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1. Introduction

Timely comparative treatment analysis is useful for physician recommendations,
patient awareness, regulatory agency assessments of benefit-risk profiles, and
reimbursement agency cost effectiveness assessments. The use of observational
data for such purposes has grown significantly in number of studies and im-
portance [14, 24]. In many observational databases subjects can be exposed to
one or more treatment options and the treatments and study participation are
self-selected. The database is often a sample from a complex survey, such as
National Health and Nutrition Examination Survey (NHANES) data, a set of
subjects who enroll in a particular insurance policy, a combination of clinical
trials as in meta-analysis, or a set of subjects who receive care at centers that
shares electronic medical records. Of particular interest due to simple interpre-
tation and practical use in reimbursement are the average expected treatment
differences for a population, termed population average treatment effects (ATE)
in [8, 15].

For estimating average treatment effects in observational data analysis, lit-
erature already contains several approaches including matching estimators [1,
12, 23], inverse probability weighted (IPW) estimators ([9]; [11] for the case of
two treatments; [4] in the context of multiple treatments), and doubly robust
estimators [2, 17, 18, 26] that tend to be combinations of IPW estimators and
outcome regression models. A recent work by [27] considers estimation of treat-
ment effects from two-phase samples, where their observational dataset is a sim-
ple random sample from a super-population, a validation sample is drawn using
stratified Poisson sampling, and observations grouped by treatment indicators
are results from a self-selection process. However, there is not much work done
to study the impact of a general design used to obtain the observational data,
and to derive the asymptotic results from incorporation of a general first-phase
design. Ignoring the sampling design for the analysis dataset can lead to biased
estimators of the average treatment effects and incorrect variance estimation. In
the following, we quantify the bias due to ignoring the sample design and give
a motivation example to emphasize the importance of the sample design.

In general, survey data can be viewed as the outcome of two processes: in the
first process the values of random variables are generated for units in a finite
population according to a model called the super population model, and in the
second process a sample of units is drawn from the finite population according
to a sample design, termed the first-phase sample. Analytic inference is made
with respect to the super population model. When the sampling probability
depends on an auxiliary variable z or the response variable y, the observed
marginal sample likelihood of the response variable y can be altered from the
super population likelihood where inference is being made. Therefore sample
estimators that ignore first-phase design can be biased for the super population
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parameters. To quantify the bias, we use the results in [21]. For a random vector
(y, z), the sample conditional probability density function (pdf) of y given z and
the sample marginal pdf of z can be expressed through the super population
pdf’s as

fs(y|z) =
Eξ(π|y, z)
Eξ(π|z)

fξ(y|z), (1.1)

fs(z) =
Eξ(π|z)
Eξ(π)

fξ(z), (1.2)

where fs(·) and fξ(·) are the sample and super population pdf’s, Es(·) and Eξ(·)
denote the expectations under the sample and super population distributions
respectively, and π is the sampling probability. In this paper, we are interested
in estimating the marginal mean of y, denoted as θ =

∫ ∫
yfξ(y|z)fξ(z)dzdy.

The marginal mean estimator that disregards the sampling design is θs =∫ ∫
yfs(y|z)fs(z)dzdy. Using equations (1.1) and (1.2), the bias in θs can be

quantified as

Bias =

∫ ∫ (
Eξ(π|y, z)
Eξ(π)

− 1

)
yfξ(y|z)fξ(z)dzdy. (1.3)

If π is independent of (y, z), then the bias is zero. If π depends on auxiliary
variable z only, then the bias is

Bias = Eξ

{(
π(z)

Eξ(π(z))
− 1

)
µ(z)

}
, (1.4)

where µ(z) = Eξ(y|z). If π depends on y, which is called informative sampling,
then the bias is

Bias = Eξ

{(
π(y, z)

Eξ(π(y, z))
− 1

)
y

}
. (1.5)

In practice, π often depends on auxiliary variables and possibly design variables
used for the sample selection but not included in the outcome model under
consideration. The probabilities π can depend on the outcome variable in the
case of self-selection. Estimators that do not account for the selection effects in
the inference can be seriously biased.

As an example of a case where the first-phase sample design is important,
consider a finite population generated from a super population model yi = µ+ǫi,
where ǫi is a random error variable with mean zero for subject i and y is the
outcome of a treatment. Suppose subjects migrate after severe disease progres-
sion to larger hospitals with greater treatment options available. If subjects with
severe disease progression are also less likely to respond to the treatment, this
migration could generate clusters of subjects where subjects with homogeneous
ǫi values are together in larger hospitals. A study designer selects a cluster
sample with probability proportion to the hospital size for convenience as more
data can be obtained with fewer hospitals selected. Ignoring the sample design
will lead to biases in both mean and variance estimation. An analyst might
include disease severity in an outcome model as an auxiliary variable, but an
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estimator of the marginal distribution of disease severity is needed to estimate
the marginal treatment mean. Other examples with details on the importance of
accounting for the sampling design can be found in [19, 21]. Due to the potential
for biases, it is worthwhile to explore estimators that account for the first-phase
sampling design.

In this paper, we propose a two-phase semiparametric regression estimator
based on an argument in [3]. The term two-phase is used because we consider the
sampling of the observational data as the first phase and subject treatment se-
lection as the second phase. The term semiparametric is used because both the
outcome model and treatment selection probabilities are estimated semipara-
metriclly. The key advantage of our estimator is the incorporation of the first
phase sampling, similarly as in [27], thus correcting the biases in estimators that
disregard the first phase design information in the ATE estimation. The paper
derives asymptotic results for the proposed estimators obtained from incorporat-
ing a general first-phase design and including semiparametric estimators of the
self-selection probability and outcome models. Moreover, by viewing the prob-
lem as a two-phase sampling problem, the method can be readily extended to
multiple sampling phases. This extension is useful because the analysis dataset
can be a subset selected from a larger sample of the finite population. This
case covers the common situation where detailed treatment and outcome data
is available for only a subsample of the data such as in a subsample with medi-
cal chart adjudication of claims records or a subsample constructed by merging
multiple sources of data like claims records and electronic medical records. The
proposed estimator that is designed to handle multiple treatments does not
require strong model specification as in fully parametric solution and permits
incorporating covariate information through regression.

The paper is organized as below. Section 2 introduces the proposed two-
phase semiparametric regression estimators and their asymptotic properties.
Two simulation studies are presented in Section 3 to compare the proposed
estimators to other commonly used estimators. Section 4 contains two examples
to illustrate the use of our approach. Section 5 discusses the caveats of using
the estimator and possible extensions.

2. Proposed two-phase semiparametric regression estimators

In this section, we introduce our two-phase semiparametric regression estima-
tors. Section 2.1 builds the framework and discusses the motivation of the esti-
mators, and Section 2.2 contains theoretical results for asymptotic consistency
and normality of the proposed estimators.

2.1. Basic set-up and the proposed estimator

Let U be a finite population containing (yi, zi), where i = 1, . . . , N indexes a
subject, zi is a set of covariate variables, and yi = [yi1, . . . , yiG]

T is a vector of
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potential outcomes for G different treatments. Consider (yi, zi), i = 1, . . . , N, to
be i.i.d. realizations from a superpopulation regression model

yig = µzg(zi) + ǫig, (2.1)

where ǫig are independent random variables with mean zero and variance νg(zi)
and µzg(·) is a smooth function. Let A1 with size n index a first phase sam-
ple selected from U under a design p1(·) with π1i as the first order inclusion
probabilities, and let A2g (g = 1, . . . , G) be a collection of disjoint second-phase
sample indices that partition the first-phase sample into the G treatment groups.
The partitioning can be viewed as a multinomial extension of Poisson sampling
with probabilities π2ig (on observables) for subject i

π2ig = Prob(δ2ig = 1|zi),

where δ2ig is the indicator variable of subject i selecting treatment g,
∑G

g=1δ2ig =
1, for any i, and δ2ig is independent of δ2jh for any subjects i 6= j and any
treatments g and h. The self-selection probabilities π2ig can be impacted by
physician/patient preferences and reimbursement guidelines, and are estimated
using the sieve estimation approach of [4]. The zi are assumed to be observed in
A1 and yig is observed only in A2g, which is different from [27]where the observed
outcome, treatment indicators and covariates are assumed to be available in the
population level.

If the outcome model µzg(zi) and the selection probability model π2ig were
known, a two-phase regression estimator of the finite population mean ȳNg =
N−1

∑
i∈U yig is

1

N


∑

i∈A1

µzg(zi)

π1i
+
∑

i∈A2g

yig − µzg(zi)

π1iπ2ig


 , for any g. (2.2)

Estimator (2.2) is a two-phase sampling extension of the design unbiased dif-
ference estimator proposed by [3, 22], and it is usually more efficient relative to
the IPW estimator N−1

∑
i∈A2g

π−1
1i π−1

2igyig when yig is correlated with zi [22].
In the following, the methods used for estimating the selection probability π2ig

and the outcome model µzg(zi) will be discussed.
We adopt the method in [4] to estimate π2ig. Let {rK(zi)}∞k=1 be a sequence of

known approximating functions, and assume that π2ig can be approximated by
RK(zi)

Tγg,K for K = 1, 2, . . . , where RK(zi) = [r1(zi), r2(zi), . . . , rK(zi)] and
γg,K is the real-valued coefficients of RK(zi) for the g-th treatment selection.
Let an estimator of the K ×G matrix γK = [γ1,K ,γ2,K , . . . ,γG,K ] be

γ̂K = argmax
γ

K
|γ

1,K
=0K

∑

i∈A1

G∑

g=1

δ2ig log




eRK(zi)
′γ

g,K

G∑
g=1

eRK(zi)′γg,K


 ,
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where 0K represents a K × 1 vector zeros used to constrain the sum to 1. The
estimated probabilities are

π̂2ig =
eRK(zi)

′γ̂
g,K

1 +
G∑

g=2
eRK(zi)′γ̂g,K

for g=2,3,. . . ,G

=

(
1 +

G∑

g=2

eRK(zi)
′γ̂

g,K

)−1

for g=1.

(2.3)

This solution is that of multinomial logistic regression. Condition B in the
Appendix specifies assumptions about RK(zi), π2ig and K to ensure π̂2ig con-
verges to π2ig fast enough. Choices for the rK(zi) include power series, spline,
and kernel expansions.

We propose estimating the g-th outcome model µzg(zi) with a semiparametric
regression estimator using the base RK(zi) as in (2.3). The benefit is that the
estimator has a semiparametric specification for both the probabilities and the
mean functions. Let µ̂zg(zi) be the predicted values for all i in A1, and the
regression is fit with elements indexed in A2g,

µ̂zg(zi) = RK(zi)
T β̂zg, (2.4)

where

β̂zg =


 ∑

i∈A2g

π−1
1i π̂−1

2igRK(zi)RK(zi)
T




−1
∑

i∈A2g

π−1
1i π̂−1

2igRK(zi)yig, (2.5)

where RK(zi) includes the intercept through the entire paper. Combining (2.2),
(2.3) and (2.4), our two-phase semiparametric regression estimator for g-th
marginal treatment mean is

θ̂g =
1

N

∑

i∈A1

µ̂zg(zi)

π1i
+

1

N

∑

i∈A2g

yig − µ̂zg(zi)

π1iπ̂2ig
, for any g = 1, . . . , G. (2.6)

2.2. The central limit theorem of θ̂g

The asymptotic consistency and normality of θ̂g are established in Theorem 1
on the finite population level, and in Corollary 1 on the super-population level.
For the design properties, we use the traditional finite population asymptotic
framework, in which the population U and the designs are embedded into a
sequence of such populations index by FN with N → ∞. The op(·) and →
notations below are with respect to this sequence of populations and designs,
see [16].
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Theorem 1. Under the regularity conditions in the Appendix,
(i) θ̂g − ȳNg|FN = op(1),
(ii)

(V1g + V2g)
− 1

2 (θ̂g − ȳNg)|FN
L→ N(0, 1), where

V1g = E {V (ǭ2π,g|A1,FN )} (2.7)

V2g = V (ē1π,g + βT
zgRz,1π|FN ) (2.8)

ȳNg = N−1
∑

i∈U

yig, Rz,1π = N−1
∑

i∈A1

π−1
1i RK(zi) (2.9)

ē1π,g = N−1
∑

i∈A1

π−1
1i eig, ǭ2π,g = N−1

∑

i∈A2g

π−1
1i π

−1
2igǫig (2.10)

eig = yig −RK(zi)
Tβzg, ǫig = yig − µg(zi) (2.11)

and βzg = limN→∞

(∑
i∈U RK(zi)RK(zi)

T
)−1∑

i∈U RK(zi)yig.

Two key steps in the proof (details in the Appendix) are to show

θ̂g− ȳNg = (Rz,1π−Rz,N )Tβzg+
1

N

∑

i∈A2g

eig
π1iπ̂2ig

− 1

N

∑

i∈U

eig+op(n
− 1

2 ), (2.12)

and

1

N

∑

i∈A2g

eig
π1iπ̂2ig

=
1

N

∑

i∈A1

{
δ2igeig
π1iπ2ig

− δ2ig − π2ig

π1iπ2ig
E(eig|zi)

}
+ op(n

− 1

2 ). (2.13)

Combining (2.12) and (2.13) gives

θ̂g − ȳNg = (ǭ2π,g − ǭ1π,g)+ (ē1π,g − ēNg)+βT
zg(Rz,1π −Rz,N )+ op(n

− 1

2 ), (2.14)

where ǭ1π,g = N−1
∑

i∈A1
π−1
1i ǫig and ēNg = N−1

∑
i∈U eig. This leads to the

asymptotic results in Theorem 1.

Remark 1. The result in Theorem 1 holds so long as µ̂zg(zi) is consistent for
some quantity that does not necessarily need to be µzg(zi), but the efficiency
improves if µ̂zg(zi) approximates µzg(zi) well. Intuitively, if µ̂zg(zi) approxi-
mates the true µzg(zi) well, the values of eig = yig − RK(zi)

Tβzg are small,
thus V (ē1πg|FN ) which is a component of V2g in (2.8) becomes smaller, rel-
ative to the situation where µ̂zg(zi) is a poor approximation of µzg(zi). The
impact can be seen under a simple random sample design (SRS), in which
V (ē1πg|FN ) = (1 − nN−1)n−1S2

eg, where S2
eg is the variance of eig’s. However,

the proof used to show the consistency in (i) of Theorem 1 does not require the
consistency of µ̂zg(zi) to µzg(zi).

Remark 2. Our estimator performs better in terms of bias than the com-
monly used naive IPW estimator that ignores the first phase design, θ̂na−ipw

g =

n−1
∑

i∈A2g
π̂−1
2igyig.
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To quantify the bias, write

θ̂na−ipw
g − ȳNg =

(
1

n

∑

i∈A1

ǫig −
1

N

∑

i∈A1

ǫig
π1i

)

+

(
1

n

∑

i∈A1

µzg(zi)−
1

N

∑

i∈A1

µzg(zi)

π1i

)

+ (ȳ1πg − ȳNg) + op(n
−1/2).

Taking an expectation gives the asymptotic bias of θ̂na−ipw
g as

Bias = Eξ

{(
N

n
π1i − 1

)
µzg(z)

}
.

The magnitude of the bias depends on the correlation between the first-phase
inclusion probabilities, π1i, and the error in the outcome model implied by the
naive IPW estimator ignoring the first-phase.

Our estimator can gain efficiency relative to the IPW estimator that incor-
porates the first phase sampling,

θ̂ipwg =
1

N

∑

i∈A2g

yig
π1iπ̂2ig

. (2.15)

To see this, we assume Rk(z) = z for a univariate covariate z without loss of

generality. Our estimator θ̂g can be written as

θ̂g = ỹ2πg − β̂zg(z̃2πg − z̄1π)

= ỹ2πg − βzg(z̃2πg − z̄1π)− (β̂zg − βzg)(z̃2πg − µz)

+ (β̂zg − βzg)(z̄1π − µz), (2.16)

where ỹ2πg = θ̂ipwg , z̃2πg = N−1
∑

i∈A2g
ziπ

−1
1i π̂

−1
2ig , z̄1π = N−1

∑
i∈A1

ziπ
−1
1i and

µz is the marginal mean of z. Because z̃2πg − µz = Op(n
−1/2), z̄1π − µz =

Op(n
−1/2) and β̂zg − βzg = op(1), then

θ̂g = θ̂ipwg − βzg(z̃2πg − z̄1π) + op(n
−1/2),

and

V ar(θ̂g) ≈ V ar(θ̂ipwg ) + β2
zgV ar(z̃2πg − z̄1π)− 2 ∗ βzgCov(ỹ2πg, z̃2πg − z̄1π).

Our θ̂g has a smaller variance of the linearized term than θ̂ipwg when the condi-
tion, β2

zgV ar(z̃2πg − z̄1π) < 2 ∗ βzgCov(ỹ2πg, z̃2πg − z̄1π), holds. This condition
will often hold when yig and zi are correlated and the outcome model is ap-
proximately correctly specified. Simulation studies in Section 3 illustrate cases
where this efficiency gain occurs. This indicates that a combination of regression
and use of estimated propensity scores can give further improvement than using
estimated propensity scores alone, which is noted by several authors including
[15, 25].
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Remark 3. When a subset of zi, called xi, is available on the population level,
estimator θ̂g can be easily extended to incorporate this additional information.

For example, this case can occur when there are some demographic variables
available in the frame. Let µ̂xg(xi) for i ∈ U denote the predicted values for the
model relating yig to the xi. The extended three-phase estimator is

θ̂g,p =
1

N


∑

i∈U

µ̂xg(xi) +
∑

i∈A1

µ̂zg(zi)− µ̂xg(xi)

π1i
+
∑

i∈A2g

yig − µ̂zg

π1iπ̂2ig


 , (2.17)

where

β̂xg =


 ∑

i∈A2g

π−1
1i π̂

−1
2igRK(xi)RK(xi)

T




−1
∑

i∈A2g

π−1
1i π̂−1

2igRK(xi)yig ,

µ̂xg(xi) = RK(xi)
T β̂xg, and the RK(xi) is the base constructed using xi.

The asymptotic properties of θ̂g,p and its variance estimation are given in Ap-

pendix C, where it is shown that the asymptotic variance of θ̂g,p, denoted by

AV (θ̂g,p|FN), is

AV (θ̂g,p|FN) = E {V (ǭ2π,g)|FN}+ V {ā1π,g|FN} , (2.18)

where ā1π,g = N−1
∑

i∈A1
π−1
1i aig, aig = yig − RK(xi)

Tβxg and βxg =

limN→∞(
∑

i∈U RK(xi)RK(xi)
T )−1

∑
i∈U RK(xi)yig. Comparing (2.18) to the

asymptotic variance of θ̂g which can also be expressed as

AV (θ̂g|FN ) = E {V (ǭ2π,g)|FN}+ V {ȳ1π,g|FN} , (2.19)

where ȳ1π,g = N−1
∑

i∈A1
yig. It can be seen that θ̂g,p is usually more efficient

than θ̂g when yig is correlated with xi. The efficiency gain occurs because the sec-
ond term in (2.18), V {ā1π,g|FN}, is likely smaller than the second term in (2.19),

V {ȳ1π,g|FN}, when RK(xi)
Tβxg can explain part of the variation in yig. In

general, V (ȳ1πg|FN ) = N−2
∑

i∈U

∑
j∈U ∆1ijπ

−1
1i π−1

1j yigyjg and V (ā1πg|FN ) =

N−2
∑

i∈U

∑
j∈U ∆1ijπ

−1
1i π

−1
1j aigajg, where ∆1ij = π1ij − π1iπ1j and π1ij is

the joint inclusion probability in the first phase. Assuming the SRS design is
used, V (ȳ1πg|FN ) = (1− nN−1)n−1S2

yg and V (ā1πg|FN ) = (1−nN−1)n−1S2
ag,

where S2
yg and S2

ag are the variances of yig and aig. S2
yg tends to be larger

than S2
ag if yig can be well approximated by RK(xi)

Tβxg. An extreme ex-

ample is if yig = RK(xi)
Tβxg, then V (ā1πg|FN ) = 0, but V (ȳ1πg|FN) =

N−2βT
xg(
∑

i∈U

∑
j∈U ∆1ijπ

−1
1i π−1

1j RK(xi)RK(xi)
T )βxg > 0. If only control to-

tals are known for the population, a linear regression model can be used to
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estimate µxg(xi). The estimator θ̂g,p in (2.17) can then be written as

θ̂g,p =
1

N

(∑

i∈U

xi −
∑

i∈A1

xi

π1i

)T

β̂xg +
1

N

∑

i∈A1

µ̂zg(zi)

π1i
+

1

N

∑

i∈A2g

yig − µ̂zg(zi)

π1iπ̂2ig
.

(2.20)

It is worth noting that θ̂g takes a similar form to the Simple Doubly Robust
(SDR) estimator in [27], if assuming both the outcome and self-selection models
are correctly specified in their set-up. The differences are that we use the known
population size N and estimate π2ig and µzg(zi) semiparametrically, while they
use

∑
i∈A1

π−1
1i in place of N and estimate π2ig and µzg(zi) parametrically. The

distinction between using parametric and semiparametric estimation arises in
the asymptotic results. The SDR will suffer efficiency loss if one of π2ig and

µzg(zi) models is wrong. The similarity between their SDR and our θ̂g is not
surprising since the SDR does not use non-validation (population level) data
and we do not have population level data to use. If the first-phase is simple
random sampling and the covariate is known for the whole population, then
our estimator devolves into the estimator from [4], shown to be semiparametric
efficient.

While Theorem 1 shows conditional convergence together for θ̂g and ȳNg,
the goal typically is to make inference for g-th marginal treatment mean on the
superpopulation level. The following corollary extends the results of θ̂g on the
finite population level to the superpopulation level with a sketch of the proof in
the Appendix.

Corollary 1. Assume {zi,yi}Ni=1 are i.i.d. realizations from the super-population
model (2.1), then under the conditions in the Appendix

(i) θ̂g − θ∗g = op(1),
(ii)

{
Eξ(V1g + V2g) +

σ2
yg

N

}− 1

2

(θ̂g − θ∗g) → N(0, 1) in distribution, (2.21)

where Eξ[yig] = θ∗g , σ
2
yg = Vξ(yig), V1g and V2g are the same as in (2.7) and

(2.8), and Eξ(·) and Vξ(·) here are with respect to the randomness on the super-
population.

In order to make inference, we next propose a variance estimator V̂ (θ̂g) and
prove its consistency in Theorem 2. An estimator of V1g in (2.7) is

V̂1g = V̂ (¯̂ǫ2πg) =
1

N2

∑

i∈A2g

(1 − π̂2ig)
ǫ̂2igπ

−2
1i

π̂2
2ig

, (2.22)

where
ǫ̂ig = yig −RK(zi)

T β̂gz . (2.23)

An estimator of V2g is

V̂2g = M̂1g + M̂2g + M̂3g, (2.24)
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where

M̂1g =
1

N2

∑

i∈A2g

∑

j∈A2g

∆1ij

π1ij π̂2ij,g

êig
π1i

êjg
π1j

, (2.25)

M̂2g = β̂
T

zgV̂ (Rz,1π)β̂zg, (2.26)

M̂3g = 2β̂
T

zg

1

N2

∑

i∈A2g

∑

j∈A1

∆1ij

π1ij π̂2ig

êig
π1i

RK(zj)

π1j
, (2.27)

V̂ (Rz,1π) =
1

N2

∑

i∈A1

∑

j∈A1

∆1ij

π1ij

RK(zi)

π1i

RK(zj)
T

π1j
, (2.28)

and êig is calculated the same way as ǫ̂ig in (2.23) and π̂2ij,g = π̂2ig π̂2jg if i 6= j
and π̂2ij,g = π̂2ig if i = j. An estimator of σ2

g is

σ̂2
g =

1

N

∑

i∈A1

µ̂zg(zi)
2

π1i
−
(

1

N

∑

i∈A1

µ̂zg(zi)

π1i

)2

+
1

N

∑

i∈A2g

ǫ̂2ig
π1iπ̂2ig

−


 1

N

∑

i∈A2g

ǫ̂ig
π1iπ̂2ig




2

. (2.29)

Combining (2.22), (2.24) and (2.29), the variance estimator for the asymptotic
variance in (2.21) is

V̂ (θ̂g) = V̂1g + V̂2g +
σ̂2
g

N
. (2.30)

The following theorem gives the consistency of V̂ (θ̂g) and the central limit

theory using V̂ (θ̂g).

Theorem 2. Under the conditions in the Appendix,

(i) V̂ (θ̂g) = Eξ(V1g + V2g) +
σ2

g

N + op(n
−1).

(ii) V̂ (θ̂g)
− 1

2 (θ̂g − θg) → N(0, 1) in distribution.

A short proof is provided in Appendix B.
To obtain the inference for treatment effects and other functions of treatment

means, we need to estimate λ
T
θ
∗, where λ is any real-valued vector and θ

∗ =
[θ∗1 , . . . , θ

∗
g ]

T is the vector of marginal treatment means from the superpopulation

model. As an example, an average treatment effect θ∗1 − θ∗2 = λTθ∗ where

λ = [1,−1, 0, . . . , 0]T . The estimator for θ∗ is θ̂ = [θ̂1, . . . , θ̂G]
T . The same proof

in Appendix A can be directly applied to show the asymptotic consistency and
normality of θ̂. If we denote the cell (g, h) of a matrix M by [M ](g,h) and define

β̂z = [β̂z1, . . . , β̂zG], the variance estimator for θ̂ can be expressed similarly as

V̂ (θ̂) = V̂1 + M̂1 + M̂2 + M̂3 +N−1Σ̂, (2.31)
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where V̂1 = diag{V̂ (V̂1g)}g=1,...,G,

[M̂1](g,h) =
1

N2

∑

i∈A2g

∑

j∈A2h

∆1ij

π1ij π̂2igπ̂2jh

êig
π1i

êjh
π1j

for g, h = 1, . . . , G,

M̂2 = β̂z

T
V̂ (Rz,1π)β̂z,

M̂3 = 2β̂z

T × [M̂31, . . . , M̂3G] with M̂3g =
1

N2

∑

i∈A2g

∑

j∈A1

∆1ij

π1ij π̂2ig

êig
π1i

RK(zj)

π1j
,

[Σ̂](g,h) =
1

N

∑

i∈A1

µ̂zg(zi)µ̂zh(zi)

π1i
−
{

1

N

∑

i∈A1

µ̂zg(zi)

π1π

}{
1

N

∑

i∈A1

µ̂zh(zi)

π1i

}

for g, h = 1, . . . , G and g 6= h, and the diagonal cells [Σ̂](g,g) are the same as σ̂2
g in

(2.29). The similar arguments of Theorem 2 can be used to show the consistency
of this estimator. The central limit theorem for any linear combination estimator
λT θ̂ follows immediately.

3. Simulation study

In this section, we provide two simulation examples to illustrate the performance
of our two-phase semiparametric regression estimators of average treatment ef-
fects. In both examples, we consider three treatment levels and population and
sample sizes (N,n) = (12500, 250), (25000, 500) and (50000, 1000) to illustrate
convergence. These simulations are intended to demonstrate that in two-phase
sampling problems, ignoring the first-phase and handling only treatment selec-
tion can lead to erroneous conclusions. The simulations will also show there are
potential efficiency gains by incorporating population control data, which is of-
ten ignored in treatment comparison studies. The first phase designs chosen for
the two examples are stratified and probability proportional to size sampling,
which are two commonly used designs for data selection.

Example 1. We specify the simulation set-up as follows.

(1) Covariates: zi = [zi1, zi2, zi3]
T where zij is i.i.d from Uniform[−2, 2] for

all j = 1, 2 and 3. (2) Outcome models: the population U is stratified into two
equal size strata Ut (t = 1, 2), in which the g-th outcome is generated as

y
(t)
ig = µhg + βg1z1i + βg2(z

2
1i − 4/3) + βg3z

3
1i

+ γg1z2i + γg2(z
2
2i − 4/3) + γg3z

3
2i + δg1zi3 + δg2z

3
i3 + ǫig, (3.1)

where ǫig ∼ Laplace(0, 1), [β11, β21, β31] = [2, 2, 2], [β12, β22, β32] = [2, 2, 0],
[β13, β23, β33] = [−2,−2,−2], [γ11, γ21, γ31] = [1, 2, 1], [γ12, γ22, γ32] = [−1,
−2,−1], [γ13, γ23, γ33] = [2,−2, 0], [δ11, δ21, δ31] = [2, 2,−2], [δ12, δ22, δ32] =
[0, 0, 2]. And [µ11, µ12, µ13] = [8, 2/3,−8] for U1, and [µ21, µ22, µ23] = [−12,
−20/3, 12] for U2. By design, all the terms in (3.1) except for the intercepts have

mean zero, thus E(y
(h)
ig ) = µhg. The order of the means in U1 is Trt1 > Trt2 >
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Trt3 and in U2 is Trt1 < Trt2 < Trt3. The overall marginal means are E(yi1) =
−2, E(yi2) = 0 and E(yi3) = 2. (3) First phase sampling: stratified random sam-
pling with 80% of the sample coming from U1 and 20% from U2. For units in
stratum t (t = 1 or 2), π1i = N−1

t nt and π1ij = {Nt(Nt − 1)}−1
nt(nt − 1),

where nt and Nt are the first phase sample size and stratum population size
in stratum t. The joint including probability for two units in different strata is
zero. (4) Second phase selection:

π2ig =
exp

{
φ0g + φ1gz1i + φ2gz2i + φ3g(z

2
2i − 4/3)

}
∑G

g=1 exp {φ0g + φ1gz1i + φ2gz2i + φ3g(z22i − 4/3)}
,

where (φ0g , φ1g, φ2g, φ3g) is (0.1, 0.1, 0.1, 0.1) for g = 1, is (0.2, 0.2, 0.2, 0.2) for
g = 2 and is (0, 0, 0, 0) for g = 3.

Example 2. The second set-up is as follows.

(1) Covariates: zi = [zi1, zi2, zi3]
T , where zi1 is i.i.d. from N(0, 1), z2i =

z1i + ηi with ηi ∼ N(0, 0.3), and z3i is i.i.d. from χ2
1. (2) Outcome models:

yi1 = 5+10z1i−10Iz1i<−1+10Iz1i>−1+10z1iIz1i∈[−1,1]+3(z3i−1)+siei1, (3.2)

yi2 = 5 + 10z1i + siei2, (3.3)

yi3 = 5− 10z1i+10Iz1i<−1− 10Iz1i>−1− 10Iz1i∈[−1,1]− 3(z3i− 1)+ siei3, (3.4)

where I(·) is an indicator function, si = z1i + 5 and eig ∼ N(0, 1). Under this
setup, the marginal means are E(yi1) = E(yi2) = E(yi3) = 5. (3) First phase
sampling: Poisson sampling with probability-proportional-to-size (PPS), where
the size variable is si. So π1i = (

∑
i∈U si)

−1nsi, and n is the expected sample
size. The joint inclusion probability π1ij = π1iπ1j due to independence of the
Poisson sampling. (4) Second phase selection:

π2ig =
Φ
{
φ0g + φ1gz2i + φ2g(z3i − 1) + φ3gz

2
2i

}
∑G

g=1 Φ {φ0g + φ1gz2i + φ2g(z3i − 1) + φ3gz22i}
,

where Φ(·) is the CDF of N(0, 1), and (φ0g, φ1g, φ2g, φ3g) is (0.1, 0.1,−0.1, 0.1)
for g = 1, is (0.2, 0.2,−0.2, 0.2) for g = 2 and is (0, 0, 0, 0) for g = 3. In this
example, we assumed (z1i, z3i) were observed in A1 and used for estimating
π2ig, while the true functional form of π2ig depends on (z2i, z3i) where z2i is
z1i contaminated with noise ηi. The second example is of greater complexity
than the first example and includes an optimal first-phase design in terms of
anticipated variance (see [6] Theorem 3.1.1).

For each example and each (N,n) size combination, we simulated 2000 Monte
Carlo (MC) samples. Six estimators of marginal means and average treatment
effects were calculated for each Monte Carlo sample:

1. TPR1: Our two-phase regression estimator θ̂g in (2.6) when there is no
covariate available on the population level.

2. TPR2: Our three-phase regression estimator θ̂g,p in (2.17) when some
covariates are available in the population. We assume z1i is observed for
every unit in the population in both examples.
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3. IPW: The IPW estimator θ̂ipwg in (2.15) using both π1i and π̂2ig .

4. NA-IPW: The naive IPW estimator θ̂na−ipw
g = n−1

∑
i∈A2g

π̂−1
2igyig.

5. REG: A regression estimator using the augmented data of yig, for all g
as the response variable. For example 1, the explanatory variables are
[1, T rt2i, T rt3i, Hi, RK(zi)], whereHi is the indicator for the stratum, and
Trt2i (or Trt3i) is the indicator for treatment 2 (or 3). The explanatory
variables in example 2 are [1, T rt2i, T rt3i, RK(zi)]. The choices of RK(zi)
for both examples will be discussed next. The estimated coefficient of Trt2i
is the estimated treatment effect of θ2−θ1 and the estimated coefficient of
Trt3i is the estimated treatment effect of θ3−θ1. Note that the covariates
related to the first phase sampling, Hi in example 1 and z1i in example 2,
are included in the regression analysis.

6. MT: A one-to-one matching estimator using an approach detailed in [1].
The matching was done based on the estimated propensity scores π̂2ig,
and the first phase sampling design weights are also included.

The NA-IPW, REG and MT are three commonly used estimators by practi-
tioners, among which NA-IPW and REG ignore the first phase sampling design.
In example 1, we used a cubic spline base of [z1i, z2i, z3i] for RK(zi) and a cubic
spline base of xi ≡ z1i for RK(xi) in estimation. For each variable, 10 knots
were identified with locations corresponding to 10 equally spaced quantiles of
the corresponding observations. In example 2, a cubic spline base of z1i with
18 knots and a cubic spline base of z3i with 18 knots were used to construct
RK(zi), and a cubic spline bases of x1 ≡ z1i with 18 knots was used to construct
RK(xi). The locations of the knots were chosen such that the first one third (or
the last one third) of the knots are uniformly spread between 0 and 20th (or
80th and 100th) quantiles of the data for the corresponding variables, and the
remaining one third were equally spaced between 20th and 80th quantiles.

Tables 1 (a) and (b) present the MC biases, variances, and mean squared er-
rors (MSE) of the estimated treatment effects using the six estimators for each
(N,n) combination and for example respectively. The NA-IPW and REG esti-
mators as expected are highly biased in both examples due to ignoring the rela-
tionship between the first-phase design and the treatment effects. The matching
estimator MT using the first phase design weights does reduce biases, compared
to the NA-IPW and REG, but the IPW performs better than the MT in terms
of the MSE in most of the cases. Although the IPW is consistent and has the
same asymptotic efficiency as our two-phase semiparametric regression estima-
tor (TPR1), the MC biases and variances of the IPW are greater than those of
TPR1 in both examples. The MC biases and variances of the IPW though de-
crease when the sample size increases. The variance reduction of TPR1 over the
IPW estimator indicates that gains for finite samples can be made by combin-
ing propensity and outcome regression when both models are well approximated
semiparametrically. Both of our proposed estimators (TPR1 and TPR2) have
similar low MC biases and much smaller MC variances and MSE relative to
other estimators considered. TPR2 is more efficient than TPR1 due to the use
of additional information on the population level.
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Table 1

The MC biases, variances and MSEs of the estimated treatment effects, for (1):
(N, n) = (12500, 250); (2): (N, n) = (25000, 500); (3): (N, n) = (50000, 1000)

(a) Example 1
θ1 − θ2 θ1 − θ3 θ2 − θ3

Bias Var MSE Bias Var MSE Bias Var MSE
TPR1 −0.008 0.309 0.309 −0.090 1.543 1.551 −0.082 1.495 1.502
TPR2 −0.008 0.353 0.353 −0.093 0.604 0.613 −0.085 0.562 0.569

(1) IPW 0.395 4.900 5.056 0.681 5.321 5.785 0.286 4.766 4.848
NA-IPW 2.138 2.312 6.883 12.259 3.104 153.395 10.122 2.554 104.999
REG 1.579 1.424 3.917 10.930 2.814 122.276 9.351 2.905 90.342
MT −0.731 6.032 6.571 −0.394 4.051 4.209 0.340 3.528 3.652

TPR1 0.002 0.129 0.129 −0.036 0.673 0.674 −0.038 0.690 0.692
TPR2 0.002 0.133 0.133 −0.023 0.241 0.241 −0.025 0.235 0.236

(2) IPW 0.109 2.298 2.310 0.169 2.136 2.165 0.060 1.882 1.886
NA-IPW 2.015 0.811 4.871 12.033 1.056 145.847 10.018 0.927 101.285
REG 1.616 0.623 3.236 10.954 1.238 121.229 9.338 1.250 88.439
MT −0.891 3.072 3.858 -0.543 2.041 2.342 0.348 1.773 1.891

TPR1 −0.001 0.064 0.064 −0.006 0.337 0.337 −0.004 0.332 0.332
TPR2 0.000 0.064 0.064 −0.012 0.117 0.117 −0.012 0.115 0.115

(3) IPW 0.040 1.080 1.082 0.070 0.911 0.916 0.030 0.874 0.875
NA-IPW 1.999 0.350 4.348 12.005 0.445 144.572 10.006 0.392 100.51
REG 1.613 0.292 2.895 10.903 0.590 119.465 9.290 0.608 86.904
MT −0.907 1.501 2.321 −0.581 0.972 1.311 0.330 0.861 0.971

(b) Example 2
θ1 − θ2 θ1 − θ3 θ2 − θ3

Bias Var MSE Bias Var MSE Bias Var MSE
TPR1 0.081 1.349 1.356 0.193 6.629 6.667 0.112 4.539 4.551
TPR2 0.083 1.349 1.356 0.182 1.570 1.603 0.099 1.438 1.447

(1) IPW 0.138 1.504 1.523 0.814 7.425 8.087 0.676 4.855 5.312
NA-IPW 1.386 1.153 3.073 6.861 6.150 53.227 5.476 4.027 34.009
REG 1.086 2.742 3.922 5.546 8.208 38.971 4.460 6.777 26.668
MT −0.310 5.331 5.423 −0.534 8.031 8.324 −0.222 5.342 5.389

TPR1 0.008 0.273 0.273 0.087 2.817 2.824 0.079 1.815 1.821
TPR2 −0.011 0.185 0.185 -0.013 0.326 0.326 −0.002 0.232 0.232

(2) IPW 0.024 0.492 0.493 0.489 3.081 3.32 0.465 2.059 2.276
NA-IPW 1.344 0.378 2.183 6.838 2.583 49.337 5.494 1.717 31.902
REG 1.068 1.319 2.460 5.429 4.046 33.520 4.361 3.226 22.242
MT −0.35 2.668 2.789 −0.628 3.878 4.281 −0.276 2.800 2.881

TPR1 0.000 0.112 0.112 −0.030 1.319 1.320 −0.030 0.834 0.835
TPR2 −0.001 0.061 0.061 −0.023 0.120 0.121 −0.022 0.084 0.084

(3) IPW 0.039 0.165 0.167 0.206 1.429 1.471 0.166 0.918 0.946
NA-IPW 1.373 0.139 2.025 6.687 1.236 45.949 5.313 0.782 29.015
REG 1.149 0.621 1.941 5.410 1.954 31.223 4.261 1.603 19.761
MT −0.317 1.321 1.423 −0.581 2.021 2.349 −0.255 1.321 1.389

In example 1, the order of the true marginal treatment means is Trt1 <
Trt2 < Trt3 and our proposed two estimators, TPR1 and TPR2, and the IPW
estimators estimated the treatment effect order correctly. However, if the first
phase sampling is ignored, the estimates from the NA-IPW and REG reverse
the order of the estimated treatment means completely. In example 2 where
all treatments are marginally equivalent, the NA-IPW and REG estimate a de-
creasing order of treatment efficacy. These simulation results show that ignoring
the first phase design can result in a serious bias in the ATE estimation.
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Table 2

The coverage probabilities of the 95% C.I. for estimated treatment effects, for (1):
(N, n) = (12500, 250); (2): (N, n) = (25000, 500); (3): (N, n) = (50000, 1000)

(a) Example 1
θ1 − θ2 θ1 − θ3 θ2 − θ3

TPR1 0.886 0.920 0.922
TPR2 0.876 0.879 0.893

(1) IPW 0.400 0.686 0.699
NA-IPW 0.461 0.000 0.000
REG 0.904 0.000 0.000
MT 0.490 0.540 0.000

TPR1 0.922 0.941 0.936
TPR2 0.916 0.917 0.924

(2) IPW 0.357 0.724 0.746
NA-IPW 0.303 0.000 0.000
REG 0.725 0.000 0.000
MT 0.789 0.000 0.000

TPR1 0.932 0.951 0.952
TPR2 0.935 0.932 0.932

(3) IPW 0.351 0.769 0.764
NA-IPW 0.068 0.000 0.000
REG 0.398 0.000 0.000
MT 0.000 0.000 0.000

(b) Example 2
θ1 − θ2 θ1 − θ3 θ2 − θ3

TPR1 0.918 0.923 0.925
TPR2 0.884 0.899 0.898

(1) IPW 0.786 0.882 0.878
NA-IPW 0.420 0.139 0.136
REG 0.980 0.394 0.538
MT 0.510 0.340 0.000

TPR1 0.970 0.950 0.950
TPR2 0.970 0.960 0.966

(2) IPW 0.891 0.920 0.914
NA-IPW 0.207 0.010 0.008
REG 0.960 0.138 0.254
MT 0.461 0.000 0.000

TPR1 0.983 0.958 0.960
TPR2 0.989 0.974 0.984

(3) IPW 0.940 0.940 0.942
NA-IPW 0.023 0.000 0.000
REG 0.898 0.010 0.046
MT 0.000 0.000 0.000

Tables 2 (a) and (b) report the coverage probabilities of the 95% confi-
dence interval (C.I.) for the average treatment effects. For each MC sample

and each (N,n), we computed the point estimator θ̂ and the variance estima-

tor of θ̂, and constructed the 95% C.I. for the pair differences. Variance
estimation for the DE is similar to (2.30) with V̂2g replaced by
N−2

∑
i∈A2g

∑
j∈A2g

(π1ij π̂2ij)
−1∆1ij(π

−1
1i yig)(π

−1
1j yjg). Variance estimation for

the NA-IPW was done by noting the NA-IPW estimator as a special case of
the IPW estimator with assumed simple random sampling in the first phase.
The estimated variance of the REG and the MT are provided by the regression
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and matching packages used in R. Note that the variance estimators for the
estimators ignoring the first phase probabilities are not appropriate and can be
biased under the full design. In both examples, estimators NA-IPW and REG
have very poor coverage probabilities due to the large biases. Estimators IPW
and MT that do not ignore the first phase sampling underestimate coverage
probabilities in both examples. Our two estimators, TPR1 and TPR2, give sat-
isfactory coverage probabilities in both examples even for a small sample size,
relative to the nominal size 0.95.

4. Empirical study

In this section, we evaluate empirical performance of our proposed estimators
in estimating treatment effects using a subsample from the 2005-2006 NHANES
Survey. The goal of this empirical analysis is to assess the effect of nutrition
label use (treatments) on body mass index (BMI) as in [5]. The NHANES
is a study designed to assess the health and nutritional status of adults and
children in the United States and is unique in that it combines interviews
and physical examinations. A detailed description of the survey can be found
at http://www.cdc.gov/nchs/nhanes.htm. The nutrition label use variable has
three levels: level 1 = often, level 2 = sometimes, and level 3 = seldom. The
study variable y is the BMI calculated from body weight and height. Covariates
included were selected from [5]. In general, the covariates were classified into
five categories: demographic, risky behavior, lifestyle, knowledge and health sit-
uation. There are totally 36 covariates and most of them are dummy variables,
see detailed description in [5]. The analysis dataset contains n = 1775 subjects
from the NHANES survey data.

NHANES uses a complex multistage probability sampling design, and the
weights, i.e. π−1

1i , are created to account for the complex survey design, survey
non-response, and post-stratification. The same set of estimators (except for
TPR2) evaluated in the simulation section were computed using this dataset.
Since most of the covariate are dummy variables, the base used for estimating
π̂2ig and the outcome regression model is a vector simply containing all individ-
ual covariates. In the REG regression estimator, the explanatory variables are
an intercept, treatment indicators and all the covariates. In addition, variance
estimation is carried out for all estimators. Due to confidentiality issues, Mashed
Variance Units (MVUs) were created and attached to the NHANES data files.
The NHANES website provides an R code instruction to produce variance es-
timates using the MVUs. This R code was embedded into our main codes to
calculate the components that are related to the first phase variance estimator
in equations (2.25)–(2.28).

The estimated treatment effects, the standard errors and the 95% C.I.s are
reported in Table 3. For the two estimators that incorporate the first phase de-
sign, TPR1 suggests that the estimated treatment mean of the BMI monotoni-
cally increases when the nutritional label use changes from “often” to “seldom”,
while the IPW and MT estimators give an increasing trend from “often” to



2754 C. Yu et al.

Table 3

Results from the empirical study of nutrition label uses, including estimated treatment
effects for three nutrition label use levels, their standard errors and their 95% C.I.s.

Often-Sometimes Often-Seldom Sometimes-Seldom
Estimate −0.83 −1.13 −0.30

TPR1 SE 1.47 1.83 1.82
95% C.I. [−3.71, 2.05] [−4.71, 2.45] [−3.86, 3.26]
Estimate −0.60 1.13 1.74

IPW SE 2.75 2.47 2.97
95% C.I. [−6.00, 4.80] [−3.70, 5.97] [−4.09, 7.56]
Estimate 0.22 1.72 1.50

NA-IPW SE 0.69 0.67 0.68
95% C.I. [−1.13, 1.57] [0.40, 3.04] [0.18, 2.83]
Estimate 0.06 0.94 0.88

REG SE 0.35 0.36 0.37
95% C.I. [−0.63, 0.76] [0.24, 1.64] [0.16, 1.60]
Estimate −0.63 0.61 1.23

MT SE 0.26 0.23 0.25
95% C.I. [−1.31,−0.13] [0.17, 1.05] [0.75, 1.72]

“sometimes”, but decreasing trend from “sometimes” to “seldom”. A monotonic
decreasing trend is present in NA-IPW and REG, leading to the strange con-
clusion that increasing nutritional label awareness increases BMI. Researchers
generating hypotheses using results from NA-IPW and REG method could be
led astray by not completely controlling for the full treatment group inclusion
probabilities.

5. Conclusion and remarks

Much of the focus of observational study analysis has been on incorporating
treatment selection into estimators to reduce bias due to self selection. Ignoring
the first-phase sample design can have large implications for the interpreta-
tion of data. Accounting for the first-phase sample design reduces the bias and
makes the target of estimation explicit. By incorporating auxiliary variables,
the proposed two-phase semiparametric regression estimators are an improve-
ment over the IPW estimators in finite sample problems. The assumptions for
the two-phase regression estimators are reasonable for a large number of prob-
lems and we demonstrate that valid inference can be made with semiparametric
model specificiations. However, these estimators only account for bias that can
be explained by observed covariates. If the second-phase inclusion probabili-
ties depend on unobserved variables, residual bias will exist. Further, the IPW
and two-phase semiparametric regression estimators rely on a known first-phase
design. In some cases, the first-order inclusion probabilities may need to be
estimated and a design such as Poisson sampling is assumed. In summary, con-
sideration of handling sample selection phases prior to treatment selection and
auxiliary variables can lead to stronger and clearer evidence from observational
studies. Estimating treatment effect parameters defined through a general esti-
mation equation in observational studies is a topic for future research.
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Appendix

We first discuss some technical assumptions. The notation of | · | represents the
norm of a matrix, defined as |A| =

√
trace(A′A) and the notation of ‖·‖ denotes

the sup-norm in all arguments for functions. We assume

Condition A. (1) For all g, δ2ig is independent of yi, given the variable zi; (2) zi
is distributed with density bounded away from zero on its compact support Z;
(3) For all g, V (yig|zi) is uniformly bounded for all zi ∈ Z; (4) For all g, π2ig is
bounded away from zero and one. And there exist positive constant C1 and C2

such that C1 < n−1Nπ1i < C2.

Condition B. (1) The smallest eigenvalue of E[RK(z)RK(z)′] is bounded away
from zero uniformly in K; (2) There exists a sequence of constants ξ(K) such
that ‖RK(z)‖ ≤ ξ(K) for any K; (3) For all g, π2ig(z) and µg(z) = E[yig|z] are
s-time differentiable with sd−1

z > 2η + 1, where dz is the dimension of z, and
η = log(ξ(K))[log(K)]−1; (4) K = nν with 4sd−1

z − 4η − 2 > ν−1 > 4η + 2.

Condition C. (1) the limiting design covariance matrix: nV (ū1π) → Σ1

a.s. and nV (ū2π,g|A1) → Σ2g a.s., where Σ1 and Σ2g are positive definite;
(2) the normalized HT estimators satisfy central limit theorems:

√
n(ū1π −

ūN )|FN → N(0,Σ1) a.s. and
√
n(ū2π,g − ūN )|A1,FN → N(0,Σ2g) a.s.;

(3) consistency of variance estimators: n(V̂ (ū1π) − V (ū1π)) = op(1) and

n(V̂ (ū2π)−V (ū2π)) = op(1). (4) We also assume for all g, n(V̂ (ū1π)−Ṽ (ū1π)) =

op(1), where Ṽ (ū1π)) = N−2
∑

i∈A2g

∑
i∈A2g

π−1
1ijπ

−1
2ij,g∆1ijπ

−1
1i uiπ

−1
1j uT

j , and

n(V̂ (ū2π,g|A1) − E[V̂ (ū2π,g|A1)]) = op(1); (5) Assume β̃ug − BN,ug = op(1),

where β̃ug = (
∑

i∈A2g
π−1
1i π

−1
2iguiu

T
i )

−1(
∑

i∈A2g
π−1
1i π−1

2iguiyig) and BN,ug =

(
∑

i∈U uiu
T
i )

−1(
∑

i∈U uiyig).

The super-population parameter of interest is not identifiable from the data
on {∑G

g=1 yigδ2ig, zi}ni=1. Following the literature, we consider missing at ran-
dom assumption in (A.1) to achieve identification. Condition B is general. But
particularly, if RK(zi) is the power series or the spline series, (B.1) and (B.2)
are satisfied automatically with η = 1 for the power series and η = 0.5 for
the spline series. Condition C gives the design properties of the Horvitz and
Thompson [13] estimators on both phases in the traditional finite population
asymptotic framework. For any variable u with finite 4th moment, define ū1π =
N−1

∑
i∈A1

π−1
1i ui, and ū2π,g = N−1

∑
i∈A2g

(π1iπ2ig)
−1ui, and their variance

and variance estimators as V (ū1π) = N−2
∑

i∈U

∑
j∈U ∆1ijπ

−1
1i uiπ

−1
1j u

T
j ,

V̂ (ū1π) = N−2
∑

i∈A1

∑
j∈A1

π−1
1ij∆1ijπ

−1
1i uiπ

−1
1j uT

j , V (ū2π,g|A1) =

N−2
∑

i∈A1
(π−1

2ig−1)uiu
T
i , V̂ (ū2π,g|A1) = N−2

∑
i∈A2g

π−1
2ig(π

−1
2ig−1)uiu

T
i . Con-

dition C are satisfied for many commonly designs in reasonably behaved finite
populations. Note that (C.3) would not hold for systematic sampling or one-
per-stratum designs.
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A: Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Write θ̂g = N−1
∑

i∈A1
π−1
1i RK(zi)

T β̂zg = R̄T
z,Nβzg +

R̄T
z,N (β̂zg−βzg)+(R̄z,1π−R̄z,N )Tβzg+op(n

− 1

2 ), where R̄z,N = N−1
∑

i∈U RK(zi).
The first equality is true due to the inclusion of the intercept, and the second
equality is from Taylor expansion and condition (C.5). Note that

R̄T
z,N (β̂zg − βzg) = R̄T

z,N


 ∑

i∈A2g

π−1
1i π̂

−1
2igRK(zi)RK(zi)

T




−1

×
∑

i∈A2g

π−1
1i π̂

−1
2igRK(zi)eig

=


 ∑

i∈A2g

π−1
1i π̂

−1
2ig




−1
∑

i∈A2g

π−1
1i π̂−1

2igeig. (A.1)

The last equality is obtained using the Gram−Schmidt transformation. Thus,

θ̂g − ȳNg = (R̄z,1π − R̄z,N )Tβzg + (ẽ2π,g − ēNg) + op(n
− 1

2 ), (A.2)

where ẽ2π,g = (
∑

i∈A2g
π−1
1i π̂

−1
2ig)

−1
∑

i∈A2g
π−1
1i π̂

−1
2igeig. The key part of the proof

is to show that

θ̂g−ȳNg = (R̄z,1π−R̄z,N)Tβzg+(ē1π,g − ēNg)+(ǭ2π,g − ǭ1π,g)+op(n
− 1

2 ). (A.3)

Suppose (A.3) is true, by condition (C.1), the consistency result in Theorem 1 -
(i) holds. Also under condition C, conditioning on the given finite popula-
tion FN ,

V
− 1

2

2g

(
(R̄z,1π − R̄z,N )Tβzg + (ē1π,g − ēNg)

)
|FN

d→ N(0, 1), a.s. (A.4)

where V2g is defined in (2.8), and conditioning on the first phase sample A1,

V
− 1

2

1g (ǭ2π,g − ǭ1π,g) |A1,FN
d→ N(0, 1), a.s. (A.5)

where V1g = E {V [ǭ2π,g|A1]} is defined in (2.7). Then, using Theorem 1.3.6 of
Fuller (2009), results (A.5) and (A.4) can be combined to obtain the central
limit result in Theorem 1 - (ii). Next we show (A.3) holds. Define ěig = π−1

1i eig,
µeg(zi) = E[eig|zi], and µěg(zi) = π−1

1i µeg(zi). In order to show (A.3), we first
decompose

∑
i∈A2g

π−1
1i π̂−1

2igeig into a sum of several terms by adding and sub-
tracting,

n− 1

2

∑

i∈A2g

eig
π1iπ̂2ig

= n− 1

2

∑

i∈A1

{
δ2ig ěig
π̂2ig

− δ2ig ěig
π2ig

+
δ2ig ěig
π2
2ig

(π̂2ig − π2ig)

}
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+ n− 1

2

∑

i∈A1

{
−δ2igěig

π2
2ig

(π̂2ig − π2ig) +
µěg(zi)

π2ig
(π̂2ig − π2ig)

}

+ n− 1

2

∑

i∈A1

{
−µěg(zi)

π2ig
(π̂2ig − π2ig) +

µěg(zi)

π2ig
(δ2ig − π2ig)

}

+ n− 1

2

∑

i∈A1

{
δ2ig ěig
π2ig

− µěg(zi)

π2ig
(δ2ig − π2ig)

}
. (A.6)

By [4] Theorem B-1,

‖π̂2ig − π2ig‖ = Op(ξ(K)K1/2n−1/2 + ξ(K)K1/2K−s/dz),

so the first three terms in (A.6) can be shown to have order op(1) asymptotically,
which leads to

ẽ2πg =
1

N

∑

i∈A1

{
δ2ig ěig
π2ig

− µěg(zi)

π2ig
(δ2ig − π2ig)

}
+ op(n

− 1

2 )

=
1

N

∑

i∈A1

ěig − µěg(zi)

π2ig
+

1

N

∑

i∈A1

∑

i∈A1

µěg(zi) + op(n
− 1

2 )

= ǭ2π,g +
1

N

∑

i∈A1

∑

i∈A1

µěg(zi) + op(n
− 1

2 ). (A.7)

The justification of those orders follows [4], and we refer readers to [4] for
details. Therefore, by plugging (A.7) into (A.2) we have (A.3). It follows that

θ̂g − ȳNg = (ǭ2π,g − ǭ1π,g) + (ȳ1π − ȳNg) + op(n
− 1

2 ).

Proof of Corollary 1. We can decompose θ̂g − θ∗g = θ̂g − ȳNg + ȳNg − θ∗g . Then
the asymptotic results are immediate by using Theorem 1.3.6 of [6] again.

B: Proof of Theorem 2

First note that, for all g, the following results hold under condition B. ‖π̂2ig −
π2ig‖ = Op(ξ(K)K1/2n−1/2 + ξ(K)K1/2K−α) = op(1) (see [4]); Similarly, since
‖µ̂zg(zi) − µzg(zi)‖ = op(1), then ǫ̂ig − ǫig = op(1); π̂2ij,g − π2ij,g = op(1),

π̂−1
2ij,g − π−1

2ij,g = −π−2
2ij,gop(1), β̂zg − βzg = op(1), and β̂xg − βxg = op(1). The

term V̂1g in (2.22) can be written as

V̂1g =
1

N2

∑

A2g

1

π2ig

(
1

π2ig
− 1

)
ǫ2igπ

−2
1i + op(n

−1), by (C.4)

= V (ǭ2π,g|A1) + op(n
−1), by (C.4)

= E {V (ǭ2π,g|A1)}+ op(n
−1) = V1g + op(n

−1). (B.1)
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The term M̂1g in (2.25) is

M̂1g =
1

N2

∑

i∈A2g

∑

i∈A2g

∆1ij

π1ij

(
1

π2ij

−

1

π2

2ij

op(1)

)
eig +RK(zi)

T op(1)

π1i

ejg + RK(zj)
T op(1)

π1i

+ op(n
−1), by (C.4)

= V̂ (ē1π,g) + op(n
−1) = M1g + op(n

−1) by (C.3) (B.2)

The term M̂2g in (2.26) can be written as

M̂2g = (βT
zg + op(1))(V (R̄z,1π) + op(n

−1))(βzg + op(1))

= βT
zgV (R̄z,1π)βzg + op(n

−1) = M2g + op(n
−1). (B.3)

The same argument for M̂1g can be used to show that

M̂3g = M3g + op(n
−1). (B.4)

Following the same fashion, the four terms in σ̂2
g of (2.29) can be shown to

be consistent for terms E[µzg(zi)
2], E2[µzg(zi)], E[ǫ2ig] and E2[ǫig] respectively.

Thus, the σ̂2
g in (2.29) is

σ̂2
g = E[µzg(zi)

2]− E2[µzg(zi)] + E[ǫ2ig]− E2[ǫig] + op(1)
= σ2

g + op(1).
(B.5)

Combining (B.1), (B.2), (B.3), (B.4) and (B.5), we have Theorem 2 - (i). Part
(ii) in Theorem 2 can be shown using Slutsky theory.

C: Asymptotic properties of θ̂g,p and its variance estimator

Decompose βT
zg into two parts [βT

zg,x,β
T
zg,−x], where βzg,x contains the

coefficients corresponding to the base RK(xi), and βzg,−x has the remaining

coefficients for bases that are not in RK(xi). Similarly, β̂
T

zg = [β̂
T

zg,x,

β̂
T

zg,−x]. Define αT
g = [(βzg,x − βxg)

T ,βT
zg,−x], where βxg =

limN→∞(
∑

i∈U RK(xi)RK(xi)
T )−1

∑
i∈U RK(xi)yig. The same asymptotic re-

sults in Theorem 1 still hold for θ̂g,p, after simply replacing βzg by αg and using
the similar arguments in Appendix A. The results can be easily obtained by the
following expansion

θ̂g,p − ȳNg = R̄T
z,Nβzg + R̄T

z,N(β̂zg − βzg)− (R̄x,1π − R̄x,N)Tβxg

+ (R̄z,1π − R̄z,N )Tβzg + op(n
− 1

2 )

= (R̄z,1π − R̄z,N )′αg + (ẽ2π,g − ēNg) + op(n
− 1

2 ) by (A.7)

= (R̄z,1π − R̄z,N )′αg + (ǭ2π,g − ǭ1π,g) + (ē1π,g − ēNg) + op(n
− 1

2 ),
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where R̄x,N = N−1
∑

i∈U RK(xi) and R̄x,1π = N−1
∑

i∈A1
π−1
1i RK(xi). It can

also be shown,

θ̂g,p − ȳNg = (ȳ2π,g − ȳNg) + (R̄z,1π − R̄z,2π)
′β̂zg + (R̄x,N − R̄x,1π)

′β̂xg

= (ǭ2π,g − ǭ1π,g) + (ȳ1π,g − ȳNg) + (R̄x,N − R̄x,1π)
′βxg + op(n

− 1

2 )

= (ǭ2π,g − ǭ1π,g) + (ā1π,g − āNg) + op(n
− 1

2 ),

where R̄z,2π = N−1
∑

i∈A2g
π−1
1i π−1

2igRK(zi). The variance estimation of θ̂g,p is

the same as in (2.22) - (2.30), by replacing β̂zg by the corresponding α̂g. Same
arguments in Appendix B can be used to show the consistency of this variance
estimator.
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