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Abstract: Diffusion tensor magnetic resonance imaging (MRI) quantifies
the spatial distribution of water diffusion at each voxel on a regular grid
of locations in a biological specimen by diffusion tensors– 3 × 3 positive
definite matrices. Removal of noise from DTI is an important problem due
to the high scientific relevance of DTI and relatively low signal to noise ra-
tio it provides. Leading approaches to this problem amount to estimation
of weighted Karcher means of diffusion tensors within spatial neighbor-
hoods, under various metrics imposed on the space of tensors. However, it
is unclear how the behavior of these estimators varies with the magnitude
of DTI sensor noise (the noise resulting from the thermal effects of MRI
scanning) as well as the geometric structure of the underlying diffusion
tensor neighborhoods. In this paper, we combine theoretical analysis, em-
pirical analysis of simulated DTI data, and empirical analysis of real DTI
scans to compare the noise removal performance of three kernel-based DTI
smoothers that are based on Euclidean, log-Euclidean, and affine-invariant
metrics. The results suggest, contrary to conventional wisdom, that im-
posing a simplistic Euclidean metric may in fact provide comparable or
superior noise removal, especially in relatively unstructured regions and/or
in the presence of moderate to high levels of sensor noise. On the contrary,
log-Euclidean and affine-invariant metrics may lead to better noise removal
in highly structured anatomical regions, especially when the sensor noise is
of low magnitude. These findings emphasize the importance of considering
the interplay of sensor noise magnitude and tensor field geometric structure
when assessing diffusion tensor smoothing options. They also point to the
necessity for continued development of smoothing methods that perform
well across a large range of scenarios.
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1. Introduction

Diffusion magnetic resonance imaging (MRI) has emerged as a prominent tech-
nique for using magnetic field gradients to measure the directional distribution
of water diffusion in a biological specimen (Bammer et al., 2009; Beaulieu, 2002;
Chanraud et al., 2010; Mukherjee et al., 2008a,b) because the diffusion measure-
ments are useful as non-invasive proxy measures for the structural organization
of the underlying tissue. In diffusion MRI of the brain, the head of a person or
animal is placed inside a stationary magnetic field, and the tissue of the brain is
excited by applying direction-specific magnetic field gradients and pulses of ra-
dio frequency energy. Measuring the frequency characteristics of energy emitted
from the excited tissue allows us to estimate, at each location in the brain, the
bulk amount of water diffusion occurring along each of the magnetic field gra-
dient directions. Directional distributions of water diffusion across all possible
3D directions are then estimated by extrapolating from these direction-specific
diffusion measurements. Diffusion tensor imaging (DTI) is the most widespread
version of diffusion MRI, resulting in a representation of the directional distribu-
tion through a 3×3 positive definite matrix (diffusion tensor) at each spatial lo-
cation. For a more detailed description of diffusion tensor imaging measurements
and models, see Section 2. However, DTI data include a substantial amount of
noise, which results in noisy estimation of the diffusion tensors (Gudbjartsson
and Patz, 1995; Hahn et al., 2006, 2009; Zhu et al., 2009). Consequently, noise
adversely affects subsequent tracing of anatomical structures and mapping of
inter-regional brain connectivity (Basser and Pajevic, 2000). For this reason, a
variety of methods have been developed to filter noise from DTI data by en-
forcing spatial smoothness. One prominent approach replaces the tensor at each
voxel by a weighted Karcher mean of tensors in a local spatial neighborhood
under a Riemannian metric imposed on the space of tensors (Arsigny et al.,
2005, 2006; Castaño Moraga et al., 2007). This amounts to kernel smoothing
of the tensor field. In a notable development, Yuan et al. (2012) extended the
weighted Karcher-mean approach to local polynomial smoothing in the tensor
space with respect to different geometries, when the observations are taken at
random locations. They also derived asymptotic mean squared errors of the
estimated tensors. While other alternatives exist, including spatially regulariz-
ing the estimation of diffusion tensors from the raw diffusion weighted imaging
(DWI) data (Tabelow et al., 2008), in this paper, we focus on the more com-
mon Karcher mean approach, with an emphasis on theoretical and numerical
evaluation of smoothing results under various conditions.

In the existing literature on Karcher mean approaches, methods that impose
a Euclidean metric on the space of tensors (hereafter “Euclidean smoothers”)
are generally considered inferior to those that impose a log-Euclidean metric or
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an affine-invariant metric (hereafter, “geometric smoothers”). The former gives
rise to a swelling effect (Arsigny et al., 2005, 2006), which means smoothed
tensors have larger determinants than those of the original tensors. This re-
sults in artificially inflated estimates of local water diffusion. However, in other
important respects the performance characteristics of these smoothers are not
well understood. For example, it is not clear how the geometric structure of the
tensor neighborhoods impacts smoothing performance. Because this geometric
structure is highly variable across the human brain, and because it provides the
primary cue for the structural organization of the underlying brain tissue, un-
derstanding its effects on tensor smoothing is highly relevant. Secondly, it is not
known how smoother performance varies by noise magnitude, which can vary
substantially across DTI scanners. Clarifying the performance tradeoffs of com-
peting smoothing algorithms could help to guide end users toward advantageous
smoothers based on the biological sample and the operating characteristics of
the MRI scanner. Given that the choice of DTI smoothing algorithm has a
significant impact on scientific studies of DTI properties in various brain dis-
eases, a deeper understanding of DTI smoothing performance has high practical
importance (Viswanath et al., 2012).

We first study tensor estimation at each voxel based on the raw DWI data.
The estimated tensors will then be used as input for the smoothing process. We
derive asymptotic expansions for a nonlinear regression estimator and a linear
regression estimator under the small noise asymptotic regime. We show that,
compared with the more widely used linear estimator, the nonlinear estimator
is more efficient. We also show that the additive noise resulting from thermal
effects of MRI scanning (sensor noise) on the raw DWI data leads to approxi-
mately additive noise on the estimated tensors. We then study the properties of
the Euclidean smoothers and geometric smoothers applied to these estimated
tensors for the purpose of further denoising. The main goal of this study is to
demonstrate the effect of different metrics on the performance of local constant
smoothing under various local structures of the tensor field and various sensor
noise levels. The major finding of this paper is that on contrary to conventional
wisdom – Euclidean smoothers may in fact have superior performance than
geometric smoothers depending on the interplay of the aforementioned two fac-
tors. More specifically, we use perturbation analysis to show that when sensor
noise levels are relatively low, either Euclidean or geometric smoothers may have
smaller bias depending on whether the tensor field is spatially homogeneous or
inhomogeneous. Here we focus on asymptotic bias rather than variance since
regardless of the choice of the metric, the variance is essentially inversely pro-
portional to the neighborhood size and is proportional to noise level. However,
even when the tensor field is constant within a neighborhood, the smoothers
corresponding to different metrics can exhibit different bias characteristics (see
Section 4.2 for a detailed discussion). We then use simulated tensor fields to
show empirically that when sensor noise levels are relatively high, Euclidean
smoothers tend to perform better regardless of the geometric structure of the
tensor neighborhoods. Finally, we perform validation experiments on real DTI
scans that confirm the theoretical and simulation findings. Together, these find-
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ings suggest that we may need to revisit the conventional wisdom that Euclidean
smoothers generally provide inferior smoothing performance.

The rest of the paper is organized as follows. In Section 2, we study ten-
sor estimation from raw DWI data. In Section 3 we describe the three tensor
smoothers, followed by Section 4 which presents a perturbation analysis to com-
pare these smoothers under the small noise regime. Section 5 is for simulation
studies and Section 6 is an application to human brain DTI data. The paper is
concluded by a discussion in Section 7.

2. Tensor estimation

In this section, we derive asymptotic expansions of two regression based tensor
estimators under the additive noise model for the raw DWI data. We consider
the small noise asymptotic regime with a fixed number of gradient directions,
which is different from the conventional statistical paradigm where the sam-
ple size increases to infinity. We choose to work under this setting because in
DTI experiments, the number of gradient directions is usually small and fixed
whereas the signal to noise ratio may be increased by increasing the magnetic
field strength and scan time. In contrast, asymptotic analysis under the frame-
work where the number of gradient directions grows to infinity has been con-
ducted by Zhu et al. (2007) and Zhu et al. (2009). Zhu et al. (2007) proposed
a weighted least squares estimate of the diffusion tensor and quantified the ef-
fects of noise on this estimator and their eigenvalues and eigenvectors, as well as
on the subsequent morphological classification of the tensors. Zhu et al. (2009)
studied a number of different regression models for characterizing stochastic
noise in DWI and functional MRI (fMRI) and developed a diagnostic procedure
for systematically exploring MR images to identify noise components other than
simple stochastic noise.

DWI measurements and additive noise model

Proton Nuclei Magnetic Resonance measures signals from the H1 nuclei, the
majority of which in biological tissues is from water molecules. In diffusion
magnetic resonance (DT-MR), the signals are sensitized to water diffusion by
applying a set of magnetic gradient fields to the tissue. The raw data obtained by
MRI scanning are complex numbers representing the Fourier transformation of
a magnetization distribution of a tissue at a certain point in time. The observed
DWI data are the amplitude of the DT-MR signals corresponding to a set of
magnetic gradients denoted by Q – a set of unit norm vectors in R

3 referred
to as gradient directions. Assuming Gaussian diffusion of water molecules at a
given voxel, the noiseless diffusion weighted signal intensity in direction q =
(q1, q2, q2)

T ∈ Q is given by (Mori, 2007)

Sq = S0 exp(−bqTDq), (1)



Diffusion tensor smoothing 1917

where S0 is the baseline intensity determined by the background constant field,
b is a fixed experimental constant, and D is a 3×3 positive definite matrix which
is referred to as the diffusion tensor at that voxel. For simplicity of exposition,
throughout this section, S0 is assumed to be known and fixed. We also absorb
b into the tensor D and ignore it hereafter. The so called sensor noise in the
observed (complex) signal at each voxel is mainly attributed to thermal noise
in the MRI scanner and is modeled as independent and additive white noise
on the real and imaginary parts of the signal (Gudbjartsson and Patz, 1995).
Consequently, the actually observed, noise corrupted DWI data are

Ŝq =‖ Squq + σεq ‖, q ∈ Q, (2)

where uq, a unit vector in R
2, is the phase of the signal, the random vectors

εq have two independent coordinates with zero mean and unit variance and are
also assumed to be independent across gradient directions q’s. The parameter
σ > 0 controls the noise level. This model is referred to as the additive noise

model for DWI data. If in model (2) the noise is further assumed to be Gaussian,
i.e., εq’s are independent N(0, I2), then Ŝq’s follow the Rician distribution with
probability density function pSq,σ, where for ζ > 0,

pζ,σ(x) =
x

σ2
exp

(
−x2 + ζ2

2σ2

)
I0

(
xζ

σ2

)
1(x > 0), (3)

where I0 denotes the zero-th order modified Bessel function of the first kind.

Tensor estimators

Here, we consider estimating the tensor D based on the observed DWI signal
intensities {Ŝq : q ∈ Q}. We use vec(D) to denote the 6×1 vector (D11, D22, D33,
D12, D13, D23)

T , and define xq = (q21 , q
2
2 , q

2
3 , 2q1q2, 2q1q3, 2q2q3)

T . With a slight
abuse of notation, in this section we use D to mean vec(D). Then the quadratic
form qTDq can be written as xT

q
D. In the following, we also assume that the

matrix
∑

q∈Q xqx
T
q
is well-conditioned, which is guaranteed by an appropriate

choice of the gradient directions (in practice, an approximate uniform design on
a sphere is often used). The first method is to use the log transformed DWI’s to
estimate D by a linear regression. The resulting estimator is referred to as the
linear regression estimator and denoted by D̂LS.

D̂LS := arg min
D∈R6

∑

q∈Q

(log Ŝq − logS0 + xT
q
D)2, (4)

The second method uses nonlinear regression based on the original DWI’s. The
resulting estimator is referred to as the nonlinear regression estimator and de-
noted by D̂NL

D̂NL := arg min
D∈R6

∑

q∈Q

(Ŝq − S0 exp(−xT
q
D))2. (5)
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Note that, in the above two estimates, we did not restrict D to be positive
definite, but only that it is a symmetric matrix. Accordingly, Propositions 2.1
and 2.2 below, dealing with the asymptotic behavior of the estimated tensors,
do not explicitly require positive-definiteness, even though they point to the
positive-definiteness of the estimated tensors with a high probability. Imposing
the positive definite constraint explicitly for tensor estimation at each voxel
could be done, e.g., through a logarithm parametrization of the tensor.

Let X be the |Q| × 6 matrix with rows xT
q
, for q ∈ Q, where |Q| denotes the

number of gradient directions. Also let ℓS = (log Ŝq − logS0)q∈Q. For future
use, we also define DS = diag(Sq : q ∈ Q). Then we have an explicit formula

for D̂LS, namely,

D̂LS = −


∑

q∈Q

xqx
T
q




−1
∑

q∈Q

(log Ŝq − logS0)xq


 = −(XTX)−1XT ℓS .

Though no explicit formula is available for D̂NL, it can be numerically solved
by a nonlinear least square solver. We used the Levenberg-Marquardt method
in the numerical study of this paper. With the linear regression estimator as the
initial estimate, the algorithm usually converges in just a few iteration steps.

In the literature, it has been shown numerically that the nonlinear regres-
sion estimator often outperforms the linear regression estimator (Basser and
Pajevic, 2000; Hahn et al., 2006). Also, when the noise associated with DWI
measurements is Rician, it is shown in Polzehl and Tabelow (2008) that in the
low signal-to-noise-ratio setting, the linear regression estimator is biased. In the
following, we analyze the behavior of the two regression estimators under the
additive noise model (2) as the noise parameter σ → 0 and show that the non-
linear regression estimator is asymptotically more efficient. The proofs of the
stated asymptotic results can be found in the Appendix. Throughout, we use
D0 to denote the true diffusion tensor.

Asymptotic expansions

Proposition 2.1. Under the additive noise model, as σ → 0, D̂LS = D0 +
σD1,LS+σ2D2,LS+O(σ3|Q|−1

∑
q∈Q ‖ εq ‖3), where the random vectors D1,LS

and D2,LS satisfy
E(D1,LS) = 0, E(D2,LS) = 0,

and

Var(D1,LS) = (
∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

S−2
q

xqx
T
q
)(
∑

q∈Q

xqx
T
q
)−1

= (XTX)−1(XTD−2
S X)(XTX)−1. (6)

Thus, the bias in D̂LS is of the order O(σ3). Moreover, under the Rician noise
model, D1,LS is a normal random vector, whereas the coordinates of D2,LS are
weighted sums of differences of independent χ2

1 random variables.
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Proposition 2.2. Under the additive noise model, as σ → 0, D̂NL = D0 +
σD1,NL + σ2D2,NL +O(σ3|Q|−1

∑
q∈Q ‖ εq ‖3), where,

E(D1,NL) = 0, Var(D1,NL) = (
∑

q∈Q

S2
q
xqx

T
q
)−1 = (XTD2

SX)−1, (7)

and

E(D2,NL) = −1

2
(
∑

q∈Q

S2
q
xqx

T
q
)−1


∑

q∈Q


1− S2

q
xT
q
(
∑

q′∈Q

S2
q′xq′xT

q′)−1xq


 xq


 .

(8)
In (8), at least a few the coefficients of xq are nonzero if |Q| > 6 and thus the

mean of D2,NL is non-vanishing. Therefore, the bias in D̂NL is of order O(σ2).
Moreover, under the Rician noise model, D1,NL is a normal random vector,
whereas the coordinates of D2,NL are weighted sums of (dependent) χ2

1 random
variables.

In terms of the first order terms, both regression estimators are unbiased and
D̂NL has a smaller variance than D̂LS, in the sense

aT (XTD2
SX)−1a ≤ aT (XTX)−1(XTD−2

S X)(XTX)−1a, for all a ∈ R
6.
(9)

Indeed, the difference between the two asymptotic covariance matrices can be
quite substantial if Sq’s vary a lot. This situation may arise when the true diffu-
sion tensor D0 is highly anisotropic. Under such a situation, only a few gradient
directions are likely to be aligned to the leading eigen-direction, which results
in small Sq, whereas other gradient directions lead to large Sq. The above anal-
ysis suggests that at least when the noise level is low, the nonlinear regression
estimator is more preferable due to its smaller variance. In the Supplementary
Material (Carmichael et al.), we present a numerical study which shows that for
both small and large noise levels, the nonlinear estimator performs better than
the linear estimator.

In terms of the second order terms, the linear regression estimator is also
unbiased. If the number of gradient directions is not too small, we have the
approximation for the second order bias term (8) of D̂NL:

E(D2,NL) ≈ −1

2


 1

|Q|
∑

q∈Q

S2
q
xqx

T
q




−1
 1

|Q|
∑

q∈Q

xq


 = −1

2
(XTD2

SX)−1XT1Q.

(10)
Notice that in this approximation, only the matrix inverse term involves the true
tensor (through Sq’s). So, as long as the design is uniform, no single gradient
direction has a dominating influence on this bias.

3. Kernel smoothing in tensor space

In this section, we consider kernel smoothing on the space of N × N positive
definite matrices (hereafter referred to as the tensor space PN ). We first briefly
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review the kernel smoothing idea in a Euclidean space (Fan and Gijbels, 1996).
Let f be a function defined on D ⊂ R

d and taking values in R
p. The data consist

of pairs {(si, Xi)}ni=1 with si’s being spatial positions in D, and Xi ∈ R
p’s being

noise-corrupted versions of f(si)’s. One way to reconstruct f is to use weighted
averages:

f̂(s) =

n∑

i=1

wi(s)Xi/

n∑

i=1

wi(s), s ∈ D.

Let ‖ · ‖ denote a Euclidean norm. A common scheme for the weights is

ωi(s) := Kh(‖ si − s ‖), i = 1, . . . , n, (11)

where Kh(·) := (1/h)K(·/h), K(·) is a nonnegative, integrable kernel and
h > 0 is the bandwidth which determines the size of the smoothing neighbor-
hood. Note that, f̂(s) minimizes

∑n
i=1 ωi(s)d

2(Xi, c) with respect to c, where
d(Xi, c) =‖ Xi − c ‖ is a Euclidean distance on R

p. Thus kernel smoothing can
be immediately generalized to a Riemannian manifold M by replacing the Eu-
clidean distance with the geodesic distance dM(·, ·). Specifically, to reconstruct
a function f : D ⊂ R

d → M, we define

f̂(s) := arg min
c∈M

n∑

i=1

ωi(s)d
2
M(Xi, c), s ∈ D. (12)

Kernel smoothing thus takes the form of a weighted Karcher mean of X ′
is

(Karcher, 1977). From (12), it is obvious that different distance metrics on the
manifold M may lead to different kernel smoothers. Since PN is the interior
of a cone in the Euclidean space R

N×N , one may simply impose a Euclidean
metric on PN , for example, dE(X,Y ) := {trace(X − Y )2}1/2. Under Euclidean
distances, (12) can be easily solved by a weighted average

f̂E(s) =
n∑

i=1

ωi(s)Xi

/ n∑

i=1

ωi(s). (13)

Since the tangent space of PN is the space of N × N symmetric matrices, as
an alternative to the Euclidean metrics, logarithmic Euclidean (henceforth log-
Euclidean) metrics have been proposed (Arsigny et al., 2005, 2006):

dLE(X,Y ) :=‖ logX − log Y ‖ . (14)

Under dLE , (12) can also be explicitly solved as

f̂LE(s) = exp

(
n∑

i=1

ωi(s) log(Xi)
/ n∑

i=1

ωi(s)

)
. (15)

Here exp(·) and log(·) denote the matrix exponential and matrix logarithm
functions. Log-Euclidean metric has also been used by Schwartzman (2006) to
develop nonparametric test procedures in the context of DTI.



Diffusion tensor smoothing 1921

Moreover, since PN can be identified with a naturally reductive homogenous
space (Absil et al., 2008), one may use a bi-invariant metric:

dAff (X,Y ) :=

[
tr
(
log(X−1/2Y X−1/2)

)2]1/2
, (16)

where tr(·) is the trace operator. This metric is affine-invariant, i.e., for any
g ∈ GL+(N,R), where GL+(N,R) is the group of matrices (defined on R) with
positive determinant, we have dAff (gXgT , gY gT ) = dAff (X,Y ). Therefore, we
refer to dAff as the affine-invariant metric. The affine-invariant geometry on
PN has been extensively studied (Fletcher and Joshi, 2004, 2007; Förstner and
Moonen, 1999) and has been applied to DTI data (Arsigny et al., 2005, 2006;

Pennec et al., 2006). While a closed form solution for f̂(s) is not available

under dAff , f̂(s) may be computed using gradient descent methods (Pennec
et al., 2006), Newton-Raphson methods (Ferreira et al., 2006; Fletcher and Joshi,
2007), or an approximate recursive procedure which is computationally much
faster (outlined in Section S-1 of the Supplementary Material). Note that all
three Karcher means considered here are scale-equivariant.

Euclidean smoothing is often being criticized due to its swelling effect where
the determinant of the “average” tensor is larger than those of the tensors being
averaged (Arsigny et al., 2005). Since the determinant of the tensor quantifies
the overall diffusivity of water within the voxel, this property contradicts with
principles of physics. On the other hand, under both geometric smoothing, av-
eraging of tensors results in an averaging of their determinants, thus precluding
swelling artifacts. However, as we shall see in the following sections, the relative
merits of these smoothers in terms of estimation accuracy are rather compli-
cated in that there is no one smoother performs the best under all situations.
Indeed, the performance of these smoothers depends heavily on the nature of
the noise and local geometric structures in the data.

4. Comparison of smoothers under different geometries

In this section, we first use perturbation analysis to quantify the differences
among the Euclidean mean and the two geometric means under an arbitrary
target tensor. Arsigny et al. (2005) compared the log-Euclidean and affine-
invariant means. However, their analysis was restricted to the setting where
the target tensor is the identity matrix. We use the perturbation analysis re-
sults to compare the three tensor smoothers defined in Section 3. In particular,
we study the effects of the noise in raw DWI data and the spatial heterogeneity
of the tensor field on the bias associated with the smoothers. Yuan et al. (2012)
considered local polynomial smoothing in tensor space using log-Euclidean and
affine-invariant geometries when the observations are taken at random locations.
In their setting, conditional mean and variance of the tensors are specified and
asymptotic MSE is derived under the asymptotic regime where the number of
sampling points in the neighborhood goes to infinity. In contrast, in this paper,
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the tensor field is observed on a grid determined by voxelization. The noise in
the observed tensors (which are used for smoothing) originates from the sensor
noise in the diffusion weighted MRI data based on which the observed tensors
are estimated. Local constant smoothing is applied to these noisy tensors and
asymptotic analysis is carried out under a regime where the noise level con-
verges to zero. Moreover, the focus of our asymptotic analysis is primarily on
studying the bias characteristics of the local constant smoother under different
geometries.

4.1. Asymptotic expansions of Karcher means

Let {D(ω) ∈ PN : ω ∈ Ω} be a set of random tensors, where Ω is an arbitrary
index set with a Borel σ-algebra. Let PΩ be a probability measure on Ω. Let
D̄E , D̄LE and D̄Aff denote the weighted Karcher mean of D:

arg min
c∈PN

∫
d2(c, D(ω))dPΩ(ω) (17)

with respect to the distance metrics dE , dLE and dAff , respectively. We also use
EΩ to denote expectation with respect to the measure PΩ under the Euclidean
metric dE , i.e., for any random symmetric matrix K, EΩ(K) :=

∫
K(ω)dPΩ(ω).

Thus D̄E = EΩ(D).
We take a matrix perturbation analysis approach to study the differences

among these means under a small noise limit regime. Let D0 denote the under-
lying “true” or target tensor. Let λj denote the j-th largest distinct eigenvalue
of D0, and let Pj denote the corresponding eigen-projection. For simplicity of
exposition, we consider only two scenarios: (a) when the eigenvalues of D0 are
all distinct (anisotropic tensor); and (b) when all the eigenvalues of D0 are equal
to λ1 (isotropic tensor). Let

C :=

{
max{maxj λ

−1
j ,maxk 6=j |λk − λj |−1}, if D0 6= λ1I

λ−1
1 if D0 = λ1I,

where I denotes the N × N identity matrix. We assume that the probability
measure PΩ satisfies

PΩ(sup
ω∈Ω

‖ ∆(ω) ‖< C−1t) = 1, (18)

for some t > 0, where ∆(ω) := D(ω) − D0, and ‖ · ‖ denotes the operator
norm of matrices. Roughly speaking, C−1 indicates the scale of the signal and
t is a parameter that controls the degree of deviation of the tensors from the
target tensor. Also, we denote the difference between the Euclidean mean and
the target tensor by

∆̄E := EΩ(∆(ω)) = D̄E −D0.
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The following theorems give expansions of the three means around the target
D0 when t → 0. For simplicity of exposition, in the anisotropic case, expansions
are in terms of the logarithm of the determinant of the mean. The expansions
of the logarithm of the mean are given in Propositions 8.1-8.3 in the Appendix.
Proofs are also given in the Appendix.

Theorem 4.1. Suppose that the tensors {D(ω) : ω ∈ Ω} and the probability
distribution PΩ satisfy (18) and t → 0.

(a) If D0 = λ1I, then

log D̄E − logD0 =
1

λ1
∆̄E − 1

2λ2
1

∆̄2
E +O(t3). (19)

(b) If the eigenvalues of D0 are all distinct,

log det(D̄E)− log det(D0)

=
N∑

j=1

1

λj
tr(Pj∆̄E)

−
N∑

j=1

N∑

k:k 6=j

1

λj(λk − λj)
[tr(Pj∆̄EPk∆̄E)]−

1

2

N∑

j=1

1

λ2
j

[tr(Pj∆̄E)]
2 +O(t3).

(20)

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold.

(a) If D0 = λ1I, then

log D̄LE − logD0 =
1

λ1
∆̄E − 1

2λ2
1

EΩ(∆
2) +O(t3). (21)

(b) If the eigenvalues of D0 are all distinct,

log det(D̄LE)− log det(D0)

=

N∑

j=1

1

λj
tr(Pj∆̄E)

−
N∑

j=1

N∑

k:k 6=j

1

λj(λk−λj)
EΩ[tr(Pj∆Pk∆)]− 1

2

N∑

j=1

1

λ2
j

EΩ[tr(Pj∆)]2 +O(t3).

(22)

Theorem 4.3. Assume that the conditions of Theorem 4.1 hold.

(a) If D0 = λ1I, then

log D̄Aff − logD0 =
1

λ1
∆̄E − 1

2λ2
1

EΩ(∆
2) +O(t3). (23)
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(b) If the eigenvalues of D0 are all distinct,

log det(D̄Aff )− log det(D0)

=

N∑

j=1

1

λj
tr(Pj∆̄E)

−1

2

N∑

j=1

N∑

k=1

1

λjλk
EΩ[tr(Pj∆Pk∆)]

+

N∑

j=1

N∑

k:k 6=j

1

λj

[
1

2λk
− 1

λk − λj

]
tr(Pj∆̄EPk∆̄E)

+
1

2

N∑

j=1

1

λ2
j

[
tr((Pj∆̄E)

2)− [tr(Pj∆̄E)]
2
]
+O(t3). (24)

These theorems show that, the three means are the same up to the first order
terms. If D0 is isotropic, then the first order difference between these means
and the truth (in logarithm scale) is (1/λ1)∆̄E . Moreover, D̄LE and D̄Aff are
the same even up to the second order terms. If D0 is anisotropic, then the
first order difference in log-determinant between these means and the truth
is
∑N

j=1
1
λj
tr(Pj∆̄E). Also, in this case, all three means differ in second order

terms.

4.2. Comparison of smoothers

In this subsection, we utilize the expansions in Section 4.1 to compare the three
tensor smoothers described in Section 3. We assume that, the tensors being
smoothed are derived from the raw DWI data by using one of the regression
methods discussed in Section 2. For comparison purposes we focus on the asymp-
totic bias of the smoothed tensors, as the variance is inversely proportional to
the size of the smoothing neighborhood and is not very sensitive to the choice of
the smoother. The main objective here is to demonstrate the effect of different
metrics on the performance of local constant smoothing under different local
structures of the tensor field. Since we are dealing with DTI, throughout this
subsection, we have N = 3 where N is the dimension of the tensor space.

We first relate the notations in Section 4.1 to the context of tensor smoothing.
Now, ω is the voxel index and D(ω) is the estimated tensor based on the raw
DWI data at that voxel, while Ω denotes the smoothing neighborhood of the
target voxel, and PΩ is the measure determined by the kernel weights. Thus,
the mean tensor defined in (17) is the local constant estimate given in (12).
In the following, we assume that a compact kernel is used. Note that, as the
bandwidth of the kernel goes to zero, the parameter t in (18) goes to zero if the
tensor field is sufficiently smooth and the noise in the raw DWI data goes to zero
as well. We adopt an infill asymptotic framework in which as the bandwidth goes
to zero, the number of data points in the neighborhood increases. Specifically,
we assume that |Ω| goes to infinity and rΩ :=

∑
ω∈Ω(p(ω))

2 = o(1) as t → 0
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where {p(ω) : ω ∈ Ω} denotes the probability mass function of PΩ. This is
true for example if PΩ is the uniform measure on Ω since then rΩ = 1/|Ω|.
More generally, this holds if the kernel is a continuous density that is compactly
supported. We further assume that |Ω| ≤ t−K , for some K > 0, which puts an
upper bound on the growth rate of |Ω| as t → 0.

We denote the underlying true tensor at each voxel ω by D0(ω) and denote
the true tensor at the target voxel for smoothing by D0. The observed tensors
D(ω)’s may be viewed as noisy versions of D0(ω)’s. The analysis in Section 2
shows that if a regression estimator is used, then the noise in D(ω) is approxi-
mately additive. Moreover, the spatial heterogeneity is another factor influenc-
ing estimator bias of the kernel smoothers. In the analysis of Case 2 described
below, we treat D0(ω)’s as random perturbations of D0. This perspective is in
agreement with approaches in spatial statistics where the spatial field is treated
as a random process. We look into the effects of these two factors separately by
considering the following two cases.

Case 1 There is no spatial inhomogeneity, i.e., D0(ω) = D0 for all ω ∈ Ω. In this
case, the sensor noise from the DTI scanner is the sole source of variation
in D(ω)’s leading to the bias in the kernel estimators.

Case 2 The noise in the DWI data is small, such that the spatial inhomogeneity
is the dominant source of variation in D(ω)’s. Moreover, we study a par-
ticular case where the geometric mean of the tensors {D0(ω) : ω ∈ Ω} is
approximately equal to the target tensor D0.

For the subsequent analysis, we assume that, in the additive noise model (2)
for DWI data, εq(ω)’s are i.i.d. across voxel ω ∈ Ω and gradient q ∈ Q, and
the moment generating function of ‖ εq(ω) ‖2 is finite in a neighborhood of
zero, for example, when the coordinates of εq(ω) have sub-Gaussian tails. By
Chebyshev’s inequality, this implies that for every c > 0, there is a c′ > 0 such
that, for any δ ∈ (0, 1),

P


max

ω∈Ω

∑

q∈Q

‖ εq(ω) ‖3≥ c′|Q|(log(1/δ) + log |Q|)3/2

 ≤ 2|Ω|δc. (25)

This allows us to impose a uniform tail bound on the residual terms in the
expansions of the regression estimators in Propositions 2.1 and 2.2. Since Q is
fixed, we ignore the terms involving log |Q| when using the bound (25) with a
sequence δ → 0.

Case 1. Let σ be the standard deviation of the noise in raw DWI data (see
equation (2)). By Propositions 2.1 and 2.2, and the fact that D0(ω) = D0, for
all ω ∈ Ω, we have

∆(ω) = D(ω)−D0 = [σD1(ω) + σ2D2(ω)] +R∆(ω) := ∆∗(ω) +R∆(ω), (26)

where R∆(ω) = O(σ3(log(1/σ))3/2) with high probability1, and D1(ω) and

1We say that an event holds with high probability if the complement of that event has
probability O(δc) for a given c > 0 where δ is a positive sequence converging to zero.
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D2(ω) denote the first order and second order terms in the expansion of D(ω)
aroundD0 (in matrix form). Thus, the parameter tmay be taken as σ

√
log(1/σ),

since this ensures that equation (18) is satisfied with high probability. Then

∆̄E = EΩ(∆) = ∆̄∗
E + EΩ(R∆), (27)

where EΩ(R∆) = O(σ3(log(1/σ))3/2) with high probability and ∆̄∗
E := EΩ(∆

∗) =
σEΩ(D1) + σ2

EΩ(D2).
We first consider the case when D(ω)’s are the nonlinear regression estimates.

By Proposition 2.2, E(D1) = E(EΩ(D1)) = 0 and hence

E(∆̄∗
E) = E(EΩ(∆

∗)) = σ2
E(D2). (28)

Moreover, since Var(vec(∆̄∗
E)) = rΩVar(vec(∆

∗)), we have

E[vec(∆̄∗
E)vec(∆̄

∗
E)

T ]

= rΩVar(vec(∆
∗)) + E(vec(∆̄∗

E))E(vec(∆̄
∗
E))

T

= rΩE(vec(∆
∗)vec(∆∗)T ) + (1 − rΩ)E(vec(∆

∗))E(vec(∆∗))T

= rΩσ
2Var(vec(D1)) + rΩO(σ3) +O(σ4). (29)

where, in the last step we have used the fact that

E(vec(∆∗)vec(∆∗)T )

= σ2Var(vec(D1)) + σ3[E(vec(D1)(vec(D2))
T ) + E(vec(D2)(vec(D1))

T )]

+ σ4
E(vec(D2)vec(D2)

T )

= σ2
E(vec(D1)vec(D1)

T ) +O(σ3). (30)

Note that, E(vec(D2)) and Var(vec(D1)) are given in Proposition 2.2.
Asymptotic biases of the logarithm of the smoothers with respect to logD0,

denoted generically by ABias(log D̄; logD0), are defined as expectations of the
leading order terms (i.e., the terms that are linear or quadratic in ∆∗ or ∆̄∗

E)
in the asymptotic expansions of log D̄ (see Theorems 4.1, 4.2 and 4.3). Note
that, by the discussion above, the remainder terms in these expansions are of
the order O(σ3(log(1/σ))3/2) with high probability.

If D0 = λ1I3, by part (a) of Theorems 4.1, 4.2 and 4.3, and equations (26) –
(29), we conclude that:

Corollary 4.1. If D0 is isotropic, then

ABias(log D̄E ; logD
0) =

1

λ1
E(∆̄∗

E)−
1

2λ2
1

E((∆̄∗
E)

2)

=
1

λ1
E(∆̄∗

E)− rΩ · 1

2λ2
1

E((∆∗)2) +O(σ4),

ABias(log D̄LE ; logD
0) =

1

λ1
E(∆̄∗

E)−
1

2λ2
1

E((∆∗)2),

ABias(log D̄Aff ; logD
0) =

1

λ1
E(∆̄∗

E)−
1

2λ2
1

E((∆∗)2).
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Also, Lemma 8.1 in the Appendix shows that if the gradient directions are
uniform on the sphere, then E(∆̄∗

E) = σ2
E(D2) is a negative definite matrix.

Since E((∆∗)2) is positive definite and is of order O(σ2), under the assumption
that rΩ = o(1), the two geometric smoothers are more biased than the Euclidean
smoother when D0 is isotropic and the gradient design is uniform.

If D0 is anisotropic, asymptotic expansions for the smoothers can be obtained
from Propositions 8.1, 8.2 and 8.3 in the Appendix. Using these and equations
(26)–(29), we have the following:

Corollary 4.2. If D0 is anisotropic, then

ABias(log D̄E ; logD
0) = σ2(T1 − rΩT2 + rΩT3) +O(rΩσ

3) +O(σ4),

ABias(log D̄LE; logD
0) = σ2(T1 − T2 + T3) +O(σ3),

ABias(log D̄Aff ; logD
0) = σ2(T1 − rΩT2 + rΩT3 + (1− rΩ)T4) +O(σ3),

where

T1 =

3∑

j=1

1

λj
tr(PjE(D2))Pj −

3∑

j=1

3∑

k 6=j

logλj

λk − λj
[PjE(D2)Pk + PkE(D2)Pj ]

T2 =

3∑

j=1

3∑

k:k 6=j

1

λj(λk − λj)
E[tr(PjD1PkD1)]Pj +

1

2

3∑

j=1

1

λ2
j

E[tr(PjD1)]
2Pj

T3 =

3∑

j=1

3∑

k:k 6=j

3∑

l:l 6=j

logλj

(λk − λj)(λl − λj)

× E [PjD1PkD1Pl + PkD1PjD1Pl + PkD1PlD1Pj ]

−
3∑

j=1

3∑

k:k 6=j

logλj

(λk − λj)2
E [PjD1PjD1Pk + PjD1PkD1Pj + PkD1PjD1Pj ]

−
3∑

j=1

3∑

k:k 6=j

1

λj(λk − λj)
E[tr(PjD1)(PjD1Pk + PkD1Pj)]

T4 = −1

2

3∑

j=1

3∑

k=1

1

λjλk
E[tr(PjD1PkD1)]Pj

+
1

2

3∑

j=1

3∑

k=1

3∑

l:l 6=j

logλj

λk(λl − λj)
E [PjD1PkD1Pl + PlD1PkD1Pj ] .

Corollary 4.2 shows that the asymptotic biases of all three estimators are of
the order O(σ2). Note that, each summand in the Ti’s can be expressed as a
product of two terms, one is a polynomial of inverses of λj ’s and their differ-
ences (and multiplied by logλj ’s in some instances), and the other involves linear
functions of Var(vec(D1)) and E(vec(D2)). By (7) and (10), the latter quantities
are dependent on D0 essentially only through the matrix (

∑
q∈Q S2

q
xqx

T
q
)−1,
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as long as the number of gradient directions is not too small. Now consider
the case where D0 is highly anisotropic, such that its smallest eigenvalue ap-
proaches zero while assuming constant diffusivity, i.e., constant det(D0). Under
this setting, the terms T2, T3 and T4 diverge faster than T1 due to the presence
of additional multipliers of the form 1/λj or 1/(λk −λj) in T2, T3 and T4. This,
and the fact that rΩ = o(1), imply that ABias(log D̄LE; logD

0) grows faster
than ABias(log D̄E ; logD

0). For comparing the asymptotic biases of log D̄Aff

and log D̄E , first it can be checked that T4 diverges faster than rΩT2. We further
suppose that λj−1 − λj ≥ c0λj−1 for some fixed c0 > 0 for j = 2, 3. This con-
dition ensures that the eigenvalues of D0 do not coalesce as D0 becomes more
anisotropic and is needed to show that T4 diverges faster than rΩT3. Specifi-
cally, as long as rΩmax{| logλ1|, | logλ3|} = o(1), then under the above setting,
ABias(log D̄Aff ; logD

0) grows faster than ABias(log D̄E; logD
0). These show

that when the true tensor is highly anisotropic, the Euclidean smoother tends
to have smaller second order bias than the geometric smoothers.

If linear regression estimates are used as input for smoothing, then it is easy to
see that the Euclidean smoother has a bias of order O(rΩσ

2) = o(σ2), while the
biases in the two geometric smoothers are of the order O(σ2). This is because,
from Proposition 2.1 we can deduce that E(∆̄∗

E) = 0, and hence the terms
involving E(∆̄∗

E) do not contribute to the expansions of the asymptotic biases.
In summary, when the tensor filed is locally homogeneous, the Euclidean

smoother tends to have smaller second order bias than the geometric smoothers.

Case 2. We assume that the underlying true tensors D0(ω)’s are perturbed
versions of the target tensor D0, where the perturbation is additive on the loga-
rithm of the eigenvalues of D0, but does not alter the eigenvectors. Specifically,
let the spectral decomposition of D0 be D0 = GΛGT , where Λ is a diagonal
matrix with elements being the ordered eigenvalues of D0: λ1 ≥ λ2 ≥ λ3 > 0.
Then, we assume

D0(ω) = G diag(λ1e
τZ1(ω), λ2e

τZ2(ω), λ3e
τZ3(ω)) GT , (31)

where τ > 0 is a scale parameter and the random variables {(Zj(ω))
3
j=1 : ω ∈ Ω}

satisfy the following:

Condition M: EΩ(Zj) = 0 for j = 1, . . . , 3; Zj(ω)’s are uniformly bounded
in ω.

Note that, under this model, the perturbations are larger along the dominant
eigen-directions of D0. This can be seen as an additive noise structure under
the log-Euclidean geometry. Since by (31), D0(ω)’s commute with each other,
the log-Euclidean and affine invariant means of {D0(ω) : ω ∈ Ω} are the same.
Moreover, under condition M, the log-Euclidean mean can be easily seen to
be equal to D0. However, by Jensen’s inequality, EΩ(e

Zj ) > 1 unless Zj is
degenerate at zero, which implies that Euclidean mean is not equal to D0.
Indeed, the difference between the two means is of order O(τ2).

Assume that σ = o(τ), where σ is the standard deviation of the additive
noise associated with the DWI data. This means that the noise in DWI data is
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small compared with the degree of spatial variation. As in Case 1, we compare
the asymptotic biases of the three smoothers under the assumption that rΩ :=∑

ω∈Ω(p(ω))
2 = o(1) as τ → 0. For simplicity of exposition, we only state the

result when D(ω) is the nonlinear regression estimator and D0 is anisotropic
(i.e., its eigenvalues are all distinct).

Corollary 4.3. Suppose that D0(ω) is given by (31) and D(ω) denotes the
nonlinear regression estimate. If σ = o(τ), and rΩ = o(1), as τ → 0, and
condition M holds, then if the eigenvalues of D0 are all distinct,

ABias(log D̄E , logD
0) =

τ2

2
(

3∑

j=1

EΩ(Z
2
j )Pj) + σ2(T1 − rΩT2 + rΩT3) +O(τ3)

ABias(log D̄LE , logD
0) = σ2(T1 − T2 + T3) +O(τ3)

ABias(log D̄Aff , logD
0) = σ2(T1 − rΩT2 + rΩT3 + (1 − rΩ)T4) +O(τ3)

where the terms Ti, i = 1, . . . , 4, are as in Corollary 4.2.

Corollary 4.3 shows that the asymptotic biases of the geometric smoothers
are smaller than that of the Euclidean smoother in terms of the logarithm of
the mean. Corollary 4.3 can be proved by using arguments similar to those used
in proving Corollary 4.2 but with a different expansion for ∆(ω). The details
are given in the Appendix.

Remark 4.1. Qualitatively similar statements hold under a more general per-
turbation model, with the spectral decomposition for D0(ω) given by

D0(ω) = exp(τX(ω))G · diag(λ1 exp(τZ1(ω)), λ2 exp(τZ2(ω)), λ3 exp(τZ3(ω)))

·GT exp(−τX(ω)) (32)

whereX(ω)’s are skew-symmetric randommatrices which are uniformly bounded
with respect to ω and are independent of {Zj}3j=1. Thus, under this model
the perturbation is in terms of both eigenvalues and eigenvectors and the log-
Euclidean mean of {D0(ω) : ω ∈ Ω} is only approximately the same as D0. As
long as the magnitude of eigenvector perturbations is of a smaller order than that
of the eigenvalue perturbations (specifically, EΩ(X) = o(τ) and EΩ(X

2) = o(1),
as τ → 0), the geometric smoothers have smaller bias than the Euclidean
smoother.

Remark 4.2. Propositions 8.2 and 8.3 (in the Appendix) provide clues as
for when the affine-invariant smoother is likely to be more efficient than the
log-Euclidean smoother. Suppose that the noise structure is such that in the
expansions of log D̄LE and log D̄Aff , the terms that are quadratic in ∆̄E can be

ignored. Then, the dominant terms in the asymptotic biases are T̂1− T̂2+ T̂3 for
log D̄LE and T̂1 + T̂4 for log D̄Aff , where T̂i’s has the same functional form as

T̃i’s in (59) with ∆̄∗
E replaced by ∆̄E and ∆∗ replaced by ∆. Since the terms in

the expression for T̂3 involve inverses of quadratic terms in the spacings between
the eigenvalues, while all the other terms involve inverses of at most linear terms
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in the spacings, this suggests that the affine-invariant smoother tends to have
smaller bias compared to the log-Euclidean smoother provided that λ1, λ2 and
λ3 are of similar magnitude while the spacing (λj−1 − λj) is of smaller order
than λj−1 for at least one j ∈ {2, 3}.

The analysis in this subsection suggests that under the small noise setting,
the Euclidean smoother may or may not outperform the geometric smoothers
in terms of bias, depending on whether raw DWI sensor noise or spatial hetero-
geneity of the tensor field dominate.

5. Simulation studies

In this section, we conduct simulation studies that explore how the differences
among the three kernel smoothers extend to scenarios with relatively larger
levels of sensor noise.

Besides the choice of metrics, one also needs to choose a scheme to assign
weights wi(s)’s in (12). The conventional approach is to simply set weights as
in (11) where K is a fixed kernel. This is referred to as isotropic smoothing.
However, the tensor field often shows various degrees of anisotropy in differ-
ent regions and the tensors tend to be more homogeneous along the leading
anisotropic directions (e.g., along the fiber tracts). Thus it makes sense to set
the weights larger if the vector si−s is aligned to the leading diffusion direction
at s. Therefore, we propose the following anisotropic weighting scheme:

ωi(s) := Kh

(√
tr(D̂)(si − s)T D̂−1(si − s)

)
, (33)

where D̂ is the current estimate of the tensor at voxel location s, and Kh(·) :=
K(·/h) is a nonnegative, integrable kernel with h > 0 being the bandwidth.

The use of tr(D̂) in (33) is to set the weights scale-free with respect to D̂.
There are other schemes for anisotropic weights. For example, in Tabelow et al.
(2008), the term tr(D̂) is replaced by det(D̂) in (33), which is supposed to
capture not only the directionality of the local tensor field, but also the degree
of anisotropy. Chung et al. (2003, 2005) also propose kernel smoothing under
Euclidean geometry with a different scheme of anisotropic kernel weights.

In the following, we conduct two simulation studies. Simulation design I cor-
responds to Case 1 studied in Section 4.2, where the true tensor field is locally
homogeneous and the dominant source of variability in the tensor field comes
from the raw DWI data. In the second simulation study, we consider a case
with substantial spatial variations in the underlying tensor field which is gen-
erated based on a real human brain diffusion MRI data set. Thus this setting
may be seen as a realistic generalization of Case 2. For both simulations, we
consider different levels of observational noise in the raw DWI data. For per-
formance measure, we use the median (across a region of the tensor field) of
the squared affine-invariant distances between true and smoothed tensors at
a variety of combinations of preliminary isotropic smoothing bandwidth and
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secondary anisotropic smoothing bandwidth. We choose median distance over
mean distance because of its robustness and the fact that the log-Euclidean
and affine-invariant metrics occasionally produce extreme estimates in scenar-
ios where the true tensor is near singular and/or the noise level is high. Moreover,
using Euclidean distance as error measure leads to qualitatively similar results.

5.1. Simulation I

Here we construct a simulated tensor field on a 128× 128× 4 three-dimension
grid consisting of the background regions with identical isotropic tensors and the
banded regions with three parallel vertical bands and three horizonal bands (for
each of the four slices), where within each band tensors are identical and aligned
in either the x− or the y− direction. The bands are of various widths and degrees
of anisotropy (see Figure S-1 and Table S-1 of the Supplementary Materials for
details). For a clearer comparison of different smoothers, we examine their per-
formance on four sets of tensors: (i) the “whole set” – the entire set of tensors;
(ii) the “crossings,” where pairs of bands intersect or bands intersect with the
background; (iii) the “background interior” regions that are within the back-
ground and are at least four voxels away from any crossing; and (iv) the “band
interior” regions that are within a band and are at least four voxels away from
the background. The purpose is to compare smoother performance on homoge-
nous regions where diffusion is isotropic (background interior) and anisotropic
(band interior), as well as on heterogenous regions where the diffusion direction
and the degree of anisotropy vary within individual neighborhoods (crossings).

At each voxel, we simulate the raw DWI data Ŝq’s using the true tensor at
that voxel and the Rician noise model (equations (1) to (3)). Specifically, we
set S0 = 1, 000 and use 9 gradient directions each repeated twice, which are
normalized versions of the following vectors

(1, 0, 1), (1, 1, 0), (0, 1, 1), (3, 2, 1), (0.9, 0.45, 0.2), (1, 0, 0), (0, 1, 0),

(0, 0, 1), (2, 1, 1.3).

This gradient design is from a real DT-MRI study performed in UC Davis. We
consider three different values of the noise parameter σ = 10, 50, 100, which
correspond to SNR := S0/σ = 100, 20 and 10. These are referred to as “low”,
“moderate” and “high” noise levels, respectively. Such signal to noise ratios are
typical for real DTI studies with SNR= 100 at the higher end and SNR = 10
at the lower end (Farrell et al., 2007; Parker et al., 2000; Tuch et al., 2002).
Finally, at each voxel, a nonlinear regression procedure is applied to the DWI
data to derive the observed tensors as inputs for the smoothing procedure.

Errors in terms of affine-invariant distance between kernel-smoothed and
ground-truth tensors are summarized in Figures 1, 2 and 3. At the low noise level
(σ = 10), the Euclidean smoother works marginally better than the geometric
smoothers on the isotropic homogeneous region – “background interior”, and its
advantage is more pronounced on the anisotropic homogeneous region – “bands
interior”. This is consistent with the analysis in Section 4.2. Moreover, smooth-
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Fig 1. Simulation I: σ = 10. Comparison of median errors measured by affine invariant dis-
tance over different regions for “observed” tensors (obtained by nonlinear regression) and
Euclidean, log-Euclidean and Affine smoothers. In “bandwidth combination”: the first number
denotes the isotropic bandwidth and the second number denotes the anisotropic bandwidth.

ing is not beneficial on the heterogenous “bands crossing” regions at low noise
level. At higher noise levels (σ = 50, 100), Euclidean smoothing substantially
outperforms geometric smoothing in anisotropic regions (“bands interior” and
“bands crossing”), and is slightly better for the isotropic region (“background
interior”). The two geometric smoothers perform comparably regardless of noise
levels and regional heterogeneity, although affine-invariant smoothing is slightly
better at higher noise levels. Also, anisotropic smoothing is seen to be beneficial
in the anisotropic “bands interior” regions when noise level is low.

5.2. Simulation II

Here, we first smoothed four axial slices of a real DTI scan for one human subject
from the data set described in Section 6 using affine-invariant smoothing. We
then used the resulting tensors as the underlying true tensors and simulated the
raw DWI data using the 18 gradient directions as described in Section 5.1 and
adding Rician noise (Figure 4). We set the baseline signal strength S0 = 1000
and consider two noise levels, namely “low noise” – σ = 10 and “moderate
noise” – σ = 50.
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Fig 2. Simulation I: σ = 50. Comparison of median errors measured by affine invariant dis-
tance over different regions for “observed” tensors (obtained by nonlinear regression) and
Euclidean, log-Euclidean and Affine smoothers. In “bandwidth combination”: the first number
denotes the isotropic bandwidth and the second number denotes the anisotropic bandwidth.

Errors in terms of affine-invariant distance between kernel-smoothed and
ground-truth tensors are shown in Figure 5 (for σ = 10) and Figure 6 (for
σ = 50). As can be seen from these figures, for each isotropic bandwidth smaller
than 0.9 for σ = 10 and smaller than 1.3 for σ = 50, there is an optimal
anisotropic smoothing bandwidth, and bandwidths larger and smaller than the
optimal one suffer from over- and under-smoothing, respectively. For σ = 10, the
geometric smoothers outperform the Euclidean smoother, especially at larger
bandwidths. In contrast, when σ = 50, the Euclidean smoother has smaller er-
ror than the geometric smoothers. This is consistent with the findings in Section
4, that is, when spatial heterogeneity is dominant over the sensor noise in DWI
data, the geometric smoothers may be more advantageous, while the Euclidean
smoothers are more advantageous when sensor noise is dominant. We also ob-
serve that at the low noise level, the affine-invariant smoother generally performs
better than the log-Euclidean smoother. It is conjectured that a presence of the
features described in Remark 4.2 in Section 4.2 in a significant portion of the
tensor field may be partly responsible for the observed phenomenon.
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Fig 3. Simulation I: σ = 100. Comparison of median errors measured by affine invariant
distance over different regions for “observed” tensors (obtained by nonlinear regression)
and Euclidean, log-Euclidean and Affine smoothers. In “bandwidth combination”: the first
number denotes the isotropic bandwidth and the second number denotes the anisotropic band-
width.

In summary, the results in Sections 4 and 5 show that the choice of the best
kernel smoother depends on the sensor noise level in the raw DWI data and the
degree and nature of spatial variation of the underlying tensor field. When the
noise from the raw DWI data dominates, the Euclidean smoother is less biased
and tends to perform better. On the other hand, if spatial variation of the
tensor field is dominant, geometric smoothers may perform better. Moreover,
the simulation results also show that anisotropic smoothing is often beneficial
in anisotropic and heterogeneous regions.

6. Application to DT-MRI scans of human brain

A third evaluation of the kernel smoothers was performed on a set of 33 real
DTI scans of elderly individuals who volunteered for research at the UC Davis
Alzheimer’s Disease Center. The purpose of the experiments was to evaluate
the degree to which the smoothers enhanced or diminished the biological plau-
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Fig 4. Simulation II: Upper left panel: raw tensors in slice 10; Upper right panel:

smoothed tensors used as ground truth in the simulation in the rectangle region shown in the
upper left panel; Lower left panel: noisy tensors after adding Rician noise (σ = 10); Lower

right panel: smoothed tensors by Affine smoother
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Fig 5. Simulation II: σ = 10. Comparison of median errors measured by affine-invariant
distance across the whole tensor field for “observed” tensors (obtained by nonlinear regres-

sion) and Euclidean, log-Euclidean and Affine smoothers.
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Fig 6. Simulation II: σ = 50. Comparison of median errors measured by affine-invariant
distance across the whole tensor field for “observed” tensors (obtained by nonlinear regres-

sion) and Euclidean, log-Euclidean and Affine smoothers.

sibility of white matter integrity and inter-regional connectivity measures calcu-
lated from the diffusion tensors. We assessed the plausibility of the DTI-based
measures in terms of a few bedrock neuroanatomical principles: (a) in the cer-
brospinal fluid (CSF), water is free to diffuse in any direction, and therefore
fractional anisotropy (FA, defined in equation (34) below), which measures the
degree to which diffusion tensor suggests an anisotropic water diffusion distri-
bution, should be near zero in the CSF; (b) the corpus callosum is a highly-
organized white matter tract, and therefore its FA should be relatively high; (c)
white matter tracts do not travel through CSF compartments, and therefore the
number of fibers traced by DTI tractography that intersect CSF spaces should
be low; and (d) the parieto-temporo-occipital subregion of the corpus callosum
connects the left and right parietal, temporal, and occipital lobes to each other,
and therefore the number of tractography fibers that connect those lobar re-
gions via the parieto-temporo-occipital subregion of the corpus callosum should
be relatively high. Noise in DTI acquisition may cause the collected DTI data
to violate these basic principles. Our goal is to evaluate the degree to which the
removal of noise via kernel smoothing reduces the instances of such violations.

6.1. Data

Imaging was performed at the UC Davis Imaging Research Center on a 1.5T GE
Signa Horizon LX Echospeed system. Subjects were scanned in a supine position
with an 8-channel head coil placed surrounding the head. After placement of the
head coil, subjects were inserted into the MRI scanner magnetic field and two
MRI sequences were acquired: a three-dimensional T1-weighted coronal spoiled
gradient-recalled echo acquisition (T1) used for parcellating the brain into tissue
classes and regions of interest; and a single-shot spin-echo echo planar imaging
DTI sequence used for estimating diffusion tensors.
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The T1-weighted sequence was an axial-oblique 3D Fast Spoiled Gradient
Recalled Echo sequence with the following parameters: TE: 2.9 ms (min), TR:
9 ms (min), Flip angle: 15 deg, Slice thickness: 1.5 mm, Number of Slices: 128,
FOV: 25 cm x 25 cm, Matrix: 256 x 256. Data from the T1 sequence gave an
indication of the tissue type at each location in the brain: white matter ap-
peared brightest, cerebrospinal fluid (CSF) appeared darkest, and gray matter
appeared as an intermediate gray. This contrast between tissue types enabled an
expert rater to manually trace the corpus callosum (a white matter structure),
along with a subdivision of the corpus callosum into four sub-regions, using
established protocols on a population-averaged brain called the T1-weighted
Minimum Deformation Template (MDT) (Kochunov et al., 2001). The subdivi-
sion partitioned the corpus callosum into four zones that carry interhemispheric
axonal connections within prefrontal cortex, premotor and supplementary mo-
tor cortex, sensory-motor cortex, and parieto-temporo-occipital cortex without
post-central gyrus respectively. The MDT represents the brain of a prototypi-
cal elderly individual whose brain anatomy has been warped to represent the
approximate average anatomy of a large group of cognitively-healthy elderly
individuals. In addition, an established method was used to segment the MDT
into gray, white, and CSF tissue compartments (Rajapakse et al., 1996). The
MDT was nonlinearly warped to the skull-stripped T1-weighted scan of each
individual (Rueckert et al., 1999), thus allowing the delineation of the corpus
callosum and its sub-regions to be transferred to the brain of each individual in
the study.

Relevant DTI acquisition parameters include: TE: 94 ms, TR: 8000 ms, Flip
angle: 90 degrees, Slice thickness: 5 mm, slice spacing: 0.0 mm, FOV: 22 cm
× 22 cm, Matrix: 128 × 128, B-value: 1000 s/mm2. Each acquisition included
collection of 2 B0 images and 4 diffusion-weighted images acquired along each
of 6 gradient directions. The directions vectors were:

(1, 0, 1), (1, 1, 0), (0, 1, 1), (−1, 0, 1), (−1, 1, 0), (0,−1, 1).

Geometric distortions were removed from the diffusion-weighted images (De Cres-
pigny and Moseley, 1998), and diffusion tensors were estimated using a linear
least squares estimator (Basser and Pierpaoli, 2005). The eigenvalues of the
diffusion tensors were then estimated, and FA was calculated at each voxel as
follows:

FA =
1√
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

, (34)

where λj ’s are the eigenvalues of the tensor. The T1-weighted scan was affinely
aligned to the image of FA values derived from the corresponding DTI data.
This allowed the CSF, corpus callosum, and corpus callosum subdivision labels
to be transferred from the space of the MDT image, to the space of the subject
T1-weighted scan, and then to the space of the corresponding DTI data. Label
maps in the DTI space were eroded by one voxel to remove spurious labels
generated by partial volume effects.
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6.2. Experimental design

For each of the 33 DTI scans, we calculated FA at all voxels labeled as CSF, prior
to smoothing. FA is a commonly used measure of the degree of anisotropy of
diffusion: if diffusion is isotropic, then FA = 0; if diffusion is highly anisotropic,
then FA is near one. Then, for each smoother, we calculated FA at CSF voxels
after smoothing. We used the same two-stage isotropic-anisotropic smoothing
procedure described in the simulation study (Section 5), with isotropic band-
width of 0.8 and anisotropic bandwidth of 1.8. Analogous results with a smaller
anisotropic bandwidth of 1.2 are very similar. For each scan, we summarized
smoothing-induced shifts in the distribution of CSF FA values by calculating
the difference in the median CSF FA values before and after smoothing (Results
are similar for smoothing-induced differences in the 75th and 90th percentiles
of CSF FA values). Greater reductions in median CSF FA caused by smoothing
would indicate greater smoothing performance in terms of encouraging biological
plausibility. Similarly, for each scan and smoother, we calculated the difference
in median corpus callosum FA before and after smoothing; greater reductions
in callosal FA caused by smoothing are considered detrimental, since relatively
higher FA there is more plausible.

We then used the MedINRIA software package (Toussaint et al., 2007), and
its implementation of the TensorLines algorithm (Weinstein et al., 1999), to
trace white matter tract fibers throughout the brain based on the raw diffu-
sion tensors and tensors that were smoothed using each of the three smoothers.
All tract fibers were stored as trajectories of 3D points in the DTI space. For
each individual, in-house software was used to select only those fibers that in-
tersect selected regions of interest defined by our anatomical labels. We first
isolated the tract fibers that intersected voxels labeled as CSF, and counted
the number of such CSF-intersecting tract fibers before and after smoothing.
Greater reduction of such spurious tract fibers is an indicator of higher per-
formance of the smoother. We then isolated tract fibers that intersected both
the parieto-temporo-occipital portion of the corpus callosum, and the white
matter of the occipital lobe; greater addition of such plausible fibers is an indi-
cator of higher performance. However, we guarded against the possibility that
smoothers increased the number of such plausible fibers simply by increasing the
total number of fibers, both plausible and implausible, that connect the parieto-
temporo-occipital corpus callosum to any and all parts of the brain– to do this,
we calculated the number of implausible fibers connecting the parieto-temporo-
occipital corpus callosum to the prefrontal cortex before and after smoothing,
to be sure that this number did not increase with smoothing.

6.3. Results

A boxplot of smoothing-induced reductions in median CSF FA, across all 33 in-
dividuals for the three smoothers is shown in the upper left panel of Figure 7. As
in the simulation study, all three smoothers performed similarly in this highly
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Fig 7. Application. Upper left panel: Boxplots of the reduction in median CSF FA before
and after smoothing for the three smoothers across 33 scans. Upper right panel: Boxplots
of the reduction in median callosal FA before and after smoothing for the three smoothers.
Lower left panel: Boxplots of reduction in the number of spurious tract fibers intersecting
the CSF before and after smoothing for the three smoothers.

isotropic region. However, both geometric smoothers succeeded in maintaining
diffusion anisotropy in the corpus callosum (CC) much better than the Euclidean
smoother (Figure 7, upper right), with Euclidean smoothing erroneously reduc-
ing the high FA inherent in this structure by approximately 0.05 in terms of
median FA. Analogous histograms for differences in other per-individual FA
summary measures are similar. This result reinforces the findings of the simula-
tion study: the geometric smoothers may be more effective at maintaining the
structure of real-world, highly-organized tensor fields while removing low levels
of noise.

A boxplot of smoothing-induced reductions in number of CSF-intersecting
fibers is shown in the lower left panel of Figure 7. The three methods perform
similarly, although the Euclidean smoother may be superior for removing such
spurious fibers. The left panel of Figure 8 shows how many additional fibers
between occipital cortex and occipital corpus callosum were traced by tractog-
raphy after smoothing compared to before. While the performance of the three
smoothers is similar, the number of fibers added by the geometric smoothers
is slightly higher, suggesting greater performance in encouraging such biologi-
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Fig 8. Application. Left panel: Boxplots of the addition in the number of plausible tract
fibers intersecting the occipital corpus callosum and occipital lobe before and after smoothing
for the three smoothers across 33 scans. Right panel: Boxplots of the differences in the
number of implausible tract fibers intersecting the occipital corpus callosum and prefrontal
lobe before and after smoothing for the three smoothers.

cally plausible fibers. Meanwhile, the three methods are nearly identical in their
ability to prevent the number of spurious fibers intersecting occipital corpus
callosum and prefrontal cortex from increasing (right panel of Figure 8).

7. Discussion

Based on both theoretical and numerical analysis, the key finding of this study
is that the performance of diffusion tensor smoothers depends heavily on the
characteristics of both the noise from the MRI sensor and the geometric struc-
ture of the underlying tensor field. The asymptotic expansion of the linear and
nonlinear regression estimators in Section 2 quantifies the advantage of the
latter, which suggests that the nonlinear estimator should be incorporated in
standard software packages for DTI analysis. The perturbation analysis in Sec-
tions 2 and 4 shows that under the small noise regime, if the tensors in the
smoothing neighborhood is homogeneous then the Euclidean smoother tends to
have a smaller bias than the geometric smoothers. On the other hand, if the
local heterogeneity of the tensor field is the dominant component of variation of
the tensors, and the noiseless tensors follow a certain geometric regularity, then
the geometric smoothers may lead to smaller bias. In addition, the simulation
studies show that if the sensor noise from DWI data is the dominant source
of variation of the tensors, the Euclidean smoother outperforms the geometric
smoothers as the latter tend to fit the spurious structure induced by the noise
under such a case. Together, these findings suggest that DTI users may need
to revisit the conventional wisdom that geometric smoothers are generally su-
perior to Euclidean smoothers. In fact, optimal DTI smoothing may need to be
spatially adaptive, applying varying DTI metrics depending on local geometric
structures and levels of sensor noise. The simulation results also point to the
benefits of anisotropic smoothing in the highly anisotropic regions.
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These results are mostly in agreement with the qualitative features of our
findings for the real DT-MRI data (Section 6), even though there the metrics
for performance and comparison are different and are based on the biological
plausibility of the subsequent FA maps and tractography results. As in the simu-
lations, the geometric smoothers appear to perform better in highly structured,
anisotropic regions such as the corpus callosum and the fiber tract pathways in
the occipital lobe; meanwhile, all smoothers perform similarly in fairly isotropic
regions, such as the CSF. In addition, the two geometric smoothers perform
similarly in all aspects. The Euclidean smoother does an exceptional job at
removing spurious tract fibers that travel through both unstructured regions
(CSF) and structured regions. An explanation for this, suggested by the Eu-
clidean smoother’s reduction of callosal FA and occipital fiber counts, is that it
discourages highly structured tensor regions globally, including those that acci-
dentally occur in the CSF. The geometric smoothers, meanwhile, may tend to
preserve such structure.

In this paper, we have not addressed the issue of choosing smoothing param-
eters as the primary goal here is to demonstrate the comparative performance
of different smoothers. In practice, one may use an AIC type criterion or a gen-
eralized cross validation criterion, as proposed in (Yuan et al., 2012). However,
when the tensor field is inhomogeneous, any “global” choice of the bandwidth
may not be very effective. How to choose the bandwidth adaptively, while ac-
counting for spatial inhomogeneity is a future direction of study. The simulation
results also demonstrate some degrees of boundary effect. For example, at the
boundary of a band of anisotropic tensors and the background of isotropic ten-
sors, the performance of tensor smoothers is different from that in the interior
of the bands. Such boundary effect may be mitigated by a careful choice of the
anisotropic neighborhoods (for example, using a multi-stage scheme as in Tabe-
low et al. (2008)), or by employing higher order polynomial approximation of
the tensor field as in Yuan et al. (2012).

In this paper, we did not explicitly specify a probabilistic model for the tensor
distribution. Rather, it is implicitly determined by the noise model of DWI data
and the tensor estimation procedure at each voxel. In Section 4.2, under “Case
2”, we considered a specific local probabilistic structure while comparing the bias
characteristics of geometric smoothers with that of the Euclidean smoother.
This structure is based on a spectral decomposition of the tensor and with
independent random variations in the eigenvalues and eigenvectors. Possible
extensions of such a probabilistic framework is a future direction of research.

8. Appendix

8.1. Proofs of Proposition 2.1 and Proposition 2.2

Let the phase vector for the DWI signal corresponding to gradient direction q

be denoted by uq. Then uq is a unit vector in R
2. Let vq be a unit vector in R

2

such that vT
q
uq = 0 so that uqu

T
q
+ vqv

T
q
= I2.
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Next, for an arbitrary tensor D (written in the vectorized form), an arbitrary
gradient direction q and an arbitrary w ∈ R

2,

fq(w,D) :=‖ S0e
−xT

q
Duq + w ‖ . (35)

Then, fq(0, D
0) = Sq and fq(σεq, D

0) = Ŝq. We denote the partial derivatives
with respect to the first and second arguments by ∇ijfb etc, where 1 ≤ i, j ≤ 2.
Then,

∇1fq(w,D
0) =

1

fq(w,D0)
(Squq + w) =⇒ ∇1fq(0, D

0) =
1

Sq

Squq = uq.

(36)
Thus, using (36),

∇11fq(w,D
0) =

1

fq(w,D0)
I2 −

1

(fq(w,D0))3
(Squq + w)(Squq + w)T

=⇒ ∇11fq(0, D
0) =

1

Sq

(I2 − uqu
T
q
) =

1

Sq

vqv
T
q
. (37)

We also have,

∇2fq(0, D
0) = −S0 exp(−xT

q
D0)xq = −Sqxq (38)

and

∇22fq(0, D
0) = S0 exp(−xT

q
D0)xqx

T
q
= Sqxqx

T
q
. (39)

Proof of Proposition 2.1

We show that, as σ → 0, D̂LS = D0 + σD1,LS + σ2D2,LS +O(σ3|Q|−1
∑

q∈Q ‖
εq ‖3) where the random vectors D1,LS and D2,LS are given by

D1,LS = −(
∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

1

Sq

(uT
q
εq)xq), (40)

and

D2,LS = −1

2
(
∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

1

S2
q

((vT
q
εq)

2 − (uT
q
εq)

2)xq). (41)

Proposition 2.1 then follows from (40) and (41) by taking appropriate expecta-
tions and using the independence of εq’s.

We use the representation

D̂LS = −(
∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

(log Ŝq − logS0)xq)

= −(
∑

q∈Q

xqx
T
q
)−1

∑

q∈Q

(log fq(σεq, D
0)− log fq(0, D

0)− xT
q
D0)xq
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= D0 − (
∑

q∈Q

xqx
T
q
)−1


∑

q∈Q

σ
(∇1fq(0, D

0))T εq
fq(0, D0)

xq




− 1

2
(
∑

q∈Q

xqx
T
q
)−1

∑

q∈Q

σ2

[
εT
q
∇11fq(0, D

0)εq

fq(0, D0)
−

(εT
q
∇1fq(0, D

0))2

(fq(0, D0))2

]
xq

+O(σ3|Q|−1
∑

q∈Q

‖ εq ‖3).

By invoking (36) and (37), we obtain (40) and (41).

Proof of Proposition 2.2

Unlike D̂LS , there is no explicit expression for D̂NL. Instead, it satisfies the
normal equation:

∑

q∈Q

(Ŝq − S0 exp(−xT
q
D̂NL))S0 exp(−xT

q
D̂NL)xq = 0. (42)

We prove that, as σ → 0, D̂NL = D0+σD1,NL+σ2D2,NL+O(σ3|Q|−1
∑

q∈Q ‖
εq ‖3), where

D1,NL = −(
∑

q∈Q

S2
q
xqx

T
q
)−1(

∑

q∈Q

Sq(u
T
q
εq)xq), (43)

and

D2,NL = (
∑

q∈Q

S2
q
xqx

T
q
)−1


∑

q∈Q

S2
q
(xT

q
D1,NL)

2xq

+
1

2

∑

q∈Q

(Sqx
T
q
D1,NL + uT

q
εq)

2xq − 1

2

∑

q∈Q

‖ εq ‖2 xq


 . (44)

From (42) and the definition of D̂NL, it can be shown using standard argu-

ments that ‖ D̂NL−D0 ‖= O(σ|Q|−1
∑

q∈Q ‖ εq ‖) as σ → 0. Thus, expanding
the LHS of (42) in Taylor series, we have

∑

q∈Q

[
σεT

q
∇1fq(0, D

0) +
σ2

2
εT
q
∇11fq(0, D

0)εq − (∇2fq(0, D
0))T (D̂NL −D0)

−1

2
(D̂NL −D0)T∇22fq(0, D

0)(D̂NL −D0)

]

·
(
∇2fq(0, D

0) +∇22fq(0, D
0)(D̂NL −D0)

)

= O(σ3|Q|−2(
∑

q∈Q

‖ εq ‖)3).
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We can express D̂NL as D̂NL = D0 + σD1,NL + σ2D2,NL +O(σ3|Q|−1
∑

q∈Q ‖
εq ‖3), where D1,NL and D2,NL involve terms that are only linear and only
quadratic in εq’s, respectively. Substituting this in the above expression and
equating terms with multiplier σ, we have

D1,NL = (
∑

q∈Q

∇2fq(0, D
0)(∇2fq(0, D

0))T )−1(
∑

q∈Q

εT
q
∇1fq(0, D

0)∇2fq(0, D
0))

which equals (43) by virtue of (38). Also, collecting terms with multiplier σ2,

D2,NL = (
∑

q∈Q

∇2fq(0, D
0)(∇2fq(0, D

0))T )−1·


1
2

∑

q∈B

(
εT
q
∇11fq(0, D

0)εq −DT
1,NL∇22fq(0, D

0)D1,NL

)
∇2fq(0, D

0)

+
∑

q∈Q

(εT
q
∇1fq(0, D

0))∇22fq(0, D
0)D1,NL

−
∑

q∈Q

(DT
1,NL∇2fq(0, D

0))∇22fq(0, D
0)D1,NL


 .

Now, using (36)-(39) and (43), we can simplify the expression for D2,NL as

D2,NL = (
∑

q∈Q

S2
q
xqx

T
q
)−1


3
2

∑

q∈Q

S2
q
(xT

q
D1,NL)

2xq − 1

2

∑

q∈Q

(vT
q
εq)

2xq

+
∑

q∈Q

Sq(u
T
q
εq)(x

T
q
D1,NL)xq




which can be rearranged to get (44) by using the identity vqv
T
q
+ uqu

T
q
= I2.

Bias in D̂NL

The following shows that when the tensor D0 is isotropic, the second order bias
in D̂NL is negative definite and does not depend on D0.

Lemma 8.1. If D0 is isotropic, the gradient directions {q : q ∈ Q} are uni-
formly distributed on S

2, then under the framework of Proposition 2.2, E(D2,NL) =

σ2N where N is a 3× 3 negative definite matrix and D̃2,NL is the second order

bias in D̂NL written as a 3× 3 symmetric matrix.

Proof. First note that D2,NL is the vectorization of D̃2,NL so that D̃2,NL(i, i) =

D2,NL(i) for i = 1, . . . , 3 and for D̃2,NL(1, 2) = D2,NL(4), D̃2,NL(1, 3) =

D2,NL(5) and D̃2,NL(2, 3) = D2,NL(6).
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Suppose that D0 = λ1I3 and the design is uniform. Without loss of generality,
let S0 = 1. Thus, Sq = e−λ1 for all q ∈ Q. Also, uniform design implies that the
terms 1− xT

q
(
∑

q′∈Q xq′xT
q′)−1xq are the same for all q ∈ Q. In order to prove

this, we use the following facts about the uniform design: (i) |Q|−1
∑

q∈Q q4j =

1/5 for j = 1, 2, 3; (ii) |Q|−1
∑

q∈Q qjqk = 0 for j 6= k; (iii) |Q|−1
∑

q∈Q q2j q
2
k =

1/15 for j 6= k (iv) |Q|−1
∑

q∈Q q3j qk = 0 for j 6= k; and (v) |Q|−1
∑

q∈Q q2j qkql =
0 for j 6= k 6= l. (Note that this imposes a restriction on the minimum value
of |Q|.) Then it can be checked that xT

q
(
∑

q′∈Q xq′xT
q′)−1xq = 6/|Q|. Thus,

from Proposition 2.2, we obtain that E(D2,NL) is a positive multiple of (with
multiplicative factor (1− 6/|Q|))

− 1

2
(
∑

q∈Q

S2
q
xqx

T
q
)−1(

∑

q∈Q

xq) = −1

2
e2λ1(

∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

xq). (45)

Let yq = (q21 , q
2
2 , q

2
3)

T and zq = (2q1q2, 2q1q3, 2q2q3). Define,

L11 = |Q|−1
∑

q∈Q

yqy
T
q
, L12 = |Q|−1

∑

q∈Q

yqz
T
q
, and L22 = |Q|−1

∑

q∈Q

zqz
T
q
.

Then

(
∑

q∈Q

xqx
T
q
) = |Q|

[
L11 L12

L21 L22

]

where L21 = LT
12. If the design is uniform, then L12 = O (zero matrix) and

∑

q∈Q

xq =
|Q|
3

[
13

03

]
.

Using these, we have

(
∑

q∈Q

xqx
T
q
)−1(

∑

q∈Q

xq) =
1

3

[
L11 L12

L21 L22

]−1 [
13

03

]
=

1

3

[
L−1
11 13

03

]
.

Note that, the diagonal entries of L11 are all equal and off-diagonal entries are
also equal among themselves, due to the uniformity of the design. Thus, 13 is
an eigenvector of L11 and hence also of L−1

11 . Consequently, L
−1
11 13 is a positive

multiple of 13 since L−1
11 is positive definite. Now we conclude the proof of

Lemma 8.1 by invoking (45).

8.2. Proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3

In the case that D0 is anisotropic, define Hj to be the matrix

Hj :=
∑

k 6=j

1

λk − λj
Pk. (46)

Note that HjPj = PjHj = 0 for all j.
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Proposition 8.1. Suppose that the tensors {D(ω) : ω ∈ Ω} and the probability
distribution PΩ satisfy (18) and t → 0. If the eigenvalues of D0 are all distinct,
then

log D̄E − logD0

=

N∑

j=1

1

λj
tr(Pj∆̄E)Pj −

N∑

j=1

1

λj
tr(Pj∆̄EHj∆̄E)Pj −

1

2

N∑

j=1

1

λ2
j

[tr(Pj∆̄E)]
2Pj

−
N∑

j=1

logλj

[
Pj∆̄EHj +Hj∆̄EPj

]

+

N∑

j=1

logλj

[
Pj∆̄EHj∆̄EHj +Hj∆̄EPj∆̄EHj +Hj∆̄EHj∆̄EPj

−Pj∆̄EPj∆̄EH
2
j − Pj∆̄EH

2
j ∆̄EPj −H2

j ∆̄EPj∆̄EPj

]

−
N∑

j=1

1

λj
[tr(Pj∆̄E)(Pj∆̄EHj +Hj∆̄EPj)] +O(t3). (47)

Taking trace on both sides of (47), and using the fact that PjHj = 0 and
P 2
j = Pj , we get (20) when the eigenvalues of D0 are all distinct.

Proposition 8.2. Assume that the conditions of Theorem 4.1 hold. If the eigen-
values of D0 are all distinct, then

log D̄LE − logD0

=
N∑

j=1

1

λj
tr(Pj∆̄E)Pj −

N∑

j=1

1

λj
EΩ[tr(Pj∆Hj∆)]Pj −

1

2

N∑

j=1

1

λ2
j

EΩ[tr(Pj∆)]2Pj

−
N∑

j=1

logλj

[
Pj∆̄EHj +Hj∆̄EPj

]

+

N∑

j=1

logλjEΩ [Pj∆Hj∆Hj +Hj∆Pj∆Hj +Hj∆Hj∆Pj

−Pj∆Pj∆H2
j − Pj∆H2

j∆Pj −H2
j∆Pj∆Pj

]

−
N∑

j=1

1

λj
EΩ[tr(Pj∆)(Pj∆Hj +Hj∆Pj)] +O(t3). (48)

Taking trace on both sides of (48), we get (22) when the eigenvalues of D0

are all distinct.

Proposition 8.3. Assume that the conditions of Theorem 4.1 hold.

(a)

D̄Aff −D0 = ∆̄E − 1

2
EΩ

[
∆(D0)−1∆

]
+

1

2
∆̄E(D

0)−1∆̄E +O(t3). (49)
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(b) If the eigenvalues of D0 are all distinct, then

log D̄Aff − logD0

=

N∑

j=1

1

λj
tr(Pj∆̄E)Pj−

N∑

j=1

1

λj
tr(Pj∆̄EHj∆̄E)Pj−

1

2

N∑

j=1

1

λ2
j

[
tr(Pj∆̄E)

]2
Pj

− 1

2

N∑

j=1

1

λj
EΩ[tr(Pj∆(D0)−1∆)]Pj +

1

2

N∑

j=1

1

λj
tr(Pj∆̄E(D

0)−1∆̄E)Pj

−
N∑

j=1

logλj

[
Pj∆̄EHj +Hj∆̄EPj

]

+
1

2

N∑

j=1

logλjEΩ

[
Pj∆(D0)−1∆Hj +Hj∆(D0)−1∆Pj

]

− 1

2

N∑

j=1

logλj

[
Pj∆̄E(D

0)−1∆̄EHj +Hj∆̄E(D
0)−1∆̄EPj

]

+
N∑

j=1

logλj

[
Pj∆̄EHj∆̄EHj +Hj∆̄EPj∆̄EHj +Hj∆̄EHj∆̄EPj

−Pj∆̄EPj∆̄EH
2
j − Pj∆̄EH

2
j ∆̄EPj −H2

j ∆̄EPj∆̄EPj

]

−
N∑

j=1

1

λj
[tr(Pj∆̄E)(Pj∆̄EHj +Hj∆̄EPj)] +O(t3). (50)

Taking trace of both sides of (50), we get (24) when the eigenvalues of D0

are all distinct.

Proof of Proposition 8.2 and Theorem 4.2

First suppose that eigenvalues of D0 are all distinct. Let µj(ω) denote the j-th
largest eigenvalue ofD(ω) andQj(ω) denote the corresponding eigen-projection.
Then under (18), for t sufficiently small, with probability 1, µj(ω) is of multi-
plicity 1, and so Qj(ω) is a rank 1 matrix. We can then use the following matrix
perturbation analysis results (Kato, 1980)

µj(ω) = λj + tr(Pj∆(ω)) − tr(Pj∆(ω)Hj∆(ω)) +O(‖ ∆(ω) ‖3), (51)

where

Qj(ω) = Pj − (Pj∆(ω)Hj +Hj∆(ω)Pj)

+ Pj∆(ω)Hj∆(ω)Hj +Hj∆(ω)Pj∆(ω)Hj +Hj∆(ω)Hj∆(ω)Pj

− Pj∆(ω)Pj∆(ω)H2
j − Pj∆(ω)H2

j∆(ω)Pj −H2
j∆(ω)Pj∆(ω)Pj

+O(‖ ∆(ω) ‖3). (52)
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We consider an asymptotic expansion of logD(ω) around logD0 as t → 0.
By definition,

logD(ω)− logD0

=

N∑

j=1

(log µj(ω)Qj(ω)− logλjPj)

=
N∑

j=1

(log µj(ω)− logλj)Pj +
N∑

j=1

logλj(Qj(ω)− Pj)

+

N∑

j=1

(logµj(ω)− logλj)(Qj(ω)− Pj). (53)

Now, from (51) and (18), we have

logµj(ω)− logλj

= log

(
1 +

µj(ω)− λj

λj

)

=
1

λj
[tr(Pj∆(ω))− tr(Pj∆(ω)Hj∆(ω))]− 1

2λ2
j

[tr(Pj∆(ω))]2 +O(‖ ∆(ω) ‖3),

where we have used the series expansion log(1 + x) =
∑∞

n=1(−1)n−1xn/n. Sub-
stituting in (53), using (52), and finally taking expectation with respect to PΩ

and noticing that log D̄LE = EΩ(logD), we obtain (48). This concludes the
proof of Proposition 8.2. Taking trace on both sides of (48) and using the fact
that PjHj = HjPj = O (zero matrix), we have part (b) of Theorem 4.2.

Now, for part (a) of Theorem 4.2, we have D0 = λ1I. Thus, from the expan-
sion

logD(ω) = (logλ1)I + log

(
I +

1

λ1
∆(ω))

)

= logD0 +
1

λ1
∆(ω)− 1

2λ2
1

(∆(ω))2 +O(‖ ∆(ω) ‖3)

we obtain (21) by taking expectation with respect to PΩ.

Proof of Proposition 8.1 and Theorem 4.1

The proof is almost identical to the proof of Proposition 8.2 and Theorem 4.2,
the only difference being that we replace ∆(ω) by ∆̄E in every step.

Proof of Proposition 8.3 and Theorem 4.3

There is no closed form expression for D̄Aff . But it satisfies the barycentric
equation (Arsigny et al., 2005)

EΩ

[
log
(
D̄

−1/2
Aff DD̄

−1/2
Aff

)]
= O. (54)
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Define,

L(ω) = log(D̄
−1/2
Aff D(ω)D̄

−1/2
Aff ), ω ∈ Ω.

Note that, (54) implies that EΩ(L) = O. First, we show that

‖ L ‖∞:= sup
ω∈Ω

‖ L(ω) ‖= O(t). (55)

This implies that

D̄E = EΩ(D) = EΩ(D̄
1/2
Affe

LD̄
1/2
Aff)

= D̄Aff + D̄
1/2
AffEΩ(L)D̄

1/2
Aff +

1

2
D̄

1/2
AffEΩ(L

2)D̄
1/2
Aff +O(t3),

from which, after invoking the fact that EΩ(L) = O, we get

D̄Aff = D̄E − 1

2
D̄

1/2
E EΩ(L

2)D̄
1/2
E +O(t3). (56)

Now we express EΩ(L
2) in terms of an expectation involving ∆̃(ω) = D(ω)−D̄E .

In order to do this, observe that

∆̃(ω) = D(ω)− D̄E = D̄
1/2
Affe

L(ω)D̄
1/2
Aff − D̄Aff + D̄Aff − D̄E

= D̄
1/2
AffL(ω)D̄

1/2
Aff +

1

2
D̄

1/2
Aff((L(ω))

2 − EΩ(L
2))D̄

1/2
Aff +O(t3)

= D̄
1/2
E L(ω)D̄

1/2
E +

1

2
D̄

1/2
E ((L(ω))2 − EΩ(L

2))D̄
1/2
E +O(t3),

where, in the second and third steps we have used (55) and (56). Therefore,
again using (55),

EΩ(L
2) = D̄

−1/2
E EΩ(∆̃D̄−1

E ∆̃)D̄
−1/2
E +O(t3), (57)

which, together with (56), leads to the representation

D̄Aff = D̄E − 1

2
EΩ(∆̃D̄−1

E ∆̃) +O(t3)

= D0 + ∆̄E − 1

2
EΩ(∆(D0)−1∆) +

1

2
∆̄E(D

0)−1∆̄E +O(t3), (58)

where, in the last step we use the fact that ∆̃(ω) = ∆(ω)− ∆̄E and EΩ(∆) = O
and ‖ ∆̄E ‖= O(t).

For part (a) of Theorem 4.3, sinceD0 = λ1I, using the Taylor series expansion
of log(I + K), where K is the sum of the terms after D0 on the RHS of (58)
and is a symmetric matrix, (23) immediately follows.

For the proof of Proposition 8.3, using similar perturbation analysis as in the
proof of Proposition 8.2, with ∆(ω) replaced by the expression for D̄Aff −D0

obtained from (58), we obtain (50). Part (b) of Theorem 4.3 now follows by
taking trace.
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Proof of (55)

From the fact that ‖ ∆̃ ‖∞= O(t), it easily follows that EΩ(d
2
Aff (D̄E , D)) =

O(t2). Then, by definition of D̄Aff it follows that EΩ(d
2
Aff (D̄Aff , D)) = O(t2)

which implies EΩ(dAff (D̄Aff , D)) = O(t). Now, writing

log(D̄
−1/2
Aff D(ω)D̄

−1/2
Aff ) = log(D̄

−1/2
Aff D̄ED̄

−1/2
Aff + D̄

−1/2
Aff ∆̃(ω)D̄

−1/2
Aff )

and using the Baker-Campbell-Hausdorff formula (Varadarajan, 1984) (which
gives an expansion of logA−logB where A and B are positive definite matrices),
together with the fact that supω∈Ω ‖ ∆̃(ω) ‖= O(t), we conclude that

dAff (D̄Aff , D̄E) = O(t) so that ‖ D̄Aff − D̄E ‖= O(t).

From this it is easy to deduce (55).

8.3. Proofs of Corollary 4.2 and Corollary 4.3

Proof of Corollary 4.2

It can be seen from Propositions 8.1, 8.2 and 8.3 and equations (26) and (27)
that

ABias(log D̄E; logD
0) = T1 − rΩT2 + rΩT3 +O(σ4),

ABias(log D̄LE; logD
0) = T1 − T2 + T3,

ABias(log D̄Aff ; logD
0) = T1 − rΩT2 + rΩT3 + (1 − rΩ)T4 +O(σ4),

where

T̃1 =

3∑

j=1

1

λj
tr(PjE(∆̄

∗
E))Pj −

3∑

j=1

3∑

k 6=j

logλj

λk − λj

[
PjE(∆̄

∗
E)Pk + PkE(∆̄

∗
E)Pj

]

T̃2 =

3∑

j=1

3∑

k 6=j

1

λj(λk − λj)
E[tr(Pj∆

∗Pk∆
∗)]Pj +

1

2

3∑

j=1

1

λ2
j

E[tr(Pj∆
∗)]2Pj

T̃3 =
3∑

j=1

3∑

k:k 6=j

3∑

l:l 6=j

logλj

(λk − λj)(λl − λj)

× E [Pj∆
∗Pk∆

∗Pl + Pk∆
∗Pj∆

∗Pl + Pk∆
∗Pl∆

∗Pj ]

−
3∑

j=1

3∑

k:k 6=j

logλj

(λk−λj)2
E [Pj∆

∗Pj∆
∗Pk + Pj∆

∗Pk∆
∗Pj + Pk∆

∗Pj∆
∗Pj ]

−
3∑

j=1

3∑

k:k 6=j

1

λj(λk − λj)
E[tr(Pj∆

∗)(Pj∆
∗Pk + Pk∆

∗Pj)]
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T̃4 = −1

2

3∑

j=1

3∑

k=1

1

λjλk
E[tr(Pj∆

∗Pk∆
∗)]Pj

+
1

2

3∑

j=1

3∑

k=1

3∑

l:l 6=j

logλj

λk(λl − λj)
E [Pj∆

∗Pk∆
∗Pl + Pl∆

∗Pk∆
∗Pj ] . (59)

Now, the result is obtained by applying (28), (29) and (30).

Proof of Corollary 4.3

We use the following analog of (26):

∆(ω) = σD1(ω) + στDZ(ω) + σ2D2(ω)

+

3∑

j=1

λj

(
τZj(ω) +

τ2

2
(Zj(ω))

2

)
Pj + R̃∆(ω) (60)

where D1(ω) and D2(ω) are exactly as in (26), and

vec(DZ(ω))

= A−1



∑

q∈Q

Sq(

3∑

j=1

λjZj(ω)q
TPjq)(u

T
q
εq(ω))xq




−A−1



∑

q∈Q

S2
q
(

N∑

j=1

λjZj(ω)q
TPjq)xqx

T
q


A−1



∑

q∈Q

Squ
T
q
εq(ω)


 , (61)

with A =
∑

q∈Q S2
q
xqx

T
q
, and R̃∆(ω) = O(τ3(log(1/σ))3/2) with high probabil-

ity.

We only prove (60), from which Corollary 4.3 follows by calculations similar
to those used in proving Corollary 4.2.

To see why (60) holds, first define ∆0(ω) = D0(ω)−D0. Then we can write

∆0(ω) =

3∑

j=1

(τZj(ω) +
τ2

2
Z2
j (ω))Pj +O(τ3).

Let us denote the first order term in the expansion of the nonlinear regression es-
timator, when D0(ω) is the true tensor, by D1(D

0(ω);ω), and the corresponding
term, when D0 is the true tensor, by D1(D

0;ω) (= D1(ω)). Similarly, we define
D2(D

0(ω);ω) and D2(D
0;ω) (= D2(ω)). Our strategy is to first find the expan-

sion of the terms Dj(D
0(ω);ω) around Dj(D

0;ω) and then use Proposition 2.2
to deal with the remainder terms.
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Define Sq(ω) = exp(−xT
q
D0(ω)) (where, by convention, D0(ω) means

vec(D0(ω))). Then, from (43) we have

vec(D1(D
0(ω);ω)) = −



∑

q∈Q

(Sq(ω))
2xqx

T
q




−1

∑

q∈Q

Sq(ω)(u
T
q
εq(ω))xq


 .

(62)
We observe that, for each ω ∈ Ω,

Sq(ω) = Sq − Sq

[
qT∆0(ω)q− 1

2
(qT∆0(ω))

2 +O(‖ ∆0(ω) ‖3)
]

(Sq(ω))
2 = S2

q
− 2S2

q

[
qT∆0(ω)q− (qT∆0(ω))

2 +O(‖ ∆0(ω) ‖3)
]

so that,
1

|Q|
∑

q∈Q

(Sq(ω))
2xqx

T
q
= A−B(ω),

where A = |Q|−1
∑

q∈Q S2
q
xqx

T
q
and

B(ω) =
2

|Q|
∑

q∈Q

S2
q
(qT∆0(ω)q)xqx

T
q
− 2

|Q|
∑

q∈Q

S2
q
(qT∆0(ω)q)

2xqx
T
q

+O(‖ ∆0(ω) ‖3);

and
1

|Q|
∑

q∈Q

Sq(ω)(u
T
q
εq(ω))xq = W (ω)− C(ω),

where

W (ω) =
1

|Q|
∑

q∈Q

Sq(u
T
q
εq(ω))xq

and

C(ω) =
1

|Q|
∑

q∈Q

Sq(q
T∆0(ω)q)(u

T
q
εq(ω))xq

− 1

2|Q|
∑

q∈Q

Sq(q
T∆0(ω)q)

2(uT
q
εq(ω))xq +O(‖ ∆0(ω) ‖3).

Substituting these in (62) and simplifying,

vec(D1(D
0(ω);ω)) = −(A−B(ω))−1(W (ω)− C(ω))

= −A−1W (ω) +A−1C(ω)−A−1B(ω)A−1W (ω)

+O(‖ A−1 ‖2‖ B(ω) ‖‖ C(ω) ‖)
+O(‖ A−1 ‖3‖ B(ω) ‖2 (‖ W (ω) ‖ + ‖ C(ω) ‖)).



Diffusion tensor smoothing 1953

Now observe that A−1W (ω) = vec(D1(D
0;ω)) and

A−1C(ω)−A−1B(ω)A−1W (ω) = vec(DZ(ω))+O(τ2(|Q|−1
∑

q∈Q

‖ εq(ω) ‖2)1/2)

where vec(DZ(ω)) is defined in (61). Moreover,

‖ B(ω) ‖ = O(‖ ∆0(ω) ‖‖ A ‖)
‖ C(ω) ‖ = O(‖ ∆0(ω) ‖‖ A ‖1/2 (|Q|−1

∑

q∈Q

‖ εq(ω) ‖2)1/2)

‖ W (ω) ‖ = O(‖ A ‖1/2 (|Q|−1
∑

q∈Q

‖ εq(ω) ‖2)1/2).

Combining these, together with a first order expansion ofD2(D
0(ω);ω) around

D2(D
0;ω) and recalling the definition of ∆(ω), we have

∆(ω) = σD1(D
0(ω);ω) + σ2D2(D

0(ω);ω) + ∆0(ω) +R1(ω)

=
(
σ(D1(D

0;ω) + τDZ(ω) + σ2D2(D
0;ω) +R2(ω)

)

+




3∑

j=1

(τZj(ω) +
τ2

2
Z2
j (ω))Pj +R3(ω)


 +R1(ω),

where R1(ω) = O(σ3(log(1/σ))3/2) and R2(ω) = O(στ2(log(1/σ))3/2) with high
probability, and R3(ω) = O(τ3). Collecting terms, we obtain (60).

Supplementary Material

Supplement to “Diffusion tensor smoothing through weighted Karcher

means”

(doi: 10.1214/00-EJS825SUPP; .pdf).
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