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DISCRETE TIME APPROXIMATION OF FULLY NONLINEAR HJB
EQUATIONS VIA BSDES WITH NONPOSITIVE JUMPS

BY IDRIS KHARROUBI1, NICOLAS LANGRENÉ AND HUYÊN PHAM

Université Paris Dauphine and CREST, Université Paris Diderot and EDF R&D,
and Université Paris Diderot and CREST

We propose a new probabilistic numerical scheme for fully nonlinear
equation of Hamilton–Jacobi–Bellman (HJB) type associated to stochas-
tic control problem, which is based on the Feynman–Kac representation in
[Kharroubi and Pham (2014)] by means of control randomization and back-
ward stochastic differential equation with nonpositive jumps. We study a dis-
crete time approximation for the minimal solution to this class of BSDE when
the time step goes to zero, which provides both an approximation for the
value function and for an optimal control in feedback form. We obtained a
convergence rate without any ellipticity condition on the controlled diffusion
coefficient. An explicit implementable scheme based on Monte Carlo sim-
ulations and empirical regressions, associated error analysis and numerical
experiments are performed in the companion paper [Monte Carlo Methods
Appl. 20 (2014) 145–165].

1. Introduction. Let us consider the fully nonlinear generalized Hamilton–
Jacobi–Bellman (HJB) equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
+ sup

a∈A

[
b(x, a).Dxv

+ 1

2
tr

(
σσ ᵀ(x, a)D2

xv
) + f

(
x, a, v, σ ᵀ(x, a)Dxv

)] = 0,

on [0, T ) ×Rd,

v(T , x) = g, on Rd .

(1.1)

In the particular case where f (x, a) does not depend on v and Dxv, this partial dif-
ferential equation (PDE) is the dynamic programming equation for the stochastic
control problem

v(t, x) = sup
α

E

[∫ T

t
f

(
Xα

s ,αs

)
ds + g

(
Xα

T

)∣∣∣Xα
t = x

]
,(1.2)

with controlled diffusion in Rd

dXα
t = b

(
Xα

t ,αt

)
dt + σ

(
Xα

t ,αt

)
dWt
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and where α is an adapted control process valued in a compact space A of Rq .
Numerical methods for parabolic partial differential equations (PDEs) are largely
developed in the literature, but remain a big challenge for fully nonlinear PDEs,
like the HJB equation (1.1), especially in high-dimensional cases. We refer to the
recent paper [9] for a review of some deterministic and probabilistic approaches.

In this paper, we propose a new probabilistic numerical scheme for HJB equa-
tion, relying on the following Feynman–Kac formula for HJB equation obtained
by randomization of the control process α. We consider the minimal solution
(Y,Z,U,K) to the backward stochastic differential equation (BSDE) with non-
positive jumps:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yt = g(XT ) +
∫ T

t
f (Xs, Is, Ys,Zs) ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
A

Us(a)μ̃(ds, da), 0 ≤ t ≤ T ,

Ut(a) ≤ 0,

(1.3)

with a forward Markov regime-switching diffusion process (X, I)-valued in Rd ×
A given by

Xt = X0 +
∫ t

0
b(Xs, Is) ds +

∫ t

0
σ(Xs, Is) dWs,

It = I0 +
∫
(0,t]

∫
A
(a − Is−)μ(ds, da).

Here W is a standard Brownian motion, μ(dt, da) is a Poisson random measure
on [0,∞) × A with finite intensity measure λ(da) of full topological support on
A and compensated measure μ̃(dt, da) = μ(dt, da) − λ(da) dt . Assumptions on
the coefficients b,σ,f, g will be detailed in the next section, but we emphasize the
important point that no degeneracy condition on the controlled diffusion coefficient
σ is imposed. It is proved in [13] that the minimal solution to this class of BSDE
is related to the HJB equation (1.1) through the relation Yt = v(t,Xt ).

The purpose of this paper is to provide and analyze a discrete-time approxima-
tion scheme for the minimal solution to (1.3) and thus an approximation scheme
for the HJB equation. In the nonconstrained jump case, approximations schemes
for BSDE have been studied in the papers [6, 18], which extended works in [7, 23]
for BSDEs in a Brownian framework. The issue is now to deal with the nonpositive
jump constraint in (1.3), and we propose a discrete time approximation scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȳ π
T = Ȳπ

T = g
(
X̄π

T

)
,

Z̄π
tk

= E

[
Ȳ π

tk+1

Wtk+1 − Wtk

tk+1 − tk

∣∣∣Ftk

]
,

Ȳπ
tk

= E
[
Ȳ π

tk+1
|Ftk

] + (tk+1 − tk)f
(
X̄π

tk
, Itk , Ȳπ

tk
, Z̄π

tk

)
,

Ȳ π
tk

= ess sup
a∈A

E
[
Ȳπ

tk
|Ftk , Itk = a

]
, k = 0, . . . , n − 1,

(1.4)
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where π = {t0 = 0 < · · · < tk < · · · < tn = T } is a partition of the time interval
[0, T ], with modulus |π |, and X̄π is the Euler scheme of X. [Notice that I is per-
fectly simulatable once we know how to simulate the distribution λ(da)/

∫
A λ(da)

of the jump marks.] The interpretation of this scheme is the following. The first
three lines in (1.4) correspond to the standard scheme (Ȳπ , Z̄π) for a discretiza-
tion of a BSDE with jumps (see [6]), where we omit here the computation of the
jump component. The last line in (1.4) for computing the approximation Ȳ π of
the minimal solution Y corresponds precisely to the minimality condition for the
nonpositive jump constraint and should be understood as follows. By the Markov
property of the forward process (X, I), the solution (Y,Z,U) to the BSDE with
jumps (without constraint) is in the form Yt = ϑ(t,Xt , It ) for some determinis-
tic function ϑ . Assuming that ϑ is a continuous function, the jump component
of the BSDE, which is induced by a jump of the forward component I , is equal
to Ut (a) = ϑ(t,Xt , a) − ϑ(t,Xt , It−). Therefore, the nonpositive jump constraint
means that ϑ(t,Xt , It−) ≥ ess supa∈A ϑ(t,Xt , a). The minimality condition is thus
written as

Yt = v(t,Xt ) = ess sup
a∈A

ϑ(t,Xt , a) = ess sup
a∈A

E[Yt |Xt, It = a],

whose discrete time version is the last line in scheme (1.4).
We notice that the proposed scheme (1.4) is in the spirit of the recent scheme

studied in [20] since both of these two schemes consist in computing a supremum
over a family of BSDEs.

In this work, we mainly consider the case where f (x, a, y) does not depend
on z, and our aim is to analyze the discrete time approximation error on Y , where
we split the error between the positive and negative parts

Errπ+(Y ) :=
(

max
k≤n−1

E
[(

Ytk − Ȳ π
tk

)2
+

])1/2
,

Errπ−(Y ) :=
(

max
k≤n−1

E
[(

Ytk − Ȳ π
tk

)2
−

])1/2
.

We do not study directly the error on Z, and instead focus on the approximation
of an optimal control for the HJB equation, which is more relevant in practice. It
appears that the maximization step in scheme (1.4) provides a control in feedback
form {â(tk, X̄

π
tk
), k ≤ n − 1}, which approximates the optimal control with an es-

timated error bound. The analysis of the error on Y proceeds as follows. We first
introduce the solution (Y π ,Yπ ,Zπ ,Uπ) of a discretely jump-constrained BSDE.
This corresponds formally to BSDEs for which the nonpositive jump constraint
operates only a finite set of times, and should be viewed as the analog of discretely
reflected BSDEs defined in [1] and [5] in the context of the approximation for re-
flected BSDEs. By combining BSDE methods and PDE approach with comparison
principles, we prove the monotone convergence of this discretely jump-constrained
BSDE toward the minimal solution to the BSDE with nonpositive jump constraint.
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Furthermore, by using the shaking coefficients method of Krylov [16] and Barles,
Jacobsen [3], we obtain a convergence rate without any ellipticity condition on
the diffusion coefficient σ . We next focus on the approximation error between the
discrete time scheme in (1.4) and the discretely jump-constrained BSDE. The stan-
dard argument for studying rate of convergence of such error consists of getting an
estimate of the error at time tk : E[|Yπ

tk
− Ȳ π

tk
|2] in function of the same estimate at

time tk+1, and then conclude by induction together with classical estimates for the
forward Euler scheme. However, due to the supremum in the conditional expecta-
tion in the scheme (1.4) for passing from Ȳπ to Ȳ π , such argument does not work
anymore. Indeed, taking the supremum is a nonlinear operation, which violates the
law of iterated conditional expectations. Therefore, we cannot obtain directly the
error at time tk as a function of that at time tk+1. Instead, we consider the auxiliary
error control at time tk

Eπ
k (Y) := E

[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[∣∣Yπ
tk

− Ȳπ
tk

∣∣2] · · ·
]]

,

where Etk,a[·] denotes the conditional expectation E[·|Ftk , Itk = a], and we are
able to express Eπ

k (Y) in function of Eπ
k+1(Y). We define similarly an error control

Eπ
k (X) for the forward Euler scheme and prove that it converges to zero with a

rate |π |. Proceeding by induction, we then obtain a rate of convergence |π | for
Eπ

k (Y), and consequently for E[|Yπ
tk

− Ȳ π
tk

|2]. This leads finally to a rate |π |1/2

for Errπ−(Y ), |π |1/10 for Errπ+(Y ), and so |π |1/10 for the global error Errπ(Y ) =
Errπ+(Y ) + Errπ−(Y ). Moreover, in the case where f (x, a) does not depend on y

(i.e., the case of standard HJB equation and stochastic control problem), we obtain
a better rate of order |π |1/6 by relying on a stochastic control representation of
the discretely jump-constrained BSDE, and by using a convergence rate result in
[15] for the approximation of controlled diffusion by means of piece-wise constant
policies. Anyway, our result improves the convergence rate of the mixed Monte
Carlo finite difference scheme proposed in [9] and [11], where the authors obtained
a rate |π |1/4 on one side and |π |1/10 on the other side under a nondegeneracy
condition. Let us also mention the results in [22] which provide the same rates as
in [9] with a weaker nondegeneracy condition: the PDE can be decomposed into a
degenerate part and a nondegenerate part.

We conclude this Introduction by pointing out that the above discrete time
scheme is not yet directly implemented in practice and requires the estimation
and computation of the conditional expectations together with the supremum. Ac-
tually, simulation-regression methods on basis functions defined on Rd ×A appear
to be very efficient, and provide approximate optimal controls in feedback forms
via the maximization operation in the last step of scheme (1.4). We postpone this
analysis and illustrations with several numerical tests arising in superreplication of
options under uncertain volatility and correlation in a companion paper [12]. No-
tice that since it relies on the simulation of the forward process (X, I), our scheme
does not suffer the curse of dimensionality encountered in finite difference scheme
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or controlled Markov chains methods (see [17], [4]), and takes advantage of the
high-dimensional properties of Monte Carlo methods.

The remainder of the paper is organized as follows. In Section 2, we state some
useful auxiliary error estimates for the Euler scheme of the regime switching for-
ward process. We introduce in Section 3 discretely jump-constrained BSDE and
relate it to a system of integro-partial differential equations. Section 4 is devoted
to the convergence of discretely jump-constrained BSDE to the minimal solution
of BSDE with nonpositive jumps. We provide in Section 5 the approximation error
for our discrete time scheme, and as a byproduct an estimate for the approximate
optimal control in the case of classical HJB equation associated to stochastic con-
trol problem. Finally, the Appendix collects some proofs.

2. The forward regime switching process. Let (�,F,P) be a probability
space supporting a d-dimensional Brownian motion W , and a Poisson random
measure μ(dt, da) with intensity measure λ(da) dt on [0,∞) × A, where A is a
compact set of Rq , endowed with its Borel tribe B(A), and λ is a finite measure
on (A,B(A)) with full topological support. We denote by F = (Ft )t≥0 the com-
pletion of the natural filtration generated by (W,μ), and by P the σ -algebra of
F-predictable subsets of � ×R+.

We fix a finite time horizon T > 0, and consider the solution (X, I) on [0, T ] of
the regime-switching diffusion model⎧⎪⎪⎨

⎪⎪⎩
Xt = X0 +

∫ t

0
b(Xs, Is) ds +

∫ t

0
σ(Xs, Is) dWs,

It = I0 +
∫
(0,t]

∫
A
(a − Is−)μ(ds, da),

(2.1)

where (X0, I0) ∈ Rd × A, b :Rd × A →Rd and σ :Rd × A →Rd×d , are measur-
able functions, satisfying the following Lipschitz condition:

(H1) There exists a constant L1 such that∣∣b(x, a) − b
(
x′, a′)∣∣ + ∣∣σ(x, a) − σ

(
x′, a′)∣∣ ≤ L1

(∣∣x − x′∣∣ + ∣∣a − a′∣∣),
for all x, x′ ∈ Rd and a, a′ ∈ A. Assumption (H1) stands in force throughout the
paper, and in this section, we shall denote by C1 a generic positive constant which
depends only on L1, T , (X0, I0) and λ(A) < ∞, and may vary from line to line.
Under (H1), we have the existence and uniqueness of a solution to (2.1), and in the
sequel, we shall denote by (Xt,x,a, I t,a) the solution to (2.1) starting from (x, a)

at time t .

REMARK 2.1. We do not make any ellipticity assumption on σ . In particular,
some lines and columns of σ may be equal to zero, and so there is no loss of
generality by considering that the dimension d of X and W are equal.
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We first study the discrete-time approximation of the forward process. Denot-
ing by (Tn, ιn)n the jump times and marks associated to μ, we observe that I is
explicitly written as:

It = I01[0,T1)(t) + ∑
n≥1

ιn1[Tn,Tn+1)(t), 0 ≤ t ≤ T ,

where the jump times (Tn)n evolve according to a Poisson distribution of parameter
λ := ∫

A λ(da) < ∞, and the i.i.d. marks (ιn)n follow a probability distribution
λ̄(da) := λ(da)/λ. Assuming that one can simulate the probability distribution λ̄,
we then see that the pure jump process I is perfectly simulated. Given a partition
π = {t0 = 0 < · · · < tk < · · · < tn = T } of [0, T ], we shall use the natural Euler
scheme X̄π for X, defined by

X̄π
0 = X0,

X̄π
tk+1

= X̄π
tk

+ b
(
X̄π

tk
, Itk

)
(tk+1 − tk) + σ

(
X̄π

tk
, Itk

)
(Wtk+1 − Wtk),

for k = 0, . . . , n − 1. We denote as usual by |π | = maxk≤n−1(tk+1 − tk) the mod-
ulus of π , and assume that n|π | is bounded by a constant independent of n,
which holds, for instance, when the grid is regular, that is, (tk+1 − tk) = |π | for
all k ≤ n − 1. We also define the continuous-time version of X̄π by setting

X̄π
t = X̄π

tk
+ b

(
X̄π

tk
, Itk

)
(t − tk) + σ

(
X̄π

tk
, Itk

)
(Wt − Wtk), t ∈ [tk, tk+1], k < n.

By standard arguments, see, for example, [14], one can obtain under (H1) the
L2-error estimate for the above Euler scheme,

E
[

sup
t∈[tk,tk+1]

∣∣Xt − X̄π
tk

∣∣2]
≤ C1|π |, k < n.(2.2)

For our purpose, we shall need a stronger result. Denote by Etk,a[·] and Etk [·]
the conditional expectations E[·|Ftk , Itk = a] and E[·|Ftk ]. We first introduce the
operators Eπ

k , k = 0, . . . , n, defined recursively by Eπ
0 [·] = E[·] and

Eπ
k [·] = Eπ

k−1

[
ess sup

a∈A

Etk,a[·]
]

for k = 1, . . . , n. We then introduce the following error control for the Euler
scheme:

Eπ
k (X) := Eπ

k

[
sup

t∈[tk,tk+1]
∣∣Xt − X̄π

tk

∣∣2]
,

which is written explicitly as

Eπ
k (X) = E

[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[
sup

t∈[tk,tk+1]
∣∣Xt − X̄π

tk

∣∣2]
· · ·

]]
,(2.3)
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where the dots stand for the composition of the operators ess supa∈AEt
,a[·] for 


between 1 and k. Since Itk is Ftk -measurable, and by the law of iterated conditional
expectations, we notice that

E
[

sup
t∈[tk,tk+1]

∣∣Xt − X̄π
tk

∣∣2]
≤ Eπ

k (X), k < n.

LEMMA 2.1. We have

max
k<n

Eπ
k (X) ≤ C1|π |.

The proof essentially adapts standard arguments for proving (2.2), and is re-
ported in the Appendix.

REMARK 2.2. We notice some analogy between our error operators Eπ
k and

the norm ‖ · ‖2
L

2,κ
H

used in [21]. Indeed, this norm is defined by

‖ξ‖2
L

2,κ
H

= sup
Q

EQ[|ξ |2]
,

for ξ in some class of random variables. Here the supremum is taken over a set of
probability measures under which the quadratic variation of the underlying process
X lies in some spaces of integrable processes. This change of probability measure
Q enables formally to modify the quadratic variation of X and hence to cover all
the possible cases coming from the uncertainty on the volatility of X. In our case,
if we suppose that b = 0 and σ(x, i) = i, we retrieve this representation since the
quadratic variation of X between tk and tk+1 is Itk , and Eπ

k takes the supremum
conditionally to the value of Itk .

3. Discretely jump-constrained BSDE. Given the forward regime switching
process (X, I) defined in the previous section, we consider the minimal quadruple
solution (Y,Z,U,K) to the BSDE with nonpositive jumps,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Yt = g(XT ) +
∫ T

t
f (Xs, Is, Ys,Zs) ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
A

Us(a)μ̃(ds, da), 0 ≤ t ≤ T ,

Ut (a) ≤ 0.

(3.1)

By solution to (3.1), we mean a quadruple (Y,Z,U,K) ∈ S2 ×L2(W)×L2(μ̃)×
K2, where S2 is the space of càdlàg or càglàd F-progressively measurable pro-
cesses Y satisfying ‖Y‖2 := E[supt∈[0,T ] |Yt |2] < ∞, L2(W) is the space of

Rd -valued P-measurable processes such that ‖Z‖2
L2(W)

:= E[∫ T
0 |Zt |2 dt] < ∞,

L2(μ̃) is the space of real-valued P ⊗ B(A)-measurable processes U such that
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‖U‖2
L2(μ̃)

:= E[∫ T
0

∫
A |Ut(a)|2λ(da) dt] < ∞ and K2 is the subspace of S2 con-

sisting of nondecreasing predictable processes such that K0 = 0, P-a.s., and
equation in (3.1) holds P-a.s., while the nonpositive jump constraint holds on
� × [0, T ] × A a.e. with respect to the measure dP ⊗ dt ⊗ λ(da). By mini-
mal solution to the BSDE (1.3), we mean a quadruple solution (Y,Z,U,K) ∈
S2 × L2(W) × L2(μ̃) ×K2 such that for any other solution (Y ′,Z′,U ′,K ′) to the
same BSDE, we have P-a.s.: Yt ≤ Y ′

t , t ∈ [0, T ].
In the rest of this paper, we shall make the standing Lipschitz assumption on the

functions f :Rd × A ×R×Rd →R and g :Rd →R.
(H2) There exists a constant L2 such that∣∣f (x, a, y, z) − f

(
x′, a′, y′, z′)∣∣ + ∣∣g(x) − g

(
x′)∣∣

≤ L2
(∣∣x − x′∣∣ + ∣∣a − a′∣∣ + ∣∣y − y′∣∣ + ∣∣z − z′∣∣),

for all x, x′ ∈ Rd , y, y′ ∈ R, z, z′ ∈ Rd , a, a′ ∈ A. In the sequel, we shall denote
by C a generic positive constant which depends only on L1, L2, T , (X0, I0) and
λ(A) < ∞, and may vary from line to line.

Under (H1) and (H2), it is proved in [13] the existence and uniqueness of a min-
imal solution (Y,Z,U,K) to (3.1). Moreover, the minimal solution Y is written as

Yt = v(t,Xt ), 0 ≤ t ≤ T ,(3.2)

where v : [0, T ] × Rd → R is a viscosity solution with linear growth to the fully
nonlinear HJB type equation⎧⎨

⎩
− sup

a∈A

[
Lav + f

(
x, a, v, σ ᵀ(x, a)Dxv

)] = 0, on [0, T ) ×Rd,

v(T , x) = g, on Rd,

(3.3)

where

Lav = ∂v

∂t
+ b(x, a).Dxv + 1

2
tr

(
σσ ᵀ(x, a)D2

xv
)
.

We shall make the standing assumption that comparison principle holds
for (3.3).

(HC) Let w̄ (resp., w) be a lower-semicontinuous (resp., upper-semicontinuous)
viscosity supersolution (resp., subsolution) with linear growth condition to (3.3).
Then, w̄ ≥ w.

When f does not depend on y, z, that is, (3.3) is the usual HJB equation for a
stochastic control problem, Assumption (HC) holds true; see [10] or [19]. In the
general case, we refer to [8] for sufficient conditions to comparison principles.
Under (HC), the function v in (3.2) is the unique viscosity solution to (3.3), and
is in particular continuous. Actually, we have the standard Hölder and Lipschitz
property (see the Appendix in [16] or [3]):∣∣v(t, x) − v

(
t ′, x′)∣∣ ≤ C

(∣∣t − t ′
∣∣1/2 + ∣∣x − x′∣∣),

(3.4) (
t, t ′

) ∈ [0, T ], x, x′ ∈ Rd .
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This implies that the process Y is continuous, and thus the jump component U = 0.
In the sequel, we shall focus on the approximation of the remaining components
Y and Z of the minimal solution to (3.1).

We introduce in this section discretely jump-constrained BSDE. The non-
positive jump constraint operates only at the times of the grid π = {t0 = 0 <

t1 < · · · < tn = T } of [0, T ], and we look for a quadruple (Y π ,Yπ ,Zπ ,Uπ) ∈
S2 × S2 × L2(W) × L2(μ̃) satisfying

Yπ
T = Yπ

T = g(XT )(3.5)

and

Yπ
t = Yπ

tk+1
+

∫ tk+1

t
f

(
Xs, Is,Yπ

s ,Zπ
s

)
ds

(3.6)

−
∫ tk+1

t
Zπ

s dWs −
∫ tk+1

t

∫
A
Uπ

s (a)μ̃(ds, da),

Y π
t = Yπ

t 1(tk,tk+1)(t) + ess sup
a∈A

E
[
Yπ

t |Xt, It = a
]
1{tk}(t),(3.7)

for all t ∈ [tk, tk+1) and all 0 ≤ k ≤ n − 1.
Notice that at each time tk of the grid, the condition is not known a priori to

be square integrable since it involves a supremum over A, and the well-posedness
of the BSDE (3.5)–(3.7) is not a direct and standard issue. We shall use a PDE
approach for proving the existence and uniqueness of a solution. Let us consider
the system of integro-partial differential equations (IPDEs) for the functions vπ

and ϑπ defined recursively on [0, T ] ×Rd × A by:
• a terminal condition for vπ and ϑπ ,

vπ(T , x, a) = ϑπ(T , x, a) = g(x), (x, a) ∈Rd × A;(3.8)

• a sequence of IPDEs for ϑπ ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Laϑπ − f
(
x, a,ϑπ,σ ᵀ(x, a)Dxϑ

π )
,

−
∫
A

(
ϑπ (

t, x, a′) − ϑπ(t, x, a)
)
λ
(
da′) = 0,

(t, x, a) ∈ [tk, tk+1) ×Rd × A,

ϑπ (
t−k+1, x, a

) = sup
a′∈A

ϑπ (
tk+1, x, a′),

(x, a) ∈ Rd × A

(3.9)

for k = 0, . . . , n − 1;
• the relation between vπ and ϑπ ,

vπ(t, x, a) = ϑπ(t, x, a)1(tk,tk+1)(t) + sup
a′∈A

ϑπ (
t, x, a′)1{tk}(t),(3.10)

for all t ∈ [tk, tk+1) and k = 0, . . . , n − 1. The rest of this section is devoted to the
proof of existence and uniqueness of a solution to (3.8)–(3.10), together with some
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uniform Lipschitz properties, and its connection to the discretely jump-constrained
BSDE (3.5)–(3.7).

For any L-Lipschitz continuous function ϕ on Rd ×A, and k ≤ n−1, we denote

Tk
π [ϕ](t, x, a) := w(t, x, a), (t, x, a) ∈ [tk, tk+1) ×Rd × A,(3.11)

where w is the unique continuous viscosity solution on [tk, tk+1] × Rd × A with
linear growth condition in x to the integro partial differential equation (IPDE)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Law − f
(
x, a,w,σ ᵀDxw

)
,

−
∫
A

(
w

(
t, x, a′) − w(t, x, a)

)
λ
(
da′) = 0,

(t, x, a) ∈ [tk, tk+1) ×Rd × A,

w
(
t−k+1, x, a

) = ϕ(x, a),

(x, a) ∈Rd × A,

(3.12)

and we extend by continuity Tk
π [ϕ](tk+1, x, a) = ϕ(x, a). The existence and

uniqueness of such a solution w to the semi linear IPDE (3.12), and its nonlin-
ear Feynman–Kac representation in terms of BSDE with jumps, is obtained, for
example, from Theorems 3.4 and 3.5 in [2].

We first show that the functions ϑπ and vπ are well defined.

PROPOSITION 3.1. There exists a unique viscosity solution ϑπ with linear
growth condition to the IPDE (3.8) and (3.9), and this solution satisfies∣∣ϑπ(t, x, a) − ϑπ (

t, x′, a′)∣∣
(3.13)

≤ max(L2,1)

√(
e2C|π |(1 + |π |))n−k(∣∣x − x′∣∣ + ∣∣a − a′∣∣),

for all k = 0, . . . , n − 1, t ∈ [tk, tk+1), (x, a), (x′, a′) ∈ Rd × A.

REMARK 3.1. The function a → ϑπ(t, x, ·) is continuous on A, for each
(t, x), and so the function vπ is well defined by (3.10). Moreover, the function
ϑπ may be written recursively as{

ϑπ(T , ·, ·) = g, on Rd × A,

ϑπ = Tk
π

[
vπ(tk+1, ·)], on [tk, tk+1) ×Rd × A,

(3.14)

for k = 0, . . . , n − 1. In particular, ϑπ is continuous on (tk, tk+1) × Rd × A, k ≤
n − 1.

The proof of Proposition 3.1 is postponed in the Appendix. As a consequence
of this proposition, we obtain the uniform Lipschitz property of ϑπ and vπ , with
a Lipschitz constant independent of π .
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COROLLARY 3.1. There exists a constant C (independent of |π |) such that∣∣ϑπ(t, x, a)−ϑπ (
t, x′, a′)∣∣+ ∣∣vπ(t, x, a)−vπ (

t, x′, a′)∣∣ ≤ C
(∣∣x −x′∣∣+ ∣∣a −a′∣∣),

for all t ∈ [0, T ], x, x′ ∈ Rd , a, a′ ∈ Rd .

PROOF. Recalling that n|π | is bounded, we see that the sequence appearing
in (3.13), ((e2C|π |(1+|π |))n−k)0≤k≤n−1, is bounded uniformly in |π | (or n), which
shows the required Lipschitz property of ϑπ . Since A is assumed to be compact,
this shows in particular that the function vπ defined by the relation (3.10) is well
defined and finite. Moreover, by noting that∣∣∣sup

a∈A

ϑπ(t, x, a) − sup
a∈A

ϑπ (
t, x′, a

)∣∣∣ ≤ sup
a∈A

∣∣ϑπ(t, x, a) − ϑπ (
t, x′, a

)∣∣
for all (t, x) ∈ [0, T ] ×Rd , we also obtain the required Lipschitz property for vπ .

�

We now turn to the existence of a solution to the discretely jump-constrained
BSDE.

PROPOSITION 3.2. The BSDE (3.5)–(3.7) admits a unique solution (Y π ,Yπ ,

Zπ ,Uπ) in S2 × S2 × L2(W) × L2(μ̃). Moreover, we have

Yπ
t = ϑπ(t,Xt , It ) and Yπ

t = vπ(t,Xt , It )(3.15)

for all t ∈ [0, T ].

PROOF. We prove by backward induction on k that (Y π ,Yπ ,Zπ ,Uπ) is well
defined and satisfies (3.15) on [tk, T ].

Suppose that k = n − 1. From Corollary 2.3 in [2], we know that (Yπ ,Zπ ,Uπ)

exists and is unique on [tn−1, T ]. Moreover, from Theorems 3.4 and 3.5 in [2], we
get Yπ

t = Tk
π [g](t,Xt , It ) = ϑπ(t,Xt , It ) on [tn−1, T ]. By (3.7), we then have for

all t ∈ [tn−1, T ),

Yπ
t = 1(tn−1,T )(t)ϑ

π(t,Xt , It ) + 1tn−1(t) ess sup
a∈A

ϑπ(t,Xt , a)

= 1(tn−1,T )(t)ϑ
π(t,Xt , It ) + 1tn−1(t) sup

a∈A

ϑπ(t,Xt , a) = vπ(t,Xt , It ),

since the essential supremum and supremum coincide by continuity of a →
ϑπ(t,Xt , a) on the compact set A.

Suppose that the result holds true for some k ≤ n − 1. Then we see that
(Yπ ,Zπ ,Uπ) is defined on [tk−1, tk) as the solution to a BSDE driven by W and
μ̃ with a terminal condition vπ(tk,Xtk ). Since vπ satisfies a linear growth condi-
tion, we know again by Corollary 2.3 in [2] that (Yπ ,Zπ ,Uπ); thus also Yπ exists
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and is unique on [tk−1, tk). Moreover, using again Theorems 3.4 and 3.5 in [2], we
get (3.15) on [tk−1, tk). �

We end this section with a conditional regularity result for the discretely jump-
constrained BSDE.

PROPOSITION 3.3. There exists some constant C such that

sup
t∈[tk,tk+1)

Etk

[∣∣Yπ
t −Yπ

tk

∣∣2] + sup
t∈(tk,tk+1]

Etk

[∣∣Yπ
t − Yπ

tk+1

∣∣2] ≤ C
(
1 + |Xtk |2

)|π |,

for all k = 0, . . . , n − 1.

The proof essentially follows the arguments of [6] and is reported in the Ap-
pendix.

4. Convergence of discretely jump-constrained BSDE. This section is de-
voted to the convergence of the discretely jump-constrained BSDE toward the min-
imal solution to the BSDE with nonpositive jump.

4.1. Convergence result.

LEMMA 4.1. We have the following assertions:

(1) The familly (ϑπ)π is nondecreasing and upper bounded by v: for any grids
π and π ′ such that π ⊂ π ′, we have

ϑπ(t, x, a) ≤ ϑπ ′
(t, x, a) ≤ v(t, x), (t, x, a) ∈ [0, T ] ×Rd × A.

(2) The familly (ϑπ)π satisfies a uniform linear growth condition: there exists
a constant C such that ∣∣ϑπ(t, x, a)

∣∣ ≤ C
(
1 + |x|),

for any (t, x, a) ∈ [0, T ] ×Rd × A and any grid π .

PROOF. (1) Let us first prove that ϑπ ≤ v. Since v is a (continuous) vis-
cosity solution to the HJB equation (3.3), and v does not depend on a, we see
that v is a viscosity supersolution to the IPDE in (3.9) satisfied by ϑπ on each
interval [tk, tk+1). Now, since v(T , x) = ϑπ(T , x, a), we deduce by comparison
principle for this IPDE (see, e.g., Theorem 3.4 in [2]) on [tn−1, T ) × Rd × A

that v(t, x) ≥ ϑπ(t, x, a) for all t ∈ [tn−1, T ], (x, a) ∈ Rd × A. In particular,
v(t−n−1, x) = v(tn−1, x) ≥ supa∈A ϑπ(tn−1, x, a) = ϑπ(t−n−1, x, a). Again, by com-
parison principle for the IPDE (3.9) on [tn−2, tn−1) × Rd × A, it follows that
v(t, x) ≥ ϑπ(t, x, a) for all t ∈ [tn−2, tn−1], (x, a) ∈ Rd × A. By backward in-
duction on time, we conclude that v ≥ ϑπ on [0, T ] ×Rd × A.
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Let us next consider two partitions π = (tk)0≤k≤n and π ′ = (t ′k)0≤k≤n′ of [0, T ]
with π ⊂ π ′, and denote by m = max{k ≤ n′ : t ′m /∈ π}. Thus all the points of
the grid π and π ′ coincide after time t ′m, and since ϑπ and ϑπ ′

are viscos-
ity solutions to the same IPDE (3.9) starting from the same terminal data g,
we deduce by uniqueness that ϑπ = ϑπ ′

on [t ′m,T ] × Rd × A. Then we have
ϑπ ′

(t ′−m ,x, a) = supa∈A ϑπ(t ′m,x, a) = supa∈A ϑπ(t ′m,x, a) ≥ ϑπ(t−m,x, a) since
ϑπ is continuous outside of the points of the grid π (recall Remark 3.1). Now,
since ϑπ and ϑπ ′

are viscosity solutions to the same IPDE (3.9) on [t ′m−1, tm), we

deduce by comparison principle that ϑπ ′ ≥ ϑπ on [t ′m−1, t
′
m]×Rd ×A. Proceeding

by backward induction, we conclude that ϑπ ′ ≥ ϑπ on [0, T ] ×Rd × A.
(2) Denote by π0 = {t0 = 0, t1 = T } the trivial grid of [0, T ]. Since ϑπ0 ≤ ϑπ ≤

v and ϑπ0 and v satisfy a linear growth condition, we get (recall that A is compact)∣∣ϑπ(t, x, a)
∣∣ ≤ ∣∣ϑπ0(t, x, a)

∣∣ + ∣∣v(t, x)
∣∣ ≤ C

(
1 + |x|),

for any (t, x, a) ∈ [0, T ] ×Rd × A and any grid π . �

In the sequel, we denote by ϑ the increasing limit of the sequence (ϑπ)π when
the grid modulus |π | goes to zero. The next key result concerns the dependence of
ϑ on the variable a in A.

PROPOSITION 4.1. The function ϑ is l.s.c. and does not depend on the vari-
able a ∈ A

ϑ(t, x, a) = ϑ
(
t, x, a′), (t, x) ∈ [0, T ] ×Rd, a, a′ ∈ A.

To prove this result we use the following lemma. Observe by definition (3.10)
of vπ that the function vπ does not depend on a on the grid times π , and we shall
denote by the following misuse of notation: vπ(tk, x), for k ≤ n, x ∈ Rd .

LEMMA 4.2. There exists a constant C (not depending on π ) such that∣∣ϑπ(t, x, a) − vπ(tk+1, x)
∣∣ ≤ C

(
1 + |x|)|π |1/2

for all k = 0, . . . , n − 1, t ∈ [tk, tk+1), (x, a) ∈ Rd × A.

PROOF. Fix k = 0, . . . , n−1, t ∈ [tk, tk+1) and (x, a) ∈ Rd ×A. Let (Ỹ, Z̃, Ũ)

be the solution to the BSDE

Ỹs = vπ (
tk+1,X

t,x,a
tk+1

) +
∫ tk+1

s
f

(
Xt,x,a

s , I t,a
s , Ỹs, Z̃s

)
ds

−
∫ tk+1

s
Z̃s dWs −

∫ tk+1

s

∫
A
Ũs

(
a′)μ̃(

ds, da′), s ∈ [t, tk+1].
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From Proposition 3.2, Markov’s property and uniqueness of a solution to the BSDE
(3.5)–(3.7) we have Ỹs = ϑπ(s,Xt,x,a

s , I t,a
s ), for s ∈ [t, tk+1], and so∣∣ϑπ(t, x, a) − vπ(tk+1, x)

∣∣ = ∣∣Ỹt − vπ(tk+1, x)
∣∣

≤ E
∣∣vπ (

tk+1,X
t,x,a
tk+1

) − vπ(tk+1, x)
∣∣(4.1)

+E

[∫ tk+1

t

∣∣f (
Xt,x,a

s , I t,a
s , Ỹs, Z̃s

)∣∣ds

]
.

From Corollary 3.1, we have

E
∣∣vπ (

tk+1,X
t,x,a
tk+1

) − vπ(tk+1, x)
∣∣ ≤ C

√
E

[∣∣Xt,x,a
tk+1

− x
∣∣2] ≤ C

√|π |.(4.2)

Moreover, by the linear growth condition on f in (H2), and on ϑπ in Lemma 4.1,
we have

E

[∫ tk+1

t

∣∣f (Xs, Is, Ỹs, Z̃s)
∣∣ds

]
≤ CE

[∫ tk+1

t

(
1 + ∣∣Xt,x,a

s

∣∣ + |Z̃s |)ds

]
.

By classical estimates, we have

sup
s∈[t,T ]

E
[∣∣Xt,x,a

s

∣∣2] ≤ C
(
1 + |x|2)

.

Moreover, under (H1) and (H2), we know from Proposition 4.2 in [6] that there
exists a constant C depending only on the Lipschitz constants of b, σf and
vπ(tk+1, ·) such that

E
[

sup
s∈[tk,tk+1]

|Z̃s |2
]
≤ C

(
1 + |x|2)

.

This proves that

E

[∫ tk+1

t

∣∣f (Xs, Is, Ỹs, Z̃s)
∣∣ds

]
≤ C

(
1 + |x|)|π |.

Combining this last estimate with (4.1) and (4.2), we get the result. �

PROOF OF PROPOSITION 4.1. The function ϑ is l.s.c. as the supremum of
the l.s.c. functions ϑπ . Fix (t, x) ∈ [0, T ) × Rd and a, a′ ∈ A. Let (πp)p be a
sequence of subdivisions of [0, T ] such that |πp| ↓ 0 as p ↑ ∞. We define the
sequence (tp)p of [0, T ] by

tp = min
{
s ∈ πp : s > t

}
, p ≥ 0.

Since |πp| → 0 as p → ∞ we get tp → t as p → +∞. We then have from the
previous lemma∣∣ϑπp

(t, x, a) − ϑπp (
t, x, a′)∣∣

≤ ∣∣ϑπp

(t, x, a) − vπp

(tp, x)
∣∣ + ∣∣vπp

(tp, x) − ϑπp(
t, x, a′)∣∣

≤ 2C
∣∣πp

∣∣1/2
.
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Sending p to ∞ we obtain that ϑ(t, x, a) = ϑ(t, x, a′). �

COROLLARY 4.1. We have the identification: ϑ = v, and the sequence (vπ )π
also converges to v.

PROOF. We proceed in two steps.
Step 1. The function ϑ is a supersolution to (3.3). Since ϑπk(T , ·) = g for all

k ≥ 1, we first notice that ϑ(T , ·) = g. Next, since ϑ does not depend on the vari-
able a, we have

ϑπ(t, x, a) ↑ ϑ(t, x) as |π | ↓ 0

for any (t, x, a) ∈ [0, T ]×Rd ×A. Moreover, since the function ϑ is l.s.c, we have

ϑ = ϑ∗ = lim inf|π |→0
∗ϑπ,(4.3)

where

lim inf|π |→0
∗ϑπ(t, x, a) := lim inf|π |→0

(t ′,x′,a′)→(t,x,a)

t ′<T

ϑπ (
t ′, x′, a′),

(t, x, a) ∈ [0, T ] ×Rd ×Rq.

Fix now some (t, x) ∈ [0, T ] × Rd and a ∈ A and (p, q,M) ∈ J̄ 2,−ϑ(t, x), the
limiting parabolic subjet of ϑ at (t, x); see the definition in [8]. From standard
stability results, there exists a sequence (πk, tk, xk, ak,pk, qk,Mk)k such that

(pk, qk,Mk) ∈ J̄ 2,−ϑπk(tk, xk, ak)

for all k ≥ 1 and(
tk, xk, ak,ϑ

πk (tk, xk, ak)
) −→ (

t, x, a,ϑ(t, x, a)
)

as k → ∞, |πk| → 0.

From the viscosity supersolution property of ϑπk to (3.9) in terms of subjets, we
have

−pk − b(xk, ak).qk − 1

2
tr

(
σσ ᵀ(xk, ak)Mk

)
− f

(
xk, ak,ϑ

πk (tk, xk, ak), σ
ᵀ(xk, ak)qk

)
−

∫
A

(
ϑπk

(
tk, xk, a

′) − ϑπk(tk, xk, ak)
)
λ
(
da′) ≥ 0

for all k ≥ 1. Sending k to infinity and using (4.3), we get

−p − b(x, a).q − 1
2 tr

(
σσ ᵀ(x, a)M

) − f
(
x, a,ϑ(t, x), σ ᵀ(x, a)q

) ≥ 0.

Since a is arbitrary in A, this shows

−p − sup
a∈A

[
b(x, a).q + 1

2
tr

(
σσ ᵀ(x, a)M

) + f
(
x, a,ϑ(t, x), σ ᵀ(x, a)q

)] ≥ 0,
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that is, the viscosity supersolution property of ϑ to (3.3).
Step 2. Comparison. Since the PDE (3.3) satisfies a comparison principle, we

have from the previous step ϑ ≥ v, and we conclude with Lemma 4.1 that ϑ = v.
Finally, by definition (3.10) of vπ and from Lemma 4.1, we clearly have ϑπ ≤
vπ ≤ v, which also proves that (vπ)π converges to v. �

In terms of the discretely jump-constrained BSDE, the convergence result is
formulated as follows:

PROPOSITION 4.2. We have Yπ
t ≤ Yπ

t ≤ Yt , 0 ≤ t ≤ T and

E
[

sup
t∈[0,T ]

∣∣Yt −Yπ
t

∣∣2]
+E

[
sup

t∈[0,T ]
∣∣Yt − Yπ

t

∣∣2]
+E

[∫ T

0

∣∣Zt −Zπ
t

∣∣2 dt

]
→ 0,

as |π | goes to zero.

PROOF. Recall from (3.2) and (3.15) that we have the representation

Yt = v(t,Xt ), Y π
t = vπ(t,Xt , It ), Yπ

t = ϑ(t,Xt , It ),(4.4)

and the first assertion of Lemma 4.1, we clearly have Yπ
t ≤ Yπ

t ≤ Yt , 0 ≤ t ≤ T .
The convergence in S2 for Yπ to Y and Yπ to Y comes from the above repre-
sentation (4.4), the pointwise convergence of ϑπ and vπ to v in Corollary 4.1
and the dominated convergence theorem by recalling that 0 ≤ (v − vπ)(t, x, a) ≤
(v − ϑπ)(t, x, a) ≤ v(t, x) ≤ C(1 + |x|). Let us now turn to the component Z. By
definitions (3.5)–(3.7) of the discretely jump-constrained BSDE we notice that Yπ

can be written on [0, T ] as

Yπ
t = g(XT ) +

∫ T

t
f

(
Xs, Is,Yπ

s ,Zπ
s

) −
∫ T

t
Zπ

s dWs

−
∫ T

t

∫
A
Uπ

s (a)μ̃(ds, da) +Kπ
T −Kπ

t ,

where Kπ is the nondecreasing process defined by Kπ
t = ∑

tk≤t (Y
π
tk

−Yπ
tk
), for t ∈

[0, T ]. Denote by δY = Y −Yπ , δZ = Z −Zπ , δU = U −Uπ and δK = K −Kπ .
From Itô’s formula, Young’s inequality and (H2), there exists a constant C such
that

E
[|δYt |2] + 1

2
E

[∫ T

t
|δZs |2 ds

]
+ 1

2
E

[∫ T

t

∣∣δUs(a)
∣∣2λ(da) ds

]
(4.5)

≤ C

∫ T

t
E

[|δYs |2]
ds + 1

ε
E

[
sup

s∈[0,T ]
|δYs |2

]
+ εE

[|δKT − δKt |2]
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for all t ∈ [0, T ], with ε a constant to be chosen later. From the definition of δK

we have

δKT − δKt = δYt −
∫ T

t

(
f (Xs, Is, Ys,Zs) − f

(
Xs, Is,Yπ

s ,Zπ
s

))
ds

+
∫ T

0
δZs dWs +

∫ T

t

∫
A

δUs(a)μ̃(ds, da).

Therefore, by (H2), we get the existence of a constant C′ such that

E
[|δKT − δKt |2]

≤ C′
(
E

[
sup

s∈[0,T ]
|δYs |2

]
+E

[∫ T

t
|δZs |2 ds

]
+E

[∫ T

t

∣∣δUs(a)
∣∣2λ(da) ds

])
.

Taking ε = C′
4 and plugging this last inequality in (4.5), we get the existence of a

constant C′′ such that

E

[∫ T

t
|δZs |2 ds

]
+E

[∫ T

t

∣∣δUs(a)
∣∣2λ(da) ds

]
≤ C′′(E[

sup
s∈[0,T ]

|δYs |2
])

,(4.6)

which shows the L2(W) convergence of Zπ to Z from the S2 convergence of Yπ

to Y . �

4.2. Rate of convergence. We next provide an error estimate for the conver-
gence of the discretely jump-constrained BSDE. We shall combine BSDE methods
and PDE arguments adapted from the shaking coefficients approach of Krylov [16]
and switching systems approximation of Barles and Jacobsen [3]. We make further
assumptions:

(H1′) The functions b and σ are uniformly bounded

sup
x∈Rd ,a∈A

∣∣b(x, a)
∣∣ + ∣∣σ(x, a)

∣∣ < ∞.

(H2′) The function f does not depend on z: f (x, a, y, z) = f (x, a, y) for all
(x, a, y, z) ∈ Rd × A ×R×Rd , and:

(i) the functions f (·, ·,0) and g are uniformly bounded

sup
x∈Rd ,a∈A

∣∣f (x, a,0)
∣∣ + ∣∣g(x)

∣∣ < ∞;

(ii) for all (x, a) ∈ Rd × A, y �→ f (x, a, y) is convex.

Assumption (H2′) is needed to apply the shaken coefficients method by Krylov.
More precisely, the nondependence of f on the variable z and (H2′)(i) allows us
to construct smooth supersolutions to (3.3) using Perron’s method, while (H2′)(ii)
ensures that a convex combination of supersolutions to (3.3) remains a supersolu-
tion.

Under these assumptions, we obtain the rate of convergence for vπ and ϑπ

toward v.
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THEOREM 4.1. Under (H1′) and (H2′), there exists a constant C such that

0 ≤ v(t, x) − vπ(t, x, a) ≤ v(t, x) − ϑπ(t, x, a) ≤ C|π |1/10

for all (t, x, a) ∈ [0, T ] × Rd × A and all grid π with |π | ≤ 1. Moreover, when
f (x, a) does not depend on y, the rate of convergence is improved to |π |1/6.

Before proving this result, we give as a corollary, the rate of convergence for the
discretely jump-constrained BSDE.

COROLLARY 4.2. Under (H1′) and (H2′), there exists a constant C such that

E
[

sup
t∈[0,T ]

∣∣Yt −Yπ
t

∣∣2]
+E

[
sup

t∈[0,T ]
∣∣Yt − Yπ

t

∣∣2]
+E

[∫ T

0

∣∣Zt −Zπ
t

∣∣2 dt

]
≤ C|π |1/5,

for all grid π with |π | ≤ 1, and the above rate is improved to |π |1/3 when f (x, a)

does not depend on y.

PROOF. From representation (4.4) and Theorem 4.1, we immediately have

E
[

sup
t∈[0,T ]

∣∣Yt −Yπ
t

∣∣2]
+E

[
sup

t∈[0,T ]
∣∣Yt − Yπ

t

∣∣2]
≤ C|π |1/5,(4.7)

[resp., |π |1/3 when f (x, a) does not depend on y]. Finally, the convergence rate
for Z follows from inequality (4.6). �

REMARK 4.1. The above convergence rate |π |1/10 is the optimal rate that
one can prove in our generalized stochastic control context with fully nonlinear
HJB equation by PDE approach and shaking coefficients technique; see [3, 9, 16]
or [22]. However, this rate may not be the sharpest one. In the case of continuously
reflected BSDEs, that is, BSDEs with upper or lower constraint on Y , it is known
that Y can be approximated by discretely reflected BSDEs, that is, BSDEs where
reflection on Y operates a finite set of times on the grid π , with a rate |π |1/2;
see [1]. The standard arguments for proving this rate are based on the represen-
tation of the continuously (resp., discretely) reflected BSDE as optimal stopping
problems where stopping is possible over the whole interval time (resp., only on
the grid times). In our jump-constrained case, we know from [13] that the minimal
solution to the BSDE with nonpositive jumps has the stochastic control represen-
tation (1.2) when f (x, a) does not depend on y and z. We shall prove an analog
representation for discretely jump-constrained BSDEs, and this helps to improve
the rate of convergence from |π |1/10 to |π |1/6.

The rest of this section is devoted to the proof of Theorem 4.1. We first consider
the special case where f (x, a) does not depend on y, and then address the case
f (x, a, y).
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PROOF OF THEOREM 4.1 IN THE CASE f (x, a). In the case where f (x, a)

does not depend on y, z, by (linear) Feynman–Kac formula for ϑπ solution
to (3.9), and by definition of vπ in (3.10), we have

vπ(tk, x) = sup
a∈A

E

[∫ tk+1

tk

f
(
X

tk,x,a
t , I

tk,a
t

)
dt + vπ (

tk+1,X
tk,x,a
tk+1

)]
,

k ≤ n − 1, x ∈Rd .

By induction, this dynamic programming relation leads to the following stochastic
control problem with discrete time policies:

vπ(tk, x) = sup
α∈Aπ

F

E

[∫ T

tk

f
(
X̄

tk,x,α
t , Ī α

t

)
dt + g

(
X̄

tk,x,α
T

)]
,

where Aπ
F is the set of discrete time processes α = (αtj )j≤n−1, with αtjFtj -

measurable, valued in A, and

X̄
tk,x,α
t = x +

∫ t

tk

b
(
X̄t,x,α

s , Ī α
s

)
ds +

∫ t

tk

σ
(
X̄tk,x,α

s , Ī α
s

)
dWs, tk ≤ t ≤ T ,

Ī α
t = αtj +

∫
(tj ,t]

∫
A

(
a − Ī α

s−
)
μ(ds, da), tj ≤ t < tj+1, j ≤ n − 1.

In other words, vπ(tk, x) corresponds to the value function for a stochastic control
problem where the controller can act only at the dates tj of the grid π , and then
let the regime of the coefficients of the diffusion evolve according to the Poisson
random measure μ. Let us introduce the following stochastic control problem with
piece-wise constant control policies:

ṽπ (tk, x) = sup
α∈Aπ

F

E

[∫ T

tk

f
(
X̃

tk,x,α
t , Ĩ α

t

)
dt + g

(
X̃

tk,x,α
T

)]
,

where for α = (αtj )j≤n−1 ∈ Aπ
F ,

X̃
tk,x,α
t = x +

∫ t

tk

b
(
X̃t,x,α

s , Ĩ α
s

)
ds +

∫ t

tk

σ
(
X̃tk,x,α

s , Ĩ α
s

)
dWs, tk ≤ t ≤ T ,

Ĩ α
t = αtj , tj ≤ t < tj+1, j ≤ n − 1.

It is shown in [15] that ṽπ approximates the value function v for the controlled
diffusion problem (1.2), solution to the HJB equation (3.3), with a rate |π |1/6,

0 ≤ v(tk, x) − ṽπ (tk, x) ≤ C|π |1/6,(4.8)

for all tk ∈ π , x ∈ Rd . Now, recalling that A is compact and λ(A) < ∞, it is clear
that there exists some positive constant C such that for all α ∈ Aπ

F , j ≤ n − 1,

E
[

sup
t∈[tj ,tj+1)

∣∣Ī α
t − Ĩ α

t

∣∣2]
≤ C|π |,
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and then by standard arguments under the Lipschitz condition on b, σ ,

E
[

sup
t∈[tj ,tj+1]

∣∣X̄tk,x,α
t − X̃

tk,x,α
t

∣∣2]
≤ C|π |, k ≤ j ≤ n − 1, x ∈ Rd .

By the Lipschitz conditions on f and g, it follows that∣∣vπ(tk, x) − ṽπ (tk, x)
∣∣ ≤ C|π |1/2,

and thus with (4.8)

0 ≤ sup
x∈Rd

(
v − vπ )

(tk, x) ≤ C|π |1/6.

Finally, by combining with the estimate in Lemma 4.2, which gives actually under
(H2′)(i),∣∣ϑπ(t, x, a) − vπ(tk+1, x)

∣∣ ≤ C|π |1/2, t ∈ [tk, tk+1), (x, a) ∈ Rd × A,

together with the 1/2-Hölder property of v in time [see (3.4)], we obtain

sup
(t,x,a)∈[0,T ]×Rd×A

(
v − ϑπ )

(t, x, a) ≤ C
(|π |1/6 + |π |1/2) ≤ C|π |1/6,

for |π | ≤ 1. This completes the proof. �

Let us now turn to the case where f (x, a, y) may also depend on y. We cannot
rely anymore on the convergence rate result in [15]. Instead, recalling that A is
compact and since σ , b and f are Lipschitz in (x, a), we shall apply the switching
system method of Barles and Jacobsen [3], which is a variation of the shaken co-
efficients method and smoothing technique used in Krylov [16], in order to obtain
approximate smooth subsolution to (3.3). By Lemmas 3.3 and 3.4 in [3], one can
find a family of smooth functions (wε)0<ε≤1 on [0, T ] ×Rd such that

sup
[0,T ]×Rd

|wε| ≤ C,(4.9)

sup
[0,T ]×Rd

|wε − w| ≤ Cε1/3,(4.10)

sup
[0,T ]×Rd

∣∣∂β0
t Dβwε

∣∣ ≤ Cε1−2β0−∑d
i=1 βi

,

(4.11)
β0 ∈ N, β = (

β1, . . . , βd
) ∈ Nd,

for some positive constant C independent of ε, and by convexity of f in (H2′)(ii),
for any ε ∈ (0,1], (t, x) ∈ [0, T ] ×Rd , there exists at,x,ε ∈ A such that

−Lat,x,εwε(t, x) − f
(
x, at,x,ε,wε(t, x)

) ≥ 0.(4.12)

Recalling the definition of the operator Tk
π in (3.11), we define for any function

ϕ on [0, T ] ×Rd × A, Lipschitz in (x, a),

Tπ [ϕ](t, x, a) := Tk
π

[
ϕ(tk+1, ·, ·)](t, x, a), t ∈ [tk, tk+1), (x, a) ∈ Rd × A,
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for k = 0, . . . , n − 1 and

Sπ [ϕ](t, x, a)

:= 1

|π |
[
ϕ(t, x) −Tπ [ϕ](t, x, a) + (tk+1 − t)

(
Laϕ(t, x) + f

(
x, a,ϕ(t, x)

))]
,

for (t, x, a) ∈ [tk, tk+1) ×Rd × A, k ≤ n − 1.
We have the following key error bound on Sπ .

LEMMA 4.3. Let (H1′) and (H2′)(i) hold. There exists a constant C such that∣∣Sπ [ϕε](t, x, a)
∣∣ ≤ C

(|π |1/2(
1 + ε−1)+|π |ε−3)

, (t, x, a) ∈ [0, T ]×Rd ×A,

for any family (ϕε)ε of smooth functions on [0, T ]×Rd satisfying (4.9) and (4.11).

PROOF. Fix (t, x, a) ∈ [0, T ] ×Rd × A. If t = T , we have |Sπ [ϕε](t, x, a)| =
0. Suppose that t < T , and fix k ≤ n such that t ∈ [tk, tk+1). Given a smooth func-
tion ϕε satisfying (4.9) and (4.11), we split∣∣Sπ [ϕε](t, x, a)

∣∣ ≤ Aε(t, x, a) + Bε(t, x, a),

where

Aε(t, x, a)

:= 1

|π |
∣∣Tπ [ϕε](t, x, a) −E

[
ϕε

(
tk+1,X

t,x,a
tk+1

)] − (tk+1 − t)f
(
x, a,ϕε(t, x)

)∣∣
and

Bε(t, x, a) := 1

|π |
∣∣E[

ϕε

(
tk+1,X

t,x,a
tk+1

)] − ϕε(t, x) − (tk+1 − t)Laϕε(t, x)
∣∣,

and we study each term Aε and Bε separately.
(1) Estimate on Aε(t, x, a).
Define (Y ϕε ,Zϕε ,Uϕε) as the solution to the BSDE on [t, tk+1]:

Yϕε
s = ϕε

(
tk+1,X

t,x,a
tk+1

) +
∫ tk+1

s
f

(
Xt,x,a

r , I t,a
r , Y ϕε

r

)
dr

(4.13)

−
∫ tk+1

s
Zϕε

r dWr −
∫ tk+1

s

∫
A

Uϕε
r (a)μ̃(dr, da), s ∈ [t, tk+1].

From Theorems 3.4 and 3.5 in [2], we have Y
ϕε
t = Tπ [ϕε](t, x, a), and by taking

expectation in (4.13), we thus get

Y
ϕε
t = Tπ [ϕε](t, x, a) = E

[
ϕε

(
tk+1,X

t,x,a
tk+1

)] +E

[∫ tk+1

t
f

(
Xt,x,a

s , I t,a
s , Y ϕε

s

)
ds

]



2322 I. KHARROUBI, N. LANGRENÉ AND H. PHAM

and so

Aε(t, x, a)

≤ 1

|π |E
[∫ tk+1

t

∣∣f (
Xt,x,a

s , I t,a
s , Y ϕε

s

) − f
(
x, a,ϕε(t, x)

)∣∣ds

]

≤ C
(
E

[
sup

s∈[t,tk+1]
∣∣Xt,x,a

s − x
∣∣ + ∣∣I t,a

s − a
∣∣] +E

[
sup

s∈[t,tk+1]
∣∣Yϕε

s − ϕε(t, x)
∣∣]),

by the Lipschitz continuity of f . From standard estimate for SDE, we have [recall
that the coefficients b and σ are bounded under (H1′) and A is compact]

E
[

sup
s∈[t,tk+1]

∣∣Xt,x,a
s − x

∣∣ + ∣∣I t,a
s − a

∣∣] ≤ C|π |1/2.(4.14)

Moreover, by (4.13), the boundedness condition in (H2′)(i) together with the Lip-
schitz condition of f and Burkholder–Davis–Gundy inequality, we have

E
[

sup
s∈[t,tk+1]

∣∣Yϕε
s − ϕε(t, x)

∣∣]

≤ E
[∣∣ϕε

(
tk+1,X

t,x,a
tk+1

) − ϕε(t, x)
∣∣]

+ C|π |E
[
1 + sup

s∈[t,tk+1]
∣∣Yϕε

s

∣∣]

+ C|π |
(
E

[
sup

s∈[t,tk+1]
∣∣Zϕε

s

∣∣2]
+E

[
sup

s∈[t,tk+1]

∫
A

∣∣Uϕε
s (a)

∣∣2λ(da)

])
.

From standard estimate for the BSDE (4.13), we have

E
[

sup
s∈[t,tk+1]

∣∣Yϕε
s

∣∣2]
≤ C,

for some positive constant C depending only on the Lipschitz constant of f , the
upper bound of |f (x, a,0,0)| in (H2′)(i) and the upper bound of |ϕε| in (4.9).
Moreover, from the estimate in Proposition 4.2 in [6] about the coefficients Zϕε and
Uϕε of the BSDE with jumps (4.13), there exists some constant C depending only
on the Lipschitz constant of b,σ,f , and of the Lipschitz constant of ϕε(tk+1, ·)
[which does not depend on ε by (4.11)], such that

E
[

sup
s∈[t,tk+1]

∣∣Zϕε
s

∣∣2]
+E

[
sup

s∈[t,tk+1]

∫
A

∣∣Uϕε
s (a)

∣∣2λ(da)

]
≤ C.

From (4.11), we then have

E
[

sup
s∈[t,tk+1]

∣∣Yϕε
s − ϕε(t, x)

∣∣] ≤ C
(|tk+1 − t |ε−1 +E

[∣∣Xt,x,a
tk+1

− x
∣∣] + |π |)

≤ C|π |1/2(
1 + ε−1)

,
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by (4.14). This leads to the error bound for Aε(t, x, a),

Aε(t, x, a) ≤ C|π |1/2(
1 + ε−1)

.

(2) Estimate on Bε(t, x, a).
From Itô’s formula we have

Bε(t, x, a) = 1

|π |
∣∣∣∣E

[∫ tk+1

t

(
LI

t,a
s ϕε

(
s,Xt,x,a

s

) −Laϕε(t, x)
)
ds

]∣∣∣∣
≤ B1

ε (t, x, a) + B2
ε (t, x, a),

where

B1
ε (t, x, a)

= 1

|π |E
[∫ tk+1

t

∣∣∣∣(b(
Xt,x,a

s , I t,a
s

) − b(x, a)
)
.Dxϕε

(
s,Xt,x,a

s

)

+ 1

2
tr

[(
σσ ᵀ(

Xt,x,a
s , I t,a

s

) − σσ ᵀ(x, a)
)
D2

xϕε(t, x)
]∣∣∣∣ds

]
and

B2
ε (t, x, a) = 1

|π |E
[∫ tk+1

t

∣∣L̃a
t,xϕε

(
s,Xt,x,a

s

) − L̃a
t,xϕε(t, x)

∣∣ds

]
,

with L̃a
t,x defined by

L̃a
t,xϕε

(
t ′, x′) = ∂ϕε

∂t

(
t ′, x′) + b(x, a).Dxϕε

(
t ′, x′) + 1

2
tr

(
σσ ᵀ(x, a)D2

xϕε

(
t ′, x′)).

Under (H1), (H1′), and by (4.11), we have

B1
ε (t, x, a) ≤ C

(
1 + ε−1)

E
[

sup
s∈[t,tk+1]

∣∣Xt,x,a
s − x

∣∣ + ∣∣I t,a
s − a

∣∣]

≤ C
(
1 + ε−1)|π |1/2,

where we used again (4.14). On the other hand, since ϕε is smooth, we have from
Itô’s formula

B2
ε (t, x, a) = 1

|π |E
[∫ tk+1

t

∣∣∣∣
∫ s

t
LI

t,a
r L̃a

t,xφ
(
r,Xt,x,a

r

)
dr

∣∣∣∣ds

]
.

Under (H1′) and by (4.11), we then see that

B2
ε (t, x, a) ≤ C|π |ε−3,

and so

Bε(t, x, a) ≤ C
(|π |1/2(

1 + ε−1) + |π |ε−3)
.

Together with the estimate for Aε(t, x, a), this proves the error bound for
|Sπ [ϕε](t, x, a)|. �

We next state a maximum principle type result for the operator Tπ .
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LEMMA 4.4. Let ϕ and ψ be two functions on [0, T ] ×Rd × A, Lipschitz in
(x, a). Then there exists some positive constant C independent of π such that

sup
(t,x,a)∈[tk,tk+1]×Rd×A

(
Tπ [ϕ] −Tπ [ψ])(t, x, a)

≤ eC|π | sup
(x,a)∈Rd×A

(ϕ − ψ)(tk+1, x, a),

for all k = 0, . . . , n − 1.

PROOF. Fix k ≤ n − 1, and set

M := sup
(x,a)∈Rd×A

(ϕ − ψ)(tk+1, x, a).

We can assume w.l.o.g. that M < ∞ since otherwise the required inequality is
trivial. Let us denote by �v the function

�v(t, x, a) = Tπ [ϕ](t, x, a) −Tπ [ψ](t, x, a),

for all (t, x, a) ∈ [tk, tk+1] ×Rd × A. By definition of Tπ , and from the Lipschitz
condition of f , we see that �v is a viscosity subsolution to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−La�v(t, x, a) − C
(∣∣�v(t, x, a)

∣∣ + ∣∣D�v(t, x, a)
∣∣),

−
∫
A

(
�v

(
t, x, a′) − �v(t, x, a)

)
λ
(
da′) = 0,

for (t, x, a) ∈ [tk, tk+1) ×Rd × A,

�v(tk+1, x, a) ≤ M,

for (x, a) ∈ Rd × A.

(4.15)

Then we easily check that the function � defined by

�(t, x, a) = MeC(tk+1−t), (t, x, a) ∈ [tk, tk+1] ×Rd × A,

is a solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−La�(t, x, a) − C
(∣∣�(t, x, a)

∣∣ + ∣∣D�(t, x, a)
∣∣),

−
∫
A

(
�

(
t, x, a′) − �(t, x, a)

)
λ
(
da′) = 0,

for (t, x, a) ∈ [tk, tk+1) ×Rd × A,

�(tk+1, x, a) = M,

for (x, a) ∈ Rd × A.

(4.16)

From the comparison theorem in [2] for viscosity solutions of semi-linear IPDEs,
we get that �v ≤ � on [tk, tk+1] ×Rd × A, which proves the required inequality.

�
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PROOF OF THEOREM 4.1. By (3.10) and (3.14), we observe that vπ is a fixed
point of Tπ , that is,

Tπ

[
vπ ] = vπ .

On the other hand, by (4.12), and the estimate of Lemma 4.3 applied to wε , we
have

wε(t, x) −Tπ [wε](t, x, at,x,ε) ≤ |π |Sπ [wε](t, x, at,x,ε) ≤ C|π |S̄(π, ε),

where we set S̄(π, ε) = (|π |3/2(1+ε−1)+|π |2ε−3). Fix k ≤ n−1. By Lemma 4.4,
we then have for all t ∈ [tk, tk+1], x ∈ Rd

wε(t, x) − vπ(t, x, at,x,ε)

= wε(t, x) −Tπ [wε](t, x, at,x,ε) + (
Tπ [wε] −Tπ

[
vπ ])

(t, x, at,x,ε)(4.17)

≤ C|π |S̄(π, ε) + eC|π | sup
(x,a)∈Rd×A

(
wε − vπ )

(tk+1, x, a).

Recalling by its very definition that vπ does not depend on a ∈ A on the grid times
of π , and denoting then Mk := supx∈Rd (wε − vπ)(tk, x), we have by (4.17) the
relation

Mk ≤ C|π |S̄(π, ε) + eC|π |Mk+1.

By induction, this yields

sup
x∈Rd

(
wε − vπ )

(tk, x) ≤ C
eCn|π | − 1

eC|π | − 1
|π |S̄(π, ε) + eCn|π | sup

x∈Rd

(
wε − vπ )

(T , x)

≤ CS̄(π, ε) + C sup
x∈Rd

(wε − v)(T , x),

since n|π | is bounded and v(T , x) = vπ(T , x) (= g(x)). From (4.10), we then get

sup
x∈Rd

(
v − vπ )

(tk, x) ≤ C
(
ε1/3 + |π |1/2(

1 + ε−1) + |π |ε−3)
.

By minimizing the right-hand side of this estimate with respect to ε, this leads to
the error bound when taking ε = |π |3/10 ≤ 1,

sup
x∈Rd

(
v − vπ )

(tk, x) ≤ C|π |1/10.

Finally, by combining with the estimate in Lemma 4.2, which gives actually under
(H2′)(i),∣∣ϑπ(t, x, a) − vπ(tk+1, x)

∣∣ ≤ C|π |1/2, t ∈ [tk, tk+1), (x, a) ∈ Rd × A,

together with the 1/2-Hölder property of v in time [see (3.4)], we obtain

sup
(t,x,a)∈[0,T ]×Rd×A

(
v − ϑπ )

(t, x, a) ≤ C
(|π |1/10 + |π |1/2) ≤ C|π |1/10.

This ends the proof. �



2326 I. KHARROUBI, N. LANGRENÉ AND H. PHAM

5. Approximation scheme for jump-constrained BSDE and stochastic con-
trol problem. We consider the discrete time approximation of the discretely
jump-constrained BSDE in the case where f (x, a, y) does not depend on z, and
define the scheme (Ȳ π , Ȳπ , Z̄π) by induction on the grid π = {t0 = 0 < · · · < tk <

· · · < tn = T } by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ȳ π
T = Ȳπ

T = g
(
X̄π

T

)
,

Ȳπ
tk

= Etk

[
Ȳ π

tk+1

] + f
(
X̄π

tk
, Itk , Ȳπ

tk

)
�tk,

Ȳ π
tk

= ess sup
a∈A

Etk,a

[
Ȳπ

tk

]
, k = 0, . . . , n − 1,

(5.1)

where �tk = tk+1 − tk , Etk [·] stands for E[·|Ftk ], and Etk,a[·] for E[·|Ftk , Itk = a].
By induction argument, we easily see that Ȳπ

tk
is a deterministic function of

(X̄π
tk
, Itk ), while Ȳ π

tk
is a deterministic function of X̄π

tk
, for k = 0, . . . , n, and by the

Markov property of the process (X̄π , I ), the conditional expectations in (5.1) can
be replaced by the corresponding regressions

Etk

[
Ȳ π

tk+1

] = E
[
Ȳ π

tk+1
|X̄π

tk
, Itk

]
and Etk,a

[
Ȳπ

tk

] = E
[
Ȳπ

tk
|X̄π

tk
, Itk = a

]
.

We then have

Ȳπ
tk

= ϑ̄π
k

(
X̄π

tk
, Itk

)
, Y π

tk
= v̄π

k

(
X̄π

tk

)
,

for some sequence of functions (ϑ̄π
k )k and (v̄π

k )k defined, respectively, on Rd × A

and Rd by backward induction
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v̄π
n (x, a) = ϑ̄π

n (x) = g(x),

ϑ̄π
k (x, a) = E

[
v̄π
k+1

(
X̄π

tk+1
, Itk+1

)|(X̄π
tk
, Itk

) = (x, a)
]

+ f
(
x, a, ϑ̄π

k (x, a)
)
�tk,

v̄π
k (x) = sup

a∈A

ϑ̄π
k (x, a), k = 0, . . . , n − 1.

(5.2)

There are well-known different methods (Longstaff–Schwartz least square regres-
sion, quantization, Malliavin integration by parts, see, e.g., [1, 7, 18]) for comput-
ing the above conditional expectations, and so the functions ϑ̄π

k and v̄π
k . It appears

that in our context, the simulation-regression method on basis functions defined on
Rd × A, is quite suitable since it allows us to derive at each time step k ≤ n − 1,
a functional form âk(x), which attains the supremum over A in ϑ̄π

k (x, a). We shall
see later in this section that the feedback control (âk(x))k provides an approx-
imation of the optimal control for the HJB equation associated to a stochastic
control problem when f (x, a) does not depend on y. We refer to our compan-
ion paper [12] for the details about the computation of functions ϑ̄π

k , v̄π
k , âk by

simulation-regression methods, and the associated error analysis.
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5.1. Error estimate for the discrete time scheme. The main result of this sec-
tion is to state an error bound between the component Yπ of the discretely jump-
constrained BSDE and the solution (Ȳ π , Ȳπ) to the above discrete time scheme.

THEOREM 5.1. There exists some constant C such that

E
[∣∣Yπ

tk
− Ȳ π

tk

∣∣2] + sup
t∈(tk,tk+1]

E
[∣∣Yπ

t − Ȳ π
tk+1

∣∣2] + sup
t∈[tk,tk+1)

E
[∣∣Yπ

t − Ȳπ
tk

∣∣2] ≤ C|π |,

for all k = 0, . . . , n − 1.

The above convergence rate |π |1/2 in the L2-norm for the discretization of the
discretely jump-constrained BSDE is the same as for standard BSDE; see [7,
23]. By combining with the convergence result in Section 4, we finally obtain
an estimate on the error due to the discrete time approximation of the minimal
solution Y to the BSDE with nonpositive jumps. We split the error between the
positive and negative parts

Errπ+(Y ) := max
k≤n−1

(
E

[(
Ytk − Ȳ π

tk

)2
+

] + sup
t∈(tk,tk+1]

E
[(

Yt − Ȳ π
tk+1

)2
+

]

+ sup
t∈[tk,tk+1)

E
[(

Yt − Ȳπ
tk

)2
+

])1/2
,

Errπ−(Y ) := max
k≤n−1

(
E

[(
Ytk − Ȳ π

tk

)2
−

] + sup
t∈(tk,tk+1]

E
[(

Yt − Ȳ π
tk+1

)2
−

]

+ sup
t∈[tk,tk+1)

E
[(

Yt − Ȳπ
tk

)2
−

])1/2
.

COROLLARY 5.1. We have

Errπ−(Y ) ≤ C|π |1/2.

Moreover, under (H1′) and (H2′),

Errπ+(Y ) ≤ C|π |1/10,

and when f (x, a) does not depend on y,

Errπ+(Y ) ≤ C|π |1/6.

PROOF. Recall from Proposition 4.2 that Yπ
t ≤ Yπ

t ≤ Yt , 0 ≤ t ≤ T . Then we
have (Ytk − Ȳ π

tk
)− ≤ |Yπ

tk
− Ȳ π

tk
|, (Yt − Ȳ π

tk+1
)− ≤ |Yπ

t − Ȳ π
tk+1

|, and (Ytk − Ȳπ
tk
)− ≤

|Yπ
tk

− Ȳπ
tk
|, for all k ≤ n − 1, and t ∈ [0, T ]. The error bound on Errπ−(Y ) follows

then from the estimation in Theorem 5.1. The error bound on Errπ−(Y ) follows
from Corollary 4.2 and Theorem 5.1. �
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REMARK 5.1. In the particular case where f depends only on (x, a), our
discrete time approximation scheme is a probabilistic scheme for the fully nonlin-
ear HJB equation associated to the stochastic control problem (1.2). As in [3, 16]
or [9], we have nonsymmetric bounds on the rate of convergence. For instance,
in [9], the authors obtained a convergence rate |π |1/4 on one side and |π |1/10 on
the other side, while we improve the rate to |π |1/2 for one side, and |π |1/6 on
the other side. This induces a global error Errπ(Y ) = Errπ+(Y ) + Errπ−(Y ) of order
|π |1/6, which is derived without any nondegeneracy condition on the controlled
diffusion coefficient.

PROOF OF THEOREM 5.1. Let us introduce the continuous time version
of (5.1). By the martingale representation theorem, there exists Z̃π ∈ L2(W) and
Ũπ ∈ L2(μ̃) such that

Ȳ π
tk+1

= Etk

[
Ȳ π

tk+1

] +
∫ tk+1

tk

Z̃π
t dWt +

∫ tk+1

tk

∫
A
Ũπ

t (a)μ̃(dt, da), k < n,

and we can then define the continuous-time processes Ȳ π and Ȳπ by

Ȳπ
t = Ȳ π

tk+1
+ (tk+1 − t)f

(
X̄π

tk
, Itk , Ȳπ

tk

)
(5.3)

−
∫ tk+1

t
Z̃π

t dWt −
∫ tk+1

t

∫
A
Ũπ

t (a)μ̃(dt, da), t ∈ [tk, tk+1),

Ȳ π
t = Ȳ π

tk+1
+ (tk+1 − t)f

(
X̄π

tk
, Itk , Ȳπ

tk

)
(5.4)

−
∫ tk+1

t
Z̃π

t dWt −
∫ tk+1

t

∫
A
Ũπ

t (a)μ̃(dt, da), t ∈ (tk, tk+1],
for k = 0, . . . , n − 1. Denote by δYπ

t = Yπ
t − Ȳ π

t , δYπ
t = Yπ

t − Ȳπ
t , δZπ

t = Zπ
t −

Z̃π
t , δUπ

t = Uπ
t − Ũπ

t and δft = f (Xt , It ,Yπ
t ) − f (X̄π

tk
, Itk , Ȳπ

tk
) for t ∈ [tk, tk+1).

Recalling (3.6) and (5.3), we have by Itô’s formula

�t := Etk

[∣∣δYπ
t

∣∣2 +
∫ tk+1

t

∣∣δZπ
s

∣∣2 ds +
∫ tk+1

t

∫
A

∣∣δUπ
s (a)

∣∣2λ(da) ds

]

= Etk

[∣∣δYπ
tk+1

∣∣2] +Etk

[∫ tk+1

t
2δYπ

s δfs ds

]

for all t ∈ [tk, tk+1). By the Lipschitz continuity of f in (H2) and Young inequality,
we then have

�t ≤ Etk

[∣∣δYπ
tk+1

∣∣2] +Etk

[∫ tk+1

t
η
∣∣δYπ

s

∣∣2 ds + C

η
π

∣∣δYπ
tk

∣∣2]

+ C

η
Etk

[∫ tk+1

t

(∣∣Xs − X̄π
tk

∣∣2 + |Is − Itk |2 + ∣∣Yπ
s −Yπ

tk

∣∣2)
ds

]
.

From Gronwall’s lemma, and by taking η large enough, this yields for all k ≤ n−1,

Etk

[∣∣δYπ
tk

∣∣2] ≤ eC|π |Etk

[∣∣δYπ
tk+1

∣∣2] + CBk,(5.5)
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where

Bk = Etk

[∫ tk+1

tk

(∣∣Xs − X̄π
tk

∣∣2 + |Is − Itk |2 + ∣∣Yπ
s −Yπ

tk

∣∣2)
ds

]
(5.6)

≤ C|π |
(
Etk

[
sup

s∈[tk,tk+1]
∣∣Xs − X̄π

tk

∣∣2]
+ |π |(1 + |Xtk |

))
,

by (A.3) and Proposition 3.3. Now, by definition of Yπ
tk+1

and Ȳ π
tk+1

, we have

∣∣δYπ
tk+1

∣∣2 ≤ ess sup
a∈A

Etk+1,a

[∣∣δYπ
tk+1

∣∣2]
.(5.7)

By plugging (5.6), (5.7) into (5.5), taking conditional expectation with respect to
Itk = a and taking essential supremum over a, we obtain

ess sup
a∈A

Etk,a

[∣∣δYπ
tk

∣∣2]

≤ eC|π | ess sup
a∈A

Etk,a

[
ess sup

a∈A

Etk+1,a

[∣∣δYπ
tk+1

∣∣2]]

+ C|π |
(
ess sup

a∈A

Etk,a

[
sup

s∈[tk,tk+1]
∣∣Xs − X̄π

tk

∣∣2]
+ |π |(1 + |Xtk |

))
.

By taking conditional expectation with respect to Ftk−1 , and Itk−1 = a, taking es-
sential supremum over a in the above inequality and iterating this backward pro-
cedure until time t0 = 0, we obtain

Eπ
k (Y) ≤ eC|π |Eπ

k+1(Y) + C|π |(Eπ
k (X) + |π |(1 +E

[|Xtk |
]))

(5.8)
≤ eC|π |Eπ

k+1(Y) + C|π |2, k ≤ n − 1,

where we recall the auxiliary error control Eπ
k (X) on X in (2.3) and its estimate in

Lemma 2.1, and set similarly as in (2.3),

Eπ
k (Y) := E

[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[∣∣δYπ
tk

∣∣2] · · ·
]]

.

By a direct induction on (5.8), and recalling that n|π | is bounded, we get

Eπ
k (Y) ≤ C

(
Eπ

n (Y) + |π |)
≤ C

(
Eπ

n (X) + |π |) ≤ C|π |,
since g is Lipschitz, and using again the estimate in Lemma 2.1. Observing that
E[|δYπ

tk
|2], E[|δYπ

tk
|2] ≤ Eπ

k (Y), we get the estimate

max
k≤n

E
[∣∣Yπ

tk
− Ȳ π

tk

∣∣2] +E
[∣∣Yπ

tk
− Ȳπ

tk

∣∣2] ≤ C|π |.
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Moreover, by Proposition 3.3, we have

sup
t∈[tk,tk+1)

E
[∣∣Yπ

t −Yπ
tk

∣∣2] + sup
t∈(tk,tk+1]

E
[∣∣Yπ

t − Yπ
tk+1

∣∣2] ≤ C
(
1 +E

[|Xtk |
])|π |

≤ C
(
1 + |X0|)|π |.

This implies finally that

sup
s∈(tk,tk+1]

E
[∣∣Yπ

t − Ȳ π
tk+1

∣∣2] ≤ 2 sup
s∈(tk,tk+1]

E
[∣∣Yπ

t − Yπ
tk+1

∣∣2] + 2E
[∣∣Yπ

tk+1
− Ȳ π

tk+1

∣∣2]
≤ C|π |,

as well as

sup
s∈[tk,tk+1)

E
[∣∣Yπ

t − Ȳπ
tk

∣∣2] ≤ 2 sup
s∈[tk,tk+1)

E
[∣∣Yπ

t −Yπ
tk

∣∣2] + 2E
[∣∣Yπ

tk
− Ȳπ

tk

∣∣2]
≤ C|π |. �

5.2. Approximate optimal control. We now consider the special case where
f (x, a) does not depend on y, so that the discrete time scheme (1.4) is an approx-
imation for the value function of the stochastic control problem

V0 := sup
α∈A

J (α) = Y0,

(5.9)

J (α) = E

[∫ T

0
f

(
Xα

t ,αt

)
dt + g

(
Xα

T

)]
,

where A is the set of G-adapted control processes α-valued in A, and Xα is the
controlled diffusion in Rd ,

Xα
t = X0 +

∫ t

0
b
(
Xα

s ,αs

)
ds +

∫ t

0
σ

(
Xα

s ,αs

)
dWs, 0 ≤ t ≤ T .

[Here G= (Gt )0≤t≤T denotes some filtration under which W is a standard Brown-
ian motion]. Let us now define the discrete time version of (5.9). We introduce the
set Aπ of discrete time processes α = (αtk )k with αtkGtk -measurable, and valued
in A. For each α ∈ Aπ , we consider the controlled discrete time process (X

π,α
tk

)k
of Euler type defined by

X
π,α
tk

= X0 +
k−1∑
j=0

b
(
X

π,α
tj

, αtj

)
�tj +

k−1∑
j=0

σ
(
X

π,α
tj

, αtj

)
�Wtj , k ≤ n,

where �Wtj = Wtj+1 − Wtj , and the gain functional

Jπ(α) = E

[
n−1∑
k=0

f
(
X

π,α
tk

, αtk

)
�tk + g

(
X

π,α
tn

)]
.
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Given any α ∈ Aπ , we define its continuous time piecewise-constant interpola-
tion α ∈ A by setting: αt = αtk , for t ∈ [tk, tk+1) (by misuse of notation, we keep
the same notation α for the discrete time and continuous time interpolation). By
standard arguments similar to those for Euler scheme of SDE, there exists some
positive constant C such that for all α ∈ Aπ , k ≤ n − 1,

E
[

sup
t∈[tk,tk+1]

∣∣Xα
t − X

π,α
tk

∣∣2]
≤ C|π |,

from which we easily deduce by Lipschitz property of f and g∣∣J (α) − Jπ(α)
∣∣ ≤ C|π |1/2 ∀α ∈ Aπ .(5.10)

Let us now consider at each time step k ≤ n−1, the function âk(x) which attains
the supremum over a ∈ A of ϑ̄π

k (x, a) in the scheme (5.2), so that

v̄π
k (x) = ϑ̄π

k

(
x, âk(x)

)
, k = 0, . . . , n − 1.

Let us define the process (X̂π
tk
)k by: X̂π

0 = X0,

X̂π
tk+1

= X̂π
tk

+ b
(
X̂π

tk
, âk

(
X̂π

tk

))
�tk + σ

(
X̂π

tk
, âk

(
X̂π

tk

))
�Wtk , k ≤ n − 1,

and notice that X̂π = Xπ,α̂ , where α̂ ∈ Aπ is a feedback control defined by

α̂tk = âk

(
X̂π

tk

) = âk

(
X

π,α̂
tk

)
, k = 0, . . . , n.

Next, we observe that the conditional law of X̄π
tk+1

given (X̄π
tk

= x, Itk = âk(X̄
π
tk
) =

âk(x)) is the same as the conditional law of X
π,α̂
tk+1

given X
π,α̂
tk

= x, for k ≤ n − 1,
and thus the induction step in the scheme (5.1) or (5.2) reads as

v̄π
k

(
X

π,α̂
tk

) = E
[
v̄π
k+1

(
X

π,α̂
tk+1

)|Xπ,α̂
tk

] + f
(
X

π,α̂
tk

, α̂tk

)
�tk, k ≤ n − 1.

By induction, and law of iterated conditional expectations, we then get

Ȳ π
0 = v̄π

0 (X0) = Jπ(α̂).(5.11)

Consider the continuous time piecewise-constant interpolation α̂ ∈ A defined by
α̂t = α̂tk , for t ∈ [tk, tk+1). By (5.9), (5.10), (5.11) and Corollary 5.1, we finally
obtain

0 ≤ V0 − J (α̂) = Y0 − Ȳ π
0 + Jπ(α̂) − J (α̂)

≤ C|π |1/6 + C|π |1/2 ≤ C|π |1/6,

for |π | ≤ 1. In other words, for any small ε > 0, we obtain an ε-approximate
optimal control α̂ for the stochastic control problem (5.9) by taking |π | of order ε6.
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APPENDIX

A.1. Proof of Lemma 2.1. From the definition of the Euler scheme, and under
the linear growth condition in (H1), we easily see that

Etk

[∣∣X̄π
tk+1

∣∣2] ≤ C1
(
1 + ∣∣X̄π

tk

∣∣2)
, k < n.(A.1)

From the definition of the continuous-time Euler scheme, and by Burkholder–
Davis–Gundy inequality, it is also clear that

Etk

[
sup

t∈[tk,tk+1]
∣∣X̄π

t − X̄π
tk

∣∣2]
≤ C1

(
1 + ∣∣X̄π

tk

∣∣2)|π |, k < n.(A.2)

We also have the standard estimate for the pure jump process I [recall that A is
assumed to be compact and λ(A) < ∞]

Etk

[
sup

t∈[tk,tk+1]
|Is − Itk |2

]
≤ C1|π |.(A.3)

Let us denote by �Xt = Xt − X̄π
t , and apply Itô’s formula to |�Xt |2 so that for

all t ∈ [tk, tk+1],
|�Xt |2 = |�Xtk |2

+
∫ t

tk

2
(
b(Xs, Is) − b

(
X̄π

tk
, Itk

))
.�Xs + ∣∣σ(Xs, Is) − σ

(
X̄π

tk
, Itk

)∣∣2 ds

+ 2
∫ t

tk

(�Xs)
′(σ(Xs, Is) − σ

(
X̄π

tk
, Itk

))
dWs

≤ |�Xtk |2 + C1

∫ t

tk

|�Xs |2 + ∣∣X̄π
s − X̄π

tk

∣∣2 + |Is − Itk |2 ds

+ 2
∫ t

tk

(�Xs)
′(σ(Xs, Is) − σ

(
X̄π

tk
, Itk

))
dWs,

from the Lipschitz condition on b, σ in (H1). By taking conditional expectation in
the above inequality, we then get

Etk

[|�Xt |2] ≤ |�Xtk |2 + C1

∫ t

tk

Etk

[|�Xs |2 + ∣∣X̄π
s − X̄π

tk

∣∣2 + |Is − Itk |2
]
ds

≤ |�Xtk |2 + C1
(
1 + ∣∣X̄π

tk

∣∣2)|π |2 + C1

∫ t

tk

Etk

[|�Xs |2]
ds,

t ∈ [tk, tk+1],
by (A.2)–(A.3). From Gronwall’s lemma, we thus deduce that

Etk

[|�Xtk+1 |2
] ≤ eC1|π ||�Xtk |2 + C1

(
1 + ∣∣X̄π

tk

∣∣2)|π |2, k < n.(A.4)
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Since the right-hand side of (A.4) does not depend on Itk , this shows that

ess sup
a∈A

Etk,a

[|�Xtk+1 |2
] ≤ eC1|π ||�Xtk |2 + C1

(
1 + ∣∣X̄π

tk

∣∣2)|π |2.

By taking conditional expectation w.r.t. Ftk−1 in the above inequality, using again
estimate (A.4) together with (A.1) at step k − 1, and iterating this backward pro-
cedure until the initial time t0 = 0, we obtain

E
[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[|�Xtk+1 |2
] · · ·

]]

≤ eC1n|π ||�X0|2 + C1
(
1 + |X0|2)|π |2 eC1n|π | − 1

eC1|π | − 1
(A.5)

≤ C1|π |,
since �X0 = 0 and n|π | is bounded.

Moreover, the process X satisfies the standard conditional estimate similarly to
the Euler scheme

Etk

[|Xtk+1 |2
] ≤ C1

(
1 + |Xtk |2

)
,

Etk

[
sup

t∈[tk,tk+1]
|Xt − Xtk |2

]
≤ C1

(
1 + |Xtk |2

)|π |, k < n,

from which we deduce by backward induction on the conditional expectations

E
[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[
sup

t∈[tk,tk+1]
|Xt − Xtk |2

]
· · ·

]]
≤ C1|π |.(A.6)

Finally, by writing that supt∈[tk,tk+1] |Xt − X̄π
tk
|2 ≤ 2 supt∈[tk,tk+1] |Xt − Xtk |2 +

2�Xtk , taking successive conditional expectations w.r.t. to Ft
 and essential supre-
mum over It
 = a, for 
 going recursively from k to 0, we get

Etk

[
sup

t∈[tk,tk+1]
∣∣Xt − X̄π

tk

∣∣2]

≤ 2E
[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk,a

[
sup

t∈[tk,tk+1]
|Xt − Xtk |2

]
· · ·

]]

+ 2E
[
ess sup

a∈A

Et1,a

[
· · · ess sup

a∈A

Etk−1,a

[|�Xtk |2
] · · ·

]]
≤ C1|π |,

by (A.5)–(A.6), which completes the proof.

A.2. Proof of Proposition 3.1. In order to prove Proposition 3.1, we shall use
the following lemma.
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LEMMA A.1. There exists a constant C such that for any L-Lipschitz contin-
uous function ϕ on Rd × A, and k ≤ n − 1, we have∣∣Tk

π [ϕ](t, x, a)−Tk
π [ϕ](t, x′, a′)∣∣ ≤ max(L,1)

√
1 + |π |eC|π |(∣∣x − x′∣∣+ ∣∣a − a′∣∣),

for all t ∈ [tk, tk+1), and (x, a), (x′, a′) ∈ Rd × A.

PROOF. Fix t ∈ [tk, tk+1), k ≤ n − 1, (x, a), (x′, a′) ∈ Rd × A and ϕ an L-
Lipschitz continuous function on Rd ×A. Let (Y ϕ,Zϕ,Uϕ) and (Y ϕ,′,Zϕ,′,Uϕ,′)
be the solutions on [t, tk+1] to the BSDEs

Yϕ
s = ϕ

(
X

t,x,a
tk+1

, I
t,a
tk+1

) +
∫ tk+1

s
f

(
Xt,x,a

r , I t,a
r , Y ϕ

r ,Zϕ
r

)
dr

−
∫ tk+1

s
Zϕ

r dWr −
∫ tk+1

s

∫
A

Uϕ
r (e)μ̃(dr, de), t ≤ s ≤ tk+1,

Y ϕ,′
s = ϕ

(
X

t,x′,a′
tk+1

, I
t,a′
tk+1

) +
∫ tk+1

s
f

(
Xt,x′,a′

r , I t,a′
r , Y ϕ,′

r ,Zϕ,′
r

)
dr

−
∫ tk+1

s
Zϕ,′

r dWr −
∫ tk+1

s

∫
A

Uϕ,′
r (e)μ̃(dr, de), t ≤ s ≤ tk+1.

From Theorems 3.4 and 3.5 in [2], we have the identification

Y
ϕ
t = Tk

π [ϕ](t, x, a) and Y
ϕ,′
t = Tk

π [ϕ](t, x′, a′).(A.7)

We now estimate the difference between the processes Yϕ and Yϕ,′ and set δY ϕ =
Yϕ − Yϕ,′, δZϕ = Zϕ − Zϕ,′, δX = Xt,x,a − Xt,x′,a′

, δI = I t,a − I t,a′
. By Itô’s

formula, the Lipschitz condition of f and ϕ and Young’s inequality, we have

E
[∣∣δY ϕ

s

∣∣2] +E

[∫ tk+1

s

∣∣δZϕ
s

∣∣2 ds

]
≤ L2E

[|δXT |2 + |δIT |2] + C

∫ tk+1

s
E

[∣∣δY ϕ
r

∣∣2]
dr

+ 1

2
E

[∫ tk+1

s

(|δXr |2 + |δIr |2 + ∣∣δZϕ
r

∣∣2)
dr

]
,

for any s ∈ [t, tk+1]. Now, from classical estimates on jump-diffusion processes
we have

sup
r∈[t,tk+1]

E
[|δXr |2 + |δIr |2] ≤ eC|π |(∣∣x − x′∣∣2 + ∣∣a − a′∣∣2)

,

and thus

E
[∣∣δY ϕ

s

∣∣2] ≤ (
L2 + |π |)eC|π |(∣∣x − x′∣∣2 + ∣∣a − a′∣∣2) + C

∫ tk+1

s
E

[∣∣δY ϕ
r

∣∣2]
dr,

for all s ∈ [t, tk+1]. By Gronwall’s lemma, this yields

sup
s∈[t,tk+1]

E
[∣∣δY ϕ

s

∣∣2] ≤ (
L2 + |π |)e2C|π |(∣∣x − x′∣∣2 + ∣∣a − a′∣∣2)

,
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which proves the required result from identification (A.7),∣∣Tk
π [ϕ](t, x, a) −Tk

π [ϕ](t, x′, a′)∣∣
≤

√
L2 + |π |eC|π |(∣∣x − x′∣∣ + ∣∣a − a′∣∣)

≤ max(L,1)
√

1 + |π |eC|π |(∣∣x − x′∣∣ + ∣∣a − a′∣∣). �

PROOF OF PROPOSITION 3.1. We prove by a backward induction on k that
the IPDE (3.8) and (3.9) admits a unique solution on [tk, T ] × Rd × A, which
satisfies (3.13).

For k = n−1, we directly get the existence and uniqueness of ϑπ on [tn−1, T ]×
Rd × A from Theorems 3.4 and 3.5 in [2], and we have ϑπ = Tn−1

π [g] on
[tn−1, T ) ×Rd × A. Moreover, we also get by Lemma A.1∣∣ϑπ(t, x, a) − ϑπ (

t, x′, a′)∣∣ ≤ max(L2,1)

√
e2C|π |(1 + |π |)(∣∣x − x′∣∣ + ∣∣a − a′∣∣)

for all t ∈ [tn−1, tn), (x, a), (x′, a′) ∈ Rd × A.
Suppose that the result holds true at step k + 1; that is, there exists a unique

function ϑπ on [tk+1, T ] × Rd × A with linear growth and satisfying (3.8),
(3.9) and (3.13). It remains to prove that ϑπ is uniquely determined by (3.9) on
[tk, tk+1) × Rd × A and that it satisfies (3.13) on [tk, tk+1) × Rd × A. Since ϑπ

satisfies (3.13) at time tk+1, we deduce that the function

ψk+1(x) := sup
a∈A

ϑπ(tk+1, x, a), x ∈ Rd,

is also Lipschitz continuous, and satisfies by the induction hypothesis,

∣∣ψk+1(x) − ψk+1
(
x′)∣∣ ≤ max(L2,1)

√(
e2C|π |(1 + |π |))n−k−1∣∣x − x′∣∣,(A.8)

for all x, x′ ∈ Rd . Under (H1) and (H2), we can apply Theorems 3.4 and 3.5 in [2],
and we get that ϑπ is the unique viscosity solution with linear growth to (3.9)
on [tk, tk+1) × Rd × A, with ϑπ = Tk

π [ψk+1]. Thus it exists and is unique on
[tk, T ] ×Rd × A. From Lemma A.1 and (A.8), we then get∣∣ϑπ(t, x, a) − ϑπ (

t, x′, a′)∣∣
= ∣∣Tk

π [ψk+1](t, x, a) −Tk
π [ψk+1](t, x′, a′)∣∣

≤ max(L2,1)

√(
e2C|π |(1 + |π |))n−k−1

×
√(

1 + |π |)e2C|π |(∣∣x − x′∣∣ + ∣∣a − a′∣∣)
≤ max(L2,1)

√(
e2C|π |(1 + |π |))n−k(∣∣x − x′∣∣ + ∣∣a − a′∣∣)

for any t ∈ [tk, tk+1) and (x, a), (x′, a′) ∈ Rd × A, which proves the required in-
duction inequality at step k.
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A.3. Proof of Proposition 3.3. Fix k ≤ n − 1. By Itô’s formula, we have for
all t ∈ [tk, tk+1),

Etk

[∣∣Yπ
t −Yπ

tk

∣∣2] = 2Etk

[∫ t

tk

f
(
Xs, Is,Yπ

s ,Zπ
s

)(
Yπ

tk
−Yπ

s

)
ds

]

+Etk

[∫ t

tk

∣∣Zπ
s

∣∣2]
+Etk

[∫ t

tk

∫
A

∣∣Uπ
s (a)

∣∣2λ(da) ds

]

≤ Etk

[∫ t

tk

∣∣Yπ
s −Yπ

tk

∣∣2]
+ C|π |

(
1 +Etk

[
sup

s∈[tk,tk+1]
|Xs |2

])

+ C|π |Etk

[
sup

s∈[tk,tk+1]

(∣∣Yπ
s

∣∣2 + ∣∣Zπ
s

∣∣2 +
∫
A

∣∣Uπ
s (a)

∣∣2λ(da)

)]
,

by the linear growth condition on f (recall also that A is compact), and Young
inequality. Now, by standard estimate for X under linear growth condition on b

and σ , we have

Etk

[
sup

s∈[tk,tk+1]
|Xs |2

]
≤ C

(
1 + |Xtk |2

)
.(A.9)

We also know from Proposition 4.2 in [6], under (H1) and (H2), that there exists
a constant C depending only on the Lipschitz constants of b, σf and vπ(tk+1, ·)
(which does not depend on π by Corollary 3.1), such that

Etk

[
sup

s∈[tk,tk+1]

(∣∣Yπ
s

∣∣2 + ∣∣Zπ
s

∣∣2 +
∫
A

∣∣Uπ
s (a)

∣∣2λ(da)

)]
≤ C

(
1 + |Xtk |2

)
.(A.10)

We deduce that

Etk

[∣∣Yπ
t −Yπ

tk

∣∣2] ≤ Etk

[∫ t

tk

∣∣Yπ
s −Yπ

tk

∣∣2]
+ C|π |(1 + |Xtk |2

)
,

and we conclude for the regularity of Yπ by Gronwall’s lemma. Finally, from
definition (3.6) and (3.7) of Yπ and Yπ , Itô isometry for stochastic integrals and
linear growth condition on f , we have for all t ∈ (tk, tk+1),

Etk

[∣∣Yπ
t − Yπ

tk+1

∣∣2]
= Etk

[∣∣Yπ
t − Yπ

tk+1

∣∣2]
≤ 3Etk

[∫ tk+1

tk

(∣∣f (
Xs, Is,Yπ

s ,Zπ
s

)∣∣2 + ∣∣Zπ
s

∣∣2 +
∫
A

∣∣Uπ
s (a)

∣∣2λ(da)

)
ds

]

≤ C|π |Etk

[
1 + sup

s∈[tk,tk+1]

(
|Xs |2 + ∣∣Yπ

s

∣∣2 + ∣∣Zπ
s

∣∣2 +
∫
A

∣∣Uπ
s (a)

∣∣2λ(da)

)]

≤ C|π |(1 + |Xtk |2
)
,

where we used again (A.9) and (A.10). This completes the proof. �
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