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Sébastien Gadat, Thierry Klein and Clément Marteau
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Abstract: In this paper, we consider the problem of estimating nonpara-
metrically a mean pattern intensity λ from the observation of n independent
and non-homogeneous Poisson processes N1, . . . , Nn on the interval [0, 1].
This problem arises when data (counts) are collected independently from n

individuals according to similar Poisson processes. We show that estimat-
ing this intensity is a deconvolution problem for which the density of the
random shifts plays the role of the convolution operator. In an asymptotic
setting where the number n of observed trajectories tends to infinity, we
derive upper and lower bounds for the minimax quadratic risk over Besov
balls. Non-linear thresholding in a Meyer wavelet basis is used to derive
an adaptive estimator of the intensity. The proposed estimator is shown to
achieve a near-minimax rate of convergence. This rate depends both on the
smoothness of the intensity function and the density of the random shifts,
which makes a connection between the classical deconvolution problem in
nonparametric statistics and the estimation of a mean intensity from the
observations of independent Poisson processes.
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1. Introduction

Poisson processes became intensively studied in the statistical theory during the
last decades. Such processes are well suited to model a large amount of phenom-
ena. In particular, they are used in various applied fields including genomics,
biology and imaging.

In the statistical literature, the estimation of the intensity of non-homogeneous
Poisson process has recently attracted a lot of attention. In particular the prob-
lem of estimating a Poisson intensity from a single trajectory has been stud-
ied using model selection techniques [38] and non-linear wavelet thresholding
[19, 29, 39, 44, 30, 4] and [5]. Poisson noise removal has also been considered by
[20, 46] for image processing applications. Deriving optimal estimators of a Pois-
son intensity using a minimax point of view has been considered in [15, 38, 39, 44]
or Stein’s method [36]. In all these papers, the intensity λ of the observed pro-
cess is expressed as λ(t) = κλ0(t) where the function to estimate is the scaled
intensity λ0 and κ is a positive real, representing an “observation time”, that is
let going to infinity to study asymptotic properties. In this paper, we consider a
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slightly different framework. In many applications, data can be modeled as in-
dependent Poisson processes with different non-homogeneous intensities having
nevertheless a similar shape. The simplest model which describes such situations
is to assume that the intensities λ1, . . . , λn of the Poisson processes N1, . . . , Nn

are randomly shifted versions λi(·) = λ(·−τ i) of an unknown intensity λ, where
τ 1, . . . , τn are i.i.d. random variables. The intensity λ that we want to estimate
is thus the same for all the observed processes up to random translations.

The motivation of our study comes from a practical problem encountered
in DNA Chip-Seq data processing which can be described as follows. Chip-
Sequencing is a fast biological analysis pipeline used to find and map genetic
information along the genome. For any protein (transcription factor) which can
read and interpret information in the genome, Chip-Seq provides a long se-
quence of tags (called reads) associated with specific genome locations where
this transcription factor binds specific DNA sequences. Moreover, the Chip-Seq
data provides a higher concentration of tags near transcription factor binding
sites. We can number several goals for such analysis. Biologists are interested
in the identification of true binding sites (where the rate is significantly high),
as well as the estimation of the mean binding rate along the genome for such
protein or the clustering of two populations of experiments which behaves very
differently during such tag procedure.

From a statistical point of view, Chip-Seq data may be considered as repeti-
tions of some Poisson counting processes (see [42]) which is not of homogeneous
intensity as pointed in [18] and [43]. The unknown intensity of the underlying
Poisson process quantifies the rate of expected reads for a specific choice of
transcription factor. To obtain an estimator of this unknown intensity, a sim-
ple procedure is to average all the observed experiments. However, there is an
additional difficulty in the analysis of such data which mainly relies on the ac-
quisition method. The sequencing procedure puts some tags when reads occur
along a very long DNA sequence. Then, it splits this counting process in a large
number of sequences with smaller sizes which (roughly speaking) correspond to
several chromosomes. But the demarcation of the beginning and ending loca-
tions of the chromosomes depends on some a priori knowledge which may be
inaccurate. For each observed counting process, this generates some additional
unknown random shifts of the underlying intensity.

Let us now describe more precisely our model. Let τ 1, . . . , τn be i.i.d. random
variables with known density g with respect to the Lebesgue measure on R. Let
λ : [0, 1] → R+ a real-valued function. Throughout the paper, it is assumed that
λ can be extended outside [0, 1] by 1-periodization. We suppose that, condition-
ally to τ 1, . . . , τn, the point processes N

1, . . . , Nn are independent Poisson pro-
cesses on the measure space ([0, 1],B([0, 1]), dt) with intensities λi(t) = λ(t−τ i)
for t ∈ [0, 1], where dt is the Lebesgue measure. Hence, conditionally to τ i, N

i

is a random countable set of points in [0, 1], and we denote by dN i
t = dN i(t)

the discrete random measure
∑

T∈Ni δT (t) for t ∈ [0, 1], where δT is the Dirac
measure at point T . For further details on non-homogeneous Poisson processes,
we refer to [28]. The objective of this paper is to study the estimation of λ from
a minimax point of view as the number n of observed Poisson processes tends to
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infinity. Since λ is 1-periodic, one may argue that the random shifts τ i are only
defined modulo one, and therefore, without loss of generality, we also assume
that g is restricted to have support in the interval [0, 1].

In this framework, our main result is that estimating λ corresponds to a
deconvolution problem where the density g of the random shifts τ 1, . . . , τn is
a convolution operator that has to be inverted. Hence, estimating λ falls into
the category of Poisson inverse problems. The presence of the random shifts
significantly complicates the construction of upper and lower bounds for the
minimax risk. In particular, to derive a lower bound, standard methods such
as the Assouad’s cube technique that is widely used for standard deconvolution
problems in a white noise model (see e.g. [35] and references therein) have to
be carefully adapted to take into account the effect of the random shifts. In this
paper, our main tool is a likelihood ratio formula specific to Poisson processes
(see Lemma 8.1 below) that yields some major differences in the proof with
respect to the Gaussian case. In order to obtain an upper bound, we use Meyer
wavelets which are well suited to deconvolution problems [27]. We construct a
non-linear wavelet-based estimator with level-dependent and random thresholds
that require the use of concentration inequalities for Poisson processes and an
accurate estimation of the L1-norm of the intensity λ. Note that estimating the
intensity function of an indirectly observed non-homogeneous Poisson process
from a single trajectory has been considered by [3, 15, 34], but adopting an
inverse problem point of view to estimate a mean pattern intensity from the
observation of n Poisson processes has not been proposed so far.

We point out that we assume throughout this paper that the density g of
the random shifts is known. This assumption relies on an a priori knowledge of
the random phenomenon generating the shifts. This hypothesis is realistic when
dealing with Chip-Seq data for which the biologists are able to describe and
to quantify the law of small random deformations leading to a shifted D.N.A.
transcription. Note that a similar assumptions appears in [41] in the setting
where the shifts τi are given, but when one only observes the sum

∑n
i=1N

i of
n Poisson processes N i with randomly shifted intensities.

The rest of the paper is organized as follows. In Section 2, we describe the
connection between estimating λ and standard approaches in statistical decon-
volution problems. We also discuss the construction of a linear but nonadaptive
estimator of the intensity λ. Section 3 is devoted to the computation of a lower
bound for the minimax risk over Besov balls which is the main contribution of
the paper. In Section 4, we construct an adaptive estimator, using non-linear
Meyer wavelet thresholding, that is used to obtain an upper bound of the min-
imax risk over Besov balls. We propose some numerical experiments in Section
5 to illustrate the performances of this estimator on simulated data. Section 6
contains a conclusion and some perspectives. In particular, we discuss some lim-
itations of existing approaches (e.g. in genomics and bioinformatics) to estimate
the mean pattern λ via an alignment step which consists in computing “esti-
mators” τ̂1, . . . , τ̂n of the unobserved shifts τ 1, . . . , τn. The proofs of the main
statements and of some technical lemmas are gathered in Section 7, Section 8,
Section 9 and Section 10.
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2. A deconvolution problem formulation

2.1. A Fourier transformation of the data

For each observed counting process, the presence of a random shift complicates
the estimation of the intensity λ. Indeed, for all i ∈ {1, . . . , n} and any f ∈
L2
+([0, 1]) we have

E

[∫ 1

0

f(t)dN i
t

∣

∣τ i

]

=

∫ 1

0

f(t)λ(t − τ i)dt, (2.1)

where E[.|τ i] denotes the conditional expectation with respect to the variable
τ i. Thus

E

∫ 1

0

f(t)dN i
t =

∫ 1

0

f(t)

∫

R

λ(t− τ)g(τ)dτdt =

∫ 1

0

f(t)(λ ⋆ g)(t)dt.

Hence, the mean intensity of each randomly shifted process is the convolution
λ⋆g between λ and the density of the shifts g. This shows that a parallel can be
made with the classical statistical deconvolution problem which is known to be
an inverse problem. This parallel is highlighted by taking a Fourier expansion
of the data. Let (eℓ)ℓ∈Z the complex Fourier basis on [0, 1], i.e. eℓ(t) = ei2πℓt for
all ℓ ∈ Z and t ∈ [0, 1]. For ℓ ∈ Z, define

θℓ =

∫ 1

0

λ(t)eℓ(t)dt and γℓ :=

∫ 1

0

g(t)eℓ(t)dt,

as the Fourier coefficients of the intensity λ and the density g of the shifts. Then,
for ℓ ∈ Z, define yℓ as

yℓ :=
1

n

n
∑

i=1

∫ 1

0

eℓ(t)dN
i
t . (2.2)

Using (2.1) with f = eℓ, we obtain that

E
[

yℓ
∣

∣τ 1, . . . , τn
]

=
1

n

n
∑

i=1

∫ 1

0

eℓ(t)λ(t − τ i)dt =
1

n

n
∑

i=1

e−i2πℓτ iθℓ = γ̃ℓθℓ,

where we have introduced the notation

γ̃ℓ :=
1

n

n
∑

i=1

ei2πℓτ i , ∀ℓ ∈ Z. (2.3)

Hence, the estimation of the intensity λ ∈ L2
+([0, 1]) can be formulated as fol-

lows: we want to estimate the sequence (θℓ)ℓ∈Z of Fourier coefficients of λ from
the sequence space model

yℓ = γ̃ℓθℓ + ξℓ,n, (2.4)
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where the ξℓ,n are centered random variables defined as

ξℓ,n :=
1

n

n
∑

i=1

[∫ 1

0

eℓ(t)dN
i
t −

∫ 1

0

eℓ(t)λ(t− τ i)dt

]

for all ℓ ∈ Z.

The model (2.4) is very close to the standard formulation of statistical linear
inverse problems. Indeed, using the singular value decomposition of the con-
sidered operator, the standard sequence space model of an ill-posed statistical
inverse problem is (see [14] and the references therein)

cℓ = θℓγℓ + zℓ, (2.5)

where the γℓ’s are eigenvalues of a known linear operator, and the zℓ’s represent
an additive random noise. The issue in model (2.5) is to recover the coefficients
θℓ from the observations cℓ. A large class of estimators in model (2.5) can be
written as

θ̂ℓ = δℓ
cℓ
γℓ
,

where δ = (δℓ)ℓ∈Z is a sequence of reals with values in [0, 1] called filter (see [14]
for further details).

Equation (2.4) can be viewed as a linear inverse problem with a Poisson
noise for which the operator to invert is stochastic with eigenvalues γ̃ℓ (2.3)
that are unobserved random variables. Nevertheless, since the density g of the
shifts is assumed to be known and Eγ̃ℓ = γℓ with γ̃ℓ ≈ γℓ for n sufficiently large
(in a sense which will be made precise later on), an estimation of the Fourier
coefficients of f could be obtained by a deconvolution step of the form

θ̂ℓ = δℓ
yℓ
γℓ
, (2.6)

where δ = (δℓ)ℓ∈Z is a filter whose choice has to be discussed.
In this paper, the following type of assumption on g is considered:

Assumption 2.1. The Fourier coefficients of g have a polynomial decay i.e.
for some real ν > 0, there exist two constants C ≥ C′ > 0 such that C′|ℓ|−ν ≤
|γℓ| ≤ C|ℓ|−ν for all ℓ ∈ Z.

In standard inverse problems such as deconvolution, the expected optimal
rate of convergence from an arbitrary estimator typically depends on such
smoothness assumptions for g. The parameter ν is usually referred to as the
degree of ill-posedness of the inverse problem, which quantifies the difficult of
inverting the convolution operator.We will not consider severely ill-posed inverse
problems, i.e. when the Fourier coefficients of g are exponentially decreasing.
Although this problem is interesting for application purposes, the lower bound
results obtained in Section 3 do not hold in such a case.
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2.2. A linear estimator by spectral cut-off

This part allows us to shed some light on the connexion that may exist between
our model and a deconvolution problem. For a given filter (δℓ)ℓ∈Z and using
(2.6), a linear estimator of λ is given by

λ̂δ(t) =
∑

ℓ∈Z

θ̂ℓeℓ(t) =
∑

ℓ∈Z

δℓγ
−1
ℓ yℓeℓ(t), t ∈ [0, 1], (2.7)

whose quadratic risk can be written in the Fourier domain as

R(λ̂δ , λ) := E

(

∑

ℓ∈Z

|θ̂ℓ − θℓ|2
)

.

The following proposition (whose proof can be found in Section 7) illustrates

how the quality of the estimator λ̂δ (in term of quadratic risk) is related to the
choice of the filter δ.

Proposition 2.1. For any given non-random filter δ, the risk of λ̂δ can be
decomposed as

R(λ̂δ , λ) =
∑

ℓ∈Z

|θℓ|2(δℓ−1)2+
∑

ℓ∈Z

δ2ℓ
n
|γℓ|−2‖λ‖1+

∑

ℓ∈Z

δ2ℓ
n
|θℓ|2

(

|γℓ|−2 − 1
)

. (2.8)

where ‖λ‖1 =
∫ 1

0 λ(t)dt.

Note that the quadratic risk of any linear estimator in model (2.4) is com-
posed of three terms. The two first terms in the risk decomposition (2.8) corre-
spond to the classical bias and variance in statistical inverse problems. The third
term corresponds to the error related to the fact that the inversion of the oper-
ator is performed using (γl)l∈Z instead of the (unobserved) random eigenvalues
(γ̃l)l∈Z. Consider now the following smoothness class of functions (a Sobolev
ball)

Hs(A) =

{

λ ∈ L2
+([0, 1]);

∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ|2 ≤ A and λ(t) ≥ 0 for all t ∈ [0, 1]

}

,

for some smoothness parameter s > 0, where θℓ =
∫ 1

0
e−2iℓπtλ(t)dt.

For the sake of simplicity we only consider the family of projection (or spectral
cut-off) filters δM = (δℓ)ℓ∈Z

=
(

Rlap1Rlap1 {|ℓ|≤M}

)

ℓ∈Z
for someM ∈ N. Using

Proposition 2.1, it follows that

R(λ̂δ
M

, λ) =
∑

ℓ>M

|θℓ|2 +
1

n

∑

|ℓ|<M

(

|γℓ|−2‖λ‖1 + |θℓ|2
(

|γℓ|−2 − 1
))

. (2.9)

For an appropriate choice of the spectral cut-off parameter M , the following

proposition gives the asymptotic behavior of the risk of λ̂δ
M

, see equation (2.7).



888 J. Bigot et al.

Proposition 2.2. Assume that f belongs to Hs(A) with s > 1/2 and A > 0,
and that g satisfies Assumption (2.1). IfM =Mn is chosen as the largest integer

such Mn ≤ n
1

2s+2ν+1 , then as n→ +∞

sup
λ∈Hs(A)

R(λ̂δ
M

, λ) = O
(

n− 2s
2s+2ν+1

)

.

The proof follows immediately from the decomposition (2.9), the definition
of Hs(A) and Assumption (2.1). Remark that Proposition 2.2 shows that un-

der Assumption 2.1 the quadratic risk R(λ̂δ
M

, λ) is of polynomial order of the
sample size n, and that this rate deteriorates as the degree of ill-posedness
ν increases. Such a behavior is a well known fact for standard deconvolution
problems, see e.g. [35, 27] and references therein. Proposition 2.2 shows that

a similar phenomenon holds for the linear estimator λ̂δ
M

. Hence, there may
exist a connection between estimating a mean pattern intensity from a set of
non-homogeneous Poisson processes and the statistical analysis of deconvolution
problems.

However, the choice of M = Mn in Proposition 2.2 depends on the a priori
unknown smoothness s of the intensity λ. Such a spectral cut-off estimator is
thus non-adaptive, of limited interest for applications. Moreover, the result of
Proposition 2.2 is only suited for smooth functions since Sobolev balls Hs(A) for
s > 1/2 are not well adapted to model intensities λ which may have singularities.
This corresponds to a classical limitation of deconvolution using the Fourier
basis which is not well suited to estimate an intensity λ with spikes for instance.
In Section 4, we will thus consider the problem of constructing an adaptive
estimator using non-linear wavelet decompositions, and we will derive an upper
bound of the quadratic risk of such estimators over Besov balls.

3. Lower bound of the minimax risk over Besov balls

Denote by ‖λ‖22 =
∫ 1

0
|λ(t)|2dt the squared norm of a function λ belonging to

the space L2
+([0, 1]) of non-negative squared integrable functions on [0, 1] with

respect to the Lebesgue measure dt. Let Λ ⊂ L2
+([0, 1]) be some smoothness class

of functions, and let λ̂n ∈ L2
+([0, 1]) denote an estimator of the intensity function

λ ∈ Λ, i.e. a measurable mapping of the random processes N i, i = 1, . . . , n
taking its value in L2

+([0, 1]). Define the quadratic risk of any estimator λ̂n as

R(λ̂n, λ) := E‖λ̂n − λ‖22,
and introduce the following minimax risk

Rn(Λ) = inf
λ̂n

sup
λ∈Λ

R(λ̂n, λ),

where the above infimum is taken over the set of all possible estimators con-
structed fromN1, . . . , Nn. In order to investigate the optimality of an estimator,
the main contributions of this paper are deriving upper and lower bounds for
Rn(Λ) when Λ is a Besov ball, and constructing an adaptive estimator that
achieves a near-minimax rate of convergence.
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3.1. Meyer wavelets and Besov balls

Let us denote by ψ (resp. φ) the periodic mother Meyer wavelet (resp. scaling
function) on the interval [0, 1] (see e.g. [35, 27] for a precise definition). Any
intensity λ ∈ L2

+([0, 1]) can then be decomposed as follows

λ(t) =

2j0−1
∑

k=0

cj0,kφj0,k(t) +

+∞
∑

j=j0

2j−1
∑

k=0

βj,kψj,k(t),

where φj0,k(t) = 2j0/2φ(2j0 t − k), ψj,k(t) = 2j/2ψ(2jt − k), j0 ≥ 0 denotes the
usual coarse level of resolution, and

cj0,k =

∫ 1

0

λ(t)φj0 ,k(t)dt, βj,k =

∫ 1

0

λ(t)ψj,k(t)dt,

are the scaling and wavelet coefficients of λ. It is well known that Besov spaces
can be characterized in terms of wavelet coefficients (see e.g [33]). Let s >
0 denote the usual smoothness parameter and 1 ≤ p, q ≤ ∞ two integers.
Throughout the paper we assume that s > 1/p − 1/2. Then, we define the
Besov ball Bs,+p,q (A) of radius A > 0 containing only non-negative functions as

Bs,+p,q (A) =

{

f ∈ L2
+([0, 1]) :





2j0−1
∑

k=0

|cj0,k|p




1
p

+







+∞
∑

j=j0

2j(s+
1
2−

1
p
)q





2j−1
∑

k=0

|βj,k|p




q

p







1
q

≤ A

}

with the respective above sums replaced by maximum if p = ∞ or q = ∞.
The parameter s is related to the smoothness of the function f . Note that if
p = q = 2, then a Besov ball is equivalent to a Sobolev ball if s is not an integer.
For 1 ≤ p < 2, the space Bs,+p,q (A) contains functions with local irregularities.

3.2. A lower bound of the minimax risk

The following result provides a lower bound of reconstruction in Bs,+p,q (A) over
a large range of values for s, p, q.

Theorem 3.1. Suppose that g satisfies Assumption 2.1. Let 1 ≤ p ≤ ∞, 1 ≤
q ≤ ∞, A > 0 and assume that s > 2ν+1. Then, there exists a constant C0 > 0
(independent of n) such that for all sufficiently large n

Rn(B
s,+
p,q (A)) = inf

λ̂n

sup
λ∈Bs,+

p,q (A)

R(λ̂n, λ) ≥ C0n
− 2s

2s+2ν+1 ,

where the above infimum is taken over the set of all possible estimators λ̂n ∈
L2
+([0, 1]) of the intensity λ (i.e the set of all measurable mapping of the random

processes N i, i = 1, . . . , n taking their value in L2
+([0, 1])).
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Hence, Theorem 3.1 shows that under Assumption 2.1 the minimax risk

Rn

(

Bs,+p,q (A)
)

is lower bounded by the sequence n− 2s
2s+2ν+1 which goes to zero

at a polynomial rate as the sample size n goes to infinity, and that this rate
deteriorates as the degree of ill-posedness ν increases. Such a behavior is a well
known fact for standard deconvolution problems, see e.g. [35, 27] and references
therein. Remark that our condition s ≥ 2ν + 1 does not allow to consider the
so-called “sparse” case in non parametric wavelet denoising (see [23] for further
details). Indeed, our proof relies on asymptotic expansions in Girsanov’s formula
and requires a minimal smoothness on the function λ.

The proof of this result is postponed to Section 8. The arguments to de-
rive this lower bound rely on a non-standard use of Assouad’s cube technique
that is classically used in statistical deconvolution problems to obtain minimax
properties of an estimator (see e.g. [35] and references therein).

4. Adaptive estimation in Besov spaces

In this section, we describe a statistical procedure to build an adaptive (to the
unknown smoothness s of λ) estimator using Meyer wavelets.

4.1. A deconvolution step to estimate scaling and wavelet

coefficients

We use Meyer wavelets to build a non-linear and adaptive estimator as follows.
Meyer wavelets satisfy the fundamental property of being band-limited function
in the Fourier domain which make them well suited for deconvolution problems.
More precisely, each φj,k and ψj,k has a compact support in the Fourier domain
in the sense that

φj0,k =
∑

ℓ∈Dj0

cℓ(φj0,k)eℓ, ψj,k =
∑

ℓ∈Ωj

cℓ(ψj,k)eℓ,

with

cℓ(φj0,k) :=

∫ 1

0

e−2iℓπtφj0,k(t)dt, cℓ(ψj,k) :=

∫ 1

0

e−2iℓπtψj,k(t)dt,

and where Dj0 and Ωj are finite subsets of integers such that #Dj0 ≤ C2j0 ,
#Ωj ≤ C2j for some constant C > 0 independent of j and

Ωj ⊂ [−2j+2c0,−2jc0] ∪ [2jc0, 2
j+2c0] (4.1)

with c0 = 2π/3. Then, thanks to Dirichlet theorem, the scaling and wavelets
coefficients of λ satisfy

cj0,k =
∑

ℓ∈Dj0

cℓ(φj0,k)θℓ, βj,k =
∑

ℓ∈Ωj

cℓ(ψj,k)θℓ. (4.2)
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Therefore, one can plug the estimator θ̂ℓ = γ−1
ℓ yℓ of each θℓ, see equation (2.4),

in (4.2) to build estimators of the scaling and wavelet coefficients by defining

ĉj0,k =
∑

ℓ∈Ωj0

cℓ(φj0,k)θ̂ℓ and β̂j,k =
∑

ℓ∈Ωj

cℓ(ψj,k)θ̂ℓ. (4.3)

4.2. Hard thresholding estimation

We propose to use a non-linear hard thresholding estimator defined by

λ̂hn =

2j0(n)−1
∑

k=0

ĉj0,kφj0,k +

j1(n)
∑

j=j0(n)

2j−1
∑

k=0

β̂j,kRlap1Rlap1 {|β̂j,k|>ŝj(n)}
ψj,k. (4.4)

In the above formula, ŝj(n) refers to possibly random thresholds that depend
on the resolution j, while j0 = j0(n) and j1 = j1(n) are the usual coarsest and
highest resolution levels whose dependency on n will be specified later on. Then,
let us introduce some notations. For all j ∈ N, define

σ2
j = 2−j

∑

ℓ∈Ωj

|γℓ|−2 and ǫj = 2−j/2
∑

ℓ∈Ωj

|γℓ|−1, (4.5)

and for any γ > 0, let

K̃n(γ) =
1

n

n
∑

i=1

Ki +
4γ logn

3n
+

√

√

√

√

2γ logn

n2

n
∑

i=1

Ki +
5γ2(log n)2

3n2
, (4.6)

where Ki =
∫ 1

0
dN i

t is the number of points of the counting process N i for
i = 1, . . . , n. Introduce also the class of bounded intensity functions

Λ∞ =
{

λ ∈ L2
+([0, 1]); ‖λ‖∞ < +∞ and λ(t) ≥ 0 for all t ∈ [0, 1]

}

,

where ‖λ‖∞ = supt∈[0,1]{|λ(t)|}.
Theorem 4.1. Suppose that g satisfies Assumption 2.1. Let 1 ≤ p ≤ ∞, 1 ≤
q ≤ ∞ and A > 0. Let p′ = min(2, p), and assume that s > 1/p′ and (s+1/2−
1/p′)p > ν(2− p). Let δ > 0 and suppose that the non-linear estimator λ̂hn (4.4)
is computed using the random thresholds

ŝj(n) = 4

(

√

σ2
j

2γ logn

n

(

‖g‖∞K̃n(γ) + δ
)

+
γ logn

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n),

(4.7)
with γ ≥ 2, and where σ2

j and ǫj are defined in (4.5). Define j0(n) as the

largest integer such that 2j0(n) ≤ logn and j1(n) as the largest integer such that

2j1(n) ≤
(

n
logn

)
1

2ν+1 . Then, as n→ +∞,

sup
λ∈Bs,+

p,q (A)
⋂

Λ∞

R(λ̂hn, λ) = O
(

(

logn

n

)
2s

2s+2ν+1

)

.
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The proof of Theorem 4.1 is postponed to Section 9. Hence, Theorem 4.1
shows that under Assumption 2.1 the quadratic risk of the non-linear estimator
λ̂hn is of polynomial order of the sample size n, and that this rate deteriorates
as ν increases. Again, this result illustrates the connection between estimating
a mean intensity from the observation of Poisson processes and the analysis
of inverse problems in nonparametric statistics. Note that the choices of the
random thresholds ŝj(n) and the highest resolution level j1 do not depend on the

smoothness parameter s. Hence, contrary to the linear estimator λ̂δ
M

studied in
Proposition 2.2, the non-linear estimator λ̂hn is said to be adaptive with respect
to the unknown smoothness s. Moreover, the Besov spaces Bs,+p,q (A) may contain
functions with local irregularities. The above described non-linear estimator is
thus suitable for the estimation of non-globally smooth functions.

In Section 3, we have shown that the rate n− 2s
2s+2ν+1 is a lower bound for the

asymptotic decay of the minimax risk over a large scale of Besov balls. Hence,
the wavelet estimator that we propose is almost optimal up to a logarithmic
term. The presence of such a term is classical in wavelet-based denoising. It
corresponds to the price to pay for adaptation when using estimators based
on nonlinear thresholding in a wavelet basis. Nevertheless, it is possible to use
block thresholding procedures that lead to estimators with slightly better rates
of convergence (i.e. without the logarithm term) in some cases. For further
details, we refer to [17].

In the above result, we have decided to restrict ourselves to the situation
(s + 1/2 − 1/p′)p > ν(2 − p) and s > 1/p′, which is called “dense” case in
the litterature. Remark that it would be possible to also obtain upper bound
on the estimation in the complementary case (“sparse” case). We believe that
we certainly observe an elbow phenomenon as it is the case in the classical
wavelet deconvolution problems. Nevertheless, since the lower bound established
in Section 3 is not valid in this sparse case, we have decided to not present the
corresponding upper bound.

5. Numerical experiments

We propose some numerical experiments to illustrate the performances of the
suggested non-linear estimator on simulated data. To perform the simulations,
we used the wavelet toolbox Wavelab [13] and the WaveD algorithm developed
by [37] for fast deconvolution with Meyer wavelets.

For the unknown intensity λ to recover, we consider the test function dis-
played in Figure 1(a). Then, we draw independent random shifts τ 1, . . . , τn
following a Laplace distribution g(t) = 1

2µ exp
(

− |t|
µ

)

with µ = 0.03. For a given

shift τi, we simulate a realization of the Poisson counting process N i with in-
tensity λi(·) = λ(·−τ i) as follows. The observation interval [0, 1] is first divided
into T equal subintervals Im = [m/T, (m + 1)/T [, for m = 0, . . . , T − 1 with
T = 256. Then, the simulated data consist of independent Poisson counts in
each interval Im with respective expected value λi(m/T ) = λ(m/T − τ i), for
m = 0, . . . , T − 1 (note that a similar procedure is proposed in [5] to simulate
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Fig 1. Bumps function. First row: (a) unknown intensity λ. Second and third rows: four
independent realizations of the Poisson process N i with randomly shifted intensity λi(·) =
λ(· − τ i), i = 1, 2, 3, 4 in the form of vectors of counts of length T = 256 (b) y1, (c) y2, (d)
y3, (e) y4.

Poisson counts). In this way, for each shifted intensity λi(·) = λ(·−τ i), the data
are in the form of a vector yi ∈ R

T
+ of counts of length T = 256 to which we can

apply the WaveD algorithm developed by [37]. Four independent realizations
of such vectors are displayed in Figures 1(b,c,d,e) to give an idea of the data
considered in these numerical experiments.

In Figures 2(a,c,e), we display, for three different values of the sample size
(n = 100, n = 1000 and n = 10000), the result of simply averaging the raw data
which yields to take ȳn = 1

n

∑n
i=1 yi as an estimator of the unknown intensity

λ. Clearly, it gives a non-consistent estimator since averaging the observed data
leads to the estimation of λ ⋆ g 6= λ as explained in Section 2.

Let us now explain how one can consistently estimate λ via a deconvolution
step combined with non-linear wavelet thresholding. The Fourier coefficients of
the density g are given by γℓ =

1
1+8µ2π2ℓ2 , ℓ ∈ Z which corresponds to a degree
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(d) n = 1000, λ̂h
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

30

40

50

60

70

80

(e) n = 10000, ȳn
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(f) n = 10000, λ̂h
n

Fig 2. Comparison between two estimators of the unknown intensity λ (dashed curve in all
the Figures) for three different values of the sample size. First row: n = 100. Second row
n = 1000. Third row n = 10000. First column: results obtained by averaging the raw data ȳn,

and second column: results obtained using the non-linear thresholding estimator λ̂h
n.

of ill-posedness ν = 2. To compute the random thresholds ŝj(n) (4.7) we took
γ = 2. Note that such thresholds are not difficult to calculate using the Fast
Fourier Transform and the fact that the set of frequencies Ωj (4.1) can be easily
obtained using WaveLab for the computation of the quantities σ2

j and ǫj defined

in (4.5). Then, we took j0 = 3, but the choice j1 ≈ 1
2ν+1 log2(

n
log(n) ) is obviously

too small. So in our simulations, j1 is chosen to be the maximum resolution
level allowed by the discretization i.e. j1 = log2(N)− 1 = 7. In Figures 2(b,d,f),
we display, for three different values of the sample size (n = 100, n = 1000 and
n = 10000), the results obtained when using the non-linear hard thresholding

estimator λ̂hn defined in (4.4). The results are rather satisfactory and they are
much better than those obtained by simply averaging the raw data.
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6. Discussion

In this paper, we have considered the problem of adaptive estimation of a non-
homogeneous intensity function from the observation of n independent Poisson
processes having a similar intensity λ that is randomly shifted for each observed
trajectory. It has been shown that this model turns out to be an inverse problem
in which the density g of the random shifts plays the role of a convolution op-
erator. These results have been derived under the assumption that the density
g is known. It is a well-known fact (see e.g. [32]) that, in standard deconvo-
lution problems, if the convolution kernel g is unknown no satisfying rate of
convergence can be obtained after a regularization process.

Instead of assuming the knowledge of g, one could try to preliminary construct
“estimators” of the unobserved random shifts τ 1, . . . , τn and then to average
the observed processes after an alignment step using these estimated shifts.
Hence, various strategies have been proposed to compute estimators τ̂1, . . . , τ̂n
of the unobserved shifts τ 1, . . . , τn (see e.g. [1, 2, 45]). An estimator of the
intensity λ can then be computed by aligning and then averaging the observed
processes. More precisely, if λ̂i(·) denotes an estimator of the shifted intensity
λ(· − τ i), obtained by some smoothing procedure applied to the process N i,
then an estimator of λ via an alignment step is defined by

λ̂n(t) =
1

n

n
∑

i=1

λ̂i(t+ τ̂i), t ∈ [0, 1].

However, as pointed by Theorem 6.1 and Theorem 6.2 below, we show that
an estimation of λ through an alignment step yields non-consistent estimators.
Indeed, a first result is that, under mild assumptions on the intensity λ and the
density g of the random shifts, it is not possible to build consistent estimators
of the random shifts τ 1, . . . , τn in the sense that

lim inf
n→+∞

E

(

1

n

n
∑

i=1

(τ̂i − τ i)
2

)

6= 0

for any estimators (τ̂1, . . . , τ̂n) ∈ [0, 1]n.

Theorem 6.1. Suppose that λ ∈ L2
+([0, 1]) is continuously differentiable and

satisfies
λ0 := inf

t∈[0,1]
{λ(t)} > 0.

Assume that the density g of the random shifts has a compact support [τmin, τmax] ⊂
[0, 1] such that limτ→τmin g(τ) = limτ→τmax g(τ) = 0. Suppose that g is absolutely
continuous and such that

∫ 1

0

(

∂

∂τ
log g(τ)

)2

g(τ)dτ < +∞.

Let (τ̂1, . . . , τ̂n) ∈ [0, 1]n denote any estimators of the true random shifts (τ 1, . . . ,
τn) (i.e. a measurable mapping of the random processes N i, i = 1, . . . , n taking
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its value in [0, 1]n). Then,

E

(

1

n

n
∑

i=1

(τ̂i − τ i)
2

)

≥ 1
∫ 1

0

∣

∣

∂
∂tλ(t)

∣

∣

2
dt+

∫ 1

0

(

∂
∂τ log g(τ)

)2
g(τ)dτ

> 0. (6.1)

Inequality (6.1) shows that building consistent estimators of the random shifts
τ 1, . . . , τn in the asymptotic setting n→ +∞ is not feasible. This inconsistency
result on the estimation of the shifts implies that a consistent estimation of λ
via an alignment step is not possible. Indeed, consider the case of an ideal
smoothing of the data with λ̂i(t) = λ(t− τ i), t ∈ [0, 1] which would lead to the
ideal estimator

λ̄n(t) :=
1

n

n
∑

i=1

λ(t − τ i + τ̂i), t ∈ [0, 1],

where (τ1, . . . , τn) ∈ [0, 1]n are estimators computed from the data N1, . . . , Nn.
Then, the following theorem shows that λ̄n is not a consistent estimator of λ as
n→ +∞.

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 still hold. Assume
that λ ∈ L2

+([0, 1]) is such that

θ1 :=

∫ 1

0

λ(t)e−i2πtdt 6= 0.

Let (τ̂1, . . . , τ̂n) ∈ [0, 1]n denote any estimators of the true random shifts (τ 1, . . . ,
τn) satisfying the constraints

∑n
i=1 τ̂i = 0 and τmin ≤ τ̂i ≤ τmax for all i =

1, . . . , n. Suppose that the density g has zero expectation and finite variance i.e.
∫ 1

0
τg(τ)dτ = 0 and

∫ 1

0
τ2g(τ)dτ < +∞. Assume that τmax − τmin := δ

4π for
some 0 < δ < 3, and consider the ideal estimator

λ̄n(t) =
1

n

n
∑

i=1

λ(t− τ i + τ̂i), t ∈ [0, 1].

Then,

lim inf
n→+∞

E

(∫ 1

0

∣

∣λ̄n(t)− λ(t)
∣

∣

2
dt

)

≥
(

2
3π

2 (3− δ) |θ1|
∫ 1

0

∣

∣

∂
∂tλ(t)

∣

∣

2
dt+

∫ 1

0

(

∂
∂τ log g(τ)

)2
g(τ)dτ

)2

> 0. (6.2)

In Theorem (6.2), we have added the assumption that the estimators of the
random shifts satisfy the constraint

∑n
i=1 τ̂i = 0 and that the density g has zero

expectation. Such assumptions are necessary when using an alignment proce-
dure. Indeed, without such constraints, our model is not identifiable since for
any τ̃ ∈ R one may replace the unknown intensity λ(·) by λ̃(·) = λ(·− τ̃ ) and the
random shifts by τ̃ i = τ i− τ̃ without changing the formulation of the problem.
Under such assumptions, inequality (6.2) shows that

lim inf
n→+∞

E

(
∫ 1

0

∣

∣λ̄n(t)− λ(t)
∣

∣

2
dt

)

6= 0,
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and thus λ̄n does not converge to λ as n→ +∞ for the quadratic risk. Therefore,
such a result illustrates the fact that standard procedures based on an alignment
step do not yield consistent estimators of λ. In this paper, we therefore have
suggested an alternative method based on a deconvolution step that yields a
consistent and adaptive estimator that converges with a near-optimal rate in
the minimax sense. Remark that other strategies could also be investigated
following for instance recent results in [9] and [10] with a Bayesian approach
developed for data following a Gaussian distribution.

However, as shown by the results of Theorems 6.1 and 6.2, to obtain a con-
sistent estimator of a mean pattern intensity using estimated values of the
shifts, it would be necessary to consider a double asymptotic setting where both
the number n of observed trajectories and an “observation time” κ (such that
λ(t) = κλ0(t) where λ0 is an unknown scaled intensity to be estimated) are let
going to infinity. This point of view is developed in [8] for the regression model of
randomly shifted curves observed with an additive Gaussian noise. Nevertheless,
this double asymptotic setting is far beyond the scope of this paper in which we
have only considered the case where n tends to infinity. Another possibility to
treat the case of an unknown g would be to adopt the point of view of inverse
problems with an additive Gaussian noise in the setting of partially known (or
noisy) operators as in [24] and [16]. However, the assumptions made in [24] and
[16] to consistently estimate an unknown operator cannot be easily adapted to
our framework.

7. Proof of Proposition 2.1

Remark that for all ℓ ∈ Z

θ̂ℓ − θℓ = θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n
∑

i=1

ǫℓ,i, (7.1)

where the ǫℓ,i are centered random variables defined as

ǫℓ,i = γ−1
ℓ

∫ 1

0

eℓ(t)
(

dN i
t − λ(t− τ i)dt

)

.

Now, to compute E|θ̂ℓ − θℓ|2, remark first that

|θ̂ℓ − θℓ|2 =

[

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n
∑

i=1

ǫℓ,i

][

θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

+
δℓ
n

n
∑

i=1

ǫℓ,i

]

=



|θℓ|2
∣

∣

∣

∣

δℓ
γ̃ℓ
γℓ

− 1

∣

∣

∣

∣

2

+2ℜe
(

θℓ

[

δℓ
γ̃ℓ
γℓ

−1

]

δℓ
n

n
∑

i=1

ǫℓ,i

)

+
δ2ℓ
n2

n
∑

i,i′=1

ǫℓ,iǫℓ,i′



.
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Taking expectation in the above expression yields

E|θ̂ℓ − θℓ|2 = E

[

E|θ̂ℓ − θℓ|2
∣

∣τ 1, . . . , τn

]

= E



|θℓ|2
∣

∣

∣

∣

δℓ
γ̃ℓ
γℓ

− 1

∣

∣

∣

∣

2

+
δ2ℓ
n2

n
∑

i,i′=1

E
[

ǫℓ,iǫℓ,i′
∣

∣τ 1, . . . , τn
]





E



2ℜe



θℓ

[

δℓ
γ̃ℓ
γℓ

− 1

]

E

[

δℓ
n

n
∑

i=1

ǫℓ,i

]





∣

∣τ 1, . . . , τn



 .

Now, remark that given two integers i 6= i′ and the two shifts τ i, τ i′ , ǫℓ,i and
ǫℓ,i′ are independent with zero mean. Therefore, using the equality

E

∣

∣

∣

∣

δℓ
γ̃ℓ
γℓ

− 1

∣

∣

∣

∣

2

= δ2ℓ |γℓ|−2
E|γ̃ℓ − γℓ|2 + (δℓ − 1)2 = (δℓ − 1)2 +

δ2ℓ
n
(|γℓ|−2 − 1),

one finally obtains

E|θ̂ℓ − θℓ|2 = |θℓ|2E
∣

∣

∣

∣

δℓ
γ̃ℓ
γℓ

− 1

∣

∣

∣

∣

2

+ E

[

δ2ℓ
n2

n
∑

i=1

E
[

|ǫℓ,i|2
∣

∣τ 1, . . . , τn
]

]

= |θℓ|2(δℓ − 1)2 +
δ2ℓ
n

(

|θℓ|2
(

|γℓ|−2 − 1
)

+ E|ǫℓ,1|2
)

.

Using in what follows the equality

E|a+ ib|2 = E[|a|2 + |b|2]

with a =
∫ 1

0 cos(2πℓt)
(

dN1
t − λ(t− τ 1)dt

)

and b =
∫ 1

0 sin(2πℓt)
(

dN1
t − λ(t −

τ 1)dt
)

, we obtain

E|ǫℓ,1|2 = |γℓ|−2
E

[

E

∣

∣

∣

∣

∫ 1

0

eℓ(t)
(

dN1
t − λ(t− τ 1)dt

)

∣

∣

∣

∣

2
∣

∣τ 1

]

= |γℓ|−2
E

∫ 1

0

(

| cos(2πℓt)|2 + | sin(2πℓt)|2
)

λ(t− τ 1)dt = |γℓ|−2‖λ‖1,

where the last equality follows from the fact that λ has been extended outside
[0, 1] by periodization, which completes the proof of Proposition 2.1.

8. Proof of the lower bound (Theorem 3.1)

8.1. Some properties of Meyer wavelets

Meyer wavelet functions satisfies the following proposition which will be useful
for the construction of a lower bound of the minimax risk.
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Proposition 8.1. There exists a universal constant c(ψ) such that for any

j ∈ N and for any (ωk)0≤k≤2j−1 ∈ {0, 1}2j

sup
x∈[0,1]

∣

∣

∣

∣

∣

∣

2j−1
∑

k=0

ωkψj,k(x)

∣

∣

∣

∣

∣

∣

≤ c(ψ)2j/2.

Proof. Recall that the periodic Meyer mother wavelet ψ (on the interval [0, 1])
has been obtained from the periodization of a mother Meyer wavelet, say ψ̃ :
R → R, that generates a wavelet basis of L2(R) (see e.g. [35, 27]). The Meyer
mother wavelet ψ̃ is not compactly supported, but it satisfies the following
inequality supx∈R

∑

ℓ∈Z
|ψ̃(x − ℓ)| < ∞, which implies that there exists some

universal constant c = c(ψ̃) > 0 such that supx∈R

{
∑

k∈Z
|ψ̃j,k(x)|

}

≤ c2j/2, for

any j ≥ 0, where ψ̃j,k(x) = 2j/2ψ̃(2jx − k). Hence, the proof follows using the

fact that the periodic Meyer wavelet ψj,k(x) =
∑

ℓ∈Z
ψ̃j,k(x− ℓ) for x ∈ [0, 1] is

the periodization of the (classical) Meyer basis ψ̃j,k (with infinite support).

8.2. Definitions and notations

Recall that τ 1, . . . , τn are i.i.d. random variables with density g, and that for
λ ∈ Λ0 a given intensity, we denote by N1, . . . , Nn the counting processes such
that conditionally to τ 1, . . . , τn, N

1, . . . , Nn are independent Poisson processes
with intensities λ(· − τ 1), . . . , λ(· − τn). Then, the notation Eλ will be used to
denote the expectation with respect to the distribution Pλ (tensorized law) of the
multivariate counting process N =

(

N1, . . . , Nn
)

with the coupled randomness
on the shifts and the counting processes. In the rest of the proof, we also assume
that p, q denote two integers such that 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, A is a positive
constant, and that s is a positive real such that s > 2ν+1, where ν is the degree
of ill-posedness defined in Assumption 2.1.

A key step in the proof is the use of the likelihood ratio Λ(H0, H1) between
two measures associated to two hypotheses H0 and H1 on the intensities of the
Poisson processes we consider. The following lemma, whose proof can be found
in [11], is a Girsanov’s like formula for Poisson processes when random shifts do
not appear in the model (notation P̃ instead of P below).

Lemma 8.1 (Girsanov’s like formula). Let N0 (hypothesis H0) and N1 (hy-
pothesis H1) two Poisson processes having respectively intensity λ0(t) = ρ and
λ1(t) = ρ + µ(t) for all t ∈ [0, 1], where ρ > 0 is a positive constant and
µ ∈ L2

+([0, 1]). Let P̃λ1 (resp. P̃λ0) be the distribution of N1 (resp. N0). Then,
the likelihood ratio between H0 and H1 is

Λ(H0, H1)(N ) :=
dP̃λ1

dP̃λ0

(N ) = exp

[

−
∫ 1

0

µ(t)dt +

∫ 1

0

log

(

1 +
µ(t)

ρ

)

dNt

]

,

(8.1)
where N is a Poisson process with intensity belonging to Λ0.
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The above lemma means that if F (N ) is a real-valued and bounded measur-
able function of the counting process N = N1 (hypothesis H1), then

EH1 [F (N )] = EH0 [F (N )Λ(H0, H1)(N )]

where EH1 denotes the expectation with respect to P̃λ1 (hypothesis H1), and
EH0 denotes the expectation with respect to P̃λ0 (hypothesis H0).

Obviously, one can adapt Lemma 8.1 to the case of n independent Poisson
processes N = (N 1, . . .Nn) with respective intensities λi(t) = ρ + µi(t), t ∈
[0, 1], i = 1, . . . , n under H1 and λi(t) = ρ, t ∈ [0, 1], i = 1, . . . , n under H0,
where µ1, . . . , µn are positive intensities in L2

+([0, 1]). In such a case, the Gir-
sanov’s like formula (8.1) becomes

Λ(H0, H1)(N ) =

n
∏

i=1

exp

[

−
∫ 1

0

µi(t)dt+

∫ 1

0

log

(

1 +
µi(t)

ρ

)

dN i
t

]

. (8.2)

8.3. Minoration of the minimax risk using the Assouad’s cube

technique

Let us first describe the main idea of the proof which expoits the Assouad’s
cube approach (see e.g. [12]).

- In Section 8.3.1, we build a set of test functions which are appropriate linear
combinations of Meyer wavelets. The construction of this set follows the
idea of the Assouad’s cube technique to derive lower bounds for minimax
risks (see e.g. [22, 35]).

- In Section 8.3.2 we give a key result in Lemma 8.2 that relates a lower bound on
the minimax risk to a problem of statistical testing of different hypotheses.
The first main step in the proof of this lemma is the use of the likelihood
ratio formula (8.2). The second main step exploits the fact that, under the
hypothesis that the intensity λ(t) = λ0(t) = ρ > 0 is a constant function
then the distribution of the data is invariant through the action of the
random shifts.

- In Section 8.3.3 we specify the size of the set of test functions used in the
Assouad’s cube approach.

- In Section 8.3.4 we give the proof of the technical Lemma 8.3 which controls
the asymptotic behavior of the likelihood ratio (8.5) defined in Lemma 8.2
under well-chosen hypotheses H1 and H0.

The result of Theorem 3.1 then follows from the combination of the results
of these four sections.

8.3.1. Assouad’s cube

Given an integer D ≥ 1, introduce

SD(A) = {f ∈ Bs,+p,q (A) | 〈f, ψj,k〉 = 0 ∀j 6= D ∀k ∈ {0 . . .2j − 1}}.
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For any ω = (ωk)k=0,...,2D−1 ∈ {0, 1}2D and ℓ ∈ {0, . . . , 2D − 1}, we define

ω̄ℓ ∈ {0, 1}2D as ω̄ℓk = ωk, ∀k 6= l and ω̄ℓℓ = 1− ωℓ. In what follows, we will use
the likelihood ratio formula (8.2) with the intensity

λ0(t) = ρ(A) =
A

2
, ∀t ∈ [0, 1], (8.3)

which corresponds to the hypothesis H0 under which all the intensities of the
observed counting processes are constant and equal to A/2 where A is the radius

of the Besov ball Bs,+p,q (A). Next, for any ω ∈ {0, 1}2D−1, we denote by λD,ω the
intensity defined as

λD,ω = ρ(A) + ξD

2D−1
∑

k=0

wkψD,k + ξD2
D/2c(ψ), with ξD = c2−D(s+1/2), (8.4)

for some constant 0 < c ≤ A/(2 + c(ψ)), and where c(ψ) is the constant intro-
duced in Proposition 8.1. For the sake of convenience, we omit in what follows
the subscript D and write λω instead of λD,ω. First, remark that each function
λω can be written as λω = ρ(A) + µω where

µω = ξD

2D−1
∑

k=0

wkψD,k + ξD2
D/2c(ψ),

is a positive intensity belonging to Λ0 by Proposition 8.1. Moreover, it can
be checked that the condition c ≤ A/(2 + c(ψ)) implies that λω ∈ Bs,+p,q (A).

Therefore, λω ∈ SD(A) for any ω ∈ {0, 1}2D . The following lemma provides a
lower bound on SD.

8.3.2. Lower bound on the minimax risk

Lemma 8.2. Using the notations defined in the Assouad’s cube paragraph, the
following inequality holds

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω
[1 ∧ Qk,ω(N)] ,

with N =
(

N1, . . . , Nn
)

and

Qk,ω(N) =

∫

Rn

∏n
i=1exp

[

−
∫ 1

0 µω̄k(t−αi)dt+
∫ 1

0 log
(

1+
µ
ω̄k (t−αi)

ρ(A)

)

dN i
t

]

g(αi)dαi
∫

Rn

∏n
i=1 exp

[

−
∫ 1

0 µω(t−αi)dt+
∫ 1

0 log
(

1+ µω(t−αi)
ρ(A)

)

dN i
t

]

g(αi)dαi
.

(8.5)

Proof. Let λ̂n = λ̂n(N) ∈ L2
+([0, 1]) denote any estimator of λ ∈ SD(A) (a

measurable function of the process N). Note that, to simplify the notations, we
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will drop in the proof the dependency of λ̂n(N) on N and n, and we write λ̂

instead of λ̂n(N). Then, define

R(λ̂) = sup
λ∈SD(A)

Eλ‖λ̂− λ‖22.

Since λω ∈ SD(A) for any ω ∈ {0, 1}2D , it follows from Parseval’s relation that

R(λ̂) ≥ sup
ω∈{0,1}2D

Eλω
‖λ̂− λω‖22 ≥ sup

ω∈{0,1}2D

Eλω

2D−1
∑

k=0

|βD,k(λ̂)− ωkξD|2,

where we have used the notation βD,k(λ̂) = 〈λ̂, ψD,k〉. For all k ∈ {0, . . . , 2D−1}
define

ω̂k = ω̂k(N) := arg min
v∈{0,1}

|βD,k(λ̂(N))− vξD|.

Then, the triangular inequality and the definition of ω̂k imply that

ξD|ω̂k − ωk| ≤ |ω̂kξD − βD,k(λ̂)|+ |βD,k(λ̂)− ωkξD| ≤ 2|βD,k(λ̂)− ωkξD|.
Thus,

R(λ̂) ≥ ξ2D
4

sup
ω∈{0,1}2D

Eλω

2D−1
∑

k=0

|ω̂k(N)− ωk|2,

≥ ξ2D
4

1

22D
∑

ω∈{0,1}2D

2D−1
∑

k=0

Eλω
|ω̂k(N)− ωk|2. (8.6)

Let k ∈ {0, . . . , 2D − 1} and ω ∈ {0, 1}2D be fixed parameters. Conditionally to
the vector τ = (τ 1, . . . τn) ∈ R

n, we define the two hypothesis H0 and Hτ

ω as

H0: N
1, . . . , Nn are independent Poisson processes with intensities λ0(· − τ 1),

. . . , λ0(·−τn) which are equal to λ0(·),. . . ,λ0(·), where λ0 is the constant
intensity defined by (8.3),

Hτ

ω : N
1, . . . , Nn are independent Poisson processes with intensities (λω(·−τ 1),

. . . , λω(· − τn)).

In what follows, we use the notation EH0 (resp. EHτ

ω
) to denote the expectation

under the hypothesis H0 (resp. Hτ

ω ) conditionally to the shifts τ = (τ 1, . . . τn).
The Girsanov formula (8.2) yields

Eλω
|ω̂k(N)− ωk|2 =

∫

Rn

EHτ
1
|ω̂k(N)− ωk|2g(τ1) . . . g(τn)dτ

=

∫

Rn

EH0

[

|ω̂k(N)− ωk|2Λ(H0, H
τ
ω)(N)

]

g(τ1) . . . g(τn)dτ,

with dτ = dτ1, . . . , dτn and

Λ(H0, H
τ
ω)(N) =

n
∏

i=1

exp

[

−
∫ 1

0

µω(t− τi)dt+

∫ 1

0

log

(

1 +
µω(t− τi)

ρ(A)

)

dN i
t

]

,



Intensity of shifted Poisson processes 903

forN = (N1, . . . , Nn). Now, remark that under the hypothesisH0, the law of the
random variable ω̂k(N) does not depend on the random shifts τ = (τ 1, . . . , τn)
since λ0 is a constant intensity. Thus, we obtain the following equality

Eλω
|ω̂k(N)− ωk|2 = EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0, H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

.

(8.7)

Using equality (8.7), we may re-write the lower bound (8.6) on R(λ̂) as

R(λ̂) ≥ ξ2D
4

1

22D
∑

ω∈{0,1}2D

2D−1
∑

k=0

EH0

{

|ω̂k(N)− ωk|2

×
∫

Rn

Λ(H0, H
τ
ω)(N)g(τ1) . . . g(τn)dτ

}

=
ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1
(

EH0

[

|ω̂k(N)− ωk|2
∫

Rn

Λ(H0, H
τ
ω)(N)g(τ1) . . . g(τn)dτ

]

+ EH0

[

|ω̂k(N)− ω̄kk |2
∫

Rn

Λ(H0, H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

])

.

The key inequality |1− v|2z+ |v|2z′ ≥ z ∧ z′ (true for all v ∈ {0, 1} and all reals
z, z′ > 0) yields

R(λ̂) ≥ ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

{∫

Rn

Λ(H0, H
τ
ω)(N)g(τ1) . . . g(τn)dτ∧ ,

∫

Rn

Λ(H0, H
τ
ω̄k)(N)g(τ1) . . . g(τn)dτ

}

≥ ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1

EH0

∫

Rn

Λ(H0, H
τ
ω)(N)g(τ1) . . . g(τn)dτ

(

1 ∧
∫

Rn Λ(H0, H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0, Hα
ω )(N)g(α1) . . . g(αn)dα

)

,

≥ ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1
∫

Rn

EH0 [Λ(H0, H
τ
ω)(N) (1 ∧ Qk,ω(N))] g(τ1) . . . g(τn)dτ,
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where

Qk,ω(N) =

∫

Rn Λ(H0, H
α
ω̄k)(N)g(α1) . . . g(αn)dα

∫

Rn Λ(H0, Hα
ω )(N)g(α1) . . . g(αn)dα

,

and dα = dα1 . . . dαn. Then, using again the formula (8.2), we obtain the lower
bound

R(λ̂) ≥ ξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1

Eλω
[1 ∧ Qk,ω] ,

which is independent of λ̂. This ends the proof of the lemma.

We detail in the next paragraph how to use Lemma 8.2 with a suitable value
for the parameter D in order to obtain the desired lower bound on the minimax
risk.

8.3.3. Quantitative settings

In the rest of the proof, we will suppose that D = Dn satisfies the asymptotic
equivalence

2Dn ∼ n
1

2s+2ν+1 as n→ +∞. (8.8)

To simplify the notations we will drop the subscript n, and we write D = Dn.
For two sequences of reals (an)n≥1 and (bn)n≥1 we use the notation an ≍ bn
if there exists two positive constants C,C′ > 0 such that C ≤ an

bn
≤ C′ for all

sufficiently large n. Then, define mDn
= 2Dn/2ξDn

. Since ξDn
= c2−Dn(s+1/2),

it follows that

mDn
≍ n−s/(2s+2ν+1) → 0

as n→ ∞. Remark also that the condition s > 2ν + 1 implies that

nm3
Dn

≍ n−(s−2ν−1)/(2s+2ν+1) → 0

as n→ ∞.

8.3.4. Lower bound of the likelihood ratio Qk,ω

The above quantitative settings combined with Lemma 8.2 will allow us to
obtain a lower bound of the minimax risk. For this purpose, let 0 < δ < 1, and
remark that Lemma 8.2 and Markov inequality imply that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂− λ‖22 ≥ δξ2D
4

1

22D

2D−1
∑

k=0

∑

ω∈{0,1}2D |wk=1

Pλω
(Qk,ω(N) ≥ δ) .

(8.9)
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The remainder of the proof is thus devoted to the construction of a lower bound
in probability for the random variable Qk,ω(N) := I1

I2
where

I1 =

∫

Rn

n
∏

i=1

exp

[

−
∫ 1

0

µω̄k(t− αi)dt+

∫ 1

0

log (1 + µω̄k(t− αi)) dN
i
t

]

g(αi)dαi

(8.10)
and

I2 =

∫

Rn

n
∏

i=1

exp

[

−
∫ 1

0

µω(t− αi)dt+

∫ 1

0

log (1 + µω(t− αi)) dN
i
t

]

g(αi)dαi,

(8.11)
where to simplify the presentation of the proof we have taken ρ(A) = 1 i.e.
A = 2. Then, the following lemma holds (which is also valid for ρ(A) 6= 1).

Lemma 8.3. There exists 0 < δ < 1 and a constant p0(δ) > 0 such that for

any k ∈ {0 . . . 2Dn − 1}, any ω ∈ {0, 1}2Dn

and all sufficiently large n

Pλω
(Qk,ω(N) ≥ δ) ≥ p0(δ) > 0.

Proof. Sketch of proof: we first give a brief summary of the main ideas of the
proof. The arguments that we use are not standard due to the structure of
the likelihood ratio Qk,ω(N) which involves a kind of mixture structure with
respect to the law of the random shifts (integration over R

n with respect to
g(α1) . . . g(αn)dα).

In the first part of the proof, the main idea is to use several Taylor expansions
to obtain a tractable asymptotic approximation of Qk,ω(N). Note that due to
our quantitative settings stated in Section 8.3.3, we have to provide Taylor
expansions up to the second or third order (since nm2

Dn
does not converge to

0). In the second part of the proof, we use the minoration of the log-likelihood
given in equations (8.14)- (8.18), and then classical concentration inequalities
to obtain lower bound in probability of Qk,ω(N).

Note that, in the proof, we repeatedly use the following inequalities that hold

for any ω ∈ {0, 1}2Dn

‖µω‖2 ≤ ‖µω‖∞ ≤ 2c(ψ)mDn
→ 0, (8.12)

‖λω‖2 ≤ ‖λω‖∞ ≤ ρ(A) + 2c(ψ)mDn
→ ρ(A) = 1,

as n → +∞. Recall that Qk,ω(N) := I1
I2

where I1 is given by (8.10) and I2 is
given by (8.11). Finally, and to be more precise, the proof is composed of the
three following steps:

• Step 1: using a second order expansion of the logarithm in order to control
I1 and I2, we will first show that

Qk,ω(N) ≥ eOp(nm
3
Dn

)

∏n
i=1

∫

R
g(αi) exp

[

∫ 1

0

{

µω̄k(t−αi)−
µ2

ω̄k (t−αi)

2

}

dN i
t

]

dαi
∏n
i=1

∫

R
g(αi) exp

[

∫ 1

0

{

µω(t−αi)− µ2
ω(t−αi)

2

}

dN i
t

]

dαi
,

:= eOp(nm
3
Dn

) J1
J2
.
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• Step 2: using again a second order expansion of the exponential, we then
show that

ln(Qk,ω(N)) ≥ ln(J1)− ln(J2) +Op(nm
3
Dn

) (8.13)

=

n
∑

i=1

{

Eλω

(∫ 1

0

g ⋆ {µω̄k(t)− µω(t)}dN i
t

)

+
‖g ⋆ λω‖22 − ‖g ⋆ λω̄k‖22

2

(8.14)

+

∫ 1

0

g ⋆ {µω̄k(t)− µω(t)}dN i
t − Eλω

(∫ 1

0

g ⋆ {µω̄k(t)− µω(t)}dN i
t

)

(8.15)

+
1

2

∫ 1

0

g ⋆ µ2
ω(t)dN

i
t −

1

2

∫

R

g(αi)

(∫ 1

0

µω(t− αi)dN
i
t

)2

dαi

(8.16)

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

dαi −
1

2

∫ 1

0

g ⋆ µ2
ω̄k(t)dN

i
t

(8.17)

+
−
(∫ 1

0 g ⋆ µω̄k(t)dN i
t

)2
+‖g ⋆ λω̄k‖22

(∫ 1

0 g ⋆ µω(t)dN
i
t

)2−‖g ⋆ λω‖22
2

}

(8.18)

+Op(nm
3
Dn

).

• Step 3: it consists in controlling (8.14), (8.15), (8.16), (8.17) and (8.18),
more precisely:

1. there exists a constant 0 < c0 < +∞ such that for all sufficiently
large n the deterministic term (8.14) satisfies

(8.14) =

n
∑

i=1

[

Eλω

(∫ 1

0

g ⋆ {λω̄k(t)− λω(t)}dN i
t

+
1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

≥ −c0.

2. there exists a constant c1 > 0 such that for all sufficiently large n

P (|(8.15)| ≤ c1) = P

(∣

∣

∣

∣

∣

ξD

n
∑

i=1

∫ 1

0

g ⋆ ψD,k(t)dÑ
i
t

∣

∣

∣

∣

∣

≤ c1

)

≥ 1/2.

(8.19)

3. (8.16) + (8.17) converges to zero in probability as n→ +∞.

4. (8.18) converges to zero in probability as n→ +∞.

Putting together all these results Lemma 8.3 is finally proved.
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• Proof of Step 1: since for any k, one has
∫ 1

0
ψD,k(t)dt = 0, it follows that

for any ω and α,
∫ 1

0
µω(t− α)dt = c(ψ)ξDn

2Dn/2 = c(ψ)mDn
. Therefore,

I1=

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n
∏

i=1

exp

[∫ 1

0

log(1+µω̄k(t−αi))dN i
t

]

dα,

and

I2=

∫

Rn

g(α1) . . . g(αn)e
−c(ψ)nmDn

n
∏

i=1

exp

[∫ 1

0

log(1+µω(t−αi))dN i
t

]

dα.

Let z > 0 be a positive real, and consider the following second order
expansion of the logarithm

log(1 + z) = z − z2

2
+
z3

3
u−3 for some 1 ≤ u ≤ 1 + z. (8.20)

From (8.20), we obtain
∫ 1

0

log (1 + µω(t− αi)) dN
i
t ≤

∫ 1

0

{

µω(t− αi)−
µ2
ω(t− αi)

2

}

dN i
t

+

∫ 1

0

µ3
ω(t− αi)dN

i
t , (8.21)

and that
∫ 1

0

log (1 + µω̄k(t− αi)) dN
i
t ≥

∫ 1

0

{

µω̄k((t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t .

(8.22)
Then, remark that inequalities (8.12) imply that

Eλω

∫ 1

0

µ3
ω(t− αi)dN

i
t =

∫ 1

0

µ3
ω(t− αi)

∫

R

λω(t− τi)g(τi)dτidt

≤ ‖µω‖∞‖µω‖22‖λω‖∞ = O
(

m3
Dn

)

.

Therefore, by Markov’s inequality it follows that there exists a constant
K > 0 such that ∀γ > 0:

P

(∣

∣

∣

∣

∣

n
∑

i=1

∫ 1

0

µ3
ω(t−αi)dN i

t

∣

∣

∣

∣

∣

≥ γ

)

≤ K

γ
E

n
∑

i=1

∣

∣

∣

∣

∫ 1

0

µ3
ω(t−αi)dN i

t

∣

∣

∣

∣

≤ K

γ
nm3

Dn
,

and thus
n
∑

i=1

∫ 1

0

µ3
ω(t− αi)dN

i
t = Op

(

nm3
Dn

)

. (8.23)

Hence, using inequality (8.21), one obtains that

I2 ≤ e−c(ψ)nmDn+Op(nm3
Dn

)
∫

Rn

g(α1) . . . g(αn)

n
∏

i=1

exp

[∫ 1

0

{

µω(t− αi)−
µ2
ω(t− αi)

2

}

dN i
t

]

dα,
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and by inequality (8.22) it follows that

I1 ≥ e−c(ψ)nmDn

∫

Rn

g(α1) . . . g(αn)

n
∏

i=1

exp

[∫ 1

0

{

µω̄k(t− αi)−
µ2
ω̄k(t− αi)

2

}

dN i
t

]

dα.

Combining the above inequalities and the Fubini’s relation we obtain that

Qk,ω(N) ≥ eOp(nm
3
Dn

)

∏n
i=1

∫

R
g(αi) exp

[

∫ 1

0

{

µω̄k(t−αi)−
µ2

ω̄k (t−αi)

2

}

dN i
t

]

dαi
∏n
i=1

∫

R
g(αi) exp

[

∫ 1

0

{

µω(t−αi)− µ2
ω(t−αi)

2

}

dN i
t

]

dαi
,

:= eOp(nm
3
Dn

) J1
J2
. (8.24)

• Proof of Step 2: let z ∈ R and consider the following second order expan-
sion of the exponential

exp(z) = 1 + z +
z2

2
+
z3

6
exp(u) for some − |z| ≤ u ≤ |z|. (8.25)

Let us now use (8.25) with zi =
∫ 1

0

{

µω̄k(t− αi)− 1
2µ

2
ω̄k(t− αi)

}

dN i
t . By

inequalities (8.12), one has that

Eλω
|zi| ≤

∫ 1

0

(

µω̄k(t− αi) +
1

2
µ2
ω̄k(t− αi)

)∫

R

λω(t− τi)g(τi)dτidt,

≤ ‖λω‖∞
(

‖µω̄k‖2 +
1

2
‖µω̄k‖22

)

= O (mDn
) .

Since mDn
→ 0, we obtain by using (8.25) that for each i ∈ {1, . . . , n},

exp(zi)

= 1 +

∫ 1

0

µω̄k(t− αi)dN
i
t −

1

2

∫ 1

0

µ2
ω̄k(t− αi)dN

i
t

+
1

2

(∫ 1

0

µω̄k(t− αi)dN
i
t −

1

2

∫ 1

0

µ2
ω̄k(t− αi)dN

i
t

)2

+
z3i
6
eui ,

with− |zi| ≤ ui ≤ |zi|

= 1 +

∫ 1

0

µω̄k(t− αi)dN
i
t −

1

2

∫ 1

0

µ2
ω̄k(t− αi)dN

i
t

+
1

2

(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

+
z3i
6
eui +Ri,

where

2Ri =

(∫ 1

0

µω̄k(t− αi)dN
i
t −

1

2

∫ 1

0

µ2
ω̄k(t− αi)dN

i
t

)2

−
(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

.
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By inequalities (8.12) one obtains that for any shift αi ∈ [0, 1]:

2Ri =

(

−1

2

∫ 1

0

µ2
ω̄k(t− αi)dN

i
t

)

×
(∫ 1

0

2µω̄k(t− αi)−
1

2
µ2
ω̄k(t− αi)dN

i
t

)

,

(8.26)
and Cauchy-Schwarz’s inequality yields a bound uniform in αi:

Eλω
(|Ri|) = O

(

m3
Dn

)

. (8.27)

From the definition of J1 in (8.24), we can use a stochastic version of the
Fubini theorem (see [25], Theorem 5.44) to obtain

J1 =

n
∏

i=1

[

1 +

∫

R

∫ 1

0

g(αi)µω̄k(t− αi)dN
i
tdαi

− 1

2

∫

R

∫ 1

0

g(αi)µ
2
ω̄k(t− αi)dN

i
tdαi

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t−αi)dN i
t

)2

dαi+

∫ 1

0

(

z3i
6
eui+Ri

)

g(αi)dαi

]

,

=

n
∏

i=1

[

1 +

∫ 1

0

g ⋆ µω̄k(t)dN i
t −

1

2

∫ 1

0

g ⋆ µ2
ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t−αi)dN i
t

)2

dαi+

∫ 1

0

(

z3i
6
eui+Ri

)

g(αi)dαi

]

.

At this step, it will be more convenient to work with the logarithm of the
term J1. We have

ln(J1) =

n
∑

i=1

ln

[

1 +

∫ 1

0

g ⋆ µω̄k(t)dN i
t −

1

2

∫ 1

0

g ⋆ µ2
ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

dαi

+

∫ 1

0

(

z3i
6
eui +Ri

)

g(αi)dαi

]

.

Using again the second order expansion of the logarithm (8.20), we obtain
that

ln(J1) =

n
∑

i=1

[∫ 1

0

g ⋆ µω̄k(t)dN i
t −

1

2

∫ 1

0

g ⋆ µ2
ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

dαi −
1

2

(∫ 1

0

g ⋆ µω̄k(t)dN i
t

)2

+

∫ 1

0

(

z3i
6
eui + R̃i

)

g(αi)dαi

]

,
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where R̃i is a remainder term that can be shown to satisfy E
(

|R̃i|
)

=

O
(

m3
Dn

)

by using the same arguments to derive (8.27). By a similar ex-
pansion of the term J2 defined in (8.24), we obtain that

ln(J2) =

n
∑

i=1

[∫ 1

0

g ⋆ µω(t)dN
i
t −

1

2

∫ 1

0

g ⋆ µ2
ω(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0

µω(t− αi)dN
i
t

)2

dαi −
1

2

(∫ 1

0

g ⋆ µω(t)dN
i
t

)2

+

∫ 1

0

(

z3i
6
eui + R̄i

)

g(αi)dαi

]

,

for some remainder term R̄i satisfying also E
(

|R̄i|
)

= O
(

m3
Dn

)

. Then,
by Markov’s inequality and using the same arguments that those used to
derive (8.23) we obtain that

n
∑

i=1

R̄i = Op(nm
3
Dn

) and

n
∑

i=1

R̃i = Op(nm
3
Dn

). (8.28)

Now, let us study the term
∫ 1

0

∑n
i=1

z3i
6 e

uig(αi)dαi.
Remark that since |ui| ≤ |zi|, we have

∣

∣

∣

∣

∣

∫ 1

0

n
∑

i=1

z3i
6
euig(αi)dαi

∣

∣

∣

∣

∣

≤
n
∑

i=1

∑

k≥0

∫ 1

0

|zi|3+k
6k!

g(αi)dαi.

Hence, for any γ > 0 and by Markov’s inequality, one has

P

(∣

∣

∣

∣

∣

∫ 1

0

n
∑

i=1

z3i
6
euig(αi)dαi

∣

∣

∣

∣

∣

≥ γ

)

≤ P





n
∑

i=1

∑

k≥0

∫ 1

0

|zi|3+k
6k!

g(αi)dαi ≥ γ



 ,

≤ n

6γ

∑

k≥0

∫ 1

0

E

( |zi|3+k
k!

)

g(αi)dαi.

Moreover, by inequality (8.12) it follows that for any αi ∈ [0, 1]:

E

( |zi|3+k
k!

)

=
1

k!
E

(∣

∣

∣

∣

∫ 1

0

{

µω̄k(t− αi)−
1

2
µ2
ω̄k(t− αi)

}

dN i
t

∣

∣

∣

∣

)3+k

≤ 1

k!
E

(∫ 1

0

(

2c(ψ)mDn
+

1

2
(2c(ψ))2m2

Dn

)

dN i
t

)3+k

For n large enough, we have 2c(ψ)mDn
+ 1

2 (2c(ψ))
2m2

Dn
≤ 4c(ψ)mDn

.
Then, using the fact that if X is a Poisson random variable with intensity
µ0, the p-th moment of X is bounded by (p+ µ0)µ

p−1
0 one obtains that

E

( |zi|3+k
k!

)

≤ 1

k!
(4c(ψ)mDn

‖λ‖1)3+k

+
4

(k − 1)!
(4c(ψ)mDn

)4‖λ‖31(4c(ψ)mDn
‖λ‖1)3+k−1,
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which implies that uniformly in αi:

∑

k≥0

E

( |zi|3+k
k!

)

≤ (4c(ψ))3m3
Dn

‖λ‖31 (1 + 1024c(ψ)mDn
) e4c(ψ)mDn‖λ‖1 .

Hence,

P

(∣

∣

∣

∣

∣

n
∑

i=1

∫ 1

0

z3i
6
euig(αi)dαi

∣

∣

∣

∣

∣

≥γ
)

≤ (4c(ψ))3nm3
Dn

‖λ‖31(1 + 1024c(ψ)mDn
)

6γ

× e4c(ψ)mDn‖λ‖1 , (8.29)

which proves that
∑n
i=1

z3i
6 e

ui = Op(nm
3
Dn

). Therefore, combing the above
equalities for ln J1 and ln J2 and (8.28), (8.29), we finally obtain the lower
bound (8.13) for ln(Qk,ω(N)).

• Proof of Step 3: in what follows, we will show that, for all sufficiently large
n, the terms (8.14)-(8.18) are bounded from below (in probability). Since
nm3

Dn
→ 0, this will imply that there exists c > 0 (not depending on λω)

and a constant p(c) > 0 such that for all sufficiently large n

Pλω
(ln (Qk,ω(N)) ≥ −c) = Pλω

(Qk,ω(N) ≥ exp(−c)) ≥ p(c) > 0

which is the result stated in Lemma 8.3.

Lower bound for (8.14): since for any 1 ≤ i ≤ n

Eλω

(∫ 1

0

g ⋆ {µω̄k(t)− µω(t)}dN i
t

)

=

∫ 1

0

g ⋆ {λω̄k(t)− λω(t)}{g ⋆ λω(t)}dt.

We obtain that

n
∑

i=1

[

Eλω

(∫ 1

0

g ⋆ {λω̄k(t)− λω(t)}dN i
t +

1

2
‖g ⋆ λω‖22 −

1

2
‖g ⋆ λω̄k‖22

)]

=

−n
2
‖g ⋆ {µω − µω̄k}‖22.

Remark that µω−µω̄k = ±ξDψDk. In what follows we will repeatidely use
the following relation

‖ψDk ⋆ g‖22 =

∫ 1

0

(ψDk ⋆ g(t))
2
dt =

∑

ℓ∈ΩD

|cℓ(ψDk)|2|γℓ|2 ≍ 2−2Dν (8.30)

which follows from Parseval’s relation, from the fact that #ΩD ≍ 2D and
that under Assumption 2.1 |γℓ| ≍ 2−Dν for all ℓ ∈ ΩD. Therefore

‖g ⋆ {µω − µω̄k}‖22 = ξ2D

∫ 1

0

(ψDk ⋆ g(t))
2
dt ≍ ξ2D2

−2Dν ≍ n−1,
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and

−
n
∑

i=1

[

Eλω

(∫ 1

0

g ⋆{λω̄k(t)−λω(t)}dN i
t +

1

2
‖g ⋆λω‖22−

1

2
‖g ⋆λω̄k‖22

)]

≍ 1,

which implies that there exists a constant 0 < c0 < +∞ such that for all
sufficiently large n the deterministic term (8.14) satisfies

(8.14) =

n
∑

i=1

[

Eλω

(∫ 1

0

g ⋆ {λω̄k(t)−λω(t)}dN i
t +

‖g ⋆ λω‖22−‖g ⋆ λω̄k‖22
2

)]

≥ −c0.

In the rest of the proof, we show that, for all sufficiently large n, the terms
(8.15)-(8.18) are bounded from below in probability. Without loss of gen-
erality, we consider only the case µω − µω̄k = ξDψDk.

Lower bound for (8.15): rewrite first (8.15) as

(8.15) = −ξD
n
∑

i=1

∫ 1

0

g ⋆ ψD,k(t)dÑ
i
t ,

where dÑ i
t = dÑ i

t −λ(t− τi)dt. Then, using the fact that, conditonnaly to
τ1, . . . , τn, the counting process

∑n
i=1N

i is a Poisson process with intensity
∑n

i=1 λω(t − τi), it follows from an analogue of Bennett’s inequality for
Poisson processes (see e.g. Proposition 7 in [38]) that for any y > 0

P

(∣

∣

∣

∣

∣

ξD

n
∑

i=1

∫ 1

0

g ⋆ ψD,k(t)dÑ
i
t

∣

∣

∣

∣

∣

≤

√

√

√

√2yξ2D

∫ 1

0

n
∑

i=1

|g ⋆ ψD,k(t)|2λω(t− τi)dt

+
1

3
yξD‖g ⋆ ψD,k‖∞

∣

∣τ1, . . . , τn

)

≥ 1− exp (−y)

Since
∫ 1

0

∑n
i=1 |g ⋆ ψD,k(t)|2λω(t − τi)dt ≤ n‖g ⋆ ψD,k‖22‖λω‖∞ for any

τ1, . . . , τn, letting y = log(2)

P

(∣

∣

∣

∣

∣

n
∑

i=1

∫ 1

0

g ⋆ ψD,k(t)dÑ
i
t

∣

∣

∣

∣

∣

≤
√

2 log(2)n‖g ⋆ ψD,k(t)‖22‖λω‖∞ +
log(2)

3
‖g ⋆ ψD,k‖∞

)

≥ 1/2.

Now, using that ξ2Dn‖g ⋆ ψD,k(t)‖22‖λω‖∞ ≍ 1 and ξD‖g ⋆ ψD,k‖∞ ≤
‖ψ‖∞2D/2ξD → 0, we can deduce that there exists a constant c1 > 0 such
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that for all sufficiently large n

P (|(8.15)| ≤ c1) = P

(∣

∣

∣

∣

∣

ξD

n
∑

i=1

∫ 1

0

g ⋆ ψD,k(t)dÑ
i
t

∣

∣

∣

∣

∣

≤ c1

)

≥ 1/2. (8.31)

Lower bound for (8.16) and (8.17): define

Xi =
1

2

∫ 1

0

g ⋆ µ2
ω(t)dN

i
t −

1

2

∫ 1

0

g ⋆ µ2
ω̄k(t)dN

i
t

+
1

2

∫

R

g(αi)

(∫ 1

0

µω̄k(t− αi)dN
i
t

)2

dαi

− 1

2

∫

R

g(αi)

(∫ 1

0

µω(t− αi)dN
i
t

)2

dαi,

and note that (8.16) + (8.17) =
∑n

i=1Xi. For any 1 ≤ i ≤ n

Eλω
Xi =

1

2

∫

R

g(αi)

(

(∫ 1

0

µω̄k(t− αi)g ⋆ λω(t)dt

)2

−
(∫ 1

0

µω(t− αi)g ⋆ λω(t)dt

)2
)

dαi

=
1

2

∫

R

g(αi)

((∫ 1

0

−ξDψD,k(t− αi)g ⋆ λω(t)dt

)

×
(∫ 1

0

(µω(t− αi)− µω̄k(t− αi)) g ⋆ λω(t)dt

))

dαi

=
1

2

∫

R

g(αi)

((∫ 1

0

−ξDψD,k(t− αi)g ⋆ µω(t)dt

)

(∫ 1

0

(µω(t− αi)− µω̄k(t− αi)) g ⋆ µω(t)dt

))

dαi

which implies that

|Eλω
Xi| ≤

1

2
ξD2

D/2‖ψ‖∞‖µω‖2∞ (‖µω‖∞ + ‖µω̄k‖∞) ≍ m4
Dn
.

Therefore
∑n

i=1 Eλω
Xi → 0 as n → +∞, since nm4

Dn
→ 0. Now, remark

that X1, . . . , Xn are i.i.d variables satisfying for all 1 ≤ i ≤ n

|Xi| ≤
1

2
(‖µω‖2∞ + ‖µω̄k‖2∞)(Ki +K2

i ) ≤ 2c2(ψ)m2
Dn

(Ki +K2
i ) (8.32)

where Ki =
∫ 1

0
dN i

t . Conditionally to τi, Ki is a Poisson variable with

intensity
∫ 1

0 λω(t − τi)dt =
∫ 1

0 λω(t)dt = ‖λω‖1. Hence, the bound (8.12)
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for ‖λω‖∞ and inequality (8.32) implies that there exists a constant C > 0
(not depending on λω) such that

EX2
1 ≤ Cm4

Dn
,

which implies that Var(
∑n

i=1Xi) = nVar(X1) ≤ nEX2
1 → 0 as n → +∞

since nm4
Dn

→ 0. Therefore, (8.16) + (8.17) =
∑n

i=1Xi converges to zero
in probability as n→ +∞ using Chebyshev’s inequality.

Lower bound for (8.18): we denote by Si the difference

Si :=

(∫ 1

0

g ⋆ µω̄k(t)dN i
t

)2

+‖g⋆λω̄k‖22+
(∫ 1

0

g ⋆ µω(t)dN
i
t

)2

−‖g⋆λω‖22,

and remark that (8.18) = 1
2

∑n
i=1 Si. First, we have

Eλω
Si = ‖g ⋆ λω̄k‖22 − ‖g ⋆ λω‖22 +

∫ 1

0

(g ⋆ µω)
2(t)g ⋆ λω(t)dt

−
∫ 1

0

(g ⋆ µω̄k)2(t)g ⋆ λω(t)dt

+

∫

R

g(τi)

(

{∫ 1

0

(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0

(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi.

Since ‖g ⋆µω̄k‖22−‖g ⋆µω‖22 = ‖g ⋆λω̄k‖22−‖g ⋆λω‖22 and g ⋆λω = 1+g ⋆µω
it follows that

Si = Si,1 − Si,2

where

Si,1 =

∫ 1

0

(g ⋆ µω)
2(t)g ⋆ µω(t)dt−

∫ 1

0

(g ⋆ µω̄k)2(t)g ⋆ µω(t)dt,

and

Si,2 =

∫

R

g(τi)

(

{∫ 1

0

(g ⋆ µω)(t)λω(t− τi)dt

}2

−
{∫ 1

0

(g ⋆ µω̄k)(t)λω(t− τi)dt

}2
)

dτi

One has that

|Si,1| ≤ ‖µω‖3∞ + ‖µω̄k‖2∞‖µω‖∞ ≤ 16c3(ψ)m3
Dn
,
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and that

Si,2 = ξ2D

∫

R

g(τi)

((∫ 1

0

g ⋆ ψD,k(t)λω(t− τi)dt

)

×
(
∫ 1

0

g ⋆ (µω + µω̄k)(t)λω(t− τi)dt

))

dτi

Hence using (8.12) and (8.30) it follows that there exists a constant C > 0
such that for all sufficiently large n

|Si,2| ≤ ξ2D‖g ⋆ ψD,k‖2 (‖µω‖∞ + ‖µω̄k‖∞) ≤ Cn− 3s+ν+1
2s+2ν+1

Then, since s > 2ν + 1 > ν it follows that

n
∑

i=1

Eλω
Si = O

(

n− (s−2ν−1)
2s+2ν+1 + n− (s−ν)

2s+2ν+1

)

→ 0.

Now, note that Var(
∑n

i=1 Si) = nVar(Y1) where

Y1 =

(∫ 1

0

g ⋆ µω(t)dN
1
t

)2

−
(∫ 1

0

g ⋆ µω̄k(t)dN1
t

)2

.

Since |Y1| ≤
(

‖µω‖2∞ + ‖µω̄k‖2∞
)

K2
1 with K1 =

∫ 1

0 dN
1
t being, condition-

ally to τ1, a Poisson variable with intensity
∫ 1

0
λω(t−τ1)dt =

∫ 1

0
λω(t)dt =

‖λω‖1. Therefore, (8.12) again implies that there exists a constant C > 0
(not depending on λω) such that

Var(

n
∑

i=1

Si) = nVar(Y1) ≤ nEY 2
1 ≤ Cnm4

Dn
→ 0.

Therefore, using Chebyshev’s inequality, we obtain that (8.18) = 1
2

∑n
i=1 Si

converges to zero in probability as n→ +∞.

8.4. Lower bound on Bs,+
p,q

(A)

By applying inequality (8.9) and Lemma 8.3, we obtain that there exists 0 <
δ < 1 such that for all sufficiently large n

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ,

for some constant C > 0 that is independent of Dn. From the definition (8.4)
of ξDn

and using the choice (8.8) for Dn, we obtain that

inf
λ̂n

sup
λ∈SD(A)

Eλ‖λ̂n − λ‖22 ≥ Cξ2Dn
2Dn ≍ 2−2sDn ≍ n− 2s

2s+2ν+1 .
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Now, since SD(A) ⊂ Bs,+p,q (A) for any D ≥ 1 we obtain from the above inequal-
ities that there exists a constant C0 > 0 such that for all sufficiently large n

inf
λ̂n

sup
λ∈Bs,+

p,q (A)

n
2s

2s+2ν+1Eλ‖λ̂n − λ‖22 ≥ inf
λ̂n

sup
λ∈SDn (A)

Eλ‖λ̂− λ‖22,

≥ C0n
− 2s

2s+2ν+1 ,

which concludes the proof of Theorem 3.1. �

9. Proof of the upper bound (Theorem 4.1)

Following standard arguments in wavelet thresholding (see e.g. [35]), one needs

to bound the centered moment of order 2 and 4 of ĉj0,k and β̂j,k (see Proposition

9.1), as well as the deviation in probability between β̂j,k and βj,k (see Proposition
9.2). In the proof, C, C′, C1, C2 denote positive constants that are independent
of λ and n, and whose value may change from line to line. The proof requires
technical results that are postponed and proved in Section 9.2. We will use the
following quantities

ψ̃j,k(t) =
∑

ℓ∈Ωj

γ−1
ℓ cℓ(ψj,k)eℓ(t), V 2

j = ‖g‖∞2−j
∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

, δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

,

and

∆n
jk(γ) =

√

‖ψ̃j,k‖22
(

‖g‖∞K̃n(γ)
2γ logn

n
+ un(γ)

)

+
γ logn

3n
‖ψ̃j,k‖∞, (9.1)

where K̃n(γ) is introduced in (4.6), un(γ) is a real sequence such that un(γ) =
o
(

γ logn
n

)

as n→ +∞.

9.1. Proof of Theorem 4.1

As classically done in wavelet thresholding, use the following risk decomposition

E‖λ̂hn − λ‖22 = R1 +R2 +R3 +R4,

where

R1 =
2j0−1
∑

k=0

E(ĉj0,k − cj0,k)
2, R2 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

(β̂j,k − βj,k)
21{|β̂j,k|≥ŝj(n)}

]

,

R3 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

β2
j,k1{|β̂j,k|<ŝj(n)}

]

, R4 =

+∞
∑

j=j1+1

2j−1
∑

k=0

β2
j,k.
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Bound on R4: first, recall that following our assumptions, Lemma 19.1 of [26]
implies that

2j−1
∑

k=0

β2
jk ≤ C2−2js∗ , with s∗ = s+ 1/2− 1/p′, (9.2)

where C is a constant depending only on p, q, s, A. Since by definition 2−j1 ≤
2( lognn )−

1
2ν+1 , equation (9.2) implies that R4 = O

(

2−2j1s
∗
)

= O
(

( log nn )−
2s∗

2ν+1

)

,
as n→ +∞. Note that in the case p ≥ 2, then s∗ = s and thus 2s

2ν+1 >
2s

2s+2ν+1 .
In the case 1 ≤ p < 2, then s∗ = s + 1/2 − 1/p, and one can check that the
conditions s > 1/p and s∗p > ν(2 − p) imply that 2s∗

2ν+1 > 2s
2s+2ν+1 . Hence in

both cases one has that

R4 = O
(

n− 2s
2s+2ν+1

)

, as n→ +∞. (9.3)

Bound on R1: using Proposition 9.1 and the inequality 2j0 ≤ logn it follows
that

R1 ≤ C
2j0(2ν+1)

n
≤ C

(logn)2ν+1

n
= O

(

n− 2s
2s+2ν+1

)

. (9.4)

Bound on R2 and R3. remark that R2 ≤ R21 +R22 and R3 ≤ R31 +R32 with

R21 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

(β̂j,k − βj,k)
21{|β̂j,k−βj,k|≥ŝj(n)/2}

]

R22 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

(β̂j,k − βj,k)
21{|βj,k|≥ŝj(n)/2}

]

,

R31 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

β2
j,k1{|β̂j,k−βj,k|≥ŝj(n)/2}

]

and

R32 =

j1
∑

j=j0

2j−1
∑

k=0

E

[

β2
j,k1{|βj,k|<

3
2 ŝj(n)}

]

.

Now, applying Cauchy-Schwarz’s inequality, we get that

R21 +R31 =

j1
∑

j=j0

2j−1
∑

k=0

E

[(

(β̂j,k − βj,k)
2 + β2

j,k

)

1{|β̂j,k−βj,k|≥ŝj(n)/2}

]

≤
j1
∑

j=j0

2j−1
∑

k=0

(

(

E(β̂j,k − βj,k)
4
)1/2

+ β2
j,k

)

×

(

P(|β̂j,k − βj,k| ≥ ŝj(n)/2)
)1/2
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Bound on P(|β̂j,k − βj,k| ≥ ŝj(n)/2): using that |cℓ(ψj,k)| ≤ 2−j/2 one has that

‖ψ̃j,k‖22 ≤ σ2
j and ‖ψ̃j,k‖∞ ≤ ǫj . Thus, by definition of ŝj(n) it follows that

2∆n
jk(γ) ≤ ŝj(n)/2 (9.5)

for all sufficiently large n where ∆n
jk(γ) is defined in (9.1). Moreover, by (4.1)

there exists two constants C1, C2 such that for all ℓ ∈ Ωj , C12
j ≤ |ℓ| ≤ C22

j.
Since lim|ℓ|→+∞ θℓ = 0 uniformly for f ∈ Bs,+p,q (A) it follows that as j → +∞

V 2
j = ‖g‖∞2−j

∑

ℓ∈Ωj

|θℓ|2
|γℓ|2

= o



2−j
∑

ℓ∈Ωj

|γℓ|−2



 = o
(

σ2
j

)

and

δj = 2−j/2
∑

ℓ∈Ωj

|θℓ|
|γℓ|

= o (ǫj) .

Now, define the non-random threshold

sj(n) = 4

(
√

σ2
j

2γ logn

n
(‖g‖∞‖λ‖1 + δ) +

γ logn

3n
ǫj

)

, for j0(n) ≤ j ≤ j1(n).

(9.6)
Using that V 2

j = o(σ2
j ) and δj = o (ǫj) as j → +∞, and that j0(n) → +∞ as

n→ +∞ it follows that for all sufficiently large n and j0(n) ≤ j ≤ j1(n)

2





√

2V 2
j γ log n

n
+ δj

γ logn

3n



 ≤ sj(n)/2 (9.7)

From equation (9.26) (see below), one has that P
(

‖λ‖1 ≥ K̃n

)

≤ 2n−γ , which
implies that sj(n) ≤ ŝj(n) with probability larger than 1 − 2n−γ . Hence, by
inequalities (9.5) and (9.7), it follows that for all sufficiently large n

2max



∆n
jk(γ),

√

2V 2
j γ logn

n
+ δj

γ logn

3n



 ≤ ŝj(n)/2 (9.8)

with probability larger than 1 − 2n−γ . Therefore, for all sufficiently large n,
Proposition 9.2 and inequality (9.8) imply that

P

(

|β̂j,k − βj,k| > ŝj(n)/2
)

≤ Cn−γ , (9.9)

for all j0(n) ≤ j ≤ j1(n).

Bound on R21 +R31: Using the assumption that γ ≥ 2, inequality (9.2) and
Proposition 9.1, one has that for all sufficiently large n

R21 +R31 ≤ C
1

n





j1
∑

j=j0

2j
(

24jν

n2

(

1 +
2j

n

))1/2

+

j1
∑

j=j0

2−2js∗



 .
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By definition of j1 one has that 2j

n ≤ C for all j ≤ j1, which implies that (since
s∗ > 0)

R21 +R31 ≤ C
1

n





j1
∑

j=j0

2j(2ν+1)

n
+

j1
∑

j=j0

2−2js∗



 = O(n− 2s
2s+2ν+1 ), as n→ +∞,

(9.10)

using the fact that 2j(2ν+1)

n ≤ C for all j ≤ j1(n) ≤ 1
2ν+1 log2 n.

Finally, it remains to bound the term T2 = R22+R32. For this purpose, let j2
be the largest integer such that 2j2 ≤ n

1
2s+2ν+1 (logn)β with β = − 1

2s+2ν+1 , and
partition T2 as T2 = T21 + T22 where the first component T21 is calculated over
the resolution levels j0 ≤ j ≤ j2 and the second component T22 is calculated
over the resolution levels j2 +1 ≤ j ≤ j1 (note that given our assumptions then
j2 ≤ j1 for all sufficiently large n). Using the definition of the threshold ŝj(n)
it follows that

ŝj(n)
2 ≤ C

(

σ2
j (‖g‖∞K̃n + δ)

log(n)

n
+

(log n)2

n2
ǫ2j

)

.

From Assumption 2.1 on the γℓ’s and equation (4.1) for Ωj it follows that

σ2
j ≤ C22jν and ǫj ≤ C2j(ν+1/2).

Since, for 2j log nn ≤
(

log n
n

)− 2ν
2ν+1 all j ≤ j1, it follows that

(logn)2

n2 ǫ2j ≤ C22jν log(n)
n

and thus

ŝj(n)
2 ≤ C22jν(‖g‖∞K̃n + δ + 1)

log(n)

n
. (9.11)

Using Proposition 9.1, the bound (9.11), the fact that

EK̃n ≤ ‖λ1‖1 +O
(

(

logn

n

)1/2
)

(9.12)

and the definition of j2 one obtains that

T21 ≤
j2
∑

j=j0

2j−1
∑

k=0

(

E(β̂j,k − βj,k)
2 +

9

4
Eŝj(n)

2

)

= O
(

2j2(2ν+1)

n
log(n)

)

= O
(

(

logn

n

)
2s

2s+2ν+1

)

, (9.13)

as n → +∞. Then, it remains to obtain a bound for T22. Recall that ŝj(n) ≥
sj(n) with probability larger that 1 − 2n−γ , where sj(n) is defined in (9.6).
Therefore, using Cauchy-Schwarz’s inequality

E

[

(β̂j,k − βj,k)
21{|βj,k|≥ŝj(n)/2}

]

≤ E(β̂j,k − βj,k)
21{|βj,k|≥sj(n)/2} +

(

E(β̂j,k − βj,k)
4
)1/2

(

P(ŝj(n) ≤ sj(n))
)1/2

.
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Then, by Assumption 2.1 one has that σ2
j ≥ C22jν . Therefore, using Proposition

9.1 it follows that E(β̂j,k−βj,k)
2 ≤ Cs2j(n) and that E(β̂j,k−βj,k)

4 ≤ C 24jν

n2 for
all j ≤ j1. Finally, using that γ ≥ 2 and the fact that P(ŝj(n) ≤ sj(n)) ≤ 2n−γ ,
one finally obtains that for any j ≤ j1

E

[

(β̂j,k − βj,k)
21{|βj,k|≥ŝj(n)/2}

]

≤ C

(

s2j(n)

4
1{|βj,k|≥sj(n)/2} +

22jν

n2

)

(9.14)

Let us first consider the case p ≥ 2. Using inequality (9.14) one has that

T22 ≤ C





j1
∑

j=j2+1

2j−1
∑

k=0

s2j(n)

4
1{|βj,k|≥sj(n)/2} +

22jν

n2
+ |βj,k|2





≤ C





j1
∑

j=j2+1

2j−1
∑

k=0

|βj,k|2 +
1

n

j1
∑

j=j2+1

2j(2ν+1)

n



 .

Then (9.2), the definition of j2, j1 and the fact that s∗ = s imply that

T22 = O



2−2j2s +
1

n

j1
∑

j=j2+1

2j(2ν+1)

n



 = O
(

n− 2s
2s+2ν+1 (logn)

2s
2s+2ν+1

)

(9.15)

Now, consider the case 1 ≤ p < 2. Using again inequality (9.14) one obtains
that

T22 ≤ C





j1
∑

j=j2+1

2j−1
∑

k=0

s2j(n)

4
1{|βj,k|≥sj(n)/2} +

22jν

n2
+ E|βj,k|21{|βj,k|<

3
2 ŝj(n)}





≤ C





j1
∑

j=j2+1

2j−1
∑

k=0

sj(n)
2−p|βj,k|p + |βj,k|pEŝj(n)2−p +

1

n

j1
∑

j=j2+1

2j(2ν+1)

n





(9.16)

By Holder inequality, it follows that for any α>1, Eŝj(n)
2−p≤(Eŝj(n)

α(2−p))1/α.

Hence, by taking α = 2/(2−p), we get that Eŝj(n)2−p ≤
(

Eŝj(n)
2
)(2−p)/2

. Then,
using the following upper bounds (as a consequence of the definition of s2j(n)
and the arguments used to derive inequalities (9.11), (9.12))

s2j(n) ≤ C22jν
log(n)

n
and Eŝj(n)

2 ≤ C22jνEK̃n
log(n)

n
≤ C22jν

log(n)

n
,

it follows that inequality (9.16) and the fact that for λ ∈ Bs,+p,q (A),
∑2j−1

k=0 |βj,k|p ≤
C2−jps

∗

(with ps∗ = ps+ p/2− 1) imply that
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T22 ≤ C





j1
∑

j=j2+1

22jν(1−p/2)
(

log(n)

n

)1−p/2

2−jps
∗

+
1

n

j1
∑

j=j2+1

2j(2ν+1)

n





≤ C





(

logn

n

)1−p/2 j1
∑

j=j2+1

2j(ν(2−p)−ps
∗) +

1

n

j1
∑

j=j2+1

2j(2ν+1)

n





= O





(

logn

n

)1−p/2

2j2(ν(2−p)−ps
∗) +

1

n

j1
∑

j=j2+1

2j(2ν+1)

n





= O
(

n− 2s
2s+2ν+1 (log n)

2s
2s+2ν+1

)

(9.17)

where we have used the assumption ν(2 − p) < ps∗ and the definition of j2,
j1 for the last inequalities. Finally, combining the bounds (9.3), (9.4), (9.10),
(9.13), (9.15) and (9.17) completes the proof of Theorem 4.1. �

9.2. Technical results

Arguing as in the proof of Proposition 3 in [7], one has the following lemma:

Lemma 9.1. Suppose that g satisfies Assumption 2.1. Then, there exists a
constants C > 0 such that for any j ≥ 0 and 0 ≤ k ≤ 2j − 1

‖ψ̃j,k‖∞ ≤ C2j(ν+1/2), ‖ψ̃j,k‖22 ≤ C22jν and ‖ψ̃2
j,k‖22 ≤ C2j(4ν+1).

Proposition 9.1. There exists C > 0 such that for any j ≥ 0 and 0 ≤ k ≤ 2j−1

E|ĉj,k−cj,k|2 ≤ C
22jν

n

(

1+‖λ‖2‖g‖∞
)

, E|β̂j,k−βj,k|2 ≤ C
22jν

n

(

1+‖λ‖2‖g‖∞
)

,

(9.18)
and

E|β̂j,k − βj,k|4 ≤ C
24jν

n2

(

1 +
2j

n

)

(

1 + ‖λ‖22‖g‖2∞ + ‖λ‖2‖g‖∞ + ‖λ‖22‖g‖∞
)

.

(9.19)

Proof. We only prove the proposition for the wavelet coefficients β̂j,k since the

arguments are the same for the scaling coefficients ĉj,k. Remark first that β̂j,k−
βj,k =

∑

ℓ∈Ωj
cℓ(ψj,k)(θ̂ℓ − θℓ) = Z1 + Z2, where Z1 and Z2 are the centered

variables
Z1 :=

∑

ℓ∈Ωj

(γ̃ℓγ
−1
ℓ − 1)θℓcℓ(φj,k).

and

Z2 :=
1

n

n
∑

i=1

∫ 1

0

ψ̃j,k(t)dÑ
i
t .

where dÑ i
t = dN i

t − λ(t− τ i)dt.
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Control of the moments of Z1: by arguing as in the proof of Proposition 3
in [7], one obtains that there exists a universal constant C > 0 such that

E|Z1|2 ≤ C
22jν

n
and E|Z1|4 ≤ C

(

24jν

n2
+

2j(4ν+1)

n3

)

. (9.20)

The main arguments to obtain (9.20) rely on concentration inequalities on the
variables τ i, i = 1, . . . , n.

Control of the moments of Z2: using Lemma 9.1 remark that

E|Z2|2 =
1

n2

n
∑

i=1

E

∫ 1

0

ψ̃2
j,k(t)λ(t − τ i)dt =

1

n

∫ 1

0

ψ̃2
j,k(t)λ ⋆ g(t)dt,

≤ C
22jν

n
‖λ ⋆ g‖∞ ≤ C

22jν

n
‖λ‖2‖g‖∞.

Let us now bound E|Z2|4 by using Rosenthal’s inequality [40]

E

∣

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

∣

2p

≤
(

16p

log(2p)

)2p

max

{(

n
∑

i=1

EY 2
i

)p

;

n
∑

i=1

E|Yi|2p
}

,

which is valid for independent, centered and real-valued random variables

(Yi)i=1...,n. We apply this inequality to Yi =
∫ 1

0
ψ̃j,k(t)dÑ

i
t with p = 2. Condi-

tionnaly to τ i, using Proposition 6 in [38] and the Jensen’s inequality, it follows
that

E
[

Y 4
i |τ i

]

=

∫ 1

0

ψ̃4
j,k(t)λ(t − τ i)dt+ 3

(∫ 1

0

ψ̃2
j,k(t)λ(t − τ i)dt

)2

,

≤
∫ 1

0

ψ̃4
j,k(t)

(

λ(t− τ i) + 3λ2(t− τ i)
)

dt.

Hence E
∑n

i=1 Y
4
i ≤ n

∫ 1

0
ψ̃4
j,k(t)

(

λ ⋆ g(t) + 3λ2 ⋆ g(t)
)

dt. Then, using Lemma

9.1 E
∑n

i=1 Y
4
i ≤ Cn2j(4ν+1)

(

‖λ‖2 + ‖λ‖22
)

‖g‖∞. Using again Proposition 6 in

[38] and Lemma 9.1 one obtains that EY 2
i =

∫ 1

0
ψ̃2
j,k(t)λ⋆g(t)dt ≤ C22jν‖λ‖2‖g‖∞

which ends the proof of the proposition.

Proposition 9.2. Assume that λ ∈ Λ∞ and let γ > 0. Then, there exists a
constant C > 0 such that for any j ≥ 0, k ∈ {0 . . .2j − 1} and all sufficiently
large n

P



|β̂j,k − βj,k| > 2max



∆n
jk(γ)),

√

2V 2
j γ logn

n
+ δj

γ logn

3n







 ≤ Cn−γ ,

(9.21)
where ∆n

jk(γ) is defined in (9.1).
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Proof. Using the notations introduced in the proof of Proposition 9.1, write
β̂j,k − βj,k = Z1 + Z2 and remark that for any u > 0

P(|Z1 + Z2| > u) ≤ P(|Z1| > u/2) + P(|Z2| > u/2) (9.22)

Now, arguing as in Proposition 4 in [7] and using Bernstein’s inequality, one has
immediately that

P



|Z1| >

√

2V 2
j γ logn

n
+ δj

γ logn

3n



 ≤ 2n−γ . (9.23)

Let us now control the deviation of Z2 = 1
n

∑n
i=1

∫ 1

0
ψ̃j,k(t)dÑ

i
t . First, remark

that conditionnaly to the shifts τ 1, . . . , τn, the process
∑n

i=1N
i is a Poisson

process with intensity
∑n

i=1 λ(.−τ i). For the sake of convenience, we introduce
some additionnal notations. For n ≥ 1, j ≥ 0 and 0 ≤ k ≤ 2j − 1, define

Mn
jk =

1

n

n
∑

i=1

∫ 1

0

ψ̃2
jk(t)λ(t− τ i)dt, and Mjk = EMn

jk =

∫ 1

0

ψ̃2
jk(t)λ ⋆ g(t)dt.

Using an analogue of Bennett’s inequality for Poisson processes (see e.g.
Proposition 7 in [38]), we get that for any s > 0

P

(

|Z2| >
√

2s

n
Mn
jk +

s

3n
‖ψ̃j,k‖∞

∣

∣τ 1, . . . , τn

)

≤ 2 exp (−s) (9.24)

Remark that the quantity Mn
jk is not computable from the data as its depends

on λ and the unobserved shifts τ 1, . . . , τn. Nevertheless it is possible to compute
a data-based upper bound forMn

jk. Indeed, note that Bernstein’s inequality (see
e.g. Proposition 2.9 in [31]) implies that

P

(

Mn
jk > Mjk + M̃jk

(

γ logn

3n
+

√

2γ logn

n

))

≤ n−γ .

with M̃jk = ‖λ‖∞‖ψ̃j,k‖22. Obviously, M̃jk is unknown but for all sufficiently
large n, one has that

M̃jk = ‖λ‖∞‖ψ̃j,k‖22 ≤ logn‖ψ̃j,k‖22.

Moreover, remark that Mjk = ‖ψjk
√
λ ⋆ g‖22 ≤ ‖ψjk‖22‖g‖∞‖λ‖1. Hence,

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞‖λ‖1 +
(

γ(logn)2

3n
+

√

2γ(logn)3

n

)))

≤ n−γ .

(9.25)
In order to obtain a data-based upper bound for Mn

jk, it remains to derive an
upper bound for ‖λ‖1. Recall that we have denoted by Ki the number of points
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of the process N i. Conditionally to τ i, Ki is real random variable that follows

a Poisson distribution with intensity
∫ 1

0 λ(t − τ i)dt. Since λ is assumed to be

periodic with period 1, it follows that for any i = 1, . . . , n,
∫ 1

0 λ(t − τ i)dt =
∫ 1

0
λ(t)dt, and thus (Ki)i=1,...,n are i.i.d. random variables following a Poisson

distribution with intensity ‖λ‖1 =
∫ 1

0 λ(t)dt. Using standard arguments to derive
concentration inequalities one has that for any u > 0

P

(

‖λ‖1 ≥ 1

n

n
∑

i=1

Ki +

√

2u‖λ‖1
n

+
u

3n

)

≤ 2 exp(−u).

Now, define the function h(y) = y2 −
√
2ay − a/3 for y ≥ 0 and with a = u/n.

Then, the above inequality can be written as

P

(

h
(

√

‖λ‖1
)

≥ 1

n

n
∑

i=1

Ki

)

≤ 2 exp(−u).

Since h restricted on [
√
a(
√
30 + 3

√
2)/6;+∞[ is invertible with h−1(y) =

√

y + 5a
6 +

√

a
2 it follows that for u = γ logn and all sufficiently large n

P

(

‖λ‖1 ≥ K̄n +
4γ logn

3n
+

√

2γ logn

n
K̄n +

5γ2(logn)2

3n2

)

≤ 2n−γ , (9.26)

where K̄n = 1
n

∑n
i=1Ki. Therefore, using (9.25) it follows that

P

(

Mn
jk > ‖ψ̃j,k‖22

(

‖g‖∞K̃n(γ) +

(

γ(logn)2

3n
+

√

2γ(logn)3

n

)))

≤ 3n−γ ,

(9.27)
where K̃n(γ) is defined in (4.6). Hence, combining (9.24) with s = γ logn and
(9.27) we obtain that

P

(

|Z2| >
√

2γ logn

n
‖ψ̃j,k‖22tn +

γ logn

3n
‖ψ̃j,k‖∞

)

≤ 5n−γ , (9.28)

where

tn = ‖g‖∞K̃n(γ) +

(

γ(logn)2

3n
+

√

2γ(logn)3

n

)

.

Combining inequalities (9.22), (9.23) and (9.28) concludes the proof.

10. Proof of the results of the Section 6

10.1. Proof of Theorem 6.1

Some parts of the proof of are inspired by general results on Van Trees inequal-
ities established in [21]. Consider first the case where the shifts τi, i = 1, . . . , n
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are non-random parameters to be estimated, and let τn = (τ1, . . . , τn) ∈ [0, 1]n.
Let N = (N 1, . . .Nn), where N 1, . . .Nn are n independent Poisson processes
whose intensities are specified below. Thanks to Lemma 8.1, for any real-valued
and bounded measurable function h of the random variable N , one has that

Eτ (h(N )) = E0 (h(N )p(N|τn))

with

p(N|τn) =
n
∏

i=1

exp

[

λ0 −
∫ 1

0

λ(t− τi)dt+

∫ 1

0

log

(

λ(t− τi)

λ0

)

dN i
t

]

,

where Eτ denotes the expectation of the n Poisson counting processes in N
under the assumption that each intensity is given by λi(t) = λ(t − τi), t ∈
[0, 1], i = 1, . . . , n, (where τ1, . . . , τn are fixed parameters) and E0 denotes the
expectation of the n Poisson counting processes in N under the assumption that
each intensity is given by λi(t) = λ0, t ∈ [0, 1], i = 1, . . . , n. Since

∂

∂τi
log p(N|τn) =

∫ 1

0

∂

∂t
λ(t− τi)dt−

∫ 1

0

∂
∂tλ(t− τi)

λ(t− τi)
dN i

t

it follows from (2.1) that for i = 1, . . . , n

Eτ

(

∂

∂τi
log p(N|τn)

)

= 0. (10.1)

Then, for i1 6= i2 one has that Eτ
(

∂
∂τi1

log p(x|τn) ∂
∂τi2

log p(x|τn)
)

= 0, and for

i1 = i2, using Proposition 6 in [38], one obtains that

Eτ

(

∂

∂τi1
log p(N|τn)

)2

= Var

(

∫ 1

0

∂
∂tλ(t− τi)

λ(t− τi)
dN i

t

)

=

∫ 1

0

∣

∣

∣

∣

∂

∂t
λ(t)

∣

∣

∣

∣

2

dt

(10.2)
Suppose now that the shifts are i.i.d. random variables with density g satisfying
the assumptions of Theorem 6.1. Let τ̂n = τ̂n(N ) ∈ [0, 1]n denote any estimator
of the true random shifts τn = (τ 1, . . . , τn). Define the following random vectors
U and V = (V1, . . . , Vn)

′ in R
n as

U := τ̂n − τn and Vi :=
∂

∂τi
[p(N|τn)gn(τn)]

1

p(N|τ n)gn(τn)
for i = 1, . . . , n,

where gn(τ
n) =

∏n
i=1 g(τ i). Remark first that

E (U ′V ) =

∫

[0,1]n
Eτ

(

n
∑

i=1

(τ̂i − τi)
∂
∂τi

[p(N|τn)gn(τn)]
p(N|τn)gn(τn)

)

gn(τ
n)dτn

=

∫

[0,1]n
E0

(

n
∑

i=1

(τ̂i − τi)
∂

∂τi
[p(N|τn)gn(τn)]

)

dτn
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= E0

(

n
∑

i=1

τ̂i

∫

[0,1]n

∂

∂τi
[p(N|τn)gn(τn)]dτn

)

− E0

(

n
∑

i=1

∫

[0,1]n
τi
∂

∂τi
[p(N|τn)gn(τn)]dτn

)

Thanks to the assumption that g is absolutely continuous with a compact sup-
port [τmin, τmax] ⊂ [0, 1] such that limτ→τmin g(τ) = limτ→τmax g(τ) = 0, it
follows that

∀i ∈ {1 . . . n}
∫

[0,1]n

∂

∂τi
[p(N|τn)gn(τn)]dτn = 0.

Moreover, an integration by part implies that
∫

[0,1]n
τi
∂

∂τi
[p(N|τn)gn(τn)]dτn = −

∫

[0,1]n
p(N|τn)gn(τn)dτn.

Therefore E (U ′V ) = E0

(
∑n

i=1

∫

[0,1]n
p(N|τn)gn(τn)dτn

)

= n and by Cauchy-

Schwarz’s inequality, it follows that n2 = (E (U ′V ))
2 ≤ E (U ′U)E (V ′V ) . Then,

note that

E (U ′U) = E

(

n
∑

i=1

(τ̂i − τ i)
2

)

= E0

(

∫

[0,1]n
(τ̂i − τi)

2p(N|τn)gn(τn)dτn
)

,

and

E (V ′V ) = E

(

n
∑

i=1

(

∂

∂τi
[log p(N|τn) + log gn(τ

n)]

)2
)

= E

(

n
∑

i=1

(

∂

∂τi
log p(N|τn)

)2
)

+ E

(

n
∑

i=1

(

∂

∂τi
log gn(τ

n)

)2
)

,

since by using (10.1) it follows that

E

(

n
∑

i=1

∂

∂τi
log p(N|τn) ∂

∂τi
log gn(τ

n)

)

=

n
∑

i=1

∫

[0,1]n
Eτ

(

∂

∂τi
log p(N|τn)

)

×

∂

∂τi
log gn(τ

n)gn(τ
n)dτn = 0.

Therefore by (10.2),

E (V ′V ) =

n
∑

i=1

∫

[0,1]n
Var

(

∂

∂τi
log p(N|τn)

)

gn(τ
n)dτn

+ E

n
∑

i=1

(

∂

∂τi
log g(τi)

)2

= n

∫ 1

0

∣

∣

∣

∣

∂

∂t
λ(t)

∣

∣

∣

∣

2

dt+ n

∫ 1

0

(

∂

∂τ
log g(τ)

)2

g(τ)dτ.
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Since we have shown that n2 ≤ E (U ′U)E (V ′V ), one finally obtains the follow-
ing lower bound

E

(

1

n

n
∑

i=1

(τ̂i − τ i)
2

)

=
1

n
E (U ′U) ≥ 1

∫ 1

0

∣

∣

∂
∂tλ(t)

∣

∣

2
dt+

∫ 1

0

(

∂
∂τ log g(τ)

)2
g(τ)dτ

,

(10.3)
which completes the proof. �

10.2. Proof of Theorem 6.2

A part of the proof is inspired by a similar result in [6]. Suppose that (τ̂1, . . . , τ̂n) ∈
[0, 1]n are estimators of the true random shifts (τ 1, . . . , τn) satisfying the con-
straints

∑n
i=1 τ̂i = 0 and τmin ≤ τ̂i ≤ τmax for all i = 1, . . . , n. Let τ̄ = 1

n

∑n
i=1 τ i

and define λ⋆(t) = λ(t− τ̄ ) for t ∈ [0, 1]. Note that applying Jensen’s inequality
and then Minkowski’s inequality implies that

(

E

(∫ 1

0

∣

∣λ̄n(t)− λ(t)
∣

∣

2
dt

))1/2

≥ E

(∫ 1

0

∣

∣λ̄n(t)− λ(t)
∣

∣

2
dt

)1/2

≥ |EI1 − EI2| .
(10.4)

where I1 :=
(∫ 1

0

∣

∣λ̄n(t)− λ⋆(t)
∣

∣

2
dt
)1/2

and I2 :=
(∫ 1

0 |λ⋆(t)− λ(t)|2 dt
)1/2

. Be-
low, we derive an asymptotic lower bound (as n→ +∞) of |EI1 − EI2|.

Control of the term EI1: remind that we note θ1 =
∫ 1

0 λ(t)e
−i2πtdt. The

Bessel’s inequality restricted to the first Fourier term implies that

I1 ≥ |θ1|
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

ei2π(τ̂i−τ i+τ̄) − 1
)

∣

∣

∣

∣

∣

. (10.5)

Let ui = 2π(τ̂i − τ i+ τ̄ ), i = 1, . . . , n. Note that, given our assumptions, |ui| ≤
4π(τmax − τmin) = δ < 3. Let F (u1, . . . , un) =

1
n

∑n
i=1 e

iui . A Taylor expansion
implies that for all (a1, . . . , an) ∈ [−δ, δ]n, there exist some (ti)1≤i≤n ∈ [−δ, δ]n
such that

F (a1, . . . , an) = 1 +
i

n

n
∑

i=1

ai −
1

2n

n
∑

i=1

a2i −
i

6n

n
∑

i=1

a3i e
iti .

Given that
∑n

i=1 τ̂i = 0, one has that
∑n

i=1 ui = 0, and thus, using the above
Taylor expansion with a1 = u1, . . . , an = un, it follows that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

eiui − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− 1

2n

n
∑

i=1

u2i −
i

6n

n
∑

i=1

u3i e
iti

∣

∣

∣

∣

∣

≥ 1

2n

∣

∣

∣

∣

∣

n
∑

i=1

u2i −
∣

∣

∣

∣

i

3

n
∑

i=1

u3i e
iti

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Since |ui| ≤ δ for all i = 1, . . . , n, we have that
∣

∣

i
3

∑n
i=1 u

3
i e

iti
∣

∣ ≤ δ
3

∑n
i=1 |ui|2

which finally implies that
∣

∣

1
n

∑n
i=1 e

iui − 1
∣

∣ ≥ 3−δ
6

1
n

∑n
i=1 u

2
i . Combined with
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(10.5), it proves that

I1 ≥ C(δ)|θ1|
1

n

n
∑

i=1

(τ̂i − τ i + τ̄ )2 ≥ C(δ)|θ1| (I1,1 − I1,2)

with C(δ) = 4π2 3−δ
6 > 0, and where

I1,1 :=
1

n

n
∑

i=1

(τ̂i − τ i)
2 and I1,2 := 2|τ̄ |

(

1

n

n
∑

i=1

|τ̂i − τ i|
)

.

Given our assumptions on τ̂i and τ i, it follows that I1,2 ≤ 4(τmax − τmin)|τ̄ |.
Then, the assumption that

∫ 1

0
τg(τ)dτ = 0 implies that E|τ̄ |2 = 1

nE|τ 1|2, and
thus

EI1,2 ≤ 4(τmax − τmin)
√

E|τ̄ |2 → 0 as n→ +∞.

Therefore, by Theorem 6.1

lim inf
n→+∞

EI1 ≥ C(δ)|θ1|
∫ 1

0

∣

∣

∂
∂tλ(t)

∣

∣

2
dt+

∫ 1

0

(

∂
∂τ log g(τ)

)2
g(τ)dτ

(10.6)

Control of the term EI2: using again the fact that E|τ̄ |2 = 1
nE|τ 1|2, and the

inequality I2 ≤ |τ̄ | × supt∈[0,1]

{∣

∣

∂
∂tλ(t)

∣

∣

}

|τ̄ |, one obtains that

EI2 ≤ sup
t∈[0,1]

{∣

∣

∣

∣

∂

∂t
λ(t)

∣

∣

∣

∣

}

√

E|τ̄ |2 → 0, as n→ +∞. (10.7)

Therefore, by combining (10.6) and (10.7), it follows that

lim inf
n→+∞

|EI1 − EI2| ≥
4π2

(

3−δ
6

)

|θ1|
∫ 1

0

∣

∣

∂
∂tλ(t)

∣

∣

2
dt+

∫ 1

0

(

∂
∂τ log g(τ)

)2
g(τ)dτ

which completes the proof. �
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