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Abstract: Blanchard and Roquain (2009) presented for the first time
methods of adapting the Benjamini-Hochberg (BH) method to data through
an estimate of the proportion of true null hypotheses that continue to con-
trol the false discovery rate (FDR) under positive dependence in a non-
asymptotic setting. However, they are often too conservative to provide a
real improvement of the BH method. To obtain adaptive BH methods with
proven FDR control improving the original BH method in more situations
than what are seen in Blanchard and Roquain (2009), we propose alter-
native versions of the Blanchard-Roquain methods under some additional
assumptions allowing explicit use of pairwise correlations whenever they
are available. We offer numerical evidence of improved performances of the
proposed alternatives in two scenarios involving test statistics satisfying the
positive dependence conditions assumed for the main results.
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1. Introduction

Multiple testing methods controlling an overall measure of false rejections (or
discoveries) are among the standard statistical tools being used nowadays when
analyzing data from modern scientific investigations. Since these investigations
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typically require a large number of hypotheses to be tested, the traditional no-
tion of familywise error rate (FWER), the probability of at least one false dis-
covery, is often too conservative. The false discovery rate (FDR), the expected
proportion of false discoveries among all discoveries, introduced by Benjamini
and Hochberg (1995), on the other hand, is relatively much less conservative,
making it the most popular overall measure of false discoveries in modern mul-
tiple testing.

Benjamini and Hochberg (1995) introduced an FDR controlling method,
known as the BH method. Its FDR at level α is equal to π0α when the underlying
test statistics are independent, and less than or equal to π0α when these statis-
tics are PRDS (positive regression dependent on subset of null statistics), where
π0 is the proportion of true null hypotheses (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001; Sarkar, 2002). Although preferred most often in
practice, its performance clearly depends on the strength of positive dependence
among the test statistics or the value of π0. With strong positive dependence or
π0 much smaller than one, the BH method can be quite conservative and can
potentially be improved.

A considerable amount of research has taken place to improve the BH method
by suitably adapting it to the data. Such adaptation involves estimating the
unknown π0 and using it to adjust the BH procedure. Often the formation of
the estimate of π0 is based on the number of significant hypotheses observed
by an initial application of a suitable multiple testing procedure to the data.
A variety of these so-called adaptive BH methods have been proposed in the
literature (Benjamini and Hochberg, 2000; Benjamini et al., 2006; Blanchard
and Roquain, 2009; Gavrilov et al., 2009; Hochberg and Benjamini, 1990; Liang
and Nettleton, 2012; Liu and Sarkar, 2011; Sarkar, 2008b; Storey et al., 2004).

However, unlike the original BH method, these methods are theoretically
shown to control the FDR only under independence in a non-asymptotic set-
ting (i.e., when the number of hypotheses is not infinitely large) and therefore
developing an adaptive BH method without losing the ultimate control over the
FDR in such a setting under the PRDS condition remains to be a challenging
open problem. Recently, Blanchard and Roquain (2009) gave two adaptive BH
methods that control the FDR under PRDS. However, as they have noted, these
methods turned out to be too conservative, not even improving the original BH
procedure, in many instances. This motivates us to revisit the work of Blanchard
and Roquain (2009) and attempt to improve it.

Blanchard and Roquain (2009) adaptive BH methods involve adjusting the
level of the original BH method as well as multiplying each p-value in it by an
estimate π̂0 of π0. The reason that such adaptive BH methods control the FDR
under PRDS is that the part of the FDR that corresponds to π̂0 exceeding π0 can
be shown to be controlled at any desired level using arguments similar to proving
the same result for the original BH method, while the remaining part that
corresponds to π̂0 not exceeding π0 can be bounded above by a certain specified
value provided π̂0 is appropriately determined from a procedure controlling the
FWER or FDR. The choice of this FWER or FDR controlling procedure seems
critical as it ultimately affects how conservative the corresponding adaptive BH
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method is. In fact, the procedure from which π̂0 is determined does not have to
be one that controls the FWER or FDR; it can be chosen to control any other
type of error rate, as long as π̂0 can be determined from it in such a way that the
aforementioned second part of the FDR of the resulting adaptive BH method can
be bounded above by a pre-specified value. This motivates us to consider using
a procedure controlling a generalized or alternative form of FWER or FDR,
like the k-FWER (Lehmann and Romano, 2005), for some arbitrary k ≥ 2, or
Pairwise FDR (Sarkar, 2008b), which allows us to capture dependence into the
formulation of π̂0 explicitly under certain positive dependence situations, and
thereby improving the BH method in more cases than the adaptive procedures
in Blanchard and Roquain (2009).

2. Preliminaries

In this section, we present some background information that are relevant to
the present paper.

2.1. Notations and definitions

Suppose that there are m null hypotheses Hi, i = 1, . . . ,m, that are to be simul-
taneously tested based on their respective p-values Pi, i = 1, . . . ,m. A multiple
testing is often carried out using a stepdown or stepup procedure. One can
distinguish between these procedures depending on how the rejection region is
found. Given the ordered p-values P(1) ≤ · · · ≤ P(m), with H(1), . . . , H(m) being
the corresponding null hypotheses, and a non-decreasing set of critical values
0 < α1 ≤ · · · ≤ αn < 1, a stepdown procedure rejects the set of null hypotheses
{H(i), i ≤ i∗SD}, where i∗SD = max{1 ≤ i ≤ m : P(j) ≤ αj , ∀j ≤ i} if the max-
imum exists; otherwise, it accepts all the null hypotheses. A stepup procedure,
on the other hand, rejects the set of null hypotheses {H(i), i ≤ i∗SU}, where
i∗SU = max{1 ≤ i ≤ m : P(i) ≤ αi} if the maximum exists; otherwise, it accepts
all the null hypotheses. If α1 = · · · = αm, the stepup or stepdown procedure
reduces to what is usually referred to as a single-step procedure.

Let R and V denote the total numbers of null hypotheses that are rejected
and falsely rejected, respectively, in a multiple testing procedure. Then, the
FWER of this procedure is defined by P (V ≥ 1), while the FDR is defined
by E(V/{R ∨ 1}), where R ∨ 1 = max{R, 1}. The following are generalized or
alternative versions of these error rates that will be of relevance in this paper:
(i) Generalized FWER: k-FWER = P (V ≥ k), for some fixed k ≥ 2, and
(ii) Pairwise FDR = E[V (V − 1)/{[R(R− 1)] ∨ 1}].

2.2. Assumptions

We will assume throughout the paper that marginally the p-value corresponding
to each null hypothesis is stochastically larger than U(0, 1), that is, Pr(Pi ≤ t) ≤
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min{t, 1}, for each i ∈ I0, where I0 is the set of indices for the null p-values.
Regarding dependence among all the p-values, we make one of the following two
assumptions in our main results to be discussed in the next section:

Assumption 1. The conditional expectation E{φ(P1, . . . , Pm) | Pi ≤ u} is
non-decreasing in u for each i ∈ I0 and any non-decreasing (coordinatewise)
function φ.

Assumption 2. The conditional expectationE{φ(P1, . . . , Pm) | Pi ≤ u, Pj ≤ v}
is non-decreasing in (u, v) for each {i, j} ⊆ I0 and any non-decreasing (coordi-
natewise) function φ.

Assumption 1 is a slightly weaker version of the PRDS condition (defined in
Benjamini and Yekutieli (2001)), satisfied by p-values generated from distribu-
tions arising in many multiple testing problems, among which the multivariate
normal with non-negative correlations is the most common one (Benjamini and
Yekutieli, 2001; Sarkar, 2002). Assumption 2 is satisfied by multivariate totally
positive of order two distributions (MTP2, defined in Karlin and Rinott (1980)),
among which the multivariate normal with a common nonnegative common cor-
relation is an important one. In fact, both Assumptions 1 and 2 are satisfied
by the MTP2 condition. Other distributions satisfying the MTP2 condition in-
clude certain types of multivariate t, F and gamma distributions (see Karlin
and Rinott (1980)).

2.3. Adaptive BH methods

The level α BH method in its original form is a stepup method with the critical
values αi = iα/m, i = 1, . . . ,m. Its actual FDR, as said in the introduction, is
less than or equal to π0α under Assumption 1, with the equality holding under
independence. If π0 were known, one would have used π0Pi instead of Pi in the
BH method to get a much tighter control of the FDR at α. This brings about the
idea of adapting the BH method to the data, when π0 is unknown, through an
estimate π̂0 of π0 obtained from the data. Quite often, this adaptation involves
multiplying each p-value in the original level α BH method by π̂0 after having
determined this π̂0 from the number of significant hypotheses observed via a
multiple testing procedure applied to the data. A large number of such adaptive
BH methods have been introduced in the literature (cited in Introduction).
However, they have been theoretically shown to maintain the FDR control at α
only when the p-values are independent.

Recently, Blanchard and Roquain (2009) proposed two such adaptive BH
procedures that continue to maintain the FDR control under Assumption 1.
These two newer adaptive BH methods correspond to two different types of
multiple testing procedure, one controlling the FWER and the other controlling
the FDR, from which π0 is estimated before each p-value in the BH method is
multiplied by this estimate. More specifically, they considered the following two
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estimates of π0: (i) π̂
BR1
0 = (m−R0)/m and (ii) π̂BR2

0 = Hη(R0/m), where

Hη(x) =







1 x ≤ 1/η
2/η

1−
√

1− 4(1− x)/η
x > 1/η,

for 0 ≤ x ≤ 1 and some η > 1, and R0 is the number of significant p-values
observed at stage 1 by applying the Holm (1979) FWER controlling method
in π̂BR1

0 and the BH FDR controlling method in π̂BR2
0 . We call the resulting

adaptive BH methods BR1 and BR2, respectively. The levels at the two stages
have been chosen appropriately to provide the ultimate control of the FDR at the
desired level. Let γ0 and γ1, respectively, be the levels for the first stage FWER
or FDR controlling method and the original BH method before being adjusted
by the corresponding estimate π̂0 at the second stage. Then, as Blanchard and
Roquain (2009) proved, the FDRs of BR1 and BR2 are controlled at γ0 + γ1
and ηγ0 + γ1 (with γ0 ≤ γ1), respectively, under Assumption 1.

2.4. Procedures controlling k-FWER and pairwise FDR

A number of k-FWER procedures are available in the literature under different
types of distributional assumption; see Finos and Farcomeni (2011) and Guo and
Rao (2010) for references on k-FWER. Among them, the generalized Hochberg’s
procedure of Sarkar (2008a) developed using k-dimensional joint distributions of
the null p-values under certain distributional assumptions is of relevance here.
We will re-construct it (in Section 3.1) under Assumption 2 with a view to cap-
ture only the pairwise joint distributions of the null p-values before developing
one of our main results. The notion of Pairwise FDR along with a procedure
controlling it under Assumption 2 were introduced in Sarkar (2008b).

In this article, we consider estimating π0 from a procedure controlling the
k-FWER or Pairwise FDR, instead of the FWER or FDR, in the derivation of
the Blanchard-Roquain type adaptive BH methods assuming that n0 ≥ 2. The
goal has been to improve the FDR control of the original Blanchard-Roquain
type adaptive BH methods in wider situations where the dependence structure
can be captured more explicitly through pairwise null distributions whenever
they are available.

3. Main results

Two main results will be developed in this article. One is an alternative to
BR1 where a k-FWER (Lehmann and Romano, 2005), for some fixed k ≥ 2,
rather than an FWER (i.e., 1-FWER), procedure is used to estimate π0, while
the other one is an alternative to BR2 where a Pairwise FDR (Sarkar, 2008b),
instead of an FDR, procedure is used to estimate π0. Let us paraphrase in the
following the basic result from Blanchard and Roquain (2009) that guides us to
the development of these alternatives that continue to control the FDR with or
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without some additional assumptions. A proof of it based on slightly different
line of arguments is given in Appendix.

Lemma 3.1. Given any estimate π̂0 of π0, which is non-decreasing in each
Pi, consider the adaptive level-γ1 BH method, that is, the stepup method in
terms of the adaptive p-values Qi = π̂0Pi, i = 1, . . . ,m, and the critical values
iγ1/m, i = 1, . . . ,m. The FDR of this adaptive BH method satisfies the following
inequality under Assumption 1:

FDR ≤ γ1 + E

[

V

R
I(R > 0, π̂0 < π0)

]

, (1)

where R and V denote the numbers of rejected and falsely rejected null hypothe-
ses, respectively, in the adaptive method.

To control the FDR in (1) at any desired level under Assumption 1, one should
be able to control the expectation in the right-hand side of (1). Of course, how
this expectation can be controlled depends on the kind of multiple testing pro-
cedure being used and applied to the data to determine π̂0. While Blanchard
and Roquain (2009) chose a procedure controlling the FWER or FDR, without
adding any more distributional assumption, we consider using certain general-
ized versions of these error rates with some additional assumptions as described
in the following subsections.

3.1. Alternative to BR1

Let us consider estimating π0 using an estimate of the form π̂0 = (m − R0 +
k − 1)/m, for some fixed k ≥ 2, from the number of significant p-values R0

observed by applying a multiple testing procedure at the first stage. Let V0

be the number of falsely detected significant p-values in that multiple testing
procedure. Then, since m−R0 ≥ m0 − V0, where m0 = mπ0, we have

E

[

V

R
I(R > 0, π̂0 < π0)

]

≤ Pr (π̂0 < π0) = Pr (m−R0 + k − 1 < m0) ≤ Pr (V0 ≥ k) , (2)

which is the k-FWER of this first stage procedure.

As said before, a number of k-FWER procedures have been proposed in the
literature. However, we will consider only the one given in the following lemma,
with its proof given in Appendix, that we propose in this article for the first
time. It is developed with the idea of incorporating pairwise correlations into the
formulation of a k-FWER procedure whenever these correlations are available
and known, and can potentially be used to produce a more informative estimator
of π0.

Lemma 3.2 (k-FWER procedure at level α). Assume that the p-values have
identical and known pairwise joint null distributions. Consider the stepup pro-
cedure with the critical values αi, i = 1, . . . ,m, satisfying αi = G−1(k(k −
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1)α/(m + k − i ∨ k)(m + k − i ∨ k − 1)), for some fixed k ≥ 2, where G−1 is
the inverse of the common distribution function of the maximum of two null
p-values. It controls the k-FWER at level α under Assumption 2.

Thus, we have our first main result providing an alternative to BR1.

Theorem 3.1. The FDR of the adaptive BH method given by the stepup pro-
cedure based on the adaptive p-values Qi = π̂0Pi, i = 1, . . . ,m, and the critical
values iγ1/m, i = 1, . . . ,m, can be controlled at γ1 + γ0 under Assumption 1
and the assumptions in Lemma 3.2 by choosing π̂0 = (m−R0+k−1)/m, where
R0 is the number of rejections obtained by applying the k-FWER procedure in
that lemma at level γ0.

3.2. Alternative to BR2

Here, we consider estimating π0 from a procedure controlling the Pairwise FDR.
To explain how to control the expectation in the right-hand side of (1) corre-
sponding to such an estimate, we first need to state the Pairwise FDR procedure
that we are going to use. This procedure is given in Sarkar (2008b).

Lemma 3.3 (Pairwise FDR procedure at level α). Assume that the p-values
have identical and known pairwise joint null distributions. Consider the stepup
procedure with the critical values αi, i = 1, . . . ,m, satisfying α1 = min{√α/m,
G−1(2α/m(m − 1)}, and αi = G−1(i(i − 1)α/m(m − 1)), i = 2, . . . ,m, where
G−1 is the inverse of the common distribution function of the maximum of
two null p-values. The Pairwise FDR of this procedure is less than or equal to
m0(m0 − 1)α/m(m− 1) under Assumption 2.

Remark 3.1. It is to be noted that the Pairwise FDR equals 0 if V = 0 or 1,
and hence the choice of the first critical value in a stepup procedure designed
to control the Pairwise FDR does not matter. Our particular choice of α1 in
the above procedure is different from the one originally considered in Sarkar
(2008b), and is made only to make sure, as can be seen in the following, that
certain desirable inequality holds.

Let us consider π̂0 = min{(m−R0+1)/m(1−λ), 1}, for some λ ∈ (0, 1), where
R0 is the number of significant p-values observed by applying the Pairwise FDR
procedure at level α stated in the Lemma 3.3. Note that under Assumption 1,
G(u) ≥ u2 for u ∈ (0, 1), which implies that αi ≤

√

i(i− 1)α/m(m− 1) ≤
i
√
α/m, for all i = 2, . . . ,m. In other words, if α ≤ γ2

1 , the critical values
of the level γ1 BH method in terms of the adaptive p-values will be larger
than the corresponding critical values of the level α Pairwise FDR procedure.
Moreover, when π̂0 ≤ 1, the adaptive p-values are stochastically smaller than
the corresponding non-adaptive or original p-values. Therefore, if α ≤ γ2

1 and
π̂0 < π0, R, the number of rejections in the level γ1 adaptive BH method, is
stochastically larger than R0, the number of rejections in the level α Pairwise
FDR procedure. With V0 denoting the number of false rejections in this Pairwise
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FDR procedure, we thus have, for the expectation in the right-hand side of (1),

E

[

V

R
I(R > 0, π̂0 < π0)

]

≤ E

[

V

R0
I(m−R0 + 1 < m0(1− λ))

]

≤ m0E

[

1

R0
I(V0 > 1 +m0λ)

]

≤ m0(m− 1)

(1 +m0λ)m0λ
E

[

V0(V0 − 1)

R0(R0 − 1)
I(V0 ≥ 2)

]

≤ m2
0(m0 − 1)(m− 1)α

m(m− 1)(1 +m0λ)m0λ
≤ mπ0α

(1 +mλ)λ

= ηπ0γ0, (3)

with η = λ−1 and α = ( 1
η
+ 1

m
)γ0. This leads us to our next main result.

Theorem 3.2. The FDR of the adaptive BH method given by the stepup pro-
cedure based on the adaptive p-values Qi = π̂0Pi, i = 1, . . . ,m, and the critical
values iγ1/m, i = 1, . . . ,m, can be controlled at γ1+ηγ0 under Assumption 1 and
the assumptions in Lemma 3.3 by choosing π̂0 = min{η(m−R0+1)/m(η−1), 1},
for some η > 1, where R0 is the number of significant p-values observed by ap-
plying the Pairwise FDR procedure in that lemma at level α = ( 1

η
+ 1

m
)γ0 ≤ γ2

1 .

4. Simulation studies

4.1. Power comparisons

Our proposed adaptive BH method in Theorem 3.1 (or Theorem 3.2) is consid-
ered to be an improvement over BR1 (or BR2) if it offers better power perfor-
mance compared not only with BR1 (or BR2) but also with the BH procedure
they all intend to improve. We conducted simulation studies to numerically in-
vestigate if such improvements really occur for our methods, and if so, to what
extent, under the type of distributional and dependence assumptions we make
in the paper. We considered two different notions of power when assessing power
performances, the false non-discovery rate (FNR) and the average power. The
FNR is defined as the expected proportion of acceptances (non-discoveries) that
are false (see, Genovese and Wasserman (2004); Sarkar (2004)), whereas, the av-
erage power is defined as the expected proportion of false null hypotheses that
are correctly rejected (see, for instance, Dudoit et al. (2003)). The results of
these simulation studies are presented in this section.

We considered two different simulation settings, Settings 1 and 2, each involv-
ing test statistics satisfying the MTP2 condition. In Setting 1, we generated m
test statistics Xi ∼ N(µi, 1), i = 1, . . . ,m, with a common non-negative correla-
tion ρ, having randomly set π0 proportion of the means at 0 and the rest at 3, for
testing µi = 0 against µi > 0 simultaneously for i = 1, . . . ,m. In Setting 2, these
test statistics were Xi ∼ σ2

iGamma(p, 2), i = 1, . . . ,m, with a common non-
negative correlation ρ, generated with π0 proportion of the variances randomly
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set at 1 and the rest at 2.56 for testing σ2
i = 1 against σ2

i > 1 simultaneously
for i = 1, . . . ,m. These multivariate gamma statistics were generated by first
generating m+1 independent gamma random variables Y0 ∼ σ2

iGamma(ρp, 2),
Yi ∼ σ2

iGamma((1 − ρ)p, 2), i = 1 . . . ,m, and then setting Xi = Yi + Y0.
It should be noted that Gamma(0, 2) = 0 with probability one when gener-

ating the above multivariate gamma, and thus ρ = 0 corresponds to the inde-
pendence case, as in the case of multivariate normal in Setting 1. Also, for the
multivariate gamma in Setting 2 to have the desired MTP2 property, (1−ρ)p has
to be greater than or equal to 1, that is, ρ ≤ 1− 1

p
; see Karlin and Rinott (1980).

In each of the above two settings, we considered m = 1000 and applied the
following procedures to the generated data at level α = 0.1 for the corresponding
multiple testing problem: the BR1, the proposed alternative to BR1, the BR2,
the proposed alternative to BR2, the original BH method, and the oracle version
of the BH method.

We chose γ0 = γ1 = 0.05 in both BR1 and our proposed alternative to BR1,
and the k was conveniently chosen to be 80 in the alternative to BR1 according
to Table 1. In both BR2 and and our alternative to BR2, we chose η = 2. While
γ0 = 0.025 and γ1 = 0.05 in BR2, the γ0 and γ1 in the alternative to BR2 were
chosen in such a way that they satisfy the following equations:

ηγ0 + γ1 = 0.1 and

(

1

η
+

1

m

)

γ0 = γ2
1 . (4)

We chose ten different values of ρ from {0, 0.1, . . . , 0.9} in Setting 1, and also in
Setting 2 having chosen p = 10.

We simulated the values of the FDR, FNR and average power for each of the
aforementioned procedures using 1000 simulation runs.

Figures 1 and 2 display the results in terms of the simulated FDR, FNR, and
the average power obtained in Setting 1 for π0 = 0.1 and π0 = 0.2, respectively,
while Figures 3 and 4 do the same for Setting 2.

These figures clearly show that, as an adaptive BH method controlling the
FDR, our proposed alternative form of the BR1, labeled HS1, has much im-
proved power performance compared to the original BR1 for almost all of the
considered values of ρ. Also our proposed alternative to the BR2, labeled HS2,
is seen to have better power performance compared to the original BR2. More
importantly, our proposed alternatives are seen to provide more improvements
(smaller FNR or higher power) over the original BH method in more cases.

Overall, the BR2 and both of our proposed procedures are preferred to the
BR1 procedure for almost all of the ρ values, with our alternative to the BR2
being the most powerful one. When correlation is not large, our proposed alter-
native to the BR1 can outperform the BR2 procedure. Looking at these figures,
we see that with π0 getting larger, it gets harder for all these adaptive methods
to improve the original BH, which is of course expected.

To further evaluate the extent of power improvements our proposed alterna-
tives to the BR1 and BR2 can offer over the original BH method in comparison
with similar improvements offered by the BR1 and BR2 themselves, we did some
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Fig 1. Simulated FDR, FNR, and average power of the proposed alternative to BR1 (la-
beled HS1), the original BR1, the proposed alternative to BR2 (labeled HS2), the original
BR2, the BH method, and the oracle BH method obtained in Setting 1 with π0 = 0.1.

additional computations under Setting 1 with the same values of α, m, k, η, γ0,
and γ1 as chosen before. For each of the aforementioned adaptive BH meth-
ods and for each π0 chosen from {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45},
we computed the crossing point ρ(π0) for the correlations such that, for all
ρ ≤ ρ(π0), the corresponding adaptive BH method has a smaller FNR than the
BH method. The values of ρ(π0) were plotted in Figure 5. As seen from this
figure, for most of the π0 values considered (except when they are very small),
our proposed two procedures provide improvements over the BH procedure for
more values of ρ than the BR1 and BR2.

4.2. Choice of k and η

The choice of k or η for which our proposed alternative to BR1 or BR2, re-
spectively, can have the maximum possible power is an important step in our
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Fig 2. Simulated FDR, FNR, and average power of the proposed alternative to BR1 (la-
beled HS1), the original BR1, the proposed alternative to BR2 (labeled HS2), the original
BR2, the BH method, and the oracle BH method obtained in Setting 1 with π0 = 0.2.

propositions. However, if they are not pre-chosen, it would be difficult to make
a general recommendation for them, since they depend in a complex way on the
other parameters γ0, γ1, π0 and ρ, and even the values of m and α. The best
option in this case would be to get an idea about k and η through simulations.
This is what we have decided to do in this paper.

Specifically, we considered the multiple testing problem as described in sim-
ulation setting 1 with γ0 = γ1 = 0.05, and determined the value of k providing
the smallest possible simulated FNR based on 1000 repetitions for different com-
binations of π0 and ρ values. We did these for m = 100 and m = 1000. We found
that the ratio k/m to be not much different in most cases. This can be seen,
for example, from Table 1 which presents the values of k/m only for the case
of m = 1000. This table can serve as a reference for one to make a choice for
k in a multiple testing situation similar to that considered in this simulation
setting.
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Fig 3. Simulated FDR, FNR, and average power of the proposed alternative to BR1 (la-
beled HS1), the original BR1, the proposed alternative to BR2 (labeled HS2), the original
BR2, the BH method, and the oracle BH method obtained in Setting 2 with π0 = 0.1.

We did the same for the proposed alternative to BR2, with γ0 and γ1 chosen
according to (4), to recommend a choice for η from a targeted set {1.1, 1.2, . . . , 6}
when m = 1000. It appears that η = 2 is a good choice from this set of possible
values, as seen from Table 2.

5. Concluding remarks

The idea of adapting the BH method to data with a view to improving its
performance has taken shape in the literature mostly in the form of drawing
information about π0 before incorporating it into the method, although there
is a possibility of further improvement by also incorporating information about
dependence. This paper can be viewed as one that makes an attempt for the first
time to explore that possibility. We have developed newer adaptive BH methods
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Fig 4. Simulated FDR, FNR, and average power of the proposed alternative to BR1 (la-
beled HS1), the original BR1, the proposed alternative to BR2 (labeled HS2), the original
BR2, the BH method, and the oracle BH method obtained in Setting 2 with π0 = 0.2.

by eliciting information on both π0 and dependence without losing the ultimate
control over the FDR under the dependence structure originally assumed for
the data in a non-asymptotic setting (i.e., without assuming m → ∞). Our
simulations indicate that such newer adaptive BH methods can potentially offer
significant improvements over the BH method in many instances, especially
when there is weak positive dependence among the underlying test statistics
and π0 is small.

As alluded above, constructing an adaptive BH method via estimating π0

that can capture dependence and eventually control the FDR has been our pri-
mary goal in this paper. In other words, estimating π0 is not the main focus
in our paper, rather it is designed specifically to achieve the aforementioned
goal. This is similar to the idea behind estimating π0 in all other adaptive BH
methods in the literature (cited in Introduction), and even in some adaptive
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Table 1

Simulated values of k/m providing the least FNR for the proposed alternative to BR1 with
m = 1000 (based on 1000 simulations runs)

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
π0 = 0.1 0.067 0.083 0.101 0.117 0.148 0.168 0.216 0.269 0.343 0.529
π0 = 0.3 0.075 0.090 0.100 0.114 0.130 0.162 0.188 0.250 0.327 0.467
π0 = 0.5 0.062 0.074 0.082 0.096 0.101 0.125 0.148 0.175 0.237 0.002
π0 = 0.7 0.047 0.048 0.050 0.059 0.065 0.070 0.079 0.096 0.002 0.002
π0 = 0.9 0.018 0.018 0.017 0.018 0.065 0.070 0.079 0.096 0.002 0.002

Bonferroni or Sidak method (Guo, 2009; Finner and Gontscharuk, 2009; Sarkar
et al., 2012), although, no special efforts have been made to incorporate de-
pendence into those estimations and the FDR (or the FWER) control of the
adaptive BH (or adaptive Bonferroni or Sidak) method has been established
only under independence, except in Blanchard and Roquain (2009). Several dif-
ferent estimates of π0 have been considered in this process. These are mostly
variants or some forms of extension of the following estimate that Schweder and
Spjotvoll (1982) suggested for the first time for estimating π0:

π̂SS
0 (λ) =

m−R(λ)

m(1 − λ)
, λ ∈ (0, 1), where R(λ) =

m
∑

i=1

I(Pi ≤ λ),

with the rationale that the p-values greater than a fixed, but not too small,
threshold λ should correspond to the true null hypotheses.

A number of other estimates of π0 are available in the literature, which have
been proposed without the aforementioned specific goal of constructing an adap-
tive BH or Bonferroni method with proven FDR or FWER control. For instance,
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Table 2

Choice of η providing the least FNR for the proposed alternative to BR2 with m = 1000
(based on 1000 simulations runs)

ρ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
π0 = 0.1 2.5 2.4 2.2 2.1 2.2 2 1.7 1.1 1.1 1.1
π0 = 0.3 2.7 2.6 2.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1
π0 = 0.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
π0 = 0.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
π0 = 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Langaas et al. (2005) estimated π0 using the nonparametric density estimation
approach assuming that the p-values are independently distributed following
a two-component mixture density function which is decreasing or both convex
and decreasing. Pounds and Morris (2003) considered estimating π0 under a
parametric beta-uniform mixture model. Storey and Tibshirani (2003) provided
an estimate of π0 using smoothing techniques. Schwartzman (2008) proposed a
“mode matching” method for the estimation of empirical null distribution with
the theoretical null belonging to the exponential family and provided an esti-
mate of π0 in this framework. Jin and Cai (2007) gave an approach to estimating
π0 based on the empirical characteristic function and Fourier analysis. Most of
these estimation methods rely on the assumption of independent p-values from
a two-component mixture model with a uniform distribution for null p-values.
However, estimators of π0 under dependence have also been given. For instance,
Friguet and Causeur (2011) modified π̂SS

0 using factor-adjusted p-values consid-
ering a general factor analytic model framework Leek and Storey (2008) for mul-
tiple testing under dependence. Chen and Doerge (2012) developed a consistent
estimator of π0 when the test statistics follow multivariate normal distribution
with a known covariance matrix representing certain types of strong dependence
using the principal factor approximation developed in Han et al. (2010) and the
Fourier transform method in Jin (2008).

Of course, all these other estimates of π0 can potentially be used in adapting
the BH method, or even the Bonferroni method, but whether or not the resulting
BH or Bonferoni methods can provide the ultimate control over the FDR or
FWER remains to be a theoretically challenging and open question.

6. Appendix

Proof of Lemma 3.1. Let I0 be the set of indices of the true null hypotheses, and

R
(−i)
m−1 be the number of rejections in the stepup method based on {Q1, . . . , Qm}\

{Qi} and the critical values iγ1/m, i = 2, . . . ,m. Then,

E

[

V

R
I(R > 0, π̂0 > π0)

]

=
∑

i∈I0

m
∑

r=1

1

r
Pr

(

π̂0Pi ≤
rγ1
m

,R = r, π̂0 > π0

)
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≤
∑

i∈I0

m
∑

r=1

1

r
Pr

(

Pi ≤
rγ1
mπ0

, R
(−i)
m−1 = r − 1

)

≤ γ1
mπ0

∑

i∈I0

m
∑

r=1

Pr

(

R
(−i)
m−1 = r − 1 | Pi ≤

rγ1
mπ0

)

. (5)

Now,

m
∑

r=1

Pr

(

R
(−i)
m−1 = r − 1 | Pi ≤

rγ1
mπ0

)

=

m−1
∑

r=0

Pr

(

R
(−i)
m−1 ≥ r | Pi ≤

(r + 1)γ1
mπ0

)

−
m−2
∑

r=0

Pr

(

R
(−i)
m−1 ≥ r + 1 | Pi ≤

(r + 1)γ1
mπ0

)

≤
m−1
∑

r=0

Pr

(

R
(−i)
m−1 ≥ r | Pi ≤

(r + 1)γ1
mπ0

)

−
m−2
∑

r=0

Pr

(

R
(−i)
m−1 ≥ r + 1 | Pi ≤

(r + 2)γ1
mπ0

)

= 1,

with the inequality following from Assumption 1 and the fact that Pr(R
(−i)
m−1 ≥

r + 1 | Pi ≤ u) = E{I(R(−i)
m−1 ≥ r + 1) | Pi ≤ u} is decreasing in u since

I(R
(−i)
m−1 ≥ r+1) is a decreasing function of (P1, . . . , Pn). Thus, the expectation

in (5) is less than or equal to γ1, as desired.

Proof of Lemma 3.2. Since k ≤ V ≤ m0, we have V (m0 − V + k) ≥ m0k, and
similarly (V − 1)(m0 − V + k − 1) ≥ (m0 − 1)(k − 1). Also, m− R ≥ m0 − V .
Thus, we have

V (V − 1)(m−R+ k)(m−R+ k − 1)

≥ V (V − 1)(m0 − V + k)(m0 − V + k − 1)

≥ m0(m0 − 1)k(k − 1),

from which we get

P (V ≥ k)

≤ E

[{

V (V − 1)(m−R+ k)(m−R+ k − 1)

m0(m0 − 1)k(k − 1)

}

I(V ≥ k)

]

≤ 1

m0(m0 − 1)

m
∑

r=k

E





(m− r + k)(m− r + k − 1)

k(k − 1)

∑

i6=j∈I0

F2(αr, αr)
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P
{

V
(−i,−j)
m−2 ≥ k − 2, R

(−i,−j)
m−2 = r − 2 | Pi ∨ Pj ≤ αr

}]

=
α

m0(m0 − 1)

∑

i6=j∈I0

m
∑

r=k

Pr
{

V
(−i,−j)
m−2 ≥ k − 2, R

(−i,−j)
m−2 = r − 2 |

Pi ∨ Pj ≤ αr}

≤ α

m0(m0 − 1)

∑

i6=j∈I0

m
∑

r=k

Pr
{

R
(−i,−j)
m−2 = r − 2 | Pi ∨ Pj ≤ αr

}

≤ α,

where R
(−i,−j)
m−2 is the number of rejections in the stepup test based on the m−2

p-values {P1, . . . , Pm} \ {Pi, Pj} and the critical values αi, i = 3, . . .m, and

V
(−i,−j)
m−2 is the number of false rejections among R

(−i,−j)
m−2 . The last inequality

follows from the result

m
∑

r=k

Pr
{

R
(−i,−j)
m−2 = r − 2

∣

∣ Pi ∨ Pj ≤ αr

}

=
m−2
∑

r=k−2

Pr
{

R
(−i,−j)
m−2 ≥ r

∣

∣ Pi ∨ Pj ≤ αr+2

}

−
m−2
∑

r=k−1

Pr
{

R
(−i,−j)
m−2 ≥ r

∣

∣ Pi ∨ Pj ≤ αr+1

}

≤
m−2
∑

r=k−2

Pr
{

R
(−i,−j)
m−2 ≥ r

∣

∣ Pi ∨ Pj ≤ αr+2

}

−
m−2
∑

r=k−1

Pr
{

R
(−i,−j)
m−2 ≥ r

∣

∣ Pi ∨ Pj ≤ αr+2

}

= Pr
{

R
(−i,−j)
m−2 ≥ k − 2

∣

∣ Pi ∨ Pj) ≤ αk

}

≤ 1. (6)

The first inequality in (6) follows from Assumption 2 and the fact that

Pr(R
(−i,−j)
m−2 ≥ r | Pi ≤ u, Pj ≤ u) = E{I(R(−i,−j)

m−2 ≥ r) | Pi ≤ u, Pj ≤ u} is

decreasing in u since I(R
(−i,−j)
m−2 ≥ r) is a decreasing function of (P1, . . . , Pn).
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