

d−1

is continuous whenever Xn(t) is continuous. Note also for d ≥ 2, d-dimensional
Brownian motion almost surely never hits 0. Hence, except for particles initially at
0, this decomposition is always well defined. We can work around particles starting
from 0 by instead taking the system at time t > 0 as its initial state without altering
the proofs. Therefore, without loss of generality, we shall assume from here on that
RN(0) > 0 and we need not worry about any particles at 0.

When considering (Rn(t),1 ≤ n ≤ N), we can work in a one-dimensional set-
ting and construct the system in a similar manner as before, except now the dis-
placement step (18) becomes

(20) Rn(t) = Rn(Ji−1) + Si
n

(
Rn(i − 1), t − Ji−1

)
, t ∈ [Ji−1, Ji),

where (Si
n(r, t),1 ≤ n ≤ N)r≥0 are independent Bessel flows: that is, for each fixed

r ≥ 0, i ≥ 1 and 1 ≤ n ≤ N , Si
n(r, t) is the pathwise unique strong solution of the
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stochastic differential equation

(21) dSi
n(r, t) = dBi

n(t) + d − 1

2Si
n(r, t)

dt,

where Bi
n(t) is a standard one-dimensional Brownian motion, and Si

n(r, t) is a
solution starting from Si

n(r,0) = r . Using monotonicity of the solution at any fixed
time with respect to r (or the easily established continuity of this solution with
respect to r), this gives a well-defined Bessel flow for all r ≥ 0 simultaneously.

Recall that the default ordering is in descending fitness, and so R1(t) ≥ · · · ≥
RN(t).

LEMMA 2.7. For all N > 1,

R1(t) − RN(t)

t
→ 0,

as t → ∞ almost surely. Moreover,

R1(t)

t
→ vN,

almost surely as t → ∞, where vN is the speed of a one-dimensional Brunet–
Derrida particle system (defined in Lemma 2.4).

PROOF. Given (Rn(t),1 ≤ n ≤ N) constructed in the usual manner and with
(20), we define a family of one-dimensional Brunet–Derrida systems (Y i,ε

n (t),1 ≤
n ≤ N) constructed in the same manner as (Rn(t),1 ≤ n ≤ N) with the same (Ji),
(Ki), but with the displacement step

(22) Y i,ε
n (t) = Y i,ε

n (Ji−1) + Wi,ε
n (t − Ji−1), t ∈ [Ji−1, Ji),

where (Wi,ε
n (t),1 ≤ n ≤ N) are independent Brownian motions in R with drift ε.

These processes satisfy the stochastic differential equation

(23) dWi,ε
n (t) = dBi

n(t) + ε dt.

Suppose we couple the family (Y ε
n (t),1 ≤ n ≤ N) to (Rn(t),1 ≤ n ≤ N) by using

the same underlying Bi
n(t) to drive the solutions to (21) and (23) for each i and n.

Then we see that under this coupling

lim inf
t→∞

RN(t)

t
≥ lim inf

t→∞
Y 0

N(t)

t
.

But (Y 0
n (t),1 ≤ n ≤ N) is a standard one-dimensional Brunet–Derrida system and

by Lemma 2.4,

lim
t→∞

Y 0
N(t)

t
= vN
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almost surely, where vN > 0. Therefore, almost surely, RN(t) → ∞. It follows
that, for all ε > 0, the drift terms in (21), namely (d − 1)/(2Si

n(t)), are uniformly
bounded above by ε for t sufficiently large. Hence, in this coupling for every ε > 0,

lim sup
t→∞

R1(t)

t
≤ lim sup

t→∞
Y ε

1 (t)

t

almost surely. However, we note that if the drift is a constant equal to ε, then
Y ε

i (t) = Y 0
i (t) + εt for all 1 ≤ i ≤ N and all t ≥ 0, hence by Lemma 2.4,

lim
t→∞

Y ε
1 (t)

t
= vN + ε,

almost surely. Since ε > 0 was arbitrary, we have that almost surely

lim
t→∞

R1(t)

t
= lim

t→∞
RN(t)

t
= vN . �

Having established the asymptotic behaviour of R(t), we now turn our attention
to �(t). The main idea here is that the time to the most recent common ancestor
for all N particles, can be naively dominated uniformly over all time. We shall
formalise this statement with the following lemma. Let τ(t) be the time to the
most recent common ancestor for X1(t), . . . ,XN(t), that is,

τ(t) = inf{s ≥ 0 : all particles at time t descend from

a single ancestor at time t − s}.(24)

If the above set is empty, then by convention we define τ(t) = t . Occasionally, in
what follows we will drop the dependence on t , and simply write τ instead of τ(t)

to ease readability.

LEMMA 2.8. For all t sufficiently large, τ(t) − 1 is stochastically dominated
by a geometric random variable of parameter p, where p > 0.

REMARK 2.9. The number p which we obtain from the proof is extremely
small. In reality, τ(t) is likely to be much smaller than suggested by this lemma.
Indeed, we believe that for large t and large N , τ(t) is of order (logN)3 log logN

[see (14) for more details].

PROOF. Let s ≥ 0, and consider the system X1(s), . . . ,XN(s) at time s. We
assume that the Brunet–Derrida system (Xn(t),1 ≤ n ≤ N)t≥s is obtained from a
free branching Brownian motion (Xn(t),1 ≤ n ≤ N(t))t≥0 in the obvious manner,
that is, by enforcing selection at all times. Let As be the event that, for this free
process, when the particle located at X1(s) at time s first branches after time s,
its score is ≥R1(s) + 1, and it subsequently produces at least N offsprings by
time s + 1 whose scores stay above R1(s) + 1/2 throughout the interval [s, s +
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1]. Let Bs be the event that for the free process, the particles initially located at
X2(s), . . . ,XN(s) do not branch between times s and s + 1, and that

(25) sup
2≤n≤N

sup
t∈[s,s+1]

∥∥Yn(t) − Yn(s)
∥∥≤ 1/2,

where Yn(t) is the location at time t of the descendant of the particle located at
Xn(s) at time s. Note that Yn(s) is well defined since Xn(s) has a unique descen-
dant at all times in [s, s + 1] for 2 ≤ n ≤ N .

Note that As and Bs are independent events. Moreover, Bs is independent of
(Xn(s))1≤n≤N , so there exists p2 > 0 such that

P(Bs |Fs) = P(Bs) ≥ p2

almost surely for all s, where Fs denotes the filtration generated by the entire
process up to time s. Likewise, As given R1(s) is independent of Fs . To lose the
dependence on R1(s), we use an analogous coupling as in the proof of Lemma 2.7
where we stochastically bound (Rn(t),1 ≤ n ≤ N) from below by a standard one-
dimensional Brunet–Derrida (Y 0

n (t),1 ≤ n ≤ N). We define the event A′
s that, for a

one-dimensional free branching Brownian motion, a particle located at R1(s) first
branches after time s > 0, its score is ≥ R1(s) + 1, and it subsequently produces
at least N offspring by time s + 1 whose score always stays above R1(s) + 1/2
throughout the interval [s, s + 1]. We now have that A′

s is independent of R1(s)

and Fs and

P(As |Fs) ≥ P
(
A′

s |Fs

)= P
(
A′

s

)
.

So there exists p1 > 0 such that

P(As |Fs) ≥ p1

almost surely for all s. We call p = p1p2 > 0, and deduce from the above that if
Gs = As ∩ Bs ,

P(Gs |Fs) ≥ p

almost surely for all s. Note that when As ∩Bs occurs, all the particles at time s +1
in the Brunet–Derrida system necessarily descend from the maximum particle at
time s. Hence τ(s + 1) ≤ 1.

Applying this argument iteratively, we deduce that

P
(
τ(t) > k

)≤ P
(
G�

t−k ∩ G�
t−k+1 ∩ · · · ∩ G�

t−1
)

from which the result follows. �

With Lemma 2.8, we are now in a position to complete the proof of (3) with the
following lemma. Endow S

d−1 with the usual spherical (angular) metric D: for
�1,�2 ∈ S

d−1, let D(�1,�2) be the distance on the sphere. In R
d ,

D(�1,�2) = cos−1〈�1,�2〉.
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FIG. 4. Proof of (26). The angle is maximised when the triangle formed by 0, Xm(s) and Xn(t) is
rectilinear.

LEMMA 2.10. For all N > 1,

max
1≤m,n≤N

D
(
�m(t),�n(t)

)→ 0

as t → ∞ almost surely.

PROOF. Given two particles Xm(s),Xn(t) ∈ R
d , let r = ‖Xm(s)−Xn(t)‖ and

assume for now that r ≤ Rn(t) = ‖Xn(t)‖. Then a simple geometric argument
(see Figure 4) shows that the distance D(�m(s),�n(t)) is biggest if Xm(s) is
perpendicular to Xm(s) − Xn(t). Hence for r ≤ Rn(t),

(26) D
(
�m(s),�n(t)

)≤ sin−1
(

r

Rn(t)

)
≤ πr

2Rn(t)
,

since sin−1(x) ≤ π
2 x for all 0 ≤ x ≤ 1.

Given 0 < � < t and let τ = τ(t) be the time to the most recent common an-
cestor of all the surviving particles at time t , as in (24). We first note that

P(τ ≥ �) ≤ (1 − p)�,

where p is as in Lemma 2.8. Hence picking � = C1 log t for some sufficiently
large C1 > 0, and applying the first Borel–Cantelli lemma shows that there exists
T1 > 0, possibly random, such that almost surely, τ ≤ � for all t > T1.

On the event {τ ≤ �}, let Xk(t − τ) be the position of the most recent common
ancestor of all the surviving particles at time t . Since supD ≤ π , using (26), we
have

D
(
�m(t),�n(t)

)≤ D
(
�n(t),�k(t − τ)

)+ D
(
�m(t),�k(t − τ)

)
≤ πρ

Rk(t − τ)
1
{
ρ ≤ Rk(t − τ)

}+ π1
{
ρ > Rk(t − τ)

}
(27)

≤ πρ

Rk(t − τ)
,

where ρ = ρ(t) = supu≤τ max1≤n≤N ‖Xn(t − τ + u) − Xk(t − τ)‖. [As with τ =
τ(t), we drop the dependence on t in order to ease readability.] Note that on the
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event {τ ≤ �}, ρ can be stochastically dominated by

ρ � sup
s≤�

sup
n

∥∥Zn(s)
∥∥,

where (Zn(u),1 ≤ n ≤ N(u)) is a d-dimensional branching Brownian motion
started from one particle at 0 (and as before � denotes stochastic domination).
Writing for all n and u,

Zn(u) = (
Z

(1)

n (u), . . . ,Z
(d)

n (u)
) ∈R

d,

we have that Z
(1)

n (s), . . . ,Z
(d)

n (s) are one-dimensional branching Brownian mo-
tions and so a simple union bound yields, summing over all d coordinates, and
using symmetry,

P(ρ >
√

2d� + C2d log t, τ ≤ �)

≤ dP
(

sup
s≤�

sup
n

∣∣Z(1)

n (s)
∣∣> √

2� + C2 log t
)

≤ 2dP
(

sup
s≤�

sup
n

Z
(1)

n (s) >
√

2� + C2 log t
)

≤ 4de−√
2C2 log t ,

(28)

where (28) follows by Lemma 2.2 with t = � and K = C2 log t . Restricting to
integer values of t , this is also summable for sufficiently large C2, hence we deduce
that almost surely there exists T2 > 0, possibly random, such that if t > T2 is an
integer then τ ≤ C1 log t and ρ ≤ C3 log t where C3 = √

2dC1 + dC2.
Then for t > T2 an integer, applying (27) and Lemma 2.7, there exists some

C4 > 0 such that

D
(
�m(t),�n(t)

)≤ πC3 log t

Rk(t − τ)
≤ C4 log t

vN(t − C1 log t)
.

The right-hand side tends to 0 as t → ∞ uniformly over m,n, so almost surely

(29) sup
1≤m,n≤N

D
(
�m(t),�n(t)

)→ 0,

along integers, almost surely. By comparing �m(t) to �m(�t�), where here �m(u)

denotes the angle of the ancestor of Xm(t) at time u, and using a similar argument
as above, we obtain that

sup
t∈[j,j+1)

sup
1≤m≤N

D
(
�m(t),�m

(�t�))→ 0

almost surely as j → ∞. Combining with (29), we obtain the desired result. �

At this stage, (3) is proved and we turn to the proof of (4). We already know
that R1(t)/t → vN almost surely so it remains to prove that �1(t) → � almost
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surely. We now introduce an important notion of spine for this process, as follows.
Note that by Lemma 2.8, the system eventually has a unique most recent common
ancestor. We also observed that almost surely, the last time s(t) = t − τ(t) such
that all particles alive at time t descend from a single ancestor at time s(t) satisfies
s(t) → ∞ as t → ∞, almost surely. Hence if we consider the genealogical path
of the most recent common ancestor, we see that there is a unique immortal ge-
nealogical path in the system, or the “spine,” from which all the particles that are
eventually ever alive in the system descend from.

Let X∗(t) be the particle of the spine at time t . This is the location of the ances-
tor at time t of the most recent common ancestor of the population at time u for
all u sufficiently large. Then X∗(t) is a continuous function of t , almost surely. We
consider the usual angular decomposition: X∗(t) = R∗(t)�∗(t) where R∗(t) > 0
and �∗(t) ∈ S

d−1 is continuous. We now complete the proof of Theorem 1.1 by
showing the angular part of the spine converges. By Lemma 2.10, this will imply
that �1(t) also converges almost surely.

PROPOSITION 2.11. For all N > 1, �∗(t) converges almost surely as t → ∞.

We offer two proofs of this proposition. One is shorter but relies explicitly on
stochastic calculus, and hence works only for the exact situation described in this
paper. On the other hand, the second proof is a bit longer but more robust; in
particular it carries over to slightly more general Brunet–Derrida particle systems
than the ones we consider in this paper; see Remark 2.14 at the end of this section.

FIRST PROOF OF PROPOSITION 2.11. We start by recalling the classical skew-
product decomposition of Brownian motion (see, e.g., Section 7.15 of [18]). The
version we present here is Theorem 1.1(d) of [21].

Let (X(t), t ≥ 0) be a d-dimension Brownian motion, and write X(t) =
R(t)�(t) with R(t) > 0 and �(t) ∈ S

d−1 and R,� continuous. Let

(30) Ht =
∫ t

0
R(s)−2 ds.

Then:

(i) (R(t), t ≥ 0) is a Bessel process of order d .
(ii) Under the time change �(Ht) = �(t), (�(t), t ≥ 0) is a Brownian motion

on S
d−1.

(iii) (�(t), t ≥ 0) is independent of (R(t), t ≥ 0).

In the special case of d = 2, we can write �(t) as eiB(Ht ) where (B(t), t ≥ 0) is a
standard Brownian motion in R independent of (R(t), t ≥ 0). We note here that in
this case �(t) = eiB(t).

Now consider the system (X(t), t ≥ 0) that results from not enforcing selec-
tion: the underlying free d-dimensional branching Brownian motions started from
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N particles at X1(0), . . . ,XN(0) coupled to the Brunet–Derrida system. It is clear
that this can be constructed by considering the skew product decomposition of ev-
ery Brownian path in the system Xi(t) = Ri(t)�i(t) = Ri(t)�i(Hi(t)). This is a
bit cumbersome, but we include the details to emphasise that the angular structure
of the whole free branching Brownian motion can be incorporated to the process
after its radial part is constructed. It will follow that any information on the ra-
dial behaviour of any particle in this process translates into information about its
angular part.

Let T be the underlying branching tree (which by assumption is just an ordi-
nary Yule process). We use Neveu’s formalism for binary trees, that is, T is a set
of vertices given by T =⋃∞

n=0{0,1}n and each vertex v has attached to it an inde-
pendent exponential random variable of mean 1, Xv , representing the lifetime of
this individual. We call [sv, tv] the interval of time over which this particle is alive,
thus tv − sv = Xv and so sv =∑

w�v Xw (with w � v means w is ancestor of v).
We also attach to each v a Bessel process Rv(t) defined over the interval of time
[sv, tv] in the natural way, by solving the SDE

dRv(t) = dBv(t) + d − 1

2Rv(t)
dt, t ∈ [sv, tv],

where the Brownian motions Bv are independent for different vertices v, and by
requiring continuity of the resulting Bessel process when we move up along the
branches of the tree. We extend the definition of Rv(t) to the entire interval [0, tv]
simply by defining Rv(s) = Rw(s) where w is the unique ancestor of v alive at
time s (i.e., such that s ∈ [sw, tw]).

We further enrich this structure by associating to each vertex v an angle process
�v(t), also defined over the interval of time [sv, tv], which is defined by applying
the construction (30) in between two successive branching events. More precisely,
let

Hv(t) =
∫ t

0
Rv(s)

−2 ds,

let s′
v = Hv(sv) and t ′v = Hv(tv). Consider a family of Brownian motions on

(�v(t), t ∈ [s′
v, t

′
v], v ∈ T ) on S

d−1 such that the evolution of �v over [s ′
v, t

′
v] are

independent for different vertices v ∈ T . As above, we extend �v(t) to the interval
[0, t ′v] by defining �v(t) = �w(t) where w is the unique ancestor of v such that
t ∈ [s ′

v, t
′
v], and we have chosen �v so that �v(t) is a continuous function of t over

[0, t ′v] for all v ∈ T . We now define �v by the formula

�v(t) = �v

(
Hv(t)

)
,

for sv ≤ t ≤ tv .
Let S(t) be the set of particles alive at time t , that is, the set of vertices

v ∈ T such that t ∈ [sv, tv]. Let N(t) = |S(t)| and order the vertices in S(t) by
v1, . . . , vN(t) in such a way that R1(t) ≥ R2(t) ≥ · · · , where Ri(t) = Rvi

(t). Also
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let �i(t) = �vi
(t) for 1 ≤ i ≤ N(t). Then our system of branching Brownian mo-

tions consists of

Xi(t) = Ri(t)�i(t), 1 ≤ i ≤ N(t), t ≥ 0.

Having described the skew product decomposition of a free branching Brow-
nian motion (Xi(t), t ≥ 0,1 ≤ i ≤ N(t)), we proceed with the proof of Propo-
sition 2.11. By a ray, we mean a sequence V = {v1, v2, . . .} such that vn is in
generation n of the tree and vn � vn+1 for all n ≥ 0. For each given ray V , we
can follow the trajectory XV (t) of the Brownian motion associated with V , that is,
XV (t) = Xv(t) for the a.s. unique v ∈ V such that t ∈ [sv, tv]. We can also con-
sider RV (t) = Rv(t) its radial part and �V (t) = �v(t) its angular part. Observe
then that we have, by construction, �V (t) = �V (HV (t)) where �V is a Brownian
motion on S

d−1 and HV (t) = ∫ t
0 RV (s)−2 ds.

Now, consider the spine defined before and the associated ray V in the tree.
Then by definition we have XV (t) = X∗(t) for all t ≥ 0. We deduce from
Lemma 2.7 that

‖XV (t)‖
t

≥ vN/2

for all sufficiently large t , almost surely. It follows that HV (t) = ∫ t
0 RV (s)−2 ds

converges almost surely as t → ∞ to a limit HV (∞). Hence �V (t) also converges
almost surely as t → ∞ to a limit, namely �V (HV (∞)). In other words, �∗(t)
almost surely converges as t → ∞ to a limit. �

SECOND PROOF OF PROPOSITION 2.11. Our second proof relies on a suitable
martingale argument rather than stochastic calculus, and hence is more robust. See
Remark 2.14 for a discussion of the setups to which it carries. Consider a free
branching Brownian motion X = (Xi(t),1 ≤ i ≤ N(t), t ≥ 0), and write Xi(t) =
Ri(t)�i(t) for t ≥ 0 and 1 ≤ i ≤ N(t). Let FR

t = σ(Ri(u),1 ≤ i ≤ N(u),u ≤ t)

and let F�
t = σ(�i(u),1 ≤ i ≤ N(u),u ≤ t). Let Gt = σ(FR∞ ∪ F�

t ), and note
that (θ∗(t), t ≥ 0) is adapted to the filtration (Gs, s ≥ 0).

We start by explaining the argument in the case d = 2, which is a bit simpler
to describe. Recall in the case d = 2, we can write X∗(t) = R∗(t)eiθ∗(t), where
R∗(t) > 0 and θ∗(t) is a continuous function. This way of writing X∗(t) is unique
modulo a global constant multiple of 2π in θ∗(t), which we fix once and for all at
time 0.

LEMMA 2.12. (θ∗(t), t ≥ 0) is a martingale with respect to (Gt , t ≥ 0).

PROOF. It is easy to check that θ∗(s) is integrable. Indeed we can bound
|θ∗(s)| by the sum of the changes in argument between any individual present at
time 0 and any of its descendants at time s, ignoring selection. Conditioning first
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on the number N(s) of descendants at time s, and using the many-to-one lemma,
we see that

E
(∣∣θ∗(s)

∣∣|N(s)
)≤ N(s)c,

where c is the corresponding expectation for a single Brownian motion. In partic-
ular c < ∞. Since E(N(s)) = Nes < ∞, we deduce E(|θ∗(s)|) < ∞.

Fix s > 0 and t > s. We wish to show that E(θ∗(t)|Gs) = θ∗(s). To do this, we
first condition on Fs = σ(FR

s ∪F�
s ), which is the σ -field generated by the process

up to time s. We consider the set of locations of all N particles present at time s.
Let z be such a location, so that Xi(s) = z for some i. Consider the transformation
T = Tz which is a reflection in the line Rz:

Tz(x) = 2
〈
x, z′〉z′ − x, x ∈ R

d,

where z′ = z/‖z‖. Note that Tz is an orthogonal transformation, and hence leaves
the Wiener measure invariant. Consider the free branching Brownian motion (with-
out selection) started from the locations of all N particles at time s. We apply Tz

to every descendant of the particle which is at z at time s. Likewise we also apply
the corresponding transformation Tz to all the descendants of each particle present
at time s, where z ranges over the set of locations of al N particles present at
time s. We call T (X(t)) = (T (Xi(t)),1 ≤ i ≤ N(t)) for t ≥ s the resulting trans-
formation of all the particles in the branching Brownian motion. We note that since
each Tz leaves Brownian motion invariant, given Fs , {T (X(t)), t ≥ s} has also the
law of a free branching Brownian motion starting from the configuration of par-
ticles present in the system at time s. Moreover, for a fixed z, Tz is an isometry
so we have ‖T (Xi(t))‖ = Ri(t) for all t ≥ s and all 1 ≤ i ≤ N(t). In particular, a
particle T (Xi(t)) survives the selection procedure if and only if its mirror image
Xi(t) does. In particular, the branching times and tree structure of the system are
invariant under T .

These two properties imply that when we turn to the system X with selection,
conditional on Fs , T (X) has the same distribution as X. On the other hand, observe
that if the population X(t) at time t has a particle at x descending from a particle
at z at time s, then

argT (x) = argTz(x) = 2 arg z − argx.

Applying this to z = X∗(s) and x = X∗(t) shows that if �θ∗(t) = θ∗(t) − θ∗(s)
and if F,G are two bounded continuous functions on C([t,∞)) and C([t,∞)N),
respectively, then

E
(
F
(
�θ∗(t), t ≥ s

)
G
(
Ri(t),1 ≤ i ≤ N, t ≥ s

)|Fs

)
= E

(
F
(−�θ∗(t), t ≥ s

)
G
(
Ri(t),1 ≤ i ≤ N, t ≥ s

)|Fs

)
and hence �θ∗(t) has the same distribution as −�θ∗(t) given Gs , since F and G

are arbitrary. In particular,

E
[
�θ∗(t)|Gs

]= E
[−�θ∗(t)|Gs

]= 0,

as desired, so θ∗ is a (Gs, s ≥ 0)-martingale. �
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When d ≥ 3, we reason similarly but it is necessary to first project onto a two-
dimensional subspace � before applying a similar reasoning. Let � be a given
such plane and let p� be the orthogonal projection onto �. For some fixed e ∈ �

and x ∈ R
d , define arg�(x) to be the continuous directed angle between p�(x)

and e.

LEMMA 2.13. (arg�(X∗(t)), t ≥ 0) is a martingale with respect to (Gt , t ≥ 0).

For z ∈ R
d , let Tz(x) be defined by

Tz(x) = x − 2
(
p�(x) − 〈

p�(x), z′〉z′), x ∈R
d,

where z′ = p�(z)/‖p�(z)‖. More descriptively, if x = u + v where u ∈ � and
v is orthogonal to �, then Tz(x) = Tz(u) + Tz(v), where Tz(v) = v and Tz(u) is
the reflection of u in the line RP�(z) within the plane �. As before, applying this
transformation to each descendant of a particle located at z at time s yields a trans-
formation T of the branching Brownian motion, which leaves the modulus of parti-
cles ‖T (Xi(t))‖ = ‖Xi(t)‖ unchanged, and leaves the law of branching Brownian
motion also unchanged. But the choice of T gives arg�(T (x)) = 2θ�(z)−arg�(x)

if a particle at x descends from a particle at z. Thus

E
[
arg�

(
X∗(t)

)− arg�

(
X∗(s)

)|Gs

]= E
[
arg�

(
X∗(s)

)− arg�

(
X∗(t)

)|Gs

]= 0,

as above. This concludes the proof of the lemma.
We are now ready to conclude the second proof of Proposition 2.11. It suffices

to prove that θ∗(t) converges as t → ∞. We can assume without loss of generality
that d = 2, as it suffices to show that arg�(X∗(t)) converges as t → ∞ for any
fixed arbitrary two-dimensional subspace �. Thus we will assume d = 2.

Let q > 0 be a fixed positive number which will be chosen sufficiently large
below. Let s > 0 and assume that s is an integer multiple of q . Define ρ∗(s) =
supu∈[s−q,s] ‖X∗(u)−X∗(s)‖ and define a stopping time T of the filtration (Gs)s≥0
to be the first time s which is an integer multiple of q such that ρ∗(s) ≥ R∗(s). Let
θT∗ (s) = θ∗(s ∧ T ) be the martingale θ∗(s) stopped at T . The reason for stopping
at T is to ensure a bound similar to (26) holds for θT∗ (t). The precise bound is, for
s > 0 a multiple of q ,

(31)
∣∣θT∗ (s) − θT∗ (s − q)

∣∣≤ πρ∗(s)
2R∗(s − q)

≤ π

2
.

Since θT∗ is a martingale, we deduce that for t an integer multiple of q ,

E
[
θT∗ (t)2]= t/q−1∑

k=0

E
[(

θT∗
(
(k + 1)q

)− θT∗ (kq)
)2]

≤
t/q−1∑
k=0

π2

4
E

[
1 ∧ ρ∗((k + 1)q)2

R∗(kq)2

]
.

(32)
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We want to get an upper bound for the terms in the right-hand side. We observe that
R∗(s) ≥ ‖XN(s)‖ [since the spine X∗(s) is the position of some particle at time s,
and all particles have modulus greater than ‖XN(s)‖ by our convention on order-
ing], and proceed to bound from below ‖XN(s)‖ stochastically. Suppose s is an
integer multiple of q . Using the coupling used in the proof of Lemma 2.7, we have
that ‖XN(s)‖ dominates the minimum at time s of a standard one-dimensional
Brunet–Derrida system started from N particles all at the origin. By the mono-
tone coupling of Lemma 2.3, this dominates S(s) = Z(1) + · · · + Z(s/q), where
Z(i) are i.i.d. and distributed as the position of the minimum at time q of a one-
dimensional Brunet–Derrida system where all N particles are initially at the origin.

Let m = mN = E[Z(1)] = E(0,...,0)(XN(q)). Note that for N ≥ 2, as q → ∞,
mN → ∞ by Corollary 2.6. Hence we may fix q > 0 large enough than mN >

0, which we now assume. Furthermore, E[e−λZ(1)] < ∞ for all λ ≥ 0. Indeed,
by coupling, it suffices to observe that the minimum M(q) at time q of a free
branching Brownian motion started from the origin has exponential moments of all
negative orders. This in turn follows from the following argument. Let N(q) denote
the number of descendants of the N root particles at time q . Then conditionally on
N(q),

P
(
M(q) ≤ y|N(q)

)≤ N(q)
e−y2/2q2√

2πq2

by Markov’s inequality, the many-to-one-lemma (Lemma 2.1) and the bound (19).
Taking the expectation again, we see that P(M(q) ≤ y) ≤ Ce−y2/2q2

, where C

depends on N and q , but not on y, from which exponential moments of all negative
orders follow immediately.

Hence ψ(λ) = logE[e−λZ(1)] is well defined for λ ≥ 0. Then for any λ ≥ 0,

P

(
S(s) ≤ 1

2q
ms

)
≤ P

(
e−λS(s) ≥ e

− 1
2q

λms)≤ e
1

2q
λms

E
[
e−λS(s)]≤ exp

(
s

q
f (λ)

)
,

where f (λ) = 1
2λm + ψ(λ). We note that f (0) = 0 and f ′(0) = ψ ′(0) + 1

2m =
−1

2m < 0 and that for some fixed sufficiently small λ, f (λ) ≤ 1
2λf ′(0). Therefore,

(33) P

(
S(s) ≤ 1

2q
ms

)
≤ exp

(
− 1

4q
λms

)
,

where λ is as above. By Jensen’s inequality and since x �→ x ∧ 1 is concave, and
using (33) with s = kq ,

E

[
1 ∧ ρ∗((k + 1)q)2

‖XN(kq)‖2

]

≤ E

[(
1 ∧ 4ρ∗((k + 1)q)2

m2k2

)
1{‖XN(kq)‖≥mk

2 }
]

+ P

(∥∥XN(kq)
∥∥≤ mk

2

)
(34)

≤ 1 ∧ 4E[ρ∗((k + 1)q)2]
m2k2 + e−ck.
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It is not hard to see that there exists C1 > 0 depending on N but not s such that
P(ρ∗(s) > y) ≤ C1e

−y2/2, and hence E[ρ∗(s)2] ≤ C′
1. To see this, note that since

C1 is allowed to depend on N , by summing over all N particles present at time
s − q , it suffices to establish the bound

P(ρ ≥ y) ≤ C1e
−y2/2q2

,

where ρ is defined as follows: we consider a free branching Brownian motion
started at time 0 with N root particles at the origin, and ρ is the maximal distance
travelled by time q by any descendants of any of the root N particles during that
time. This follows as before by conditioning on N(q), the number of descendants
of the root particles at time q .

Therefore, we deduce from (34) that for some constant C ′
1,

E

[
1 ∧ ρ∗((k + 1)q)2

‖XN(kq)‖2

]
≤ C′

1

k2 + e−ck.

Plugging this into (32), we see that for some C2 > 0 and for all integer t of the
form t = kq , k ≥ 1

E
[
θT∗ (t)2]≤ C2.

Since the left-hand side is a monotone function of t by Jensen’s inequality, this
also holds for all t > 0 and so (θT∗ (t), t ≥ 0) is a martingale bounded in L2, and so
converges almost surely.

Obviously, this implies convergence of θ∗ almost surely on the event {T = ∞}.
We now check that almost surely ρ∗(s) ≥ R∗(s) eventually never happens for some
integer multiple of q . But note that since E[ρ∗(s)2] ≤ C1 < ∞ it follows from
Markov’s inequality and the Borel–Cantelli lemma that ρ∗(s) < vNs/2 for all s

sufficiently large, and hence ρ∗(s) ≤ R∗(s) for all integer multiples s = kq suffi-
ciently large by Lemma 2.7. Thus if we apply the result that θT∗ converges almost
surely, starting from the initial condition of the system at times q,2q, . . . we de-
duce that almost surely there is a k large enough so that the system started from the
initial condition (X1(kq), . . . ,XN(kq)) verifies T = ∞, and hence θ∗ converges.
The result follows. �

REMARK 2.14. In this paper, we have concerned ourselves for simplicity with
branching Brownian motion with selection. However, there are a variety of possi-
ble alternatives: for instance, initially, Brunet and Derrida considered a system
where branching occurs at discrete time steps t = 0,1, . . . , and at each t , each par-
ticle branches into two (or possibly even more) individuals, and the displacement
follows a random walk with a given distribution. Yet another alternative, taken up
by Durrett and Remenik [13], is to have particles branch at rate 1 in continuous
time.
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As is plain from the above proof, Theorem 1.1 remains true in each of these
cases, under the assumption that if p(x, ·) is the transition kernel of the underlying
random walk then p(x, y) = p(‖y − x‖) is a translation invariant, rotationally
symmetric function and

∫∞
0 eλrp(r) dr < ∞ for some λ > 0.

3. Displacement of minimum: Proof of Proposition 1.12. We will prove
a slightly more general bound than Proposition 1.12. Consider a standard one-
dimensional Brunet–Derrida particle system with N particles, started from an ini-
tial configuration satisfying, after projection onto Span(λ),

(35)
N∑

n=1

eμ(Xn(0)−x0) ≤ Nδ

for some δ < 1 and some μ ≤ √
2 and write μ = √

2 − ε for some ε ≥ 0. Our aim
will be to prove that for some constants cδ , c, κ , and for all δ < δ′ < 1,

(36) P
(
XN(t) ≤ x0 + μt; ∀t ≤ T

)≥ 1 − eεT T logN

N1−δ′ .

Then Proposition 1.12 follows by taking μ =
√

2 − (2π)2/(logN)2 and T =
cδ(logN)3. Indeed in this case,

eεT ≤ exp
(
εcδ(logN)3)= exp

(
2π2cδ logN

)= N2π2cδ .

Therefore,

eεT T logN

N1−δ
≤ N−κ(logN)4,

where κ = 1 − 2π2cδ − δ > 0 for a small enough choice of cδ , so the proposition
follows with a slightly different value of κ .

Note that, for any fixed ζ > 0, it suffices to show

(37) P
(
XN(t) ≤ μt + x0 + ζ ; ∀t ≤ T

)≥ 1 − eεT T logN

N1−δ′ ,

since if we replace x0 by x0 − ζ

N∑
n=1

e
√

2(Xn(0)−(x0−ζ )) = eζ
N∑

i=1

e
√

2(Xi(0)−x0) ≤ e
√

2ζNδ,

which also satisfies (35) for N sufficiently large and for a slightly different value of
δ. Thus (37) implies (36). (Note that in this argument ζ itself is allowed to depend
on δ.)

For ease of notation, we will assume without loss of generality (since the system
is translation invariant) that x0 = 0. The key idea of the proof is to compare the
Brunet–Derrida system to a free branching Brownian motion where particles are
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absorbed at a wall, that is, a linear boundary. This is similar to the idea which lies
behind papers such as [4], which used a wall of velocity approximately equal to μ

in (11) (though with an additional correction term). We shall here consider a wall
moving exactly at speed μ.

We use the same natural coupling to a free branching Brownian motion in R as
before, with particles Xi(t),1 ≤ i ≤ N(t), ordered in the usual way right to left.
The coupling is obtained by enforcing selection at all times to the free system.
Note the key property of this coupling that for each 1 ≤ i ≤ N , Xi(t) ≤ Xi(t),
with probability one. Therefore, under this coupling,

(38) P
(
XN(t) ≥ μt

)≤ P
(
XN(t) ≥ μt

)
.

Let T = cδ(logN)3 where cδ > 0 is a small constant depending only on δ which
we will fix later on. Let

Wt
def= ∑

i≥1

1{Xi(t)≥μt}

be the number of particles of the free branching Brownian motion which are greater
or equal to μt . Then by (38), we get

(39) P
(
XN(t) ≥ μt

)≤ P(Wt ≥ N) ≤ E[Wt ]
N

by Markov’s inequality.
In order to estimate Wt we will treat separately the particles that hit the wall and

those that do not. More precisely, let J (t) denote the index of particles that never
touch the position μs for any s ≤ t . Thus the particles in J (t) are killed when they
hit the wall moving at velocity μ, starting from position 0. Let

W1(t) = ∑
i∈J (t)

1{Xi(t)≥μt},

W2(t) = ∑
i∈K(t)

1{Xi(t)≥μt},

where K(t) is the the set of indices corresponding to particles that do hit the wall
at some time s ≤ t , so that

Wt = W1(t) + W2(t).

LEMMA 3.1. There exists a universal constant C > 0 such that for any t ≤ T ,

E
[
W1(t)

]≤ e
1
2 εt

∑
i:Xi(0)>0

eμXi(0).
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PROOF. Suppose initially there is one particle at x > 0. Let Nx(t) denote the
number of descendants of that particle that do not hit the wall. Then by the many-
to-one lemma [Lemma 2.1 with T = t and g((Ys)s≤t ) = 1{Ys≥μs for all s≤t}] and
Girsanov’s theorem,

E
(
Nx(t)

)= et
Px(Bs ≥ μs for all s ≤ t)

= et
Ex

(
e−μ(Bt−x)−μ2

2 t1{Bs≥0 for all s≤t}
)

≤ e
1
2 εt eμx

Px(Bs ≥ 0 for all s ≤ t) ≤ e
1
2 εt eμx

from which the result follows by summing over all particles which are initially at
some position x > 0. �

It remains to treat particles that do hit the wall. Let �t be the number of particles
that are killed on the wall up to time t if we kill all particles that hit this wall.

LEMMA 3.2. Given �t ,

E
[
W2(t)

]≤ e
1
2 εt

E[�t ].
PROOF. Let Ht = σ(�s, s ≤ t) and let t − s1, . . . , t − s�t be the times at

which a particle hits the wall before time t . For each particle killed on the wall at
some time t − s ≤ t , the expected number of descendants at time t that are greater
or equal to μt is simply, by translation invariance, and the many-to-one lemma
[Lemma 2.1 applied with T = s, g((Yu)u≤s) = 1{Ys≥μs}], and using (19),

(40) es
P(Bs ≥ μs) ≤ ese−μ2s/2 = eεs/2 ≤ e

1
2 εt .

Therefore, the expected contribution to W2(t) from a particle hitting the wall at
time t − si(1 ≤ i ≤ �t), conditional on Ht , is at most e(1/2)εt and we get, summing
over 1 ≤ i ≤ �t ,

E

[ ∑
i∈K(t)

1{Xi(t)≥μt}
∣∣∣Ht

]
≤ e

1
2 εt�t .

Taking expectations, the lemma follows. �

Hence we have reduced the problem to estimating from above E[�t ]. To this
end, we will distinguish between those that started at positive positions and those
at negative positions, respectively K+(t) and K−(t). Call �+(t) and �−(t) the
corresponding number of particles killed at the wall.

LEMMA 3.3.

E
[
�+(t)

]≤ Ce
1
2 εt

∑
i:Xi(0)>0

eμXi(0).



MULTIDIMENSIONAL BRUNET–DERRIDA SYSTEMS 681

PROOF. Any particle that first hits the wall from the right has to descend from
an ancestor Xi(0) at time 0 with Xi(0) > 0. We use the following very crude
bound: during times t and t + 1, given W1(t),

(41) E
[
�+(t + 1) − �+(t)|W1(t)

]≤ eW1(t).

This is because the number of particles killed on the wall during [t, t + 1] cannot
exceed the total number of descendants of particles i ∈ J (t) such that Xi(t) > 0.
Since the number of such particles is precisely W1(t), (41) follows.

Taking expectations in (41), we have by Lemma 3.1,

E
[
�+(t + 1) − �+(t)

]≤ eE
[
W1(t)

]≤ e1+ 1
2 εt

∑
i:Xi(0)>0

eμXi(0).

Since �s is nondecreasing, the lemma follows by summing over the intervals
[0,1], . . . , [�t�, �t�]. �

We now address �−(t).

LEMMA 3.4.

E
[
�−(t)

]≤ e
1
2 εt

∑
i:Xi(0)<0

eμXi(0).

PROOF. Any particle that first hits the wall from the left has to descend from
an ancestor Xi(0) at time 0 with Xi(0) < 0. The total number of such particles
up to time t , �−(t), is exactly the number of particles of a branching Brownian
motion with drift −μ that hit level 0 by time t , started from the negative positions
in the initial condition.

Fix some constant A > 0, and consider a branching Brownian motion with drift
−μ where every particle is stopped upon reaching 0 and killed upon reaching −A.
Initially, the starting positions consists precisely of (Xi(0),1 ≤ i ≤ N) whenever
Xi(0) < 0. We call X∗

i (t), i ∈ N∗(t), the corresponding particle locations. Let
�A−(t) be the number of particles stopped upon reaching 0 by time t . Now consider
the process

(42) MA
s = ∑

i∈N∗(t)

(
X∗

i (s) + A
)
eμ(X∗

i (t)+A)− 1
2 (2−μ2)s .

Without stopping particles upon reaching 0, it is easy to check that (MA
s , s ≥ 0)

defines a nonnegative martingale (see, e.g., Lemma 2 of [17], or Lemma 6 of [4]).
However, if we stop particles upon reaching 0, since 2−μ2 = ε ≥ 0, MA

s becomes
a supermartingale. Therefore,∑

i:Xi(0)<0

Aeμ(Xi(0)+A) ≥ E
[
MA

0
]≥ E

[
MA

t

]≥ E
[
�A−(t)AeμA− 1

2 εt ].
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So, making the cancellations,

E
[
�A−(t)

]≤ e
1
2 εt

∑
i:Xi(0)<0

eμXi(0).

Letting A → ∞ and using the monotone convergence theorem concludes the proof
of Lemma 3.4. �

Putting together Lemmas 3.3 and 3.4, we get

E[�t ] ≤
(
e

1
2 εt

∑
i:Xi(0)<0

eμXi(0) + Ce
1
2 εt

∑
i:Xi(0)>0

eμXi(0)

)
.

Combining with Lemmas 3.1 and 3.2, this yields

E[Wt ] ≤ eεt
∑

i:Xi(0)<0

eμXi(0) + Ceεt
∑

i:Xi(0)>0

eμXi(0)

≤ Ceεt
∑
i

eμXi(0).

Therefore,

E[Wt ] ≤ eεT
N∑

i=1

eμXi(0),

and because (35) holds,

P(Wt ≥ N) ≤ eεT

N1−δ
.

By (39), we now have a bound for any fixed time t ≤ T ,

(43) P
(
XN(t) ≥ μt

)≤ P
(
XN(t) ≥ μt

)≤ N−κ .

This shows that XN(t) ≥ μt with probability 1 − N−κ for a fixed time t ≤ T .
We now extend our argument so that we control the position of the minimum
throughout the interval [0, T ] with high probability. Let tk = i(logN)−1, k =
1, . . . , T (logN), so that tk forms a regular partition of [0, T ] with spacings of
size 1/(logN). During each [tk, tk+1], it is possible to check that XN(t) has small
fluctuations. The key observation here is that XN(t) is piecewise Brownian and
may jump to the right, but never to the left. Therefore, during the interval, the min-
imum cannot travel to the right of μtk+1 + ζ since it would then have to move at
least ζ to the left in the rest of this interval (as we know it is to the left of μtk+1 at
the end of the interval). This is unlikely, as displacements to the left are bounded
by Brownian displacements, and the interval has a duration of 1/ logN .

We now fix some large constant ζ > 0 and define the bad events

(44) Bk =
{

sup
s∈[tk−1,tk]

XN(s) ≥ μtk + ζ
}
,

and the good events Gk = {XN(tk) ≤ μtk}.
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Given the Brunet–Derrida system at time tk−1, consider the coupled free branch-
ing Brownian motion started from these N particles and for a particle Xi(tk) at
time tk , let Y i(s) be its ancestor at time s ≤ tk . We see by the observation above
that XN(t) can only jump to the right. Hence if Gk+1 holds, in order for Bk to
occur, it is necessary that the analogous Bk event for the free process also holds,
namely

Bk =
{
∃1 ≤ i ≤ N(tk), sup

s∈[tk−1,tk]
Y i(s) ≥ μtk + ζ,Xi(tk) ≤ μtk

}
.

On this event, one of the particles being alive during the interval [tk−1, tk]
makes a displacement of at least ζ . Hence by a union bound and the many-
to-one lemma [Lemma 2.1, applied with T = tk − tk−1 and g((Ys)s≤tk−tk−1) =
1{sups≤tk−tk−1

Ys−Ytk−tk−1≥ζ }], and the reflection principle,

P(Bk) ≤ Netk−tk−1P

(
sup

s∈[tk−1,tk]
Z(s) − Z(tk) ≥ ζ

)
≤ 2Ne(logN)−1

P
(
Z
(
(logN)−1)≥ ζ

)
≤ 4Ne− 1

2 ζ 2 logN

using (19), where (Z(u),u ≥ 0) is a standard Brownian motion. So for ζ = 2 ≥√
2δ,

(45) P(Bk ∩ Gk) ≤ 4N1−δ.

We can sum the conclusion of (43) and (45) over all k = 1, . . . , T logN to show
that

P

(
sup
t≤T

{
XN(t) − μt

}≥ ζ + μ(logN)−1
)

≤
T (logN)∑

k=1

(
P(Bk ∩ Gk) + P

(
G�

k

))

≤ 2eεT T logN

N1−δ
.

This proves (37) for any δ′ > δ so the result follows.

4. Genealogical timescale: Proof of Theorem 1.11. Consider a Brunet–
Derrida particle system with N particles in R

d , started from an initial configuration
satisfying (8) with μ = √

2 and some x0 ∈ R
d , and driven by the linear score func-

tion s(x) = 〈x,λ〉 = x̂. Let ξ > 0 be small enough that δ′ def= δ + √
2ξ < 1. Let

T = cδ(logN)3 where cδ will be chosen later on sufficiently small. Note that (8)
implies that if Ŷn(t) = X̂n(t) − x̂0 + ξ logN , then

N∑
n=1

e
√

2Ŷn(0) ≤ Nδ′
.
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FIG. 5. Diagram reference for proof of Theorem 1.11.

Thus by (36), applied with μ = √
2, with probability at least 1 − N−κ for some

κ > 0, for all t ≤ T ,

(46) X̂N(t) ≤ x̂0 − ξ logN + √
2t.

On this event,

(47) X̂N(t) ≤ w(t)
def= x̂0 − 1

2
ξ logN + μ′t,

where

(48) μ′ = √
2 − ξ

2cδ(logN)2 .

The function w(t) is a linear boundary (see Figure 5) which will act as a killing
wall. Note that w is chosen so that

w(0) = x̂0 − 1

2
ξ logN, w(T ) = x̂0 − ξ logN + √

2T ,

and thus by (47), if a particle never hits w(t) and starts to its right [i.e., X̂i(0) ≥
w(0)], then it will survive selection in the Brunet–Derrida system.

Now, let Qμ′(y) be the probability that a branching Brownian motion starting
from one particle at y > 0 survives killing at a wall μ′t for all time. By Theorem 1

in [3], we know that if L := π/

√
2 − μ′2 and y − L → ∞ then Q′

μ(y) → 1. Note
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that for N large enough we have that L ≤ π logN
√

cδ/(2ξ). Let us fix cδ small
enough that π

√
cδ/(2ξ) ≤ ξ/4. (Note that ξ , and hence δ′ depend only on δ, so cδ

depends only on δ). Then y = (1/2)ξ logN satisfies y−L → ∞, hence Qμ′(y) →
1. We deduce that every particle with initial fitness greater than x̂0 has descendants
alive at time T , as desired.

5. Asymptotic shape: Proof of Theorem 1.7. Let H = {x ∈ R
d : 〈x,λ〉 = 0}

be the orthogonal hyperplane to λ. Recall that when a Brunet–Derrida particle
system is driven by a linear s(x) = 〈x,λ〉, its projection onto Span(λ) forms a one-
dimensional Brunet–Derrida system. For such a system, we have already recalled
(in Lemma 2.5) that for any initial condition, if t > (1 + κ) logN for some κ > 0
and a > 3

√
2,

lim
N→∞P(diamt ≤ a logN) = 1.

Now suppose that (8) initially holds for x0 = Xi(0) for some 1 ≤ i ≤ N , and
μ = √

2. Consider the system at time u = log logN . This particle branches at
rate 1 so with probability at least 1 − 1/(logN) it has branched at least once
by time u. Moreover, by Lemma 2.2, all the descendants of this particle will be
with high probability located [after projection onto Span(λ)] at positions greater
or equal to x̂0 − 2 log logN . We claim that furthermore at time u the system sat-
isfies (8) again with high probability, with a slightly different value of δ, μ = √

2,
and x0 replaced by x′

0 = x0 − 2(log logN)λ. Indeed, letting Xn(t) denote a free,
one-dimensional branching Brownian motion starting from N particles located in
X̂1(0), . . . , X̂N(0), we have, by linearity of the expectation and the many-to-one
lemma [Lemma 2.1 with T = u and g((Ys)s≤u) = e

√
2Yu ],

E

(
N∑

n=1

e
√

2(X̂n(u)−x̂′
0)

)
= (logN)2

√
2
E

(
N∑

n=1

e
√

2(Xn(u)−x̂0)

)

≤ (logN)2
√

2
N∑

i=1

e
√

2(X̂i (0)−x̂0)eu
E0
(
e
√

2Bu
)

≤ (logN)4e2uNδ = (logN)6Nδ,

where Bt is a standard one-dimensional Brownian motion started at 0. Thus by
Markov’s inequality

∑N
n=1 e

√
2(X̂n(u)−x̂′

0) ≤ (logN)7Nδ with probability at least
1 − 1/(logN). Consequently, (8) is satisfied at time u for some δ < δ′ < 1, μ =√

2, and x0 replaced by x′
0. Since we have two particles with fitness greater than

x̂′
0 also with probability greater than 1 − 1/(logN), we deduce by Theorem 1.11

that both of these particles have descendants alive with probability tending to 1 as
N → ∞ at time T = cδ′(logN)3.

Let E be the above event and call x = Xi(u), y = Xj(u) the positions of two
particles at time u such that x̂ ≥ x̂′

0 and ŷ ≥ x̂′
0. Write Xi(T ) and Xj(T ), with a
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slight abuse of notation, for any two arbitrarily chosen respective descendants at
time T , and Yi(t), Yj (t) for the position of their ancestors at time u ≤ t ≤ T . Then
note that if pH is the orthogonal projection onto H , (pH (Yi(t)) − x,u ≤ t ≤ T )

and (pH (Yj (t)) − y,u ≤ t ≤ T ) are independent (d − 1)-dimensional Brownian
motions on H on the time interval [u,T ] (see the end of the proof of Theorem 1.4).
Thus by the triangle inequality, on the event E,

diam⊥
T ≥ ∥∥pH

(
Xi(T )

)− pH

(
Xj(T )

)∥∥
≥ ∥∥(pH

(
Xi(T )

)− x
)+ (

y − pH

(
Xj(T )

))∥∥− ‖x − y‖
≥ (T − u)1/2X − a logN,

where a > 3
√

2 and X is the norm of the sum of two independent standard (d −1)-
Gaussian random variables. In particular,

lim inf
η→0

lim inf
N→∞ P

(
diam⊥

T ≥ η(logN)3/2)= 1,

as desired.
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