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Abstract: Amaximum likelihood based model selection of discrete Bayesian
networks is considered. The structure learning is performed by employing
a scoring function S, which, for a given network G and n-sample Dn, is de-
fined as the maximum marginal log-likelihood l minus a penalization term
λnh proportional to network complexity h(G),

S(G|Dn) = l(G|Dn) − λnh(G).

An available case analysis is developed with the standard log-likelihood
replaced by the sum of sample average node log-likelihoods. The approach
utilizes partially missing data records and allows for comparison of models
fitted to different samples.

In missing completely at random settings the estimation is shown to be
consistent if and only if the sequence λn converges to zero at a slower than
n−1/2 rate. In particular, the BIC model selection (λn = 0.5 log(n)/n)
applied to the node-average log-likelihood is shown to be inconsistent in
general. This is in contrast to the complete data case when BIC is known
to be consistent. The conclusions are confirmed by numerical experiments.
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1. Introduction

The continuing interest in developing sparse statistical models, with the notable
presence of Bayesian networks among them, is well motivated by a number
of pressing practical problems coming from gene/protein expression analysis
and medical imaging, to mention a few. Although graphical probability models
based on directed connections between random variables provide efficient joint
distribution description, the application of such models is often limited by the
ambiguity of their observed behavior which makes the learning rather difficult.

One of the prevailing approaches to graphical model selection is through op-
timization of some scoring functions. In the context of Bayesian networks, the
usual choice is the log of posterior. Let (G, θ) be a Bayesian network with graph
structure G and probability model parameter θ ∈ Θ. Following the Bayesian
paradigm (see for example [5] and [11]), one specifies prior probability distribu-
tions π for G and θ. Then, for a sample Dn of size n, one considers the Bayesian
scoring function

S(G|Dn) = log π(G) + logL(G|Dn),

where

L(G|Dn) =

∫

θ∈Θ

L(G, θ|Dn)π(θ)dθ

is the so-called marginal likelihood of G, while L(G, θ|Dn) is the usual likelihood
of (G, θ). The Bayesian scoring function measures the posterior certainty under
the chosen prior system and the model with maximum score is thus a natural
estimator.

The main virtue of the Bayesian approach is in counter-balancing the ten-
dency of the maximum likelihood estimation to choose the most complex model
fitting the data. As first noticed by [10], when the probability parameter space
Θ constitutes an exponential family in an Euclidean space, the marginal log-
likelihood of a model M admits the approximation

logL(M |Dn) = BIC(M |Dn) +Op(1),

based on the so-called Bayesian Information Criterion (BIC),

BIC(M |Dn) ≡ logL(M, θ̂M |Dn)− 0.5 log(n) dim(M),

where θ̂M is the value of θ that maximizes the log-likelihood for given M and
Dn, and dim(M) is the dimension of M . The immediate application of this
result to discrete and conditional Gaussian Bayesian networks was postponed
because of the non-Euclidean structure of the parameter space for these models.
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This obstacle was later overcome by [7], who showed the validity of the BIC
approximation for a much large family of curved exponential distributions.

In a later work, [6] applied this result to several families of Bayesian network
models including the discrete ones, thus showing the asymptotic consistency of
BIC. In its generality, the parameter space ΘG of a discrete Bayesian network
G comprises a collection of multinomial distributions and the total number of
parameters needed to specify them is what is understood as dimension of ΘG.
The BIC approximation is then expressed as

logL(G|Dn) = logL(G, θ̂G|Dn)− 0.5 log(n) dim(ΘG) +Op(1). (1.1)

Equation (1.1) suggests a more direct estimating procedure - selecting a
model G in G with maximal BIC score. There are two typical arguments in
favor of this route versus the Bayesian one. The first one is methodological -
prior based inference is not universally accepted. The other one is computa-
tional - calculating marginal likelihoods can be prohibitive, especially so in the
framework of large dimensional graphical models.

These observations have motivated us to pursue the latter, non-Bayesian ap-
proach - maximum likelihood estimation followed by model selection according
to some scoring criteria. To generalize it, we reformulate the right-hand side of
(1.1) and consider the following estimation problem

Ĝ = argmax
G∈G

{n−1 logL(G, θ̂G|Dn)− λnh(G)}, (1.2)

where λn is some positive sequence and h is a function measuring the com-
plexity of G. The class of problems (1.2) is known as extended (or penalized)
likelihood approach [3]. Typical penalization parameters are λn = 0.5n−1 log(n)
(BIC) and λn = n−1 (AIC), while dim(ΘG) is a usual choice for h. We briefly
remark that, in order to be useful in practice, the estimation problem (1.2) re-

lies on two assumptions: (1) for a fixed G, the MLE θ̂G can be easily found,
and (2), the set of networks G is not prohibitively large, which usually requires
imposing some network structure restrictions. In this paper however, we are
mainly concerned with the theoretical aspects of (1.2) - to our knowledge, the
consistency properties of Ĝ are not investigated in presence of missing values
- and present results which are relevant to all estimation algorithms involving
penalized log-likelihood of this form.

The paper contributes in three main directions. First, in order to more effi-
ciently handle data with incomplete records, we modify the scoring based model
selection (1.2) by replacing the log-likelihood function with what we tentatively
call node-average log-likelihood (NAL) - a sum of sample average node log-
likelihoods relative to the node parents. The NAL statistics utilizes partially
incomplete sample records instead of discarding them and provides means for
comparing models fitted to different samples. We argue that when the number
of nodes is large in comparison to the parent sizes, the NAL-based estima-
tion achieves efficiency close to that of the computationally more demanding
Expectation Maximization (EM) procedure [8]. Second, we focus on missing
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completely at random data models for they essentially guarantee network iden-
tifiability. More general missing at random mechanisms, in most cases, obscure
the underlying network structure and render the network unidentifiable. Third,
we generalize the scoring criteria by allowing the complexity measure h to be
any positive function (as long as it is increasing for G as defined later) and a
continuum of penalization parameters λn = O(n−α) by specifying a range of
possible values α for which the estimation is consistent.

In Section 2 we introduce the notion of node-average log-likelihood and de-
scribe the model selection problem in the context of Bayesian networks. Then,
Section 3, we consider the question of network identifiability and formulate con-
sistency in terms of scoring criteria. For the latter we follow [7] and [4]. We show
in Section 3.1 that if the data is missing completely at random, the identifiability
arises under some natural conditions. Section 4 presents the main result in this
paper, Theorem 4.1, claiming that the estimation is asymptotically consistent
provided that λn goes to zero at slower rate than n−1, in the complete data
case, and n−1/2, in presence of missing data. We also show the necessity of the
later in missing completely at random settings. Thus, the inconsistency of AIC
is (re)confirmed along with somewhat unexpected conclusion regarding the BIC
criteria - in the context of NAL optimization, BIC is consistent when applied to
complete data but inconsistent otherwise. In Section 5 we present some numer-
ical results in confirmation of the theory which are carried out with the catnet
package for R. We conclude with a short discussion on possible extensions of
the presented approach beyond the class of discrete Bayesian networks.

2. Problem formulation and motivation

2.1. Basic definitions

Let X = (Xi)
N
i=1 be a N -vector of discrete random variables. Any directed

acyclic graph (DAG) G with nodes X is a collection of directed edges from
parent to child nodes such that there are no cycles. We denote with Pai the
parents of node Xi in G; then G is completely described by the parent sets
{Pai}Ni=1. The set of all DAGs with nodes X admits partial ordering. We say
that G1 is included in G2 and write G1 ⊆ G2 if all directed edges of G1 are
present in G2 as well. An element G of a set of DAGs G is called minimal if
there is no G̃ ∈ G such that G̃ ⊂ G; similarly defined are maximal DAGs. In
a set of nested DAGs, the minimum and maximum DAG are always uniquely
defined.

Discrete Bayesian network (DBN) on X is any pair (G,P ) consisting of DAG
G and probability distribution P on X subject to two conditions:

(1) the joint distribution of X given by P satisfies the so-called local Markov
property (LMP) with respect to G - any node-variable is independent of its
non-descendants given its parents,

(2) G is a minimal DAG compatible with P , that is, there is no G̃ ⊂ G such
that P satisfies LMP with respect to G̃.
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For any DAG G, there is an order of its nodes, called causality order, such
that the parents of each one appear earlier in that order. We say that G is
compatible with an order Ω if PaΩ(1) = ∅ and for all i = 2, . . . , N , PaΩ(i) ⊂
{XΩ(1), . . . , XΩ(i−1)}. For i < j, we denote with XΩ(i) ≺ XΩ(j) the fact that
XΩ(i) appears before XΩ(j) in the order Ω.

In its generality, the discreteness of our model implies that for each state xPai

of the parents ofXi, the probability distribution ofXi conditional on Pai = xPai

is multinomial. Moreover, the conditional probability tables {P (Xi|Pai)}Ni=1

fully specify the joint distribution of X. Indeed, let G be compatible with an
order Ω, that is, XΩ(1) ≺ XΩ(2) ≺ · · · ≺ XΩ(N). Then, taking into account the
LMP, it is evident that with respect to G, the joint probability distribution
permits the factorization

P (X) =
N
∏

i=1

P (XΩ(i)|XΩ(1), . . . , XΩ(i−1)) =
N
∏

i=1

P (XΩ(i)|PaΩ(i)) =
N
∏

i=1

P (Xi|Pai).

Depending on the context, in a pair (G,P ), we shall refer to P either as a joint
distribution, such as in the left-hand side of the above display, or as a set of
conditional probability tables, as in the right-hand side above.

For any DAG G, there is a maximal set I(G) of (structural) conditional in-
dependence relations of the form (A ⊥⊥ B|C), for A,B,C ⊂ X and A,B 6= ∅,
determined by LMP [9]. On the other hand, P also defines a set of (distribu-
tional) independence constraints on X. Condition (2) in the definition of DBN is
needed for assuring that the sets of structural and distributional independence
statements in fact coincide. We say that two DAGs G1 and G2 are equivalent
and write G1

∼= G2 if I(G1) = I(G2). With [G] we shall denote the class of
DAGs equivalent to G. Necessary and sufficient conditions for DAG equivalence
can be found in [13, 4]. We call two DBNs (G1, P1) and (G2, P2) equivalent if
their joint distributions are equal, P1 = P2, which implies equivalence between
their graph structures, G1

∼= G2. The essential problem of BN learning is the
recovery of the equivalence class [G] from data.

Another useful notion is that of network complexity. The complexity of a
DBN G is typically measured by the number of parameters df(G) needed to
specify the conditional probability table of G. Let q(Xi) be the number of states,
or discrete levels, of Xi and q(Pai) =

∏

X∈Pai
q(X) be the number of states

of the parent set Pai. Since for every state of Pai, q(Xi) − 1 parameters are
needed to define the corresponding multinomial distribution for Xi, we have
df(G) =

∑N
i=1 q(Pai)(q(Xi)− 1).

Next we formulate the maximum likelihood estimation (MLE) in the context
of DBNs. Let Dn = {xs}ns=1 be a sample of n independent observations on the
vector X. Then, the log-likelihood of a DBN (G,P ) with respect to Dn is

logL(G,P |Dn) =
N
∑

i=1

n
∑

s=1

logP (Xi = xs
i |Pai = xs

Pai
), (2.1)

where xs
i and xs

Pai
are the states of Xi and its parent set Pai in the s-th

record xs. According to the ML principle, a DBN estimator can be obtained by
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maximizing (2.1). Before proceeding with the inference in presence of missing
values we need to introduce some useful statistics and convenient notations.

We write k ∈ Xi to index the states of Xi and adopt a multi-index notation,
j ∈ Pai, for the parent configurations of Xi. Let 1i,kj be the indicator function
of the event (Xi = k, Pai = j). For a given sample Dn let us define the counts
ni,kj ≡

∑n
s=1 1i,kj(x

s), ni,j ≡
∑

k∈Xi
ni,kj and ni ≡

∑

j∈Pai
ni,j . A record xs in

Dn we shall call incomplete if some of the values xs
i are missing. By convention,

if the value of Xi in xs is missing, then 1i,kj(x
s) = 0, while if some of the parents

in Pai are missing, then both 1i,kj(x
s) = 0 and 1i,j(x

s) = 0. It is always the case
then that ni ≤ n. We shall consider an inference framework using the counts
ni,j and ni,kj as statistics summarizing the information in the sample Dn.

Let Z = (Zi)
N
i=1 be a binary random vector such that Zi = 1 if Xi is observed

and Zi = 0 if it is missing. For an index set A we define ZA =
∏

i∈A Zi. The
joint distribution of (X,Z) describes all incomplete samples Dn of observations
on X.

Let us introduce the probabilities θi, θi,j and θi,kj as

θi ≡ P (Zi = 1, ZPai
= 1)

θi,j ≡ P (Pai = j|Zi = 1, ZPai
= 1),

θi,kj ≡ P (Xi = k|Pai = j, Zi = 1, ZPai
= 1). (2.2)

With θ we shall denote the set {θi, θi,j , θi,kj}i,k,j and call it observed conditional
probability table of G.

For a sample of fixed size n, the random variables ni and the random vectors
{ni,j}j∈Pai

and {ni,kj}k∈Xi
then satisfy

ni|n ∼ Binom(θi, n)

{ni,j}j |ni ∼ Multinom({θi,j}j , ni)

{ni,kj}k|ni,j ∼ Multinom({θi,kj}k, ni,j). (2.3)

Therefore, as long as ni, ni,j and ni,kj are of interest, the table θ is all we need
to know about the DBN and the mechanism of missingness.

The usual point estimators of θi, θi,kj and θi,j are

θ̂i =
ni

n
, θ̂i,j =

ni,j

ni
, θ̂i,kj =

ni,kj

ni,j
.

We shall denote the conditional table defined by θ̂’s with θ̂(G|Dn) to emphasize

that it is estimated for the DAG G from the sample Dn. The statistics θ̂i,j and

θ̂i,kj are unbiased estimators of θi,j and θi,kj , respectively

Eθ̂i,j = Eni
E(

ni,j

ni
|ni) = θi,j , Eθ̂i,kj = Eni,j

E(
ni,kj

ni,j
|ni,j) = θi,kj . (2.4)

The missing data distribution usually belongs to one of the following cate-
gories:
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(i) The data is missing completely at random (MCAR) when the missing
probabilities are unrelated to either the observed or the unobserved values. In
this case Z is independent of X and we have θi,j = P (Pai = j) and θi,kj =
P (Xi = k|Pai = j).

(ii) The data is missing at random (MAR) when the missing probabilities
depend on the observed values but not on the unobserved ones. Let us consider
a special case of MAR when for each i, there is Ci ⊂ X such that Xi /∈ Ci,
Ci∩Pai = ∅ and (Zi, ZPai

) is independent of (Xi, Pai) given Ci. If furthermore
Ci has no descendants of Xi, then, by application of LMP, θi,kj = P (Xi =
k|Pai = j) holds. For a general MAR however the latter may not be true.

(iii) If the missing probabilities depend on the unobserved values we have
not missing at random (NMAR) case and then neither θi,j = P (Pai = j) nor
θi,kj = P (Xi = k|Pai = j) hold anymore.

As we discuss in Section 3.1, the missing data distribution is implicated in
network identifiability. In this regard, the MCAR model is the most transparent
one for it does not interfere with the network topology.

2.2. Node-average log-likelihood

We consider two objective functions for estimating DBNs based on the log-
likelihood (2.1). The first one is the sample average log-likelihood

l̃(G|Dn) =
1

n

N
∑

i=1

∑

j∈Pai

∑

k∈Xi

ni,kj log θ̂i,kj

=

N
∑

i=1

∑

j∈Pai

ni,j

n

∑

k∈Xi

θ̂i,kj log θ̂i,kj . (2.5)

When the data has no missing values we have nl̃(G|Dn) = maxθ logL(G, θ|Dn).
The second objective function is the sum of sample average node log-likelihoods

l(G|Dn) =

N
∑

i=1

1

ni

∑

j∈Pai

∑

k∈Xi

ni,kj log θ̂i,kj

=
N
∑

i=1

∑

j∈Pai

θ̂i,j
∑

k∈Xi

θ̂i,kj log θ̂i,kj =
N
∑

i=1

l(Xi|Pai, Dn), (2.6)

where l(Xi|Pai, Dn) ≡ ∑

j∈Pai
θ̂i,j

∑

k∈Xi
θ̂i,kj log θ̂i,kj is known as negative

conditional entropy of node Xi. Hereafter, we drop the qualifier ‘sample average’
from (2.5) and (2.6) and call (2.6) node-average log-likelihood (NAL).

If Dn is a complete sample, then for every i, ni =
∑

j∈Pai
ni,j = n. Hence

θ̂i,j θ̂i,kj = ni,kj/n and consequently l̃(G|Dn) = l(G|Dn). If the data is incom-
plete however, we may have ni < n and then (2.5) and (2.6) will be different. In
the latter case, the log-likelihood (2.5) may have imbalanced representation of
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the potential parent sets. For example, if for two different parent sets Pai and
Pa′i of the i-th node ni(Pa′i) < ni(Pai), then Pa′i might be preferably selected
due to the smaller size of the subsample that represents it in (2.5) even when
Pa′i has worse fit than Pai, i.e. l(Xi|Pa′i, Dn) < l(Xi|Pai, Dn). The simplest
solution to this problem - discarding all incomplete records in the sample - may
drastically reduce the effective sample size. On the other hand, (2.6) can uti-
lize all ni sample records for estimation of θi,kj ’s. Essentially, NAL exploits the
decomposable nature of the log-likelihood (2.5) and, by adjusting for the sam-
ple size, allows comparison of models fitted to different samples. We mention
that, similarly, NAL can be adopted in other decomposable log-likelihood based
models.

It can be easily demonstrated that the maximum likelihood principle alone is
inefficient for estimating DBNs. Let us assume for simplicity that G comprises all
DBNs with node order compatible with the index order, Xi ≺ X2 ≺ · · · ≺ XN .
The maximum NAL equation, Ĝ = argmax l(G|Dn), will then result in the
following estimates for the parents set Pai

P̂ ai = arg max
Pai⊆{1,...,i−1}

θ̂i,j
∑

k∈Xi

θ̂i,kj log θ̂i,kj .

From the increasing property of the conditional log-likelihood (see Lemma 7.1
below) it follows that the solution of the above equation is Pai = {1, . . . , i− 1},
for every i > 1. Thus, the MLE solution will be the most complex DBN in G and
will overestimate the true G. In the remainder of this paper we shall investigate
more closely the properties of NAL-based estimation in a model selection context
and shall provide criteria for asymptotically consistent estimation.

2.3. Relation between NAL maximization and EM algorithm

In missing data settings, the standard way to utilize all of the available data is
to apply an EM algorithm - see [8] for application of EM to Bayesian networks.
For a sample Dn let Dobs

n be the observed part of the data. The EM algorithm
involves the following conditional expectation

Q(G,P |G′, P ′) ≡ E(logP (Dn|G,P )|Dobs
n , G′, P ′)

=

N
∑

i=1

∑

j∈Pai,k∈Xi

E(

n
∑

s=1

1{xs
i
=k,xs

Pai
=j}|Dobs

n , G′, P ′) logPi,kj ,

where Pi,kj = P (Xi = k|Pai = j). Finding Q implements the E-step of the
algorithm. The M-step maximizes Q(G,P |G′, P ′) for G and P . Solutions of the
EM algorithm are all (Ĝ, P̂ ) such that Q(Ĝ, P̂ |Ĝ, P̂ ) = maxG,P Q(G,P |Ĝ, P̂ ).

It can be shown that NAL maximization is equivalent to solving a sub-optimal
EM algorithm with

∑n
s=1 1{xs

i
=k,xs

Pai
=j} replaced by the sum ni,kj + nmis

i,kj ,

where ni,kj and nmis
i,kj are the number of records in Dn for which the event

(Xi = k, Pai = j) is observed and missing, respectively. For each i, this is
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equivalent to replacing Dobs
n by a sub-sample Dobs

n,i with all xs from Dobs
n for

which (Xi, Pai) is not fully observed being removed. Let nmis
i =

∑

k,j n
mis
i,kj =

n − ni. Given Dobs
n , ni,kj , ni and nmis

i are fixed but nmis
i,kj is random. In fact,

nmis
i,kj conditional on (ni = nmis

i , G′, P ′) follows a Binomial distribution. Since

E(
∑n

s=1 1{xs
i
=k,xs

Pai
=j}|Dobs

n,i , G
′, P ′) = ni,kj + E(nmis

i,kj |ni = nmis
i , G′, P ′), we

define

Q∗(G,P |G′, P ′) ≡
N
∑

i=1

∑

j∈Pai,k∈Xi

(ni,kj + E(nmis
i,kj |ni = nmis

i , G′, P ′)) logPi,kj .

Under the MAR assumption P (Xi, Pai|Zi, ZPai
, G′, P ′) = P (Xi, Pai|G′, P ′),

we have E(nmis
i,kj ) = Enmis

i,j
(nmis

i,j P ′
i,kj) = nmis

i P ′
i,jP

′
i,kj . Therefore

Q∗(G,P |G′, P ′) =
N
∑

i=1

∑

j∈Pai,k∈Xi

(ni,kj + (n− ni)P
′
i,jP

′
i,kj) logPi,kj . (2.7)

We then observe that P 7→ Q∗(G,P |G,P ) is maximized for P̂i,j = ni,j/ni = θ̂i,j
and P̂i,kj = ni,kj/ni,j = θ̂i,kj , and consequently

Q∗(Ĝ, P̂ |Ĝ, P̂ ) = n

N
∑

i=1

∑

j∈Pai

P̂i,j

∑

k∈Xi

P̂i,kj log P̂i,kj = nl(Ĝ|Dn).

We hence conclude that the EM algorithm based on Q∗ essentially maximizes
the NAL function (2.6). Of course, Q utilizes all of the available data, while
Q∗ does not - when even one component of (Xi, Pai) is missing, Q∗ treats the
entire record as missing, while Q tries to use the available information by cal-
culating (often costly) conditional expectations. Nevertheless, the NAL-based
inference is much more efficient than the naive approach that ignores all records
for which at least one component ofX is missing; even more so in cases when the
dimensionality N is much higher that the maximum size of |Pai|’s (the so-called
in-degree). In such cases the difference between Q and Q∗ is less pronounced (if
ni >> n − ni then |Q − Q∗| << |Q∗|) and so is the difference between NAL
maximization and EM algorithm. Moreover, the sub-optimality of NAL maxi-
mization is counterbalanced by its computational simplicity. The EM algorithm
is usually intractable for data with number of nodes in the thousands while NAL
optimization may still be a possibility. In conclusion, the NAL-based learning
seems to be an effective and computationally more affordable alternative of EM
for estimating high dimensional, low in-degree Bayesian networks.

3. MLE and model selection

Let (G0, P0) be a DBN with nodes X, parent sets Pa0i , and observed conditional
probability table θ0. For an arbitrary DAG G with nodes X and parents Pai, we
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consider probability distribution PG|G0
on X induced by G0 which, for a state

x of X, is given by

PG|G0
(x) ≡

N
∏

i=1

P0(Xi = xi|Pai = xPai
) (3.1)

and compare it to

P0(x) =
N
∏

i=1

P0(Xi = xi|Pa0i = xPa0

i
).

In general, PG|G0
is different from P0 and (G,PG|G0

) may not be well defined
DBN, because G is not necessarily a minimal DAG compatible with PG|G0

(see
condition (2) from the definition of DBN). However, if G is a minimal DAG
such that PG|G0

= P0, then G ∼= G0.
We also consider the following observation probabilities of G induced by G0

θi(G|G0) ≡ P (Zi = 1, ZPai
= 1)

θi,j(G|G0) ≡ P (Pai = j|Zi = 1, ZPai
= 1)

θi,kj(G|G0) ≡ P (Xi = k|Pai = j, Zi = 1, ZPai
= 1)

where the probabilities are with respect to the joint distribution of Z and
X|(G0, P0). Recall that according to (2.2) the entries of θ0 are

θ0i ≡ P (Zi = 1, ZPa0

i
= 1)

θ0i,j = P (Pa0i = j|Zi = 1, ZPa0

i
= 1)

θ0i,kj = P (Xi = k|Pa0i = j, Zi = 1, ZPa0

i
= 1).

Let θ(G|G0) denote the corresponding conditional probability table with entries
θi(G|G0), θi,j(G|G0) and θi,jk(G|G0). Clearly, we can write θ(G0|G0) = θ0.
Moreover, in the important case when Z is MCAR we have

θi,j(G|G0)
mcar
= P0(Pai = j)

θi,kj(G|G0)
mcar
= P0(Xi = k|Pai = j)

and θ(G|G0) is the conditional probability table corresponding to PG|G0
.

Next, we define the NAL of G with respect to G0 given by

l(G|G0) ≡
N
∑

i=1

l(Xi|Pai, G0),

l(Xi|Pai, G0) ≡
∑

j∈Pai

θi,j
∑

k∈Xi

θi,kj log θi,kj , (3.2)

where θi,j = θi,j(G|G0) and θi,kj = θi,kj(G|G0). Essentially, l(Xi|Pai, G0) is
the observed population negative entropy of Xi conditional on Pai and l(G|G0)
is the population version of (2.6). For brevity, we shall write l(G0) instead of
l(G0|G0).
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3.1. Identifiability

Let G0 belong to a collection G of DAGs with nodes X. If Dn is an independent
sample from a DBN (G0, P0), by the strong law of large numbers, for any fixed

G ∈ G, θ̂i,kj(G|Dn) → θi,kj(G|G0), a.s., and hence, l(G|Dn) → l(G|G0), a.s.
as n → ∞. A necessary condition for MLE consistency is the identifiability
of G0, which in its usual sense requires l(G|G0) < l(G0) for all G ∈ G such
that G 6= G0. The latter is a strong requirement however, for thus defined the
identifiability will never hold unless G0 is a maximal DAG in G that contains
G0 - as we show later (Lemma 7.1) l(Xi|Pai, G0) is a non-decreasing function of
Pai. In the light of this observation we shall adopt a more appropriate definition
of identifiability, one that assumes smaller likelihoods only for the DAGs not
containing the true one. To simplify the notation, hereafter we shall refer to the
DBN (G0, P0) simply as G0.

Definition 3.1. We say that G0 is identifiable in G, if for any G ∈ G we have
l(G|G0) ≤ l(G0) when G0 ⊆ G and l(G|G0) < l(G0) when G0 * G.

Note that the identifiability of G0 depends on the joint distribution of X
and Z. The utility of this definition is due to the following observation. If G0 is
identifiable in G, then

G∗ ≡ min{G̃ ∈ G | l(G̃|G0) = max
G∈G

l(G|G0)} = G0, (3.3)

implicitly assuming the existence of unique such minimum G∗ (in general we
may have multiple minimal G̃ maximizing the NAL). Moreover, it is easy to
check that (3.3) is a necessary and sufficient condition for identifiability. In
‘learning from data’ settings, we can replace l(G|G0) in (3.3) with l(G|Dn) and
find an estimator Ĝ∗ of the minimal DAG G∗, exhaustively in G or by some
more efficient algorithm. Then Ĝ∗ would be an estimator of G0 as well. In this
way, the identifiability assures the principal possibility of recovering G0.

It is intuitively clear that in order to recover the graph structure G0 from
incomplete samples, the missing data mechanism should not interfere with the
associations between Xi’s determined by G0. This condition is satisfied for any
MCAR model. In more general MAR settings, the identifiability of G0 depends
on the interaction between X and Z and can not be judged without actually
knowing G0. We thus regard the MAR assumption as not significant generaliza-
tion over MCAR due to the practical impossibility to check it prior to learning.

The next result shows that in MCAR settings the population NAL does not
increase when the true DBN is nested in a larger one, and moreover, that its
maximum is achieved only for DAGs equivalent to the true one.

Proposition 3.1. If Z is MCAR, we have the following:

(i) if G0 ⊆ G then l(G|G0) = l(G0);
(ii) maxG l(G|G0) = l(G0), where the maximum is over all DAGs on X;
(iii) if l(G|G0) = l(G0), then PG|G0

= P0.
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From these properties of the NAL of G with respect to G0 we can draw two
immediate conclusions as stated in the next two corollaries.

Corollary 3.1. If Z is MCAR then G0 is identifiable in any set of DAGs
compatible with its order.

Therefore, provided a true node order is known (that is an order with which
G0 is compatible; there might be many such orders), G0 can be recovered from
the set of all DAGs compatible with that order.

We can further extend Definition 3.1 to account for classes of equivalent
DBNs. Recall that, ultimately, it is the independence relation set I(G0), shared
among all equivalent to G0 DBNs, that is of main interest. In the view of con-
dition (3.3), we say that [G0] is identifiable in G if

min{G̃ ∈ G | l(G̃|G0) = max
G∈G

l(G|G0)} ∼= G0, (3.4)

in the sense that any minimal G̃ that maximizes the NAL l(G|G0) is equivalent
to G0 (we also assume that the set on the left is not empty). Proposition 3.1,
cases (ii) and (iii), implies that the maximum NAL is l(G0) and any G that
attains this maximum satisfies PG|G0

= P0. If in addition G is minimal, then
(G,PG|G0

) is a well defined DBN which is equivalent to (G0, P0) and hence (3.4)
is satisfied. We have thus obtained the following.

Corollary 3.2. If Z is MCAR, then [G0] is identifiable in any G that contains
at least one element of [G0]. In particular, [G0] is (globally) identifiable in the
set of all DAGs on X.

As defined, the identifiability of the equivalence class [G0] depends implicitly
on the choice of log-likelihood proxy function. Note that [G0] is not guaranteed
to be identifiable, even in MCAR settings, if in (3.4) we replace the NAL l with
the standard log-likelihood l̃ from (2.5).

3.2. NAL-based scoring functions

As we have observed earlier, the MLE criteria selects the most complex BN in G
containing G0 and unless some complexity penalization is imposed, the MLE is
prone to overfitting. Methodologically, there are two approaches addressing the
model selection problem. The first one is provided by the Bayesian paradigm,
where the parameter (G, θ) is assumed coming from some prior distribution
and one looks for the maximum posterior estimator. The second, frequentist,
approach is to optimize a scoring function based on the log-likelihood and ad-
ditional complexity penalization term - a penalized log-likelihood. We consider
a general scoring function of the form

S(G|Dn) = l(G|Dn)− λnh(G), (3.5)

where λn are positive numbers indexed by the sample size n and h(G) is a
positive function accounting for the complexity of the G. When needed, we
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shall write Sh to specify what h is meant. The role of the sequence λn is to
apply a proper amount of penalty that guarantees estimation consistency.

One can employ different measures for network complexity. Any complexity
function h is assumed to be increasing in the following sense: for any two DAGs
G1 and G2 such that G1 ⊂ G2, G1 6= G2, we have h(G1) < h(G2). In regard
to DBNs, a typical choice is the total number of parameters df(G) needed to
specify the multinomial conditional distributions of G, that is, the number of
independent parameters in θ.

We return to (3.5) with some typical examples. Since the NAL l(G|Dn), be-
ing sum of node sample averages, is normalized by the sample size, the standard
model selection criteria AIC and BIC, formulated in terms of the scoring func-
tion (3.5) are given by λn = 1/n and λn = 0.5 log(n)/n, respectively. The so
called minimum description length (MDL) score, representing the information
content of a model, is given by log(n)df(G)/n and is equivalent to BIC.

Similarly to NAL, often, the chosen overall DBN complexity can also be repre-
sented as a sum of node-wise complexities. For example, df(G) =

∑

i df(Xi|Pai),
df(Xi|Pai) ≡ (q(X1)− 1)q(Pai). In such cases it might be more appropriate to
replace λn with node-specific penalization λni

’s

S(G|Dn) =

N
∑

i=1

{l(Xi|Pai, Dn)− λni
h(Xi|Pai)}. (3.6)

We shall refer to these as decomposable scores. Typically, one uses one and the
same function of n to express λni

’s, such as λn = λ0n
−α, α ∈ (0, 0.5). The

decomposable BIC criteria then is

SBIC(Xi|Pai, Dn,i) = l(Xi|Pai, Dn)− 0.5
log(ni)

ni
df(Xi|Pai)

SBIC(G|Dn) =

N
∑

i=1

SBIC(Xi|Pai, Dn) =

N
∑

i=1

1

ni
BIC(Xi|Pai, Dn,i) (3.7)

whereDn,i is the sub-sample of Dn of size ni for which (Xi, Pai) is observed and
BIC(Xi|Pai, Dn,i) is the original BIC criteria, (1.1), applied to the regression
model Xi|Pai.

As we have stated in the introduction, we consider an MLE based model
selection by maximizing S as a function of G given a sample Dn,

Ĝ = argmax
G∈G

S(G|Dn). (3.8)

Note that we do not maximize S for G and θ simultaneously. We estimate θ for
each G using the plug-in estimator θ̂(G|Dn) and then the DAG with maximal
score is chosen as graph structure estimator. In what follows we show that,
by solving (3.8) for proper λn, we can obtain consistent estimation of the true
model with no further conditions on h.

Let Ĝ be the estimator (3.8) for a sample Dn coming from a DBN G0. Then
the following claim is immediate.
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Proposition 3.2 (Consistency Criteria). Provided for any G1 ∈ G and
G2 ∈ G the following two conditions are satisfied

(C1) if G0 ⊆ G1 but G0 * G2, then P (S(G1|Dn) > S(G2|Dn)) → 1, as n → ∞,
(C2) if G0 ⊆G1, G0 ⊂G2 and h(G1)<h(G2), then P (S(G1|Dn)>S(G2|Dn)) →

1, as n → ∞,

Ĝ is a consistent estimator of G0, that is, P (Ĝ 6= G0) → 0, as n → ∞.

The conditions (C1) and (C2) are relaxed versions of those used in [4]. In
fact, the consistent scoring criterion in [4] is a special case of the more abstract
formulation of model selection consistency in [7]. We end this section with the
following important observation.

Corollary 3.3. If conditions (C1) and (C2) are satisfied for any DAG equiv-
alent to G0, then [Ĝ] is a consistent estimator of [G0], that is, P (I(Ĝ) 6=
I(G0)) → 0, as n → ∞.

4. Estimation consistency

Let (G0, P0) be a DBN with conditional table θ0 in a set of DAGs G and Dn

be an independent sample drawn from it. In this section we investigate the
consistency of the estimators Ĝ and [Ĝ] with respect to a scoring function S,
where Ĝ is given by (3.8).

As we have observed earlier, if the data has missing values, it is not anymore
true that l(G|Dn) = l̃(G|Dn), the usual sample average log-likelihood (2.5).

Therefore, (Ĝ, θ̂) is no longer an MLE for (G0, θ0) and the standard consistency
results from the asymptotic theory are not directly applicable. A proper account
for the incompleteness of the data is thus needed.

For a sample of fixed size n, the random variables ni and the random vectors
{ni,j}j∈Pai

and {ni,kj}k∈Xi
satisfy

{ni,j}j|ni ∼ Multinom({θi,j(G|G0)}j, ni)

{ni,kj}k|ni,j ∼ Multinom({θi,kj(G|G0)}k, ni,j) (4.1)

and the statistics θ̂i,j and θ̂i,kj are unbiased estimators of θi,j(G|G0) and
θi,kj(G|G0), respectively. Moreover, if G0 is identifiable in G, then for each i,
the probability of the event ‘(Xi, Pa0i ) is observed’ must be strictly positive, i.e.
θ0i > 0. Since G is always finite, the following is well defined

β(G) ≡ min
G∈G

N
min
i=1

{θi(G|G0)|θi(G|G0) > 0} (4.2)

and β(G) > 0. The complete data case can be thus represented as β(G) = 1.
Note that β depends implicitly on the distribution of Z.

The next result establishes the rate of convergence of the empirical NAL to
the population one without imposing any restrictions on the distribution of Z
or on G0 (G0 need not be identifiable).
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Lemma 4.1. Let Dn be sample from a DBN (G0, P0). Then for any DAG G

l(G|Dn)− l(G|G0) = Op(n
−1/2), (4.3)

which implies l(G|Dn) →p l(G|G0).

Providing conditions for scoring function consistency is our next goal. Let us
assume that G0 is identifiable in G. In the light of Lemma 4.1, if G does not
contain G0, then there is a positive constant δ such that l(G0|Dn)− l(G|Dn) > δ
with probability going to 1, as n → ∞. It is evident therefore that if the sequence
λn diminishes with n, λn → 0, then, asymptotically, the scoring function Sh will
select an estimator that contains the true model G0 regardless of the chosen
complexity function h. In addition however, we want that estimator to get close
(in sense of the complexity measured by h) to G0 with the increase of the sample
size. Since for any G such that G0 ⊂ G we have l(G|Dn)− l(G0|Dn) →p 0, the
latter can be assured if we require λn to diminish at a slower rate than that of
l(G|Dn) − l(G0|Dn). We show that this rate is n−1 for complete samples and
n−1/2 in case of missing data.

We moreover show that the consistency sufficient conditions, λn = o(1) and
n−1/2λ−1

n = o(1), become essentially necessary. More precisely, the necessity is
guaranteed if the following condition is satisfied. As usual Pai and Pa0i denote
the parent sets of G and G0, respectively.

Condition 4.1. There are G ∈ G with G0 ⊂ G and i ∈ {1, . . . , N} such that
Paj = Pa0j for all j 6= i, Pai\Pa0i 6= ∅ and P (ZPai\Pa0

i
= 1|Zi = 1, ZPa0

i
=

1) ∈ (0, 1).

In words, the condition refers to the possibility of extending the parent set of
a node of G0 by one or more new nodes that are, conditionally, neither always
observed nor never observed (thus G0 must not be a maximal DAG in G).

Next, we summarize the above observations in the following theorem.

Theorem 4.1. Let G0 be identifiable in G and S be a scoring function (3.5)
with penalization parameter λn such that λn → 0. The following are satisfied.

(i) If β(G) ∈ (0, 1) and
√
nλn → ∞, then Ĝ is consistent estimator of G0.

(ii) If β(G) = 1 and nλn → ∞, then Ĝ is consistent estimator of G0.
(iii) If Z is MCAR, Condition 4.1 holds and lim

√
nλn < ∞, then Ĝ is incon-

sistent estimator of G0.

The complete data case of the theorem, (ii), also follows from a more general
result by [7] (Proposition 1.2 and Remark 1.2). There, the consistency result is
derived using the properties of MLE for exponential families and central limit
theorem. The essential contribution of the above theorem is in the missing data
cases (i) and (iii). We emphasize that case (i) holds for a general G and missing
data distribution as long as G0 is identifiable in G. In (iii) however, we require
for Z to be MCAR in order to guarantee that the condition

√
nλn → ∞ is

necessary for consistent estimation. Below we make some further remarks.
The claims of the theorem are established by verifying conditions (C1) and

(C2) from Proposition 3.2 for G0 and hence, for any DAG equivalent to G0.
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Therefore, it follows from Corollary 3.3 that the theorem remains true if we
replace G0 by [G0] and Ĝ by [Ĝ]. The theorem thus provides conditions for
consistent estimation of the equivalence class of G0.

As evident from the proof of the theorem, the requirement λn → 0 is needed
for guaranteeing the first, (C1), consistency condition in Proposition 3.2, while√
nλn → ∞ (nλn → ∞) is required for the second one (C2). The AIC selection

criterion, λn = 1/n, is not consistent for it satisfies (C1) but fails to satisfy (C2),
regardless of β. It will thus recover the true structure but will tend to select
networks with higher complexities than the true one. Therefore AIC is prone to
overfitting and so is any scoring function with nλn = O(1). At the other end
of the consistency spectrum of α, limn supλn > 0, the estimated networks will
tend to have complexities below the true one. Due to the missingness, there is
an implication regarding the BIC(MDL) criterion, λn = 0.5 log(n)/n. Because
n log(n)/n → ∞ but

√
n log(n)/n → 0, BIC is guaranteed to be consistent

only in the complete data case and it will be, in general, inconsistent in MCAR
settings (see the corollaries that follow). The numerical results presented in
Section 5 confirm this conclusion.

Theorem 4.1 requires the observation probability β(G) to be fixed. If we
allow it to depend on n, case (ii) of the theorem arises from (i) if we have
limn βn(G) = 1. Then nλn → ∞ is a sufficient consistency condition. There is
no contradiction with case (iii), since then it must be that P (ZXi

= 1, ZPai
=

1) = 1 and P (ZXi
= 1, ZPa0

i
= 1) = 1, and hence Condition 4.1 fails. As evident

from the proof of the theorem, when limβn < 1, (i) and (iii) still hold. We leave
undecided the last alternative 0 < limβn < limβn = 1.

Next, we argue that Condition 4.1 arises naturally in MCAR settings. In the
probability space of all MCAR distributions for Z defined by the Borel sets in

{u ∈ [0, 1]2
N−1,

∑2N−1
k=1 uk ≤ 1} (a distribution u is defined by assigning each

of the 2N states of Z a probability value in [0,1] such that their sum is 1), the
subspace of distributions for which P (ZPai\Pa0

i
= 1|Zi = 1, ZPa0

i
= 1) = 0 or 1

has Borel measure zero. We thus have the following consequences of Theorem
4.1 which extend Corollary 3.1 and 3.2, and essentially summarize the practical
contribution of this investigation.

Corollary 4.1. Let (G0, P0) be a non-maximal DBN and G consist of all DAGs
compatible with a node order of G0. Then, for almost all MCAR distributions,
Ĝ is consistent estimator of G0 if and only if λn → 0 and

√
nλn → ∞.

In the last statement we assume that G comprises all DAGs on X and use
the global identifiability of [G0].

Corollary 4.2. Provided that I(G0) is non-empty, for almost all MCAR distri-
butions, [Ĝ] is consistent estimator of [G0] if and only if λn → 0 and

√
nλn →∞.

Note that, the non-emptiness of I(G0) is required in order for any DAG
equivalent to G0 to be non-maximal and hence, for Condition 4.1 to hold.
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5. Numerical experiments

With the number of possible DAGs being super-exponential to the number of
nodes, the task of reconstructing a DBN from data is in general NP-hard. The
MLE based problem (3.8) essentially requires exhausting all DAGs in G. For the
purpose of numerical illustration in this section we make two simplifying the in-
ference assumptions - that the causal order of the nodes of the original DBN G0

is known, as well as the maximum size of the parent sets of G0, its in-degree.
We thus assume that the search set G comprises all DAGs compatible with a
true node order. By Corollary 3.1, when the missing data model is MCAR, G0 is
identifiable in G. In our numerical experiments we use exclusively the complexity
function df , which recall is given by df(G, θ) = dim(ΘG), and the decomposable
scoring function (3.6). Then (3.8) can be solved by an efficient exhaustive search
via dynamic programming, an approach that is implemented in the catnet pack-
age for R, [1]. We are aware that more general learning algorithms are available
in the literature that can also accommodate available case analysis based on
NAL. For example, one can implement a search based on local optimizations as
described in [4] by replacing the usual log-likelihood with NAL. However, our
goal here is not to compare different learning strategies but to empirically verify
the conclusions of Theorem 4.1, which hold for all NAL-based estimators (3.8).

The standard AIC and BIC model selection criteria are compared to scoring
functions with λn = (1/N)n−α for different choices of α ∈ (0, 1). The factor
1/N , to some extent arbitrary, makes the penalization relatively small for not
large n (note that NAL is of rate O(N)). For this choice of λn and small n, the
estimator Ĝ therefore may over-fit the data but, provided the scoring criteria is
consistent, df(Ĝ) should approach the true complexity as n increases.

5.1. Simulated 2-node network

Here we consider a simplest possible example to verify the consistency of the
NAL estimator (3.8). We generate samples from a model G0 with 2 independent
binary variablesX1 and X2 (that is Pa1 = Pa2 = ∅) with marginal probabilities
θ1 = (0.4, 0.6) and θ2 = (0.3, 0.7), respectively. We assume that X1 ≺ X2 and
then the only alternative to G0 BN model is G1 with Pa1 = ∅ and Pa2 = {X1}.
We also assume that X2 is always observed (P (Z2 = 1) = 1) but Z1 is MCAR
with different missing probabilities P (Z1 = 0) ∈ {0, 0.01, 0.05, 0.10, 0.25}. The
sample observation probability is then β = 1 − P (Z1 = 0). For each β and
sample size n ∈ {102, 103, 104, 105}, we generate 1000 samples Dn and count
how many times S(G1|Dn) > S(G0|Dn), that is, Ĝ = G1 and G1 is erroneously
selected instead of G0. Table 1 summarizes results for different choices of the
penalization parameter α as well as BIC and AIC. As expected, all considered
scoring functions except AIC are consistent in the no missing data case (β = 1).
In presence of missing values however, for scoring functions with α > 0.5 the
percent of false model selections is significant; moreover, it increases when the
proportion of missing values increases, suggesting inconsistency. In particular,
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Table 1

Consistency results for a simulated 2-node network. Two possible models G0 and G1 are
considered as described in the main text. Shown are the percents of wrong selections

(choosing the alternative G1 instead of the true model G0)

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 BIC AIC
n = 102

β = 1 0.0 0.0 0.0 0.3 0.9 3.5 10.6 2.8 16.0
β = 0.99 0.0 0.0 0.0 0.5 1.7 6.6 17.0 4.5 22.9
β = 0.95 0.0 0.0 0.2 0.9 3.8 12.8 24.0 8.7 31.2
β = 0.90 0.0 0.0 0.0 0.7 6.9 16.6 31.5 12.5 37.0
β = 0.75 0.0 0.0 1.1 7.0 18.5 29.9 40.2 27.3 44.4

n = 103

β = 1 0.0 0.0 0.0 0.0 0.0 0.2 3.6 0.7 13.9
β = 0.99 0.0 0.0 0.0 0.0 0.0 1.6 13.3 2.9 33.5
β = 0.95 0.0 0.0 0.0 0.0 0.4 12.1 28.8 17.1 42.0
β = 0.90 0.0 0.0 0.0 0.1 3.6 19.1 34.7 23.0 43.9
β = 0.75 0.0 0.0 0.0 1.9 15.8 33.2 42.4 36.2 47.2

n = 104

β = 1 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.2 15.0
β = 0.99 0.0 0.0 0.0 0.0 0.0 2.7 24.7 13.9 44.1
β = 0.95 0.0 0.0 0.0 0.0 1.5 21.3 37.7 31.6 47.8
β = 0.90 0.0 0.0 0.0 0.0 7.0 28.9 41.5 36.5 47.5
β = 0.75 0.0 0.0 0.0 1.8 22.3 41.2 50.5 47.3 53.8

n = 105

β = 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.7
β = 0.99 0.0 0.0 0.0 0.0 0.0 11.8 37.8 35.8 50.4
β = 0.95 0.0 0.0 0.0 0.0 3.5 31.3 44.6 43.3 49.8
β = 0.90 0.0 0.0 0.0 0.0 13.1 36.1 47.2 46.0 50.5
β = 0.75 0.0 0.0 0.0 1.0 21.4 38.5 45.5 45.3 48.2

the inconsistency of BIC is very pronounced for all β < 1. Even when the
proportion of missing values is only 1 percent, β = 0.99, the percent of wrong
selections start from 4.5 for n = 102 and climbs to 35.8 for n = 105. The
presented results are in strong support of the predictions of Theorem 4.1.

5.2. Consistent estimation of the ALARM network

Here we consider a well known in the literature benchmark network. ALARM,
a medical diagnostic alarm message system for patient monitoring developed by
[2], is a typical example of belief propagation network as those employed in many
expert systems. The DAG of ALARM has 37 nodes, 45 directed edges, varying
number of categories (2,3 and 4) and complexity of 473. We perform network
reconstruction using both complete and MCAR missing data simulated from
the network, in order to confirm the effect of missingness on the model selection
as predicted by Theorem 4.1. The graph structures of the estimated networks
are compared to the original one by the so-called F -score, the harmonic mean of
precision (TP/(TP + FP )) and recall (TP/(TP +FN)), where P and N refer
to the presence and absence of directed edges. F -score of 1 represents perfect
reconstruction.

Missing data samples are simulated by deleting 1, 2 and 4 values from each
sample record, completely at random (so, there is not even 1 fully complete
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Table 2

Model selection results for the ALARM network using complete samples (β = 1) and
samples following MCAR models with β = 0.84 and β = 0.70. Shown are the F-scores

between the true network and the estimated ones

n 5e2 2.5e3 5e3 2.5e4 5e4 1e5 2.5e5
no missing values, β = 1

α = 0.25 0.85 0.95 0.97 0.97 0.97 0.97 0.98
α = 0.3 0.88 0.97 0.97 0.97 0.98 0.98 0.99
α = 0.35 0.86 0.97 0.97 0.98 0.99 1.00 1.00

α = 0.4 0.81 0.97 0.98 1.00 1.00 1.00 1.00

α = 0.45 0.75 0.96 1.00 1.00 1.00 1.00 1.00

α = 0.5 0.73 0.92 0.99 1.00 1.00 1.00 1.00

α = 0.75 0.57 0.65 0.62 0.62 0.65 0.63 0.65
BIC 0.85 0.97 0.98 1.00 1.00 1.00 1.00

AIC 0.80 1.84 0.82 0.81 0.79 0.80 0.80
MCAR, β = 0.84

α = 0.25 0.79 0.86 0.91 0.97 0.97 0.97 0.97
α = 0.3 0.79 0.88 0.88 0.93 0.93 0.97 0.99
α = 0.35 0.79 0.82 0.85 0.90 0.92 0.95 1.00

α = 0.4 0.74 0.78 0.81 0.85 0.86 0.91 0.92
α = 0.45 0.69 0.72 0.77 0.80 0.79 0.83 0.83
α = 0.5 0.65 0.70 0.70 0.72 0.71 0.78 0.74
α = 0.75 0.56 0.60 0.62 0.61 0.61 0.63 0.61
BIC 0.77 0.82 0.82 0.77 0.71 0.71 0.66
AIC 0.74 0.68 0.67 0.62 0.61 0.63 0.61

MCAR, β = 0.70
α = 0.25 0.76 0.83 0.88 0.93 0.97 0.97 0.97
α = 0.3 0.75 0.80 0.86 0.89 0.91 0.93 1.00

α = 0.35 0.69 0.73 0.84 0.87 0.89 0.93 0.95
α = 0.4 0.68 0.73 0.78 0.82 0.82 0.87 0.89
α = 0.45 0.66 0.65 0.74 0.76 0.79 0.78 0.79
α = 0.5 0.58 0.61 0.69 0.70 0.72 0.70 0.73
α = 0.75 0.56 0.57 0.61 0.61 0.62 0.61 0.63
BIC 0.74 0.75 0.79 0.74 0.74 0.69 0.67
AIC 0.70 0.61 0.66 0.62 0.63 0.61 0.63

record in the samples). Since the maximum parent size is 3, in the first case, the
probability to have no missing 3-node subset (Xi, Pai) is

(

36
3

)

/
(

37
3

)

and hence,
the effective observation probability β from (4.2) is about 0.92. When 2 values
per record are deleted, β drops to

(

35
3

)

/
(

37
3

)

≈ 0.84; when 4 values are deleted,
β is about 0.70. The target set of models G includes all DAGs with 37 nodes,
maximum of 3 parents per node, compatible with the true node order. Under
these constraints, the number of DAGs in G is 1133. For each possible complexity
t, the optimal network Ĝ(t) is found and a final selection is made according to
their scores.

Table 2 shows comparison results for 9 scoring criteria (α=0.25,0.3,0.35,0.4,
0.45,0.5, 0.75, BIC and AIC) and 7 samples sizes, from 5e2 to 2.5e5. In the
complete data case, the scoring functions with α ∈ [0.4, 0.5] and BIC reconstruct
the true network for all samples with n ≥ 2.5e4. As predicted, in the missing
data cases the score function for α = 0.5 and BIC become inconsistent due
to overfitting. This effect is more clearly demonstrated in Figures 1 and 2 that
show the complexity profile functions for different experimental cases. According
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Fig 1. Estimating the ALARM network from complete and MCAR samples of size 2.5e5.
For β = 1, 0.92, 0.84, 0.70, the so called complexity profile - the complexity of the estimated
network on y-axis as a function of the penalization parameter α on x-axis - is shown in the
range [0.25, 0.5]. In presence of missing values (β < 1), the BIC selection (dash, horizontal)
tends to move up and away from the true complexity of 473 (solid, horizontal), demonstrating
the inconsistency of BIC.
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Fig 2. Estimating ALARM from MCAR samples with fixed observation probability β = 0.84.
Shown are the complexity profiles of 6 samples of increasing size n. For n > 1e6, the com-
plexity of the BIC estimates are off charts (> 900).
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to Theorem 4.1, the complexity profiles in the (0, 0.5) range should converge
to the horizontal line of true complexity. In Figure 1 the sample size is kept
fixed and we see that with the increase of the proportion of missing values (β
decreasing), the profiles depart from the line of true complexity. On the other
hand, Figure 2 shows profiles of samples with fixed proportion of missing values
but of increasing size. We observe that, although slow, the profiles get closer
to the line of true complexity as n increases. It is also evident that the BIC
selected complexity drifts up and away from the true one with the increase of
the sample size, an indication for its inconsistency.

6. Conclusion

We have addressed the problem of discrete Bayesian network estimation from
incomplete data by maximizing a penalized log-likelihood scoring function. The
essential step in our approach is replacing the usual log-likelihood with a sum
of node-average log-likelihoods, the so-called NAL. We have motivated our de-
cision with a more efficient utilization of the available data and have shown the
connection between NAL optimization and EM algorithm. Although our setup
allows the missing data distribution to be arbitrary as long as the true DAG
structure remains identifiable, the latter rarely holds for general MAR mod-
els. As we have demonstrated however, in MCAR settings, the identifiability of
the set of independence relations, which characterizes all networks equivalent
to the true one, is always guaranteed. We have shown, Theorems 4.1, that in
presence of missing values the NAL-based estimator (3.8) requires more strin-
gent conditions on the penalization parameter λn to achieve consistency than
in the complete data case. The discrepancy is due to the fact that in NAL each
node may utilize different data subset for estimation thus reducing the overall
convergence rate. Although the theorem guarantees consistency for penalties in
a continuous range, choosing an optimal penalization parameter that performs
well in finite sample settings is an open problem deserving further investigation.

The scope of this article has been limited to discrete BNs for which self-
contained proofs of the results have been derived. It is straightforward however
to apply NAL-based estimation to other classes of parametric BNs, such as
linear Gaussian networks. Then, as long as for any G, G0 ⊂ G, l(G|Dn) −
l(G0|Dn) is Op(n

−1/2), in the missing, and Op(n
−1), in the complete data case,

Theorem 4.1, with some technical modification of the proofs, seems to remain
valid. Formulating identifiability and consistency for available case analysis in
more general graphical model settings is thus a subject of continuing interest.

7. Proofs

The next lemma is instrumental in the proof of Proposition 3.1. It shows that
the (population) node log-likelihood l(X |A), X ∈ {Xi}Ni=1, A ⊂ {Xi}Ni=1, is an
increasing function of A with respect to the set inclusion operation. In complete
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data settings, this result is better know as non-negativity of the Kullback-Leibler
divergence.

Lemma 7.1. For any A,B ⊂ X and X ∈ X such that ZB is independent of
(X,A,B) given (Z = 1, ZA = 1), we have l(X |A) ≤ l(X |A,B). The inequality
is strict if P (X |A,Z = 1, ZA = 1) 6= P (X |A,B,Z = 1, ZA = 1).

Proof. Let
θka ≡ P (X = k|A = a, Z = 1, ZA = 1).

By assumption

θkab ≡ P (X = k|A = a,B = b, Z = 1, ZA = 1, ZB = 1)

= P (X = k|A = a,B = b, Z = 1, ZA = 1)

We can therefore write the expression θka =
∑

b∈B P (B = b|A = a, Z = 1, ZA =
1)θkab. By the convexity of the function t 7→ t log(t) we have

θka log(θka) ≤
∑

b∈B

P (B = b|A = a, Z = 1, ZA = 1)θkab log(θkab),

and the claim follows from

l(X |A) =
∑

a∈A

P (A = a|Z = 1, ZA = 1)
∑

k∈X

θka log(θka)

≤
∑

a∈A,b∈B

P (B = b|A = a, Z = 1, ZA = 1)

× P (A = a|Z = 1, ZA = 1)
∑

k∈X

θkab log(θkab)

=
∑

a∈A,b∈B

P (A = a,B = b|Z = 1, ZA = 1, ZB = 1)
∑

k∈X

θkab log(θkab)

= l(X |A,B).

The last inequality is strict if P (X |A,Z = 1, ZA = 1) 6= P (X |A,B,Z = 1,
ZA = 1).

Proof of Proposition 3.1. Part (i)
Let G0 ⊂ G. The MCAR condition on Z and LMP imply that for every i and
Y ⊂ X such that Y ≺G0

Xi and Y ∩Pa0i = ∅, the following two conditions hold

(i) (Y, ZY ) is independent of Xi given (Pa0i , Zi = 1, ZPa0

i
= 1).

(ii) ZY is independent of Pa0i given (Zi = 1, ZPa0

i
= 1).

For each i, since Pa0i ⊂ Pai, Pai\Pa0i ≺ Xi, by (i) we have that (Pai\Pa0i ,
ZPai\Pa0

i
) and Xi are independent conditionally on Pa0i , and therefore for each

j ∈ Pa0i and j′ ∈ Pai\Pa0i ,

θi,k(jj′)(G|G0) = P (Xi = k|Pai = (jj′), Zi = 1, ZPai
= 1)

= P (Xi = k|Pa0i = j, Zi = 1, ZPa0

i
= 1) = θ0i,kj .
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Moreover, by (ii) applied to ZPai\Pa0

i
and Pa0i

∑

j′∈Pai\Pa0

i

θi,jj′ = P (Pa0i = j|Zi = 1, ZPai
= 1)

= P (Pa0i = j|Zi = 1, ZPa0

i
= 1) = θ0i,j ,

which implies

l(Xi|Pai) =
∑

j∈Pa0

i

∑

j′∈Pai\Pa0

i

θi,jj′
∑

k∈Xi

θi,k(jj′) log θi,k(jj′)

=
∑

j∈Pa0

i

∑

k∈Xi

θi,k(j) log θi,k(j) = l(Xi|Pa0i ).

We thus have l(G|G0) = l(G0).

Part (ii) and Part (iii)
By the definition of l(G|G0) in (3.2) and some summation manipulations we
obtain

l(G|G0) =

N
∑

i=1

∑

xPai
∈Pai

∑

xi∈Xi

P0(Xi= xi, Pai=xPai
) logP0(Xi =xi|Pai= xPai

)

=
N
∑

i=1

∑

x∈X

P0(X= x) logP0(Xi =xi|Pai= xPai
) =

∑

x∈X

P0(x) logPG|G0
(x),

where x indexes the states of X. Since
∑

x P0(x) = 1,
∑

x PG|G0
(x) = 1 and the

log-function is concave, we have

l(G|G0) =
∑

x

P0(x) logPG|G0
(x) ≤

∑

x

P0(x) logP0(x) = l(G0),

with equality that is achieved only when PG|G0
= P0.

Proof of Corollary 3.1. Let G0 ∈ G be DBN with a node order Ω and G be a
set of DAGs compatible with Ω. We need to show that l(G|G0) < l(G0) for all
G ∈ G for which G0 * G.

Note that for any G ∈ G, G ∪ G0 is also a DAG compatible with Ω and by
Proposition 3.1,

l(Xi|Pai) ≤ l(Xi|Pai ∪ Pa0i ) = l(Xi|Pa0i )

for all i. Moreover, because G0 * G, there is an i such that Pai = (Pa0i \Y )
for Y , ∅ 6= Y ⊂ Pa0i . Since P (Xi|Pai, Zi = 1, ZPai

= 1) 6= P (Xi|Pa0i , Zi =
1, ZPa0

i
= 1), because by definition G0 is a minimal DAG compatible with P0,

by Lemma 7.1, l(Xi|Pa0i \Y ) < l(Xi|Pa0i ), implying l(G|G0) < l(G0).

The next result is used in the proof of Lemma 4.1.
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Lemma 7.2. Let φ̂n = φ+Op(n
−1/2) and θ̂n = θ+Op(n

−1/2) for θ > 0. Then

φ̂n log(θ̂n)− φ log(θ) = Op(n
−1/2). (7.1)

Proof. By applying Taylor expansion to the logarithm function, we can write

φ̂n log(θ̂n)− φ log(θ) = (φ̂n − φ) log(θ) +
φn

ηn
(θ̂n − θ)),

for some ηn between θ̂n and θ. Since φn/ηn →p φ/θ < ∞, the claims follows
from the assumptions.

Proof of Lemma 4.1. Let G ∈ G has parent sets Pai. For all i = 1, . . . , N ,
j ∈ Pai and k ∈ Xi, we define

ξi,kj ≡ θ̂i,j θ̂i,kj log θ̂i,kj − θi,jθi,kj log θi,kj ,

where θi,j = θi,j(G|G0) and θi,kj = θi,kj(G|G0), and θ̂i,j and θ̂i,kj are the
corresponding estimates. In this notation we have

l(Xi|Pai, Dn)− l(Xi|Pai, G0) =

N
∑

i=1

∑

j∈Pai

∑

k∈Xi

ξi,kj .

Note that when either θi = 0, θi,j = 0 or θi,kj = 0 holds, then the state
(i, kj) will be unobservable and ξi,kj = 0. We thus may assume without loss of
generality that θi > 0, θi,j > 0 and θi,kj > 0 for all i, j and k. Moreover, by

Hoeffding’s inequality, for all k, j, ǫ > 0, P (|θ̂i,kj − θi,kj | ≥ ǫ) ≤ 2 exp(−2ni,jǫ
2)

and hence θ̂i,j = θi,j+Op(n
−1/2) and θ̂i,kj = θi,kj+Op(n

−1/2). We can therefore

apply Lemma 7.2 to θ̂i,j θ̂i,kj and θ̂i,kj to infer that ξi,kj = Op(n
−1/2), from which

the claim follows.

The following two lemmas are essential for the proof of Theorem 4.1. The
first one extends Lemma 7.2.

Lemma 7.3. Let for m = 1, . . . , k, θ̂m = θ0 + Op(n
−1/2), θ0 > 0 and θ̂ =

∑

m γmθ̂m, for γm ≥ 0 such that
∑

m γm = 1. Then

∆ ≡
∑

m

γmθ̂m log(θ̂m)− θ̂ log(θ̂) = Op(n
−1). (7.2)

Proof. Note that θ̂m, θ̂ and γm are all considered to be random variables. By
applying Taylor expansion to the logarithm function, we can write

θ̂m log(θ̂m) = θ̂m[log(θ̂) +
1

θ̂
(θ̂m − θ̂)− 1

2η2m
(θ̂m − θ̂)2],
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for some ηm between θ̂m and θ̂. Since ηm →p θ0 > 0, by assumption, we have

(θ̂m − θ̂)2/η2m = Op(n
−1). After some algebra we obtain

∆ =
∑

m

γm[θ̂m log(θ̂m)− θ̂m log(θ̂)] =
1

θ̂
[
∑

m

γmθ̂2m − θ̂2] +Op(n
−1)

=
1

θ̂
[
∑

m

γm(θ̂m − θ0)
2 − (θ̂ − θ0)

2] +Op(n
−1).

Finally, since 1/θ̂ →p 1/θ0 < ∞ and (θ̂ − θ0)
2 = Op(n

−1), (7.2) follows.

The next lemma presents a central limit result for difference between sample
and sub-sample averages. It consequently establishes a variability rate of n−1/2

for such differences.

Lemma 7.4. Let for each n > 0, x1
n, . . . , x

n
n be i.i.d. random variables with

mean µn and variance σ2
n such that σ2

n → σ2 < ∞. Let for some fixed β ∈
(0, 1), kn ∼ Binom(β, n) and αn be a random draw without replacements of kn
elements from the set {1, . . . , n}. Then for

Sn =
1

kn

∑

i∈αn

xi −
1

n

n
∑

i=1

xi,

for almost every sequence {αn}n≥1, we have

√
nSn →d N (0,

1− β

β
σ2). (7.3)

Proof. First, we rearrange the elements of Sn

Sn =
n− kn
nkn

∑

i∈αn

xi −
1

n

∑

i/∈αn

xi.

and define {yjn}kn

j=1 to be n−kn

nkn
xi for i ∈ αn, and {zjn}n−kn

j=1 to be − 1
nxi for

i /∈ αn. Hence Sn = y1n + · · ·+ ykn
n + z1n + · · ·+ zn−kn

n .
We are going to apply the Lindeberg-Feller CLT (see for example Th. 2.27

in [12]) to the triangular sequence
√
ny1n, . . . ,

√
nykn

n ,
√
nz1n, . . . ,

√
nzn−kn

n .

A key observation is that for each n, since αn is a random draw without re-
placements, conditionally on αn, yn’s and zn’s are independent. Moreover, it is
easy to verify that

E(Sn|kn) =
1

n
(
n− kn
kn

knµ− (n− kn)µ) = 0,

and

V ar(
√
nSn|kn) =

kn
∑

i=1

nV ar(yin)+

n−kn
∑

i=1

nV ar(zin) =
1

n
(
(n− kn)

2

kn
+(n− kn))σ

2
n.
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By the law of large numbers, kn/n → β almost surely, and therefore

V ar(
√
nSn|kn) →a.s.

1− β

β
σ2.

It is left to verify that for any ǫ > 0

kn
∑

i=1

nE(yin)
21{√n|yi

n|>ǫ} +
n−kn
∑

i=1

nE(zin)
21{√n|zi

n|>ǫ} → 0,

almost surely for {αn}n≥1. Indeed, the left-hand side sum equals

(n− kn)
2

nkn
E[(xn)

21{n−kn
kn

|xn|>
√
nǫ}] +

n− kn
n

E[(xn)
21{|xn|>

√
nǫ}]

and, by the assumptions, the above expectations converge to 0 for almost ev-
ery sequence {kn}n≥1, and hence, for almost every {αn}n≥1. Therefore the
Lindeberg-Feller CLT is applicable and (7.3) holds.

Proof of Theorem 4.1. We shall first outline some key steps in the proof. The
following notion will be useful: for a given sampleDn and two DAGsG1 = {Pa1i }
and G2 = {Pa2i }, we say that the NALs l(G1|Dn) and l(G2|Dn) are estimated
upon one and the same sample, if for every i, l(Xi|Pa1i ) and l(Xi|Pa2i ) are
estimated from one and the same subsample of Dn, that is, for every xs ∈ Dn,
(Xi, Pa1i ) and (Xi, Pa2i ) are either both observed or both unobserved (missing)
in xs. When (Xi, Pai) is observed in all xs ∈ Dn, we say that Dn is complete
with respect to (Xi, Pai).

The essential problem of achieving consistent estimation is to decide between
the true model G0 and a more complex model G1 in which G0 is nested. Ac-
cording to Lemma 4.1, the NAL scores l(G1|Dn) and l(G0|Dn) both converge to
l(G0) at a rate of n−1/2 and so does their difference - this is essentially Lemma
7.2. If therefore the scoring function penalty λn converges to 0 at a slower than
n−1/2 rate, in the limit, G0 would be preferred to G1 as a less complex model.
The latter condition is sufficient for both complete and missing data (claim (i)
of the theorem). However, it turns out that when l(G1|Dn) and l(G0|Dn) are
estimated upon one and the same sample, as in the complete data case, their
difference converges at a faster rate of n−1 - this is essentially due to the result
of Lemma 7.3. Then we can relax the necessary convergence rate of λn and still
achieve consistency (claim (ii)). The application of Lemma 7.3 crucially de-
pends on the condition: for every node Xi, if a sample is complete with respect
to (Xi, Pa0i ) so it is with respect to (Xi, Pa1i ). In MCAR settings the latter does
not hold and the difference l(G1|Dn) − l(G0|Dn) has a persistent variability of
order n−1/2, due to a central limit result, Lemma 7.4. Consequently the condi-
tion on λn to diminish at a rate slower than n−1/2 becomes both sufficient and
necessary (claim (iii)).

The more formal proof follows. We shall prove consistency by verifying condi-
tions (C1) and (C2) in Proposition 3.2. We first assume that G1, G2 ∈ G are such
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that G0 ⊆ G1 and G0 * G2. Then, by the identifiability of G0, Definition 3.1,
we have l(G2|G0) < l(G1|G0). Moreover, by Lemma 4.1, regardless of the obser-
vation probability β(G) > 0, l(G1|Dn) →p l(G1|G0) and l(G2|Dn) →p l(G2|G0),
and hence, for δ = (l(G1|G0)− l(G2|G0))/2, P (l(G1|Dn) > l(G2|Dn) + δ) → 1,
as n → ∞. The consistency condition (C1) therefore holds because the sequence
λn diminishes with n.

As in the proof of Lemma 4.1, without loss of generality we may assume
that for all G ∈ G, i = 1, . . . , N , j ∈ Pai(G) and k ∈ Xi, θi,j(G|G0) > 0 and
θi,kj(G|G0) > 0.

Part (i)
Let now assume G0 ⊆ G1, G0 ⊆ G2 and h(G1) < h(G2). To verify the con-
sistency condition (C2) we need to find the rate of convergence of the random
variable l(G1|Dn)−l(G2|Dn). This rate depends on whether the data is complete
or not.

By Lemma 4.1, l(G|Dn) = l(G|G0)+Op(n
−1/2) and since l(G1|G0) = l(G2|G0),

we have

l(G1|Dn)− l(G2|Dn) = Op(n
−1/2).

The latter holds regardless of the observation probability β(G) > 0. Therefore,
the condition

√
nλn → ∞ implies that the positive sequence λn(h(G2)−h(G1))

will overcome the likelihood difference l(G2|Dn) − l(G1|Dn) with probability
approaching 1, that is, P (S(G1|Dn) > S(G2|Dn)) → 1, as n → ∞. This proves
the first part of the theorem.

Part (ii)
In case of complete data, β(G) = 1, we shall obtain a faster convergence rate of
n−1 for the difference l(G|Dn)− l(G0|Dn), G0 ⊆ G, which will prove the second
part (ii) of the claim.

We consider the sample average log-likelihood of the node Xi. Since G0 ⊆ G,
we have that Pai = Pa0i ∪Y for some Y ⊂ {Xi}Ni=1, Y ∩Pa0i = ∅. Observe that
in G0, Xi cannot have descendants in Y . Indeed, if there is a directed path Xi

to Xs ∈ Y in G0, this path cannot be in G also, for otherwise one would have
the loop Xi to Xs to Xi in G and G would not be a DAG. But if there is a path
in G0 that is not in G, then G0 * G, a contradiction. Therefore, by LMP, Xi

and Y are independent given Pa0i .

In the usual notation, for j ∈ Pa0i , m ∈ Y and k ∈ Xi, θ̂i,kjm denotes

the estimator of P (Xi = k|Pa0i = j, Y = m) and θ̂i,jm is the estimator of
P (Pa0i = j, Y = m). We start with the expression

l(Xi|Pai, Dn)− l(Xi|Pa0i , Dn)

=
∑

m∈Y

∑

j∈Pa0

i

∑

k∈Xi

θ̂i,jmθ̂i,kjm log(θ̂i,kjm)−
∑

j∈Pa0

i

∑

k∈Xi

θ̂i,j θ̂i,kj log(θ̂i,kj)

=
∑

j∈Pa0

i

∑

k∈Xi

θ̂i,j∆i,kj , (7.4)
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where

∆i,kj ≡
∑

m∈Y

θ̂i,jm

θ̂i,j
θ̂i,kjm log(θ̂i,kjm)− θ̂i,kj log(θ̂i,kj).

By definition

θ̂i,jm =
ni,jm

∑

j′,m′ ni,j′m′

, θ̂i,j =
ni,j

∑

j′ ni,j′
and θ̂i,kjm =

ni,kjm

ni,jm
.

By the sample completeness, we have
∑

m ni,jm = ni,j and
∑

m ni,kjm = ni,kj ,
implying

∑

m∈Y

θ̂i,jm

θ̂i,j
θ̂i,kjm =

∑

j′ ni,j′
∑

j′,m ni,j′m

∑

m ni,kjm

ni,j
=

ni,kj

ni,j
= θ̂i,kj . (7.5)

If we set γm = θ̂i,jm/θ̂i,j, then
∑

m γm = 1 and
∑

m γmθ̂i,kjm = θ̂i,kj . However,
the latter are not guaranteed in incomplete settings because then we may have
∑

m ni,jm < ni,j and(or)
∑

m ni,kjm < ni,kj .

We can now apply Lemma 7.3 with γm, θ̂i,kjm and θ̂i,kj to infer that ∆i,kj =
Op(n

−1) and
l(Xi|Pai, Dn)− l(Xi|Pa0i , Dn) = Op(n

−1). (7.6)

Therefore l(G|Dn)− l(G0|Dn) = Op(n
−1) holds for all G such that G0 ⊆ G.

If both G1 andG2 containG0, it follows that l(G2|Dn)−l(G1|Dn) = Op(n
−1).

Therefore, the condition nλn → ∞ implies that the positive sequence λn(h(G2)−
h(G1)) will overcome the likelihood difference l(G2|Dn)− l(G1|Dn) with prob-
ability approaching 1, which concludes the second part (ii) of the theorem.

Remark 7.1. (7.6) holds even for incomplete samples Dn if they satisfy the
property: (Xi, Pai) is complete in Dn whenever (Xi, Pa0i ) is complete, or equiv-
alently, l(Xi|Pai, Dn) and l(Xi|Pa0i , Dn) are calculated upon one and the same
subsample of Dn. Lemma 7.3 is applicable in such cases because we still have
∑

m ni,jm = ni,j and
∑

m ni,kjm = ni,kj , and consequently,
∑

m γm = 1 and
∑

m γmθ̂i,kjm = θ̂i,kj . Interestingly, if Z is MCAR with P (ZY |Zi = 1, ZPa0

i
=

1) = a ∈ (0, 1), then
∑

m ni,jm/ni,j →p a and
∑

m ni,kjm/ni,kj →p a, and

consequently
∑

m γm →p 1 and
∑

m γmθ̂i,kjm − θ̂i,kj →p 0; this however is not
enough for the claim in Lemma 7.3 to hold.

Part (iii)
The last part of the theorem claims the necessity of condition (i) in case of
incomplete sample that also satisfies Condition 4.1. Let i be an unique node
index of G ∈ G for which the condition holds, that is, for j 6= i, Paj = Pa0j , but

Pai\Pa0i 6= ∅. Without loss of generality we may assume that h(G) = h(G0)+1
and that Dn is complete with respect to (Xi, Pa0i ). We shall show that for λn

such that lim
√
nλn < ∞

limn→∞P (l(Xi|Pai, Dn)− l(Xi|Pa0i , Dn)− λn > 0) > 0, (7.7)

which is equivalent to S to be inconsistent.
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Let D̃n = {x̃t}ñt=1 be the ñ-subsample of Dn for which (Xi, Pai) is observed.
Then we have l(Xi|Pai, Dn) = l(Xi|Pai, D̃n). Note that ñ is random and ñ ∼
Binom(a, n), for a = P (ZPai

= 1|Zi = 1, ZPa0

i
= 1) ∈ (0, 1), by Condition 4.1.

For every probability table θ, we denote

l(Xi|Pa0i , θ, D̃n) ≡
1

ñ

ñ
∑

t=1

l(x̃t|Pa0i , θ),

and

l(Xi|Pa0i , θ,Dn) ≡
1

n

n
∑

s=1

l(xs|Pa0i , θ)

where

l(x|Pa0i , θ) ≡
∑

j∈Pa0

i

∑

k∈Xi

1xi=k,pa0

i
=j log(θi,kj).

We have

l(Xi|Pa0i , Dn) = l(Xi|Pa0i , θ̂n, Dn), for θ̂n = argmax
θ

l(Xi|Pa0i , θ,Dn)

and

l(Xi|Pa0i , D̃n) = l(Xi|Pa0i , θ̃n, D̃n), for θ̃n = argmax
θ

l(Xi|Pa0i , θ, D̃n).

Next, we show that the convergence rate of the difference l(Xi|Pa0i , θ̂n, Dn)−
l(Xi|Pa0i , θ0, Dn) is n−1. The function f(θ) ≡ l(Xi|Pa0i , θ,Dn) has continuous
first and second derivatives in a neighborhood of θ0. Since

∂f
∂θ |θ̂n = 0 (f has a

maximum at θ̂n), the Taylor’s expansion of f at θ = θ̂n is

f(θ0) = f(θ̂n) + 0.5(θ0 − θ̂n)
T ∂2f

∂θ∂θT
|θ∗

n
(θ0 − θ̂n), for θ

∗
n ∈ [θ0, θ̂n].

Moreover, the Hessian at θ0 is bounded because θ0 is bounded away from 0 and
θ∗n →p θ0. Hence

∂2f

∂θ∂θT
|θ∗

n
=

∂2f

∂θ∂θT
|θ0 +Op(1).

Because ||θ0 − θ̂n||2 = Op(n
−1), we infer

√
n(l(Xi|Pa0i , θ̂n, Dn)− l(Xi|Pa0i , θ0, Dn)) = Op(n

−1/2).

Similarly we have

√
n(l(Xi|Pa0i , θ̃n, D̃n)− l(Xi|Pa0i , θ0, D̃n)) = Op(n

−1/2). (7.8)

Due to the MCAR assumption, ZPai\Pa0

i
is independent of (Xi, Pa0i ). This

and Condition 4.1 imply that D̃n is obtained from Dn by random draws without
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replacements. Therefore, we can apply Lemma 7.4 to the set {l(xs|Pa0i , θ0)}ns=1

of i.i.d. random variables and its subset {l(x̃t|Pa0i , θ0)}ñt=1. We thus infer

√
n(l(Xi|Pa0i , θ0, D̃n)− l(Xi|Pa0i , θ0, Dn)) →d N (0, γV ar(l(Xi|Pa0i , θ0))),

(7.9)
where γ = (1 − a)/a > 0. Also note that V ar(l(Xi|Pa0i , θ0)) > 0 by the identi-
fiability of G0.

Moreover, by Remark 7.1, (7.6) applied to D̃n yields

√
n(l(Xi|Pai, D̃n)− l(Xi|Pa0i , D̃n)) = Op(n

−1/2). (7.10)

Finally, we consider the difference implicated in (7.7)

√
n(l(Xi|Pai, D̃n)− l(Xi|Pa0i , Dn))−

√
nλn

apply (7.10)

=
√
n(l(Xi|Pa0i , θ̃n, D̃n)− l(Xi|Pa0i , θ̂n, Dn))−

√
nλn +Op(n

−1/2)

then use (7.8)

=
√
n(l(Xi|Pa0i , θ0, D̃n)− l(Xi|Pa0i , θ0, Dn))−

√
nλn +Op(n

−1/2)

=: Tn +Op(n
−1/2).

Since lim
√
nλn < ∞, there is a subsequence n′ such that lim

√
n′λn′ = λ0 < ∞

and for which, taking into account the convergence (7.9), we have

Tn′ →d N (−λ0, γV ar(l(Xi|Pa0i , θ0))).

Therefore limP (Tn′ > 0) → 1 − Φ(λ0/
√

γV ar(l(X |Pa0i , θ0))) > 0, where Φ is
the c.d.f. of the standard normal distribution. Hence (7.7) is verified and with
this the proof of the theorem.
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