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In a continuous-time model with multiple assets described by càdlàg pro-
cesses, this paper characterizes superhedging prices, absence of arbitrage,
and utility maximizing strategies, under general frictions that make execu-
tion prices arbitrarily unfavorable for high trading intensity. Such frictions
induce a duality between feasible trading strategies and shadow execution
prices with a martingale measure. Utility maximizing strategies exist even if
arbitrage is present, because it is not scalable at will.

1. Introduction. In financial markets, trading moves prices against the trader:
buying faster increases execution prices, and selling faster decreases them. This as-
pect of liquidity, known as market depth [Black (1986)] or price-impact, is widely
documented empirically [Cont, Kukanov and Stoikov (2014), Dufour and Engle
(2000)], and has received increasing attention in models of asymmetric infor-
mation [Kyle (1985)], illiquid portfolio choice [Garleanu and Pedersen (2013),
Rogers and Singh (2010)] and optimal liquidation [Almgren and Chriss (2001),
Bertsimas and Lo (1998), Schied and Schöneborn (2009)]. These models depart
from the literature on frictionless markets, where prices are the same for any
amount traded. They also depart from proportional transaction costs models, in
which prices differ for buying and selling, but are insensitive to quantities.2

The growing interest in price-impact has also highlighted a shortage of effec-
tive theoretical tools. In these models, what is the analogue of a martingale mea-
sure? Which contingent claims are hedgeable, and at what price? How do the fa-
miliar optimality conditions for utility maximization look in this context? In dis-
crete time, several researchers have studied these fundamental questions [Astic
and Touzi (2007), Dolinsky and Soner (2013), Pennanen (2011a), Pennanen and
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Penner (2010)], but extensions to continuous time have proved challenging. This
paper aims at filling the gap.

Tackling price-impact in continuous-time requires to clarify two basic concepts
that remain concealed in discrete models: the relevant classes of trading strategies
and of dual variables. First, to retain price-impact effects in continuous time, ex-
ecution prices must depend on the traded quantities per unit of time, that is, on
trading intensity, rather than on the traded quantities themselves, otherwise price-
impact can be avoided with judicious policies [Çetin, Jarrow and Protter (2004),
Çetin and Rogers (2007), Çetin, Soner and Touzi (2010)]. Various classes of trad-
ing strategies have appeared in different models [Çetin, Soner and Touzi (2010),
Schied and Schöneborn (2009)], but a generally agreed definition of what kind of
strategies should be allowed has not yet emerged. The second key concept is the
relevant notion of dual variables—the analogue of a martingale measure. The pro-
portional transaction costs literature identifies the corresponding dual variable as
a consistent prices system, a pair (S̃,Q) of a price S̃ evolving within the bid-ask
spread, and a probability Q under which S̃ is a martingale.3 Such a definition sug-
gests that with frictions, passing to the risk-neutral setting requires both a change
in the probability measure and a change in the price process.

Superlinear frictions in the sense of the present paper, such as price-impact mod-
els, entail that execution prices become arbitrarily unfavorable as traded quantities
per unit of time grow: buying or selling too fast becomes impossible. As a result,
trading is feasible only at finite rates—the number of shares is absolutely con-
tinuous. This feature sets apart superlinear frictions from frictionless markets, in
which the number of shares is merely predictable, and from models with propor-
tional transaction costs, in which they have finite variation.

Finite trading rates have two central implications: first, portfolio values are well
defined for asset prices that follow general càdlàg processes, not only for semi-
martingales. Second, immediate portfolio liquidation is impossible and, therefore,
the usual notion of admissibility, based on a lower bound for liquidation values, is
inappropriate. We define below a feasible strategy as any trading policy with finite
trading rate and trading volume, without any lower bounds on portfolio values. In
particular, this definition does not involve the asset price. In frictionless markets,
or under proportional transaction costs, this approach would fail for two reasons:
first, the set of claims attainable by feasible strategies would not be closed in any
reasonable sense, as a block trade is approximated by intense trading over small
time intervals. Second, portfolios unbounded from below allow doubling strate-
gies, which lead to arbitrage even with martingale prices.

Neither issue arises in our models with superlinear frictions. Block trades are in-
feasible, even in the limit, as intense trading incurs exorbitant costs: put differently,

3These dual objects first appeared in Jouini and Kallal (1995). They were baptized “consistent price
systems” in Schachermayer (2004). See Kabanov and Safarian (2009) for further developments.



2068 P. GUASONI AND M. RÁSONYI

bounded losses imply bounded trading volume (Lemma 3.4). The bound on trading
volume in turn yields the closedness of the payoffs of feasible strategies (Proposi-
tion 3.5), and the martingale property of portfolio values under shadow execution
prices, which excludes arbitrage through doubling strategies (Lemma 5.6).

Arbitrage also occurs differently in the present setting. Unlike models with-
out friction or with proportional transaction costs, where an arbitrage opportunity
scales freely, superlinear frictions imply that scaling trading rates results in a less
than proportional scaling of payoffs [see Pennanen (2011b) for more about scal-
able arbitrage]. In fact, in our setting (Assumption 2.3) we prove a stronger result,
whereby all payoffs are dominated by a single random variable, the market bound,
which depends on the friction and on the asset price only (Lemma 3.5). This bound
implies that price-impact defeats arbitrage, if pursued on a large scale.

All these definitions and properties come together in the main superhedging re-
sult, Theorem 3.7, which characterizes the initial asset positions that can dominate
a given claim through trading, in terms of shadow execution prices. The main mes-
sage of this theorem is that the superhedging price of a claim is the supremum of
its expected value under a martingale measure for a shadow execution price, mi-
nus a penalty, which reflects how far the shadow price is from the base price. The
penalty depends on the dual friction, introduced by Dolinsky and Soner (2013) in
discrete time, and is zero for any equivalent martingale measure of the asset price.
Importantly, the theorem is valid even if there are no martingale measures, or if the
price is not a semi-martingale.

The superhedging theorem, which does not assume absence of arbitrage, char-
acterizes a large class of models that do not admit arbitrage of the second kind
(strategies that lead to a sure minimal gain) even in limited amounts. As for pro-
portional transaction costs, this class contains any price process that satisfies the
conditional full support property Guasoni, Rásonyi and Schachermayer (2008),
including fractional Brownian motion.

We conclude the paper by addressing utility maximization. First, a general the-
orem guarantees that optimal solutions exist. This holds true even in the eventual
presence of arbitrage opportunities, which must be chosen optimally, lest price-
impact offset gains. Second, optimal strategies are identified by a version of the
familiar first-order condition that the marginal utility of the optimal payoff be pro-
portional to a stochastic discount factor. Technicalities aside, price-impact leads
to a novel condition, which prescribes that a stochastic discount factor makes the
shadow execution price, not the base price, a martingale. In models with propor-
tional transaction costs this criterion formally reduces to the usual shadow price
approach for optimality [Kallsen and Muhle-Karbe (2010)].

The rest of the paper proceeds with Section 2, which describes the model in
detail. The main theoretical tools are developed in Section 3, which proves the
market bound, the trading volume bound, the closedness of the payoff space, and
the main superhedging result. Section 4 discusses the implications for arbitrage of
the second kind, and its absence with prices with conditional full support. Section 5
concludes with the results on utility maximization.
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2. The model. For a finite time horizon T > 0, consider a filtered probability
space (�,F, (Ft )t∈[0,T ],P ) with F0 trivial, satisfying the usual hypotheses as
well as F = FT . O denotes the optional sigma-field on � × [0, T ]. The market
includes a riskless and perfectly liquid asset S0, used as numeraire, hence S0

t ≡ 1,
t ∈ [0, T ], and d risky assets, described by càdlàg, adapted processes (Si

t )
1≤i≤d
t∈[0,T ].

Henceforth, S denotes the d-dimensional process with components Si , 1 ≤ i ≤ d ,
the concatenation xy of two vectors x, y of equal dimensions denotes their scalar
product, and |x| denotes the Euclidean norm of x. The components of a (d + 1)-
dimensional vector x are denoted by x0, . . . , xd .

The next definition identifies those strategies for which the number of shares
changes over time at some finite rate φ, hence it is absolutely continuous.

DEFINITION 2.1. A feasible strategy is a process φ in the class

A :=
{
φ :φ is a Rd -valued, optional process,

∫ T

0
|φu|du < ∞ a.s.

}
.(1)

In this definition, the process φ represents the trading rate, that is, the speed
at which the number of shares in each asset changes over time, and the condition∫ T

0 |φu|du < ∞ means that absolute turnover (the cumulative number of shares
bought or sold) remains finite in finite time.

The above definition compares to the one of admissible strategies in friction-
less markets as follows. On one hand, it relaxes the solvency constraint typical of
admissibility, since a feasible strategy can lead to negative wealth. On the other
hand, this definition restricts the number of shares to be differentiable in time,
while usual admissible strategies have an arbitrarily irregular number of shares.4

Note also that the definition of feasibility does not involve the asset price at all.
With this notation, in the absence of frictions the self-financing condition would

imply a position at time T in the safe asset (henceforth, cash) equal to:5

z0 −
∫ T

0
Stφt dt,(2)

where z0 represents the initial capital, and the integral reflects the cost of purchases
and the proceeds of sales. For a given trading strategy φ, frictions reduce the cash
position, by making purchases more expensive, and sales less profitable. With a
similar notation to Dolinsky and Soner (2013), we model this effect by introducing
a function G, which summarizes the impact of frictions on the execution price at
different trading rates:

4In the definition of feasible strategy an optional trading rate leads to a continuous, hence pre-
dictable, number of shares, as for usual admissible strategies.

5By the càdlàg property of St , the function St (ω), t ∈ [0, T ] is bounded for almost every ω ∈ �,

hence the integral in (2) is finite a.s. for each φ satisfying
∫ T
0 |φt |dt < ∞ a.s.
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ASSUMPTION 2.2 (Friction). Let G :�×[0, T ]×Rd →R+ be a O⊗B(Rd)-
measurable function, such that G(ω, t, ·) is convex with G(ω, t, x) ≥ G(ω, t,0)

for all ω, t, x. Henceforth, set Gt(x) := G(ω, t, x), that is, the dependence on ω is
omitted, and t is used as a subscript.

With this definition, for a given strategy φ ∈ A and an initial asset position
z ∈ Rd+1, the resulting positions at time t ∈ [0, T ] in the risky and safe assets are
defined as

V i
t (z,φ) := zi +

∫ t

0
φi

u du, 1 ≤ i ≤ d,(3)

V 0
t (z, φ) := z0 −

∫ t

0
φuSu du −

∫ t

0
Gu(φu) du.(4)

The first equation merely says that the cumulative number of shares V i
t in the ith

asset is given by the initial number of shares, plus subsequent flows. The second
equation contains the new term involving the friction G, which summarizes the im-
pact of trading on execution prices. The condition G(ω, t, x) ≥ G(ω, t,0) means
that inactivity is always cheaper than any trading activity. Most models in the liter-
ature assume G(ω, t,0) = 0, but the above definition allows for G(ω, t,0) > 0,
which is interpreted as a cost of participation in the market, such as the fees
charged by exchanges to trading firms, or as a monitoring cost. The convexity
of x 	→ Gt(x) implies that, excluding monitoring costs, trading twice as fast for
half the time locally increases execution costs—speed is expensive.6 Finally, note
that in general V 0

t may take the value −∞ for some (unwise) strategies.
With a single risky asset and for G(ω, t,0) = 0, the above specification is equiv-

alent to assuming that a trading rate of φt 
= 0 implies an execution price equal to

S̃t = St + Gt(φt )/φt ,(5)

which is (since G is positive) higher than St when buying, and lower when selling.
Thus, G ≡ 0 boils down to a frictionless market, while proportional transaction
costs correspond to Gt(x) = εSt |x| with some ε > 0. Yet this paper focuses on
neither of these settings, which entail either zero or linear costs, but rather on
superlinear frictions, defined as those that satisfy the following conditions. Note
that we require a strong form of superlinearity here (i.e., the cost functional grows
at least as a superlinear power of the traded volume).

6Let g(x) = G(ω, t, x), that is, focus on a local effect. Then, by convexity, g(x) ≤ (1−1/k)g(0)+
(1/k)g(kx) for k > 1 and, therefore, (g(kx) − g(0))T /k ≥ (g(x) − g(0))T , which means that in-
creasing trading speed by a factor of k and reducing trading time by the same factor implies higher
trading costs, excluding the monitoring cost captured by g(0).
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ASSUMPTION 2.3 (Superlinearity). There is α > 1 and an optional process H

such that7

inf
t∈[0,T ]Ht > 0 a.s.,(6)

Gt(x) ≥ Ht |x|α for all ω, t, x,(7) ∫ T

0

(
sup

|x|≤N

Gt(x)
)
dt < ∞ a.s. for all N > 0,(8)

sup
t∈[0,T ]

Gt(0) ≤ K a.s. for some constant K.(9)

Condition (7) is the central superlinearity assumption, and prescribes that trad-
ing twice as fast for half the time increases trading costs (in excess of monitoring)
by a minimum positive proportion. Condition (6) requires that frictions never dis-
appear, and (8) that they remain finite in finite time. By (9), the participation cost
must be uniformly bounded in ω ∈ �. In summary, these conditions characterize
nontrivial, finite, superlinear frictions. Note that (7) implies that S̃t in (5) becomes
arbitrarily negative as φt becomes negative enough, that is, when selling too fast.
This issue is addressed in more detail in Remarks 3.8 and 5.3 below.

The most common examples in the literature are, with one risky asset, the
friction Gt(x) := �|x|α for some � > 0, α > 1 [see, e.g., Dolinsky and Soner
(2013)] and, in multiasset models, the friction Gt(x) := x′�x for some symmet-
ric, positive-definite, d × d square matrix � (here x′ stands for the transposition
of the vector x); see Garleanu and Pedersen (2013).

REMARK 2.4. We conjecture that (7) could be weakened to the superlinearity
condition

lim
x→∞Gt(x)/|x| = ∞ a.s.,

using Orlicz spaces instead of Lp-estimates (i.e., Hölder’s inequality). This gen-
eralization is expected to involve substantial further technicalities for a limited
increase in generality, hence it is not pursued here.

REMARK 2.5. Our results remain valid assuming that (7) holds for |x| ≥ M

only, with some M > 0. Such an extension requires only minor modifications of
the proofs, and may accommodate models for which a low trading rate incurs either
zero or linear costs.

7We implicitly assume that inft∈[0,T ] Ht is a random variable, which is always the case if, for
example, H is càdlàg.
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3. Superhedging and dual characterization of payoffs. Despite their sim-
ilarity to models of frictionless markets and proportional transaction costs, su-
perlinear frictions in the sense of Assumption 2.3 lead to a surprisingly different
structure of attainable payoffs, as shown in this section. Indeed, the class of fea-
sible strategies considered above, while still well defined even in a model without
frictions or with proportional transaction costs, is virtually useless in such settings,
as the set of terminal payoffs corresponding to feasible strategies is not closed in
any reasonable sense.

As an example, a simple trading policy that buys one share of the risky asset at
time t and sells it at time T is not a feasible strategy in the above sense, because
it is not absolutely continuous, and in fact is discontinuous at t and T . Yet, in fric-
tionless markets or with transaction costs, this policy is approximated arbitrarily
well by another one that buys at rate n in the interval [t, t + 1/n] and sells at rate
n on [T ,T + 1/n]. That is, the sequence of corresponding payoffs converges to a
finite payoff, but this limit payoff does not belong to the payoff space of feasible
strategies.

By contrast, with the superlinear frictions in Assumption 2.3, the set of terminal
values corresponding to feasible strategies is closed in a strong sense. The intu-
itive reason is that approximating a nonsmooth strategy would require trading at
increasingly high speed, generating infinite costs, and preventing convergence to a
finite payoff.

3.1. The market bound. Superlinear frictions in the sense of Assumption 2.3
lead to a striking boundedness property: for a fixed initial position, all payoffs of
feasible strategies are bounded above by a single random variable B < ∞, the
market bound, which depends on the friction G and on the price S, but not on
the strategy. This property clearly fails in frictionless markets, where any payoff
with zero initial capital can be scaled arbitrarily and, therefore, admits no uniform
bound. In such markets, a much weaker boundedness property holds: Corollary 9.3
of Delbaen and Schachermayer (2006) shows that the set of payoff of x-admissible
strategies is bounded in L0 if the market is arbitrage-free in the sense of the condi-
tion (NFLVR), and a similar result holds with proportional transaction costs under
the (RNFLVR) property [Guasoni, Lépinette and Rásonyi (2012)].

A central tool in this analysis is the function G∗, the Fenchel–Legendre con-
jugate of G, which we call dual friction. Its importance was first recognized by
Dolinsky and Soner (2013), who used it to derive a superhedging result in discrete
time. G∗ is defined as8

G∗
t (y) := sup

x∈Rd

(
xy − Gt(x)

)
, y ∈ Rd, t ∈ [0, T ],(10)

8Note that the supremum can be taken over Qd , hence G∗ is O ⊗ B(Rd)-measurable. Note also
that, under Assumption 2.3, G∗

t (·) is a finite, convex function satisfying G∗
t (x) ≥ −K for all x, see

the proof of Lemma 3.2.
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and the typical case d = 1, Gt(x) = �|x|α leads to G∗
t (y) = α−1

α
α1/(1−α) ×

�1/(1−α)|y|α/(α−1) [in particular, G∗
t (y) = y2/(4�) for α = 2]. The key obser-

vation is the following.

LEMMA 3.1. Under Assumption 2.3, any φ ∈ A satisfies

V 0
T (z,φ) ≤ z0 +

∫ T

0
G∗

t (−St ) dt < ∞ a.s.

PROOF. Indeed, this follows from (4), the definition of G∗
t , and Lemma 3.2

below. �

LEMMA 3.2. Under Assumption 2.3, the random variable B :=∫ T
0 G∗

t (−St ) dt is finite almost surely.

PROOF. Consider first the case d = 1. Then, by direct calculation,

G∗
t (y) ≤ sup

r∈R
(
ry − Ht |r|α) = α − 1

α
α1/(1−α)H

1/(1−α)
t |y|α/(α−1).(11)

Noting that supt∈[0,T ] |St | is finite a.s. by the càdlàg property of S, and knowing
that inft∈[0,T ] Ht is a positive random variable, it follows that

sup
t∈[0,T ]

G∗
t (−St ) < ∞ a.s.,

which clearly implies the statement. If d > 1, then note that

G∗
t (y) ≤ sup

r∈Rd

(
d∑

i=1

riyi − Ht |r|α
)

≤
d∑

i=1

sup
r∈Rd

(
riyi − (Ht/d)|r|α)

(12)

≤
d∑

i=1

sup
x∈R

(
xyi − (Ht/d)|x|α)

and the conclusion follows from the scalar case. �

Since B < ∞ a.s., it is impossible to achieve a scalable arbitrage: though a
trading strategy may realize an a.s. positive terminal value, one cannot get an arbi-
trarily large profit by scaling the trading strategy (i.e., by multiplying it with large
positive constants) since bigger trading values also enlarge costs. Even if an ar-
bitrage exists, amplifying it too much backfires, because the superlinear friction
eventually overrides profits. Yet, arbitrage opportunities can exist in limited size
(cf. Section 4 below).

Limited arbitrage opportunities also appear in the frictionless models of
Fernholz, Karatzas and Kardaras (2005) and Karatzas and Kardaras (2007) through
a completely different mechanism. These models allow for arbitrage opportunities
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that can lead to a possible intermediate loss before realizing a certain final gain,
while requiring that wealth remains positive at all times. As a result, an arbitrage
opportunity is scalable only insofar as its maximal intermediate loss is less than the
initial capital committed to the arbitrage. By contrast, with superlinear frictions ar-
bitrage is limited even though wealth may well become negative before gains are
realized (cf. Definition 2.1), because the superlinear friction defeats attempts to
scale an arbitrage linearly, by reducing and eventually eliminating its profitability
for larger positions.

3.2. Trading volume bound. For Q ∼ P , denote by L1(Q) the usual Banach
space of (d +1)-dimensional, Q-integrable random variables; given a subset A of a
Euclidean space, L0(A) denotes the set of (P -a.s. equivalence classes of) A-valued
random variables, equipped with the topology of convergence in probability. EQX

denotes the expectation of a random variable X under Q. From now on, fix 1 <

β < α, where α is as in Assumption 2.3. Let γ be the conjugate number of β ,
defined by

1

β
+ 1

γ
= 1.

The next definition identifies a class of reference probability measures with in-
tegrability properties that fit the friction G and the price process S well. Our main
results (see Section 3.4) involve suprema of expectations of various functionals
under families of probability measures equivalent to P . Ideally, all such measures
should be taken (as in Theorem 3.11 below) but on infinite � this leads to integra-
bility issues. Thus, we need to single out a family of probability measures which
is large enough for the results of Section 3.4 to hold, but also small enough to en-
sure appropriate integrability properties. This is why we introduce the sets P and
P(W) in Definition 3.3 below. P identifies a set of probabilities under which some
shadow execution price has the martingale property, as explained in the proof of
Theorem 5.5 and Lemma 5.6 below.

DEFINITION 3.3. P denotes the set of probabilities Q ∼ P such that

EQ

∫ T

0
H

β/(β−α)
t

(
1 + |St |)βα/(α−β)

dt < ∞.

P̃ denotes the set of probability measures Q ∈ P such that

EQ

∫ T

0
|St |dt < ∞ and EQ

∫ T

0
sup

|x|≤N

Gt(x) dt < ∞ for all N ≥ 1.

For a (possibly multivariate) random variable W , define

P(W) := {
Q ∈ P :EQ|W | < ∞}

, P̃(W) := {
Q ∈ P̃ :EQ|W | < ∞}

.
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Under Assumption 2.3, note that P̃(W) 
= ∅ for all W by Dellacherie and
Meyer [(1982), page 266]. The next lemma shows that, if a payoff has a finite
negative part under some probability in P , then its trading rate must also be (suit-
ably) integrable. There is no analogue to such a result in frictionless markets, but
transaction costs Guasoni, Lépinette and Rásonyi (2012), Lemma 5.5, lead to a
similar property, whereby any admissible strategy must satisfy an upper bound
on its total variation. In both cases, the intuition is that, with frictions, excessive
trading causes unbounded losses. Hence, a bound on losses translates into one for
trading volume. Lemma 3.4 is crucial to establish the closedness of the set of at-
tainable payoffs (Proposition 3.5 below) as well as to prove the martingale property
of shadow execution prices in utility maximization problems (see Lemma 5.6 in
Section 5).

In the sequel, x− denotes the negative part of x ∈ R.

LEMMA 3.4. Let Q ∈P and φ ∈ A be such that EQξ− < ∞, where

ξ := −
∫ T

0
Stφt dt −

∫ T

0
Gt(φt ) dt.

Then

EQ

∫ T

0
|φt |β(

1 + |St |)β dt < ∞.

PROOF. For ease of notation, set T := 1. Define φt(n) := φt1{|φt |≤n} ∈A, n ∈
N. As n → ∞, clearly φt (n) → φt for all t and ω ∈ �, and the random variables

ξn := −
∫ 1

0
Stφt (n) dt −

∫ 1

0
Gt

(
φt(n)

)
dt(13)

= −
d∑

i=1

∫ 1

0
Si

t φ
i
t (n)[1{Si

t ≤0,φi
t ≤0} + 1{Si

t >0,φi
t ≤0}

(14)
+ 1{Si

t ≤0,φi
t >0} + 1{Si

t >0,φi
t >0}]dt

−
∫ 1

0
Gt

(
φt (n)

)
dt(15)

converge to ξ a.s. by monotone convergence. [Note that each of the terms with
an indicator converges monotonically, and that Gt(0) ≤ Gt(x) for all x.] Hölder’s
inequality yields∫ 1

0

∣∣φt(n)
∣∣β(

1 + |St |)β dt

=
∫ 1

0

∣∣φt(n)
∣∣βH

β/α
t

1

H
β/α
t

(
1 + |St |)β dt(16)
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≤
[∫ 1

0

∣∣φt(n)
∣∣αHt dt

]β/α[∫ 1

0

(
1

H
β/α
t

(
1 + |St |)β

)α/(α−β)

dt

](α−β)/α

≤
[∫ 1

0
Gt

(
φt(n)

)
dt

]β/α[∫ 1

0

(
1

H
β/α
t

(
1 + |St |)β

)α/(α−β)

dt

](α−β)/α

.

All these integrals are finite by Assumption 2.3 and the càdlàg property of S. Now,
set

m :=
[∫ 1

0

(
1

H
β/α
t

(
1 + |St |)β

)α/(α−β)

dt

](α−β)/α

,

and note that, by Jensen’s inequality,∣∣∣∣
∫ 1

0
Stφt (n) dt

∣∣∣∣ ≤
∫ 1

0

∣∣φt(n)
∣∣(1 + |St |)dt

(17)

≤
[∫ 1

0

∣∣φt(n)
∣∣β(

1 + |St |)β dt

]1/β

.

Note also that if x ≥ 1 and x ≥ 2β/(α−β)mα/(α−β) then x1/β − (x/m)α/β ≤ x −
2x = −x. This observation, applied to

x :=
∫ 1

0

∣∣φt(n)
∣∣β(

1 + |St |)β dt,

implies that ξn ≤ −x on the event {x ≥ 2β/(α−β)mα/(α−β) + 1}. Thus,∫ 1

0

∣∣φt(n)
∣∣β(

1 + |St |)β dt ≤ (ξn)− + 2β/(α−β)mα/(α−β) + 1 a.s.

Letting n tend to ∞, it follows that∫ 1

0
|φt |β(

1 + |St |)β dt ≤ ξ− + 2β/(α−β)mα/(α−β) + 1,(18)

which implies the claim, since EQξ− < ∞ by assumption, and EQmα/(α−β) < ∞
from Q ∈ P . �

3.3. Closed payoff space. The central implication of the previous result is that
the class of multivariate payoffs superhedged by a feasible strategy, defined as
C := [{VT (0, φ) :φ ∈ A} − L0(Rd+1+ )] ∩ L0(Rd+1), is closed in a rather strong
sense; recall the componentwise definition of the (d + 1)-dimensional random
variable VT (0, φ) in (3) and (4). Closedness is the key property for establishing
superhedging results; see, for example, Section 9.5 of Delbaen and Schachermayer
(2006) or Section 3.6 of Kabanov and Safarian (2009).

PROPOSITION 3.5. Under Assumption 2.3, the set C ∩ L1(Q) is closed in
L1(Q) for all Q ∈P such that

∫ T
0 |St |dt is Q-integrable.
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PROOF. Take T = 1 for simplicity, and assume that ρn := ξn − ηn → ρ in
L1(Q) where ηn ∈ L0(Rd+1+ ) and ξn = V1(0,ψ(n)) for some ψ(n) ∈ A are such
that ρn ∈ L1(Q). Up to a subsequence, this convergence takes place a.s. as well.

Lemma 3.4 implies that EQ

∫ 1
0 |ψt(n)|β(1 + |St |)β dt must be finite for all n

since (ξn)− ≤ (ρn)− and the latter is in L1(Q). Applying (18) with the choice
φ := ψ(n) yields∫ 1

0

∣∣ψt(n)
∣∣β(

1 + |St |)β dt ≤ (ρn)− + 2β/(α−β)mα/(α−β) + 1.

Now, since Q ∈ P , and the sequence ρn is bounded in L1(Q) because it is conver-
gent in L1(Q), it follows that

sup
n≥1

EQ

∫ 1

0

∣∣ψt(n)
∣∣β(

1 + |St |)β dt < ∞.(19)

Consider L := L1(�,F,Q;B), the Banach space of B-valued Bochner-
integrable functions, where B := Lβ([0,1],B([0,1]),Leb) is a separable and re-
flexive Banach space. The functions ψ·(n) :� → B are easily seen to be weakly
measurable, hence also strongly measurable by the separability of B. By (19), the
sequence ψ·(n) is bounded in L, so Lemma 15.1.4 in Delbaen and Schachermayer
(2006) yields convex combinations

ψ̃·(n) =
M(n)∑
j=n

αj (n)ψ·(n),

which converge to some ψ̃· ∈ L a.s. in B-norm.
By the bound in (19), supn EQ

∫ 1
0 |φt(n)|(1 + |St |) dt < ∞. Now apply

Lemma 9.8.1 of Delbaen and Schachermayer (2006) to the sequence ψ̃·(n) in
the space of (d + 1)-dimensional random variables L1(� × [0,1],O, ν), where ν

is the measure defined by

ν(A) :=
∫
�×[0,1]

1A(ω, t)
(
1 + |St |)dt dQ(ω)

for A ∈ O (which is finite by the choice of Q). This lemma yields convex combi-
nations ψ̂·(n) of the ψ̃·(n) such that ψ̂·(n) converges to ψ· ν-almost everywhere
and hence P × Leb-almost everywhere. This shows, in particular, that ψ is O-
measurable.

Since ψ̃·(n) converge a.s. in B-norm, also ψ̂·(n) → ψ̃ a.s. in B-norm, so ψ = ψ̃ ,
P × Leb-a.e. and hence we may and will assume that ψ̃·(n) tends to ψ a.s. in B-
norm as well as P × Leb-a.e.

Define ξ̃n := ∑M(n)
j=n αj (n)ξj and η̃n := ∑M(n)

j=n αj (n)ηj . It holds that

limn→∞
∫ 1

0 ψ̃t (n)St dt = ∫ 1
0 ψtSt dt almost surely, and also

lim
n→∞ ξ̃ i

n = lim
n→∞

∫ 1

0
ψ̃ i

t (n) dt =
∫ 1

0
ψi

t dt a.s. for i = 1, . . . , d.
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Hence, η̃i
n → ηi a.s. with ηi := ∫ T

0 ψ̃ i
t dt − ρi ∈ L0(R+). By the convexity of Gt ,

ρ0 = lim
n→∞

(
ξ̃0
n − η̃0

n

)

≤ lim sup
n→∞

[
−

∫ 1

0
ψ̃t (n)St dt −

∫ 1

0
Gt

(
ψ̃t (n)

)
dt − η̃0

n

]

= lim sup
n→∞

[
−

∫ 1

0
ψ̃t (n)St dt −

∫ 1

0
Gt(ψt) dt −

∫ 1

0
Gt

(
ψ̃t (n)

)
dt

+
∫ 1

0
Gt(ψt) dt − η̃0

n

]

= −
∫ 1

0
ψtSt dt −

∫ 1

0
Gt(ψt) dt

+ lim sup
n→∞

[
−

∫ 1

0
Gt

(
ψ̃t (n)

)
dt +

∫ 1

0
Gt(ψt) dt − η̃0

n

]
.

Now Fatou’s lemma and η̃n ∈ L0(Rd+1+ ) imply that the limit superior is in
−L0(R+) [note that Gt(·) is continuous by convexity], hence there is η0 ∈ L0(R+)

such that

ρ0 = −
∫ 1

0
ψtSt dt −

∫ 1

0
Gt(ψt) dt − η0,

which proves the proposition. �

COROLLARY 3.6. Under Assumption 2.3, the set C is closed in probability.

PROOF. Let ρn ∈ C tend to ρ in probability. Up to a subsequence, convergence
also holds almost surely. There exists Q ∈ P [see page 266 of Dellacherie and
Meyer (1982)] such that ρ, supn |ρ − ρn|, ∫ T

0 |St |dt are all Q-integrable. Then
ρn → ρ in L1(Q) as well, and Proposition 3.5 implies that ρ ∈ C. �

3.4. Superhedging. Finally, the main superhedging theorem. To the best of
our knowledge, Theorem 3.7 is the first dual characterization in continuous time
of hedgeable contingent claims with price-impact. Results in discrete time include
Astic and Touzi (2007), Dolinsky and Soner (2013), Pennanen (2011a), Pennanen
and Penner (2010). Our result is inspired, in particular, by Theorem 3.1 of Dolinsky
and Soner (2013) for finite probability spaces.

Note that both terminal claims and initial endowments are multivariate, for a
good reason. Due to the presence of price impact, positions in the safe asset and in
various risky assets are not immediately convertible into each other at a fixed price.
It is thus impossible to introduce, in a meaningful way, a one-dimensional wealth
process representing holdings in units of a numéraire—multivariate book-keeping
of positions is necessary.
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TABLE 1
Summary of vector notation

R Rd Rd+1

x̄ = (x1/x0, . . . , xd/x0)1{x0 
=0} x = (x0, x1, . . . , xd)

x̃ = (x1, . . . , xd) x̂ = (1, x1, . . . , xd )

c č = (c,0, . . . ,0)

In the multivariate notation below, inequalities among vectors are understood
componentwise: x ≤ y means that xi ≤ yi for all i. Also, for a (d +1)-dimensional
vector x, define x̄ as the d-dimensional vector with x̄i = (xi/x0)1{x0 
=0}, i =
1, . . . , d , while x̂ denotes the (d +1)-dimensional vector with components x̂i = xi ,
i = 1, . . . , d and x̂0 = 1. (See Table 1 for a summary of notation.)

THEOREM 3.7. Let W ∈ L0(Rd+1), z ∈ Rd+1 and Assumption 2.3 hold. There
exists φ ∈ A such that VT (z,φ) ≥ W a.s. if and only if

Z0z ≥ EQ(ZT W) − EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt,(20)

for all Q ∈ P(W) and for all Rd+1+ -valued bounded Q-martingales Z with Z0
0 = 1

satisfying Zi
t = 0, i = 1, . . . , d on {Z0

t = 0}.

REMARK 3.8. Although the above theorem holds for general S, it has the in-
terpretation of a superreplication result only if S (or at least ST ) has nonnegative
components and, therefore, a positive number of units of risky positions has posi-
tive value. Otherwise, if S can take negative values, a larger number of units does
not imply a position with higher value, but only a larger exposure.

Assume in the rest of this remark that S is nonnegative and one-dimensional
(for simplicity). Take φ ∈ A and consider the (optional) set A := {(ω, t) :φt(ω) 
=
0, St (ω) + G(ω, t, φt (ω))/φt (ω) ≥ 0}, which identifies the times at which exe-
cution prices are positive. Clearly, VT (z,φ′) ≥ VT (z,φ) for φ′

t (ω) := φt (ω)1A.
Hence, in Theorem 3.7 one may replace A by

A+ := {
φ ∈ A :St (ω) + G

(
ω, t,φt (ω)

)
/φt (ω) ≥ 0 when φt(ω) 
= 0

}
.

In other words, the superreplication result continues to hold by considering only
trading strategies with positive execution prices at all times, because any other
strategy is dominated pointwise by a strategy that trades at the same rate when
the execution price is positive, and otherwise does not trade. The class A+ is eco-
nomically more appealing as it excludes the unintended consequence of (7) that
St (ω) + G(ω, t, φt (ω))/φt (ω) → −∞ whenever φt(ω) → −∞.
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The proof of Theorem 3.7 in fact yields also the following slightly different
version, in terms of bounded martingales only.

THEOREM 3.9. Let W ∈ L0(Rd+1), z ∈ Rd+1 and let Assumption 2.3 hold.
Fix a reference probability Q ∈ P̃(W). There exists φ ∈ A such that VT (z,φ) ≥ W

a.s. if and only if

Z0z ≥ EQ(ZT W) − EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt,(21)

for all Rd+1+ -valued bounded Q-martingales Z with Z0
0 = 1 satisfying Zi

t = 0,
i = 1, . . . , d on {Z0

t = 0}.

Defining dQ′/dQ := Z0
T one can state Theorem 3.9 in the following form, in

which martingale probabilities Q are replaced by stochastic discount factors Z.

COROLLARY 3.10. Let W ∈ L0(Rd+1), z ∈ Rd+1 and Assumption 2.3 hold.
Fix a reference probability Q ∈ P̃(W). There exists φ ∈ A such that VT (z,φ) ≥ W

a.s. if and only if

Ẑ0z ≥ EQ′(ẐT W) − EQ′
∫ T

0
G∗

t (Zt − St ) dt,(22)

for all Q′ � P with bounded dQ′/dQ and for all Rd+-valued Q′-martingales Z

such that (dQ′/dQ)ZT is bounded.

Finally, in the case of a finite � Theorem 3.9 reduces to a simple version, with-
out any integrability conditions.

THEOREM 3.11. Let � be finite. Let W ∈ L0(Rd+1), z ∈ Rd+1 and let As-
sumption 2.3 hold. Fix any reference probability Q ∼ P . There exists φ ∈ A such
that VT (z,φ) ≥ W a.s. if and only if

Z0z ≥ EQ(ZT W) − EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt,(23)

for all Rd+1+ -valued Q-martingales Z with Z0
0 = 1, and satisfying Zi

t = 0, i =
1, . . . , d on {Z0

t = 0}.

PROOF OF THEOREM 3.7. For a (d + 1)-dimensional vector x, x̃ denotes
the d-dimensional vector x̃i := xi , i = 1, . . . , d (cf. Table 1). First, assume that
VT (z,φ) ≥ W . Take Q ∈ P(W) and a bounded Q-martingale Z with nonnegative
components [more generally, it is enough to assume that ZT W is Q-integrable and
that ZT ∈ Lγ (Q)], satisfying Zi

t = 0, i = 1, . . . , d on {Z0
t = 0}.
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Note that EQ|W | < ∞ and W 0 ≤ z + ∫ T
0 [−φtSt − Gt(φt )]dt because

VT (z,φ) ≥ W , hence Lemma 3.4 implies

EQ

∫ T

0
|φt |β(

1 + |St |)β dt < ∞.(24)

Again, since VT (z,φ) ≥ W , it follows that

ZT (W − z) ≤
∫ T

0

[−Z0
T φtSt − Z0

T Gt(φt ) + Z̃T φt

]
dt.(25)

By (24), Fubini’s theorem applies and the properties of conditional expectations
imply that

EQ(ZT W) ≤ zEQZT + EQ

∫ T

0

[−Z0
T φtSt − Z0

T Gt(φt ) + Z̃T φt

]
dt

= zZ0 +
∫ T

0
EQ

(−Z0
T φtSt − Z0

T Gt(φt ) + Z̃T φt

)
dt

= zZ0 +
∫ T

0
EQ

(−Z0
t φtSt − Z0

t Gt (φt ) + Z̃tφt

)
dt

= zZ0 +
∫ T

0
EQ

(−Z0
t φtSt − Z0

t Gt (φt ) + Z0
t Z̄tφt

)
dt

≤ zZ0 + EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt,

which proves the first implication of this theorem.
To prove the reverse implication, suppose there is no φ such that VT (z,φ) ≥ W ,

which means that W − z /∈ C. Fix Q ∈ P̃(W). The set C ∩ L1(Q) is closed in
L1(Q) by Proposition 3.5. The Hahn–Banach theorem then provides a nonzero,
bounded (d + 1)-dimensional random variable Z̃ such that

EQ

[
Z̃(W − z)

]
> sup

X∈C∩L1(Q)

EQ[Z̃X].(26)

Since −L0(Rd+1) ⊂ C, Z̃ ≥ 0 a.s., otherwise the supremum would be infinity.
Define now the (deterministic) processes ψ(n, i) for all n ∈ N and i = 1, . . . , d by
setting ψi

t (n, i) := n, ψ
j
t (n, i) = 0, j 
= i for all t ∈ [0, T ].

We claim that EQZ̃0 > 0. Otherwise, for some i > 0 one should have
EQZ̃i > 0. By Assumption 2.3 ψ(n, i) ∈ A. By the choice of Q, we even
have VT (0,ψ(n, i)) ∈ C ∩ L1(Q) and EQZ̃VT (0,ψ(n, i)) = nT EQZ̃i → ∞ as
n → ∞, which is impossible by (26). So we conclude that EQZ̃0 > 0. Up to
a positive multiple of Z, we may assume EQZ̃0 = 1. Define Zt := EQ[Z̃|Ft ],
t ∈ [0, T ].
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We also claim that, for all i = 1, . . . , d ,

(P × Leb)(Ai) = 0
(27)

where Ai := {
(ω, t) :Z0

t (ω) = 0
} \ {

(ω, t) :Zi
t (ω) = 0

}
.

If this were not the case for some i, define ψi(n, i) := n1Ai
, ψj(n, i) := 0,

j 
= i. Clearly, ψ(n, i) ∈ A and VT (0,ψ(n, i)) ∈ C ∩ L1(Q) while EQZ̃VT (0,

ψ(n, i)) → ∞, n → ∞, which is absurd, proving (27).
By the measurable selection theorem applied to the measure space (� ×

[0, T ],O,P ⊗Leb) [see Proposition III.44 in Dellacherie and Meyer (1978)], there
is an optional process χ̃ (n) such that

χ̃t (n)[Z̄t − St ] − Gt

(
χ̃t (n)

) ≤ G∗
t (Z̄t − St )

and

χ̃t (n)[Z̄t − St ] − Gt

(
χ̃t (n)

) ≥ G∗
t (Z̄t − St ) − 1

n
≥ −K − 1

n
,(28)

for (P × Leb)-almost every (ω, t). Here K denotes the bound for supt∈[0,T ] Gt(0)

from (9). Now define χt(n) := χ̃t (n)1{|χ̃t (n)|≤N(n)} where N(n) is chosen such that
(P × Leb)(|χ̃t (n)| > N(n)) ≤ 1/n2. By Assumption 2.3, χ(n) ∈ A and by the
choice of Q, VT (0, χ(n)) ∈ C ∩ L1(Q). By construction,

lim
n→∞χt(n)[Z̄t − St ] − Gt

(
χt(n)

) = G∗
t (Z̄t − St ), (P × Leb)-a.e.

Since Z, χ(n) are bounded and Q ∈ P̃ we may use Fubini’s theorem and the
lower bound in (28) allows the use of Fatou’s lemma, hence

lim inf
n→∞ EQZT VT

(
0, χ(n)

) = lim inf
n→∞ EQ

∫ T

0
χt(n)

[
Z̃T − Z0

T St

] − Z0
T Gt

(
χt(n)

)
dt

= lim inf
n→∞

∫ T

0
EQ

[
χt(n)

[
Z̃t − Z0

t St

] − Z0
t Gt

(
χt(n)

)]
dt

= lim inf
n→∞ EQ

∫ T

0
χt(n)Z0

t [Z̄t − St ] − Z0
t Gt

(
χt(n)

)
dt

≥ EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt.

From (26), we infer that

zZ0 < lim sup
n→∞

[
EQ(WZT ) − EQZT VT

(
0, χ(n)

)]
= EQ(WZT ) − lim inf

n→∞ EQZT VT

(
0, χ(n)

)

≤ EQ(WZT ) − EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt.

This completes the proof. �
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REMARK 3.12. The above proof also shows that the statements of Theo-
rems 3.7 and 3.9 remain valid when the class of bounded martingales is replaced
by the class of Q-martingales with ZT ∈ Lγ (Q) such that ZT W is Q-integrable.

For a real number c, denote by č the (d + 1)-dimensional vector (c,0, . . . ,0)T

(cf. Table 1). The next corollary specializes Theorem 3.7 to the situation in which
a claim in cash is hedged from an initial cash position only.

COROLLARY 3.13. Let W ∈ L0(R), c ∈ R and let Assumption 2.3 hold. There
exists φ ∈ A such that V 0

T (č, φ) ≥ W a.s. and V i
T (č, φ) ≥ 0, i = 1, . . . , d if and

only if

c ≥ EQ

(
Z0

T W
) − EQ

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt,(29)

for all Q ∈ P(W) and for all Rd+1+ -valued bounded Q-martingales Z with Z0
0 = 1

satisfying Zi
t = 0, i = 1, . . . , d on {Z0

t = 0}.
To understand the meaning of (29), it is helpful to consider its statement in the

frictionless case, at least formally.9 If S itself is a Q-martingale, then the penalty
term with G∗ vanishes with the choice of Z0

t := 1, Zi
t := Si

t , i = 1, . . . , d . It fol-
lows that, in order to super-replicate W , the initial endowment c must be greater
than or equal to the supremum of EQW over the set of equivalent martingale mea-
sures for S. This shows that our findings are formally consistent with well-known
superhedging theorems for frictionless markets. The results are similarly consis-
tent with superhedging theorems for proportional transaction costs [Kabanov and
Safarian (2009)], formally obtained with Gt(x) = εSt |x|.

3.5. Examples. With the class of superlinear frictions considered in this arti-
cle, typical contingent claims are virtually impossible to superreplicate with cer-
tainty at a fixed price, as we now show. For example, consider the problem of
delivering a cash payoff equal to ST (the price of the risky asset) at time T , start-
ing from cash only. In a market without frictions, or with proportional transaction
costs, one solution is to immediately buy the share and, therefore, the superrepli-
cation price is at most the (current) price of the asset (or a slightly higher multiple
when transaction costs are present).

But this policy is not feasible with superlinear frictions, as block trades are
forbidden. An approximate solution would be to buy at rate n over the period
[0,1/n], but this policy incurs a positive probability that the asset price will rapidly
increase in value, and in typical models, such as geometric Brownian motion, there
is no certain upper bound on the execution price.

9The theorem does not apply to the frictionless case because G = 0 does not satisfy Assump-
tion 2.3, and feasible strategies differ from admissible strategies.
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This discussion motivates the following result.

EXAMPLE 3.14. Let μ ∈ R, σ,S0 > 0, St := S0e
(μ−σ 2/2)t+σWt , Gt(x) =

λ
2Stx

2, where Wt is a Brownian motion (and Ft is its completed filtration made
right-continuous). Then a cash payoff equal to ST cannot be superreplicated from
any initial capital.

PROOF. In view of Theorem 3.7 above, it is enough to show that the right-
hand side of inequality (20) takes arbitrarily large values for a suitable family of
reference probabilities Q and martingales Z.

To this end, consider Q = P and the family of exponential martingales Z pa-
rameterized by x > 0 and n ∈ N, n > 1/T with

Z0
t = exp

{
−σWt∧(T −1/n) − σ 2

2
t ∧ (T − 1/n)

(30)

+ 1{t≥T −1/n}
(
(x − σ)(Wt − WT −1/n) − (x − σ)2

2

(
t − (T − 1/n)

))}

and Z1
t = S0Z

0
t . [In plain English, Z0

t adds a drift of −σ (to the Brownian motion)
between 0 and T − 1/n, and a drift of x − σ between T − 1/n and T .] In the
sequel, C1,C2, . . . denotes various positive constants whose values do not depend
either on x or on n.

Notice that, for 0 ≤ t ≤ T − 1/n,

EZ0
t St = S0e

(μ−σ 2)t ≤ C1

and for T − 1/n ≤ t ≤ T ,

EZ0
t St ≤ C1e

(x2/2)(t−(T −1/n))+(μ−σ 2/2)(t−(T −1/n))−((x−σ)2/2)(t−(T −1/n))

≤ C2e
σx/n.

Similarly, for 0 ≤ t ≤ T − 1/n,

ES2
0Z0

t /St = ES0e
−2σWt−(μ−σ 2/2)t−(σ 2/2)t ≤ C3

and for T − 1/n ≤ t ≤ T ,

ES2
0Z0

t /St ≤ C3e
((x−2σ)2/2)(t−(T −1/n))−(μ−σ 2/2)(t−(T −1/n))−((x−σ)2/2)(t−(T −1/n))

≤ C4.

We also have

EZ0
T ST ≥ S0e

(μ−σ 2)(T −1/n)e(x2/2)(1/n)+(μ−σ 2/2)(1/n)−((x−σ)2/2)(1/n) ≥ C5e
σx/n.
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Now set x = x(n) = n lnn/σ . Since G∗
t (y) = 1

2λSt
y2, for W = (ST ,0), which

represents a cash payoff equal to the final stock price, it follows that

E(ZT W) − E

∫ T

0
Z0

t G
∗
t (Z̄t − St ) dt

= E
[
ST Z0

T

] − 1

2λ

∫ T

0
E

[
(Z1

t )
2

StZ
0
t

− 2Z1
t + Z0

t St

]
dt

= E
[
ST Z0

T

] − 1

2λ

∫ T

0

(
E

[
S2

0Z0
t

St

]
− 2S0 + E

[
Z0

t St

])
dt(31)

≥ C5n − 1

2λ

∫ T −1/n

0
[C3 − 2S0 + C1]dt − 1

2λn
[C4 − 2S0 + C2n]

≥ C5n − C6 → ∞
as n → ∞. As a result, the right-hand side takes arbitrarily large values, implying
an infinite superreplication price. �

The previous proof uses Theorem 3.7 to obtain a dual characterization of su-
perreplication prices. In fact, the same conclusion can be reached exploiting the
market bound obtained in Lemma 3.1.

ALTERNATIVE PROOF. Observe that Gt(x) = λ
2Stx

2 implies that G∗
t (y) =

y2

2λSt
, whence the market bound is

B =
∫ T

0
G∗

t (−St ) dt = 1

2λ

∫ T

0
St dt.(32)

Thus, any strategy starting with initial capital x satisfies the bound

V 0
T (x,φ) ≤ x +

∫ T

0
G∗

t (−St ) dt ≤ x + 1

2λ

∫ T

0
St dt.(33)

In particular, on the event {x + 1
2λ

∫ T
0 St dt < ST }, which has positive probability

for any x (because Brownian motion has full support on the space of continuous
functions starting at 0) superreplication fails for any strategy, and for any initial
capital. �

The previous example should be understood as follows: if a large position in
the risky asset needs to be acquired, it is not possible a priori to guarantee a fixed
execution price with certainty: price impact prevents the transaction to take place
instantly, while over time intervening news may lead the price to arbitrary levels.
Yet, the fact that even such a simple contract is not superreplicable with finite
wealth raises the question of which contracts have a finite superhedging price, and
the next example provides one.
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EXAMPLE 3.15. Let St > 0 a.s. for all t and Gt(x) := λ
2Stx

2. Then, for all

k > 0, the contract that at time T pays 1
λ

∫ T
0 (

√
1 + 2kλ/St −1) dt units of the risky

asset is superreplicable from initial cash position kT .

PROOF. The main idea is that this payoff is dominated by a constant cash-
flow strategy, a strategy that buys the risky asset at the rate of one unit of the safe
asset per unit of time (e.g., one dollar per second). To see this, recall the relation
between the cash flow and the trading rate

dV 0
t = −φtSt dt − λ

2
Stφ

2
t dt.(34)

Thus, a constant cash flow dV 0
t = −k dt corresponds to a buying rate

φt = 1

λ

(
−1 +

√
1 + 2λk

St

)
,(35)

which yields at time T exactly 1
λ

∫ T
0 (−1 +

√
1 + 2λk

St
) dt units of the risky asset.

In the frictionless limit (λ ↓ 0), this strategy implies a buying rate of φt = k/St ,
which yields k

∫ T
0 1/St dt units of the risky asset. �

In the above example note that, as k varies, the resulting family of payoffs is not
linear, in that while each of the above payoffs are replicable, their multiples need
not be. In particular, increasing the buying rate k does not scale the number of units
of risky asset bought proportionally, except in the frictionless limit λ = 0. Note
also that the above payoff is superreplicable because it promises a lower number
of shares when the asset price is high. The square-root relation is of course linked
to the quadratic price impact considered in this example.

4. Arbitrage (of the second kind). Any positive payoff that is superhedged
for strictly less than zero is an arbitrage. Such opportunities, which start from
an insolvent position and, by clever trading, yield a solvent one, are known
in the literature as arbitrage of the second kind, and date back to Ingersoll
(1987) [see also Kabanov and Kramkov (1994) in the context of large finan-
cial markets]. This definition is used with markets frictions in Dermody and
Rockafellar (1991, 1995), and, more recently, in Bouchard and Nguyen Huu
(2013), Bouchard and Taflin (2013), Denis and Kabanov (2012), Pennanen (2014),
Rásonyi (2009).

The superhedging results in the previous section hold regardless of having arbi-
trage opportunities or not. Consequently, they can be used to detect arbitrage: if we
find a nonnegative payoff W satisfying (29) with some c < 0 then Corollary 3.13
ensures that an arbitrage opportunity exists.
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DEFINITION 4.1. An arbitrage of the second kind is a strategy φ ∈ A, such
that VT (č, φ) ≥ 0 for some c < 0. Absence of arbitrage of the second kind (NA2)
holds if no such opportunity exists.

Note that this definition requires that S has positive components. Otherwise,
a nonnegative position in an asset with negative price [as VT (č, φ) ≥ 0 stipulates]
cannot be interpreted as solvent.

The following theorem is a direct consequence of Corollary 3.13 and Re-
mark 3.12.

THEOREM 4.2. Let Assumption 2.3 hold. Then (NA2) holds if and only if, for
all ε > 0, there exists Q ∈ P and an Rd+1+ -valued Q-martingale Z with ZT ∈
Lγ (Q) such that EQ

∫ T
0 Z0

t G
∗
t (Z̄t − St ) dt < ε.

A broad class of models enjoys the (NA2) property. Let D ⊂ (0,∞)d be
nonempty, open and convex. We denote by C[t, T ](D) (resp., Cx[t, T ](D)) the
set of continuous functions f from [t, T ] to D [resp., satisfying f (t) = x]. Both
spaces are equipped with the Borel sets of the topology induced by the uniform
metric. Recall that a continuous stochastic process S on [t, T ] can be understood
as a C[t, T ](D)-valued random variable, and its support is defined in this (metric)
space.

DEFINITION 4.3. A process S has conditional full support in D (henceforth,
CFS-D) if S ∈ C[0, T ](D) a.s. and

suppP(S|[t,T ] ∈ ·|Ft ) = CSt [t, T ](D) a.s. for all t ∈ [0, T ].

THEOREM 4.4. Let Assumption 2.3 hold with Ht := H constant. If S has the
CFS-D property, then (NA2) holds.

PROOF. It follows from Theorem 2.6 of Maris and Sayit (2012) that for all ε

there is Q ∼ P and a Q-martingale Mt evolving in D ⊂ Rd+ such that |St −Mt | < ε

a.s. for all t . Define Zi
t := Mi

t for i = 1, . . . , d and Z0
t := 1 for all t .

In Maris and Sayit (2012) [see also Guasoni, Rásonyi and Schachermayer
(2008)] it is shown that ST , and hence ZT are in L2(Q). A closer inspection of
the proof reveals that in fact there exist ZT ∈ Lp(Q) for arbitrarily large p. Take
p := max{γ,αβ/(α − β)}. Then Q is easily seen to be in P and ZT is in Lγ (Q).
The estimate (11) in Lemma 3.2 implies that

EQ

∫ T

0
G∗

t (Z̄t − St ) dt = EQ

∫ T

0
G∗

t (Mt − St ) dt ≤
∫ T

0
�(ε) dt ≤ T �(ε)

for a continuous (deterministic) function �, which clearly tends to 0 as ε → 0. Now
the claim follows by Theorem 4.2. �
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Theorem 4.4 has an immediate implication for fractional Brownian motion. The
arbitrage properties of fractional Brownian motion have long been delicate: in
a frictionless setting it admits arbitrage of the second kind [Rogers (1997)] but,
with proportional transaction costs, it does not even have arbitrage of the first kind
[Guasoni, Rásonyi and Schachermayer (2008)]. With price-impact, the above the-
orem implies that it does not admit arbitrage of the second kind, since it satis-
fies the CFS-D property [Guasoni, Rásonyi and Schachermayer (2008)]. Whether
arbitrage of the first kind (a positive, and possibly strictly positive, payoff from
nothing) exists is still an open question.

5. Utility maximization. This section discusses utility maximization in the
model of Section 2. The first result (Theorem 5.1 below) shows that optimal strate-
gies exist under a simple integrability assumption, which is easy to check in prac-
tice. In particular, optimal strategies exist regardless of arbitrage, since such op-
portunities are necessarily limited. Put differently, the budget equation is nonlin-
ear. Therefore, one cannot add to an optimal strategy an arbitrage opportunity, and
expect the resulting wealth to be the sum.

The second result establishes the first-order condition for utility maximization,
which provides a simple criterion for optimality, and helps understand the dif-
ferences with the corresponding results for frictionless markets and proportional
transaction costs. In particular, it shows that the analogue of a shadow price for
price-impact models is a hypothetical frictionless price for which the optimal strat-
egy would coincide with the execution price of the same strategy in the original
price-impact model. This notion reduces to that of shadow price for markets with
proportional transaction costs.

Importantly, these results consider only utilities defined on the real line, such as
exponential utility, but exclude power and logarithmic utilities, which are defined
only for positive values. This setting is consistent with the definition of feasible
strategies, which do not constrain wealth to remain positive. When establishing
optimality of a given strategy in such a setting, one technical challenge is to show
that the resulting wealth processes are martingales (or just supermartingales) with
respect to appropriate reference measures (these are martingale measures in the
frictionless case). Lemma 5.6 below implies such a property for any feasible strat-
egy and hence forms the main ingredient of the proof of Theorem 5.5. Finally,
since the focus is on utility functions defined on a single variable, and with price
impact there is no scalar notion of portfolio value, the results below assume for
simplicity that all strategies begin and end with cash only.

Let W be an arbitrary real-valued random variable (representing a random en-
dowment) and c ∈R the investor’s initial capital.

THEOREM 5.1. Let U :R → R be concave and nondecreasing, and let
E|U(c + B + W)| < ∞ hold for the market bound B = ∫ T

0 G∗
t (−St ) dt in
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Lemma 3.2. Under Assumption 2.3, there is φ∗ ∈ A′(U, c) such that

EU
(
V 0

T

(
č, φ∗) + W

) = sup
φ∈A′(u,c)

EU
(
V 0

T (č, φ) + W
)
,

where A′(U, c) = {φ ∈ A :V i
T (č, φ) = 0, i = 1, . . . , d,EU−(V 0

T (č, φ) + W) <

∞}.

This theorem applies, in particular, for U bounded above and W bounded below.

PROOF OF THEOREM 5.1. Corollary 3.6 implies that

C′ := č + (
C ∩ {

X :Xi = 0 a.s., i = 1, . . . , d
})

is closed in probability.
Let φ(n) be a sequence in A′(U, c) with

lim
n→∞EU

(
V 0

T

(
č, φ(n)

) + W
) = sup

φ∈A′(U,c)

EU
(
V 0

T (č, φ) + W
)
.

Since V 0
T (č, φ(n)) ≤ c+B a.s. for all n, by Lemma 9.8.1 of Delbaen and Schacher-

mayer (2006) there are convex combinations such that
∑M(n)

j=n αj (n)V 0
T (č, φ(j)) →

V a.s. for some [−∞, c + B]-valued random variable V . By convexity of G, we
have that for φ̃(n) := ∑M(n)

j=n αj (n)φ(j),

V 0
T

(
č, φ̃(n)

) ≥
M(n)∑
j=n

αj (n)V 0
T

(
č, φ(j)

)
,

so
∑M(n)

j=n αj (n)VT (č, φ(j)) ∈ C′ for each n.
By the concavity of U ,

EU

(
W +

M(n)∑
j=n

αj (n)V 0
T

(
č, φ(j)

)) ≥
M(n)∑
j=n

αj (n)EU
(
V 0

T

(
č, φ(j)

) + W
)
.

Fatou’s lemma implies that EU(V ) ≥ supφ∈A′(u) EU(V 0
T (č, φ) + W), in par-

ticular, V is finite-valued and hence V̌ ∈ C′ by the convexity and closedness
of C′. It follows that V = V 0

T (č, φ∗) − Y 0 for some φ∗ ∈ A′(U, c) and Y ∈ L0+.
Clearly, EU(V 0

T (č, φ∗) + W − Y 0) = supφ∈A′(U,c) Eu(V 0
T (č, φ) + W). Necessar-

ily, EU(V 0
T (č, φ∗) + W) = supφ∈A′(U,c) EU(V 0

T (č, φ) + W) as well.10 This com-
pletes the proof. �

10Note that U can be constant on an (infinite) interval hence Y 0 
= 0 is possible.
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REMARK 5.2. Theorem 5.1 can also be proved with

A′′(U, c) = {
φ ∈ A :V i

T (č, φ) ≥ 0, i = 1, . . . , d,EU−
(
V 0

T (č, φ) + W
)
< ∞}

in lieu of A′(U, c). Note that the two optimization problems are not equivalent,
due to illiquidity.

REMARK 5.3. Let us assume that S is nonnegative and one-dimensional. We
may replace A′(U, c) in Theorem 5.1 by

A′+(U, c) := {
φ ∈ A :St (ω) + G

(
ω, t,φt (ω)

)
/φt (ω) ≥ 0 when φt(ω) 
= 0,

V i
T (č, φ) ≥ 0, i = 1, . . . , d,EU−

(
V 0

T (č, φ) + W
)
< ∞}

,

that is, we may restrict our class of strategies to those for which the instantaneous
execution price is nonnegative, as in Remark 3.8 above.

REMARK 5.4. The proofs of Theorem 5.1 and Proposition 3.5 use Lem-
mata 9.8.1 and 15.1.4 in Delbaen and Schachermayer (2006). They could be re-
placed, with minor modifications, with Komlós’s theorem [Komlós (1967)] and its
extensions [Balder (1989), v. Weizsäcker (2004)].

While the previous result shows the existence of optimal strategies, the next the-
orem provides a sufficient conditions for a strategy’s optimality, through a variant
of the usual first-order condition.

THEOREM 5.5. Let Assumption 2.3 hold, and

(a) let U be concave, continuously differentiable, with U ′ strictly decreasing, and

U(x) ≤ −C|x|δ, x ≤ 0,(36)

for some C > 0 and δ > 1;
(b) denoting by Ũ the convex conjugate function of U , that is,

Ũ (y) := sup
x∈R

{
U(x) − xy

}
, y > 0;

(c) let W be a bounded random variable;
(d) let Q ∈P be such that

dQ/dP ∈ Lη(P ),(37)

where (1/η) + (1/δ) = 1;
(e) let Gt(·) be P × Leb-a.s. continuously differentiable in x and G′

t (·) is strictly
increasing;
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(f) let Z be a càdlàg process with ZT ∈ Lγ ′
(Q) for some γ ′ > γ and let φ∗ be a

feasible strategy such that, for some y∗ > 0, the following conditions hold:
(i) Z is a Q-martingale;
(ii) U ′(V 0

T (x,φ∗) + W) = y∗(dQ/dP ) a.s.;
(iii) Zt = St + G′

t (φ
∗
t ) a.s. in P × Leb-a.e.

Then the strategy φ∗ is optimal for the problem

max
φ∈A′(U,c)

E
[
U

(
V 0

T (x,φ) + W
)]

.(38)

PROOF. For any (φt )t≥0 ∈ A′(U, c) the final payoff equals

V 0
T (x,φ) = x −

∫ T

0
Stφt dt −

∫ T

0
Gt(φt ) dt.(39)

Let Zt be as in the statement of the theorem, and rewrite the above payoff as

V 0
T (x,φ) = x −

∫ T

0
Ztφt dt +

∫ T

0
(Zt − St )φt dt −

∫ T

0
Gt(φt ) dt.

By definition of G∗
t , it follows that

V 0
T (x,φ) ≤ x −

∫ T

0
Ztφt dt +

∫ T

0
G∗

t (Zt − St ) dt,(40)

and equality holds if Zt − St = G′
t (φt ), P × Leb-a.s., that is, when (iii) holds.

It follows from Lemma 5.6 that

0 ≤ EQ

[(
x − V 0

T (x,φ) +
∫ T

0
G∗

t (Zt − St ) dt

)]
.(41)

Thus, for any payoff V 0
T (x,φ) + W and any y > 0 the following holds:

E
[
U

(
V 0

T (x,φ) + W
)]

≤ E

[
U

(
V 0

T (x,φ) + W
)

(42)

+ y(dQ/dP )

(
x − V 0

T (x,φ) +
∫ T

0
G∗

t (Zt − St ) dt

)]

≤ E

[
Ũ

(
y(dQ/dP )

) + y(dQ/dP )

(∫ T

0
G∗

t (Zt − St ) dt + W

)]
+ yx.

If (iii) is satisfied then there is equality in (40) above. If, in addition, (ii) is satisfied
then both inequalities in (42) are equalities for y = y∗. Thus, if conditions (i), (ii)
and (iii) hold for φ∗ then, by (42),

E
[
U

(
V 0

T

(
x,φ∗) + W

)]
= E

[
Ũ

(
y∗(dQ/dP )

) + y∗(dQ/dP )

(∫ T

0
G∗

t (Zt − St ) dt + W

)]
+ y∗x.
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For all φ ∈A′(U, c)

E
[
U

(
V 0

T (x,φ) + W
)]

≤ E

[
Ũ

(
y∗(dQ/dP )

) + y∗(dQ/dP )

(∫ T

0
G∗

t (Zt − St ) dt + W

)]
+ y∗x,

again by (42). Hence, the strategy φ∗ is indeed optimal. �

LEMMA 5.6. Under the assumptions of the previous theorem, any φ ∈
A′(U, c) satisfies

EQ

∫ T

0
φtZt dt = 0.

PROOF. Assume T = 1. Define

�+
t :=

∫ t

0
(φs)+ ds, �−

t :=
∫ t

0
(φs)− ds.

We show that EQ

∫ 1
0 Zt d�+

t − EQ

∫ 1
0 Zt d�−

t = 0.
Since φ ∈ A′(U, c), (36), (37) and Hölder’s inequality imply that

EQ[V 0
1 (x,φ)]− < ∞, hence Lemma 3.4 implies that

EQ

∫ 1

0
|φt |β(

1 + |St |)β dt < ∞,

a fortiori,

EQ

(
�+

1

)β = EQ

(∫ 1

0
(φt )+ dt

)β

< ∞.(43)

Define �+
t (n) := �+(kn(t)/n) where

kn(t) := max
{
i ∈N :

i

n
≤ t

}

and observe that d�+
t (n) → d�+

t a.s. in the sense of weak convergence of mea-
sures on B([0,1]). As Zt is a.s. càdlàg, its trajectories have countably many points
of discontinuity (a.s.). By d�+

t � Leb, this implies

Y+
n :=

∫ 1

0
Zt d�+

t (n) →
∫ 1

0
Zt d�+

t =: Y+,

almost surely. Furthermore,∣∣∣∣
∫ 1

0
Zt d�+

t (n)

∣∣∣∣
(44)

=
∣∣∣∣∣

n∑
k=1

Zk/n

[
�+

k/n(n) − �+
(k−1)/n(n)

]∣∣∣∣∣ ≤ sup
t

|Zt |�+
1 ,
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where supt∈[0,T ] |Zt | ∈ Lγ ′
(Q) by assumption and �+

1 ∈ Lβ(Q) by (43). It fol-
lows by Hölder’s inequality that the sequence Y+

n is Q-uniformly integrable, so
EQY+

n → EQY+, n → ∞. From (44), we get, noting that �+
0 (n) = 0,

EQY+
n = EQ

[
n−1∑
l=0

(Zl/n − Z(l+1)/n)�
+
l/n(n)

]
+ EQZ1�

+
1 (n)

(45)
= EQZ1�

+
1 (n),

by the Q-martingale property of Z. Analogously, as n → ∞,

EQY−
n = EQZ1�

−
1 (n) → EQY−,

where Y−
n is defined analogously to Y+

n using d�−
t instead of d�+

t and

Y− :=
∫ 1

0
Zt d�−

t .

Since �1(n) = �1 = 0, (45) implies that EQ(Y+
n −Y−

n ) = 0 for all n, whence also

EQ

(
Y+ − Y−) = EQ

∫ T

0
φtZt dt = 0,

completing the proof. �
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