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Abstract: The paper considers model selection in regression under the ad-
ditional structural constraints on admissible models where the number of
potential predictors miht be even larger than the available sample size. We
develop a Bayesian formalism which is used as a natural tool for generating
a wide class of model selection criteria based on penalized least squares esti-
mation with various complexity penalties associated with a prior on a model
size. The resulting criteria are adaptive to structural constraints. We estab-
lish the upper bound for the quadratic risk of the resulting MAP estimator
and the corresponding lower bound for the minimax risk over a set of admis-
sible models of a given size. We then specify the class of priors (and, there-
fore, the class of complexity penalties) where for the “nearly-orthogonal”
design the MAP estimator is asymptotically at least nearly-minimax (up
to a log-factor) simultaneously over an entire range of sparse and dense se-
tups. Moreover, when the numbers of admissible models are “small” (e.g.,
ordered variable selection) or, on the opposite, for the case of complete vari-
able selection, the proposed estimator achieves the exact minimax rates.
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1. Introduction

Consider the standard Gaussian linear regression model

y = Xβ + ǫ, (1)

where y ∈ R
n is a vector of the observed response variable Y , Xn×p is the design

matrix of the p explanatory variables (predictors)X1, . . . , Xp, β ∈ R
p is a vector

of unknown regression coefficients, ǫ ∼ N(0, σ2In) and the noise variance σ2 is
assumed to be known.

A variety of statistical applications of regression models in different fields
nowadays involves a vast number of potential predictors. Moreover, p might be
even large relative to the amount of available data n (p ≫ n setup) that raises
a severe “curse of dimensionality” problem. However, typically only some of
the predictors have a truly relevant impact on the response y. Model (variable)
selection by identifying the “best” sparse subset of these “significant” predictors
becomes therefore crucial in the analysis of such large data sets. For a selected
model (a subset of predictors) M , the corresponding coefficients βM are then
typically estimated by least squares.

The goodness of model selection depends on the particular goal at hand. One
should distinguish, for example, between estimation of regression coefficients β,
estimation of the mean vector Xβ, model identification and predicting future
observations. Different goals may lead to different optimal model selection pro-
cedures especially when the number of potential predictors p might be much
larger than the sample size n. In this paper we consider mainly the estimation
of the mean vector Xβ and the goodness of a model M is measured by the
quadratic risk E||Xβ̂M − Xβ||2, where β̂M is the least squares estimate of β
for M . The “best” model then is the one with the minimal quadratic risk. Note
that the true underlying model in (1) is not necessarily the best in this sense
since sometimes it is possible to reduce its risk by excluding predictors with
small (but still nonzero!) coefficients.

Minimum quadratic risk criterion for model selection is evidently impossible
to implement since it involves the unknown true β but the corresponding ideal
minimal (oracle) risk can be used as a benchmark for any available model se-
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lection procedure. Typical model selection criteria are based on minimizing the
empirical quadratic risk ||y −Xβ̂M ||2, which is the least squares, penalized by
a complexity penalty Pen(|M |) increasing with a model size |M |:

min
M

{

||y −Xβ̂M ||2 + Pen(|M |)
}

(2)

The properties of the resulting penalized least squares estimator depend ob-
viously on the particular choice of the complexity penalty Pen(·) in (2). The
most commonly used choice is a linear type penalty of the form Pen(k) = 2σ2λk
for some λ > 0. The most known examples include Cp (Mallows [20]) and AIC
(Akaike [4]) for λ = 1, BIC (Schwarz [23]) for λ = (lnn)/2 and RIC (Fos-
ter and George [13]) for λ = ln p. A series of recent works proposed the so-
called 2k ln(p/k)-type nonlinear complexity penalties of the form Pen(k) =
2σ2λk(ln(p/k) + 1)(1 + o(1)) with λ ≥ 1. (see, e.g., Birgé and Massart [6, 7],
Abramovich et al. [1], Bunea et al. [8], Abramovich and Grinshtein [2], Rigollet
and Tsybakov [22]).

As we have mentioned, in the analysis of large complex data sets it is typi-
cally believed that the underlying (unknown) model is sparse, where a natural
measure of model’s sparsity is its size p0. Abramovich and Grinshtein [2] and
Rigollet and Tsybakov [22] established the minimax rates for the quadratic risk
of estimating the mean vector Xβ in (1) over the set of models of sizes at most
p0 (see also analogous results of Raskutti et al. [21] for the case when X is of a
full rank, i.e. rank(X) = min(p, n)). They also showed that for 2k ln(p/k)-type
penalties, the resulting penalized estimators (2) are simultaneously asymptot-
ically optimal (in the minimax sense) for the entire range of sparse and dense
models, while linear penalties cannot achieve such a wide optimality range.

So far, the above minimax properties of various model selection procedures
in (1) have been established for complete variable selection, where the set of ad-
missible models contains all 2p subsets of the predictors X1, . . . , Xp. However,
in a variety of regression setups there exist additional structural constraints that
restrict the set of admissible models. In some cases predictors have some natural
order and Xj can enter the model only if Xj−1 is already there (ordered vari-
able selection). For example, in polynomial regression, higher order polynomials
are usually considered only if polynomials of lower degrees are already in the
model. In tree-based models, a predictor cannot enter a model unless all its an-
cestors are there (hierarchical model selection). Another important example of
hierarchical model selection is models with interactions, where interactions are
typically selected only with the corresponding main effects. For a model with
factor predictors, each factor predictor with k levels is, in fact, associated with
a group of k− 1 indicator (dummy) predictors. In this case either none or all of
this group can be selected. It is somewhat similar to group sparse models, where
predictors are splitted into pre-defined groups (see, e.g. Lounici et al. [19]).

In this paper we investigate the minimaxity properties of model selection
criteria in (2) over classes of sparse and dense models under additional general
structural constraints extending the existing results for the complete variable
selection. The key point is to adapt the choice of the complexity penalty in (2)
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to the specific structural constraints. In fact, it turns out that it is only the
number of admissible models of a given size that matters.

We extend a Bayesian approach to model selection developed in Abramovich
and Grinshtein [2] for the complete variable selection. The proposed Bayesian
formalism is based on imposing a prior on a model size, where the penalty
term in (2) is then naturally treated as proportional to its logarithm. From the
Bayesian perspective, the model selection criterion (2) corresponds thus to the
maximum a posteriori (MAP) Bayes rule. Depending on a specific choice of a
prior, it implies a variety of penalized least squares estimators (or, equivalently,
model selection criteria) with different complexity penalties. We show that under
mild conditions on the prior, the resulting MAP estimator falls within a general
class of penalized least squares estimators (2) considered in Birgé and Massart
[6, 7] with complexity penalties Pen(|M |) satisfying certain technical conditions
depending on the number of admissible models of size |M |, that allows us to
derive the upper bound for its quadratic risk. On the other hand, we establish the
corresponding lower bound for the minimax quadratic risk over a set of models
of a given size under structural constraints. We then specify the class of priors
(and, therefore, the class of the corresponding complexity penalties), where for
the “nearly-orthogonal” design, the resulting MAP estimators asymptotically
are at least nearly-minimax (up to a log-factor) simultaneously over the wide
range of sparse and dense models. In particular, when the numbers of admissible
models are “small” (e.g., ordered variable selection) and for complete variable
selection they lead to AIC-type and 2k ln(p/k)-type estimators respectively and
achieve the exact minimax rate.

The paper is organized as follows. In Section 2 we develop a Bayesian formal-
ism for model selection in regression under structural constraints and derive the
MAP estimator. Its theoretical properties are presented in Section 3. In particu-
lar, we establish the upper bound for its quadratic risk, the corresponding lower
bound for the minimax risk and discuss its asymptotic minimaxity in various
setups. Section 4 presents the results of a simulation study. Concluding remarks
are summarized in Section 5, while all the proofs are given in the Appendix.

2. MAP model selection procedure under structural constraints

We first extend the Bayesian formalism for the model selection in linear re-
gression developed by Abramovich and Grinshtein [2] to structural constraints.
We assume that the latter are known and the set of all admissible models is
therefore fixed.

Consider the linear regression model (1), where the number of possible pre-
dictors p might be even larger then the number of observations n. Let r =
rank(X)(≤ min(p, n)) and assume that any r columns of X are linearly inde-
pendent. For the “standard” linear regression setup, where all p predictors are
linearly independent and there are at least p linearly independent design points,
r = p.

Any model M is uniquely defined by the p × p diagonal indicator matrix
DM = diag(dM ), where dMj = I{Xj ∈ M} and, therefore, |M | = tr(DM ). For
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a given model M , we estimate its coefficients by least square estimator β̂M =
(DMX ′XDM )+DMX ′y, where “+” denotes the generalized inverse matrix.

Let m(p0) be the number of all admissible models of size p0. The case p0 = 0
corresponds to a null model with a single intercept and, therefore, m(0) = 1. In
fact, we can consider only p0 ≤ r since otherwise, there necessarily exists an-
other vector β∗ with at most r nonzero entries such that Xβ = Xβ∗. Although
for p0 = r there may be several different admissible models, all of them are evi-
dently undistinguishable for estimating Xβ and can be associated with a single
(saturated) model. Thus, without loss of generality, we can always assume that
m(r) = 1. Obviously, for any p0, 0 ≤ m(p0) ≤

(

p
p0

)

, where the two extreme cases

m(p0) = 1 and m(p0) =
(

p
p0

)

for all p0 = 0, . . . , r− 1, correspond respectively to
the ordered and complete variable selection.

We start from imposing a prior on the model size π(k) = P (|M | = k), k =
0, . . . , r. Obviously, π(k) = 0 and P (M

∣

∣ |M | = k) = 0 iff there are no admissible
models of a size k, i.e. m(k) = 0. For m(k) > 0, we assume all m(k) admissible
models of a given size k to be equally likely, that is, conditionally on the model
size |M | = k,

P (M
∣

∣ |M | = k) = m(k)−1,

where recall that m(r) = 1 and hence P (M
∣

∣ |M | = r) = 1. To complete the
prior, for any given model M we assume the normal prior on its unknown
coefficients βM : βM = β|M ∼ Np(0, γσ

2(DMX ′XDM)+) which is the well-
known conventional g-prior of Zellner [25].

For the proposed hierarchical prior, straightforward Bayesian calculus yields
the posterior probability of a model M :

P (M |y) ∝ π(|M |)m(|M |)−1(1 + γ)−
|M|
2

× exp

{

γ

γ + 1

y′XDM (DMX ′XDM )+DMX ′y

2σ2

}

,
(3)

where we set π(|M |)m(|M |)−1 = 0 ifm(|M |) = 0. Finding the most likely model
leads therefore to the following maximum a posteriori (MAP) model selection
criterion:

max
M

{

y′XDM (DMX ′XDM )+DMX ′y

+ 2σ2(1 + 1/γ) ln
{

m(|M |)−1π(|M |)(1 + γ)−
|M|
2

}}

or, equivalently,

min
M

{

||y −Xβ̂M ||2 + 2σ2(1 + 1/γ) ln
{

m(|M |)π(|M |)−1(1 + γ)
|M|
2

}}

(4)

which is of the general type (2) with the complexity penalty

Pen(|M |) = 2σ2(1 + 1/γ) ln
{

m(|M |)π(|M |)−1(1 + γ)
|M|
2

}

(5)

A specific form of the penalty (5) is defined by the choice of the prior π(·) on
the model size.
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3. Main results

3.1. Risk bounds

Denote the set of all admissible models by Ω. For a given model size 1 ≤ p0 ≤ r,
define the set of all admissible models Mp0 of size p0, that is, Mp0 = {M ∈
Ω : |M | = p0} and card(Mp0 ) = m(p0). Obviously, if a model M ∈ Mp0 , the
corresponding coefficients vector βM ∈ R

p has p0 nonzero components, where
βMj 6= 0 iffXj is included inM . LetMp0 =

⋃p0

k=0 Mk be the set of all admissible
models with at most p0 predictors. Following our arguments from Section 2, Ω
can be essentially reduced to Mr.

In this section we derive the upper and lower bounds for the maximal risk of
the proposed MAP model selector (4) over Mp0 .

Theorem 1 (upper bound). Let M̂ be the solution of (4) and β̂M̂ be the corre-
sponding least squares estimator of its coefficients. Define c(γ) = 8(γ+3/4)2 >
9/2 and assume that for some constant c > 0,

min{m(k)−c, e−ck} ≤ π(k) ≤ m(k)e−c(γ)k (6)

for all k = 1, . . . , r such that m(k) > 0.
Then, there exists a constant C(γ) > 0 depending only on γ such that

sup
β

M
:M∈Mp0

E||Xβ̂M̂ −XβM ||2 ≤ C(γ)σ2 min {max (p0, lnm(p0)) , r} (7)

simultaneously for all 1 ≤ p0 ≤ r.

Under the conditions (6) on the prior π(k) in Theorem 1, the corresponding
penalty (5) satisfies

C1(γ)σ
2k ≤ Pen(k) ≤ C2(γ)σ

2 max {lnm(k), k} , k = 1, . . . , r (8)

for some positive constants C1(γ) and C2(γ).
To assess the accuracy of the established upper bound for the quadratic risk

of the proposed MAP estimator, we derive the lower bound for the minimax
risk of estimating Xβ in (1).

The l0 quasi-norm ||β||0 of a vector β is defined as the number of its nonzero
entries. For any given k = 1, . . . , r, let φmin[k] and φmax[k] be the k-sparse
minimal and maximal eigenvalues of the design defined as

φmin[k] = min
β:1≤||β||0≤k

||Xβ||2
||β||2 ,

φmax[k] = max
β:1≤||β||0≤k

||Xβ||2
||β||2

In fact, φmin[k] and φmax[k] are respectively the minimal and maximal eigen-
values of all k × k submatrices of the matrix X ′X generated by any k columns
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of X . Let τ [k] = φmin[k]/φmax[k], k = 1, . . . , r. By the definition, τ [k] is a
non-increasing function of k. Obviously, τ [k] ≤ 1 and for the orthogonal design
the equality holds for all k.

Theorem 2 (minimax lower bound). Consider the model (1) and let 1 ≤ p0 ≤ r.
There exists a universal constant C > 0 such that

inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XβM ||2

≥
{

Cσ2 max
{

τ [2p0]
lnm(p0)

max(1,ln p0)
, τ [p0]p0

}

, 1 ≤ p0 ≤ r/2

Cσ2τ [p0] r, r/2 ≤ p0 ≤ r

(9)

where the infimum is taken over all estimates ỹ of the mean vector Xβ.

In some particular cases, e.g. for complete variable selection, the general
minimax lower bounds established in Theorem 2 can be improved by remov-
ing the max(1, ln p0)-term in (9) (Abramovich and Grinshtein [2], Rigollet and
Tsybakov [22], Raskutti et al. [21]). Whether this additional log-term can be
removed in the general case remains so far a conjecture. Note however that
if lnm(p0) = O(p0) (in particular, for the ordered variable selection, where
m(p0) = 1), the dominating term in both bounds (7) and (9) is anyway p0.

The upper bound (7) holds for any design matrix X of rank r, while the min-
imax lower bound (9) depends on X but only through the sparse eigenvalues ra-
tios. Finally note that the structural constraints are manifested in the upper and
lower bounds only through m(p0) – the number of admissible models of size p0.

3.2. Asymptotic adaptive minimaxity of the MAP estimator

The established upper and lower risk bounds (7), (9) in the previous Section 3.1
is the key for investigating the asymptotic minimaxity of the proposed MAP
estimator, where the number of possible predictors p = pn may increase with
the sample size n. One can view such a setup as a series of projections of the
vector Xβ on the expanding span of predictors. In particular, it may be pn > n
or even pn ≫ n. Thus, formally, we consider now a sequence of design matrices
Xp,n, where rn = rank(Xn,p) → ∞. For simplicity of exposition, hereafter, we
omit the index n. Similarly, there are sequences of the coefficient vectors βp

and priors πp(·). In these notations the original model (1) is transformed into a
sequence of models

y = Xpβp + ǫ, (10)

where rank(Xp) = r and any r columns of Xp are linearly independent (hence,
τp[r] > 0), ǫ ∼ N(0, σ2In) and the noise variance σ2 does not depend on n
and p.

We consider the nearly-orthogonal design, where the sequence of sparse eigen-
values ratios τp[r] is bounded away from zero. Nearly-orthogonality means that
there are no “too strong” linear relationships within any set of r columns of the
design matrix Xp. Evidently, in this case p cannot be “too large” relative to r



Model selection under structural constraints 487

and, therefore, to n. Indeed, Abramovich and Grinshtein [2] showed that nearly-
orthogonality of a design necessarily implies p = O(r) and, thus, p = O(n). In
this case,

max (lnm(p0), p0) ≤ max

(

ln

(

p

p0

)

, p0

)

≤ p0(ln(p/p0) + 1) ≤ p = O(r)

and the following two corollaries are immediate consequences of Theorems 1
and 2:

Corollary 1 (bounds for the minimax risk). Let the design be nearly-orthogonal.
There exist two constants 0 < C1 ≤ C2 < ∞ such that for all sufficiently large r,

C1σ
2 max

{

lnm(p0)

max(1, ln p0)
, p0

}

≤ inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XpβM ||2

≤ C2σ
2 max {lnm(p0), p0}

for all 1 ≤ p0 ≤ r.

Corollary 2 (asymptotic adaptive minimaxity of the MAP estimator). Con-
sider the nearly-orthogonal design and assume that for m(k) > 0 the prior π(k)
satisfies

min{m(k)−c, e−ck} ≤ π(k) ≤ m(k)e−c(γ)k, k = 1, . . . , r

for some c > 0 and c(γ) defined in Theorem 1. Then the corresponding MAP
estimator (4) is asymptotically at least nearly-minimax (up to a ln p0-factor)
simultaneously over all Mp0 , 1 ≤ p0 ≤ r.

The above general results depend on the asymptotic behavior of m(p0) as a
function of p0. Similar to Birgé and Massart [7] we consider the following three
typical cases:

1. Small numbers of admissible models: lnm(k) = O(k), k = 1, . . . , r − 1
(recall however that m(k) ≤

(

p
k

)

).
In particular, for ordered variable selection, m(k) = 1 though “small” numbers
allow also even exponential growth of m(k) for small and moderate k.

For this case, Corollary 1 and Theorem 1 imply:

Corollary 3. Consider the nearly-orthogonal design and let lnm(k) = O(k), k =
1, . . . , r − 1. As r increases,

1.
inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XpβM ||2 ≍ σ2p0 (11)

for all p0 = 1, . . . , r.
2. For m(k) > 0 assume that e−ck ≤ π(k) ≤ m(k)e−c(γ)k, k = 1, . . . , r for

some c > 0. The resulting MAP estimator (4) attains then the minimax
rates simultaneously over all Mp0 , 1 ≤ p0 ≤ r.
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Note that σ2p0 is the risk of (unbiased) least squares estimation of XβM0

for a true model M0 of size p0 in (1). Corollary 3 therefore verifies that when
the number of admissible models is small, there is essentially no extra price for
model selection.

It follows from (5) that priors satisfying the conditions of Corollary 3 lead to
the AIC-type penalties of the form Pen(k) ∼ 2C(γ)σ2k for some C(γ) > 1.

2. Complete variable selection: m(k) =
(

p
k

)

, k = 1, . . . , r − 1.
As we have mentioned above, from the already known results of Abramovich
and Grinshtein [2], Rigollet and Tsybakov [22] and Raskutti et al. [21] the
max(1, ln p0)-term in the lower minimax risk bound can be removed in this
case:

Corollary 4. Consider complete variable selection for the nearly-orthogonal
design. As r increases,

1.

inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XpβM ||2 ≍ σ2p0(ln(p/p0) + 1)

for all p0 = 1, . . . , r.

2. Assume that
(

k
pe

)ck ≤ π(k) ≤
(

p
kec(γ)

)k
, k = 1, . . . , r − 1 and e−cr ≤

π(r) ≤ e−c(γ)r for some c > c(γ). The resulting MAP estimator (4) attains
then the minimax rates simultaneously over all Mp0 , 1 ≤ p0 ≤ r.

The upper bound on π(k) in Corollary 4 trivially holds for all k ≤ pe−c(γ).
Corollary 4 shows that for complete variable selection, model selection yields

an additional multiplicative factor of ln(p/p0) to the risk σ2p0 of estimating
XβM0

for a true model M0 of size p0 in (1).
The conditions on the prior of Corollary 4 hold, for example, for the trun-

cated geometric prior π(k) ∝ qk, k = 1, . . . , r for some 0 < q < 1, and
the corresponding penalties in (5) are of the 2k ln(p/k)-type, where Pen(k) =
2C(γ)σ2k(ln(p/k) + 1)(1 + o(1)) for some C(γ) > 1.

3. Intermediate case: k = o(lnm(k)) and m(k) <
(

p
k

)

, k = 1, . . . , r − 1.
A practically interesting example of the intermediate case is hierarchical model
selection with paired interactions mentioned in Section 1:

Example: hierarchical model selection with paired interactions.
Consider model selection in regression with K main predictors and their paired
interactions. The overall number of possible predictors p in (1) is therefore
p = K +

(

K
2

)

= K(K + 1)/2. However, an interaction can be included in the
model only together with the corresponding main effects. Obviously, m(k) <
(

p
k

)

, k = 1, . . . , r − 1. On the other hand, this is an example with “large”
numbers of admissible models, where lnm(k) ≥ ck ln(p/k) for some 0 < c < 1.
Indeed, for models of sizes one and two only main effects can be selected, and
the numbers of admissible models are m(1) = K and m(2) =

(

K
2

)

respectively.
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One can trivially verify that in both cases lnm(k) ≥ ck ln(p/k), k = 1, 2 for
some positive constant c < 1. For k ≥ 3, we have the following lemma:

Lemma 1. For all 3 ≤ k ≤ r − 1,

lnm(k) ≥
⌊

k

3

⌋

ln(p/k)

For the intermediate case there is the ln p0-gap between the upper bound
for the quadratic risk of the MAP estimator in Theorem 1 and the minimax
lower bound in Theorem 2. So far, we can claim that if m(k)−c ≤ π(k) ≤
m(k)e−c(γ)k), k = 1, . . . , r and the design is nearly-orthogonal, the resulting
MAP estimator is asymptotically at least nearly-minimax (up to ln p0-factor)
over all Mp0 , 1 ≤ p0 ≤ r and can only conjecture that, similar to the complete
variable selection, this log-factor can be removed in this case as well.

Similar to complete variable selection, when the numbers of admissible models
for the intermediate case are “large” (e.g., hierarchical model selection with main
effects and paired interactions considered above), the conditions on the prior in
Corollary 2 are satisfied for the truncated geometric prior π(k) ∝ qk, k = 1, . . . , r
for some 0 < q < 1 corresponding to complexity penalties of 2k ln(p/k)-type.

Note also that for the nearly-orthogonal design, ||Xpβ̂pM̂ −Xpβp|| ≍ ||β̂pM̂ −
βp|| and all the results of this section for estimating the mean vector XpβM

can be therefore straightforwardly applied to estimating the regression coeffi-
cients βM .

4. Simulation study

We conducted a short simulation study to demonstrate the performance of the
proposed MAP model selection procedure. We considered polynomial regression
which is an example of the ordered variable selection (see Section 1):

yi = β0 + β1xi + · · ·+ βkx
k
i + ǫi, i = 1, . . . , n,

where 0 ≤ k ≤ n− 1 is the polynomial degree to be selected, and ǫi ∼ N (0, σ2)
with the known variance σ2 and independent. In this case obviouslym(k) = 1 for
all k = 0, . . . , n−1. An example of a prior satisfying the conditions of Corollary 3
is the (truncated) geometric priorGeom(1−q), where π(k) = (1−q)qk/(1−qn) ∝
qk, k = 0, . . . , n− 1 for some 0 < q < 1. The corresponding complexity penalty
(5) is the AIC-type linear penalty

Pen(k) = 2σ2(1 + 1/γ) ln
(

q−1
√

1 + γ
)

k (12)

4.1. Estimation of parameters

To apply the developed MAP model selection procedure we need to specify the
prior parameters γ and q in (12). They are rarely known a priori in practice
and usually should be estimated from the data.



490 F. Abramovich and V. Grinshtein

Let Xn×n be the design matrix of the saturated model, that is, Xij =

xj−1
i , i = 1, . . . , n; j = 0, . . . , n − 1. For a given k, define the corresponding

diagonal indicator matrix Dk = diag(dk), where dkj = 1, j = 1, . . . , k and zero
otherwise (see Section 2). Based on the proposed Bayesian model from Section 2,

y|k ∼ N (0, σ2(I + γHk)),

where Hk = XDk(DkX
′XDk)

+DkX
′, and straightforward calculus yields the

following marginal likelihood of the observed data y:

L(y; γ, q) =

n−1
∑

k=0

1
√

|I + γHk|
exp

{

−y′(I + γHk)
−1y

2σ2

}

π(k)

∝
n−1
∑

k=0

1

(1 + γ)k/2
exp

{

γ

γ + 1

y′Hky

2σ2

}

(1− q)qk

1− qn

The MLEs for γ and q can be obtained (numerically) by the EM algorithm.
Regard k as a “missing” data and define the corresponding latent indicator
variables uj = δjk, j = 0, . . . , n− 1. The complete log-likelihood for the “aug-
mented” data (y,u), up to an additive constant, is then

l(y,u; γ, q) =
γ

γ + 1

n−1
∑

k=0

uk
y′Hky

2σ2
− ln(1 + γ)

2

n−1
∑

k=0

ukk

+ ln q

n−1
∑

k=0

ukk + ln(1 − q)− ln(1− qn)

On the E-step at the h-th iteration we compute the conditional expectation

l̂[h] = E
(

l(y,u; γ, q)|y, γ[h], q[h]
)

=
γ

γ+1

n−1
∑

k=0

û
[h]
k

y′Hky

2σ2
− ln(1 + γ)

2

n−1
∑

k=0

û
[h]
k k

+ ln q

n−1
∑

k=0

û
[h]
k k + ln(1− q)− ln(1 − qn),

(13)

where

û
[h]
k = E(uk|y, γ[h], q[h]) =

exp
{

γ[h]

γ[h]+1
y
′Hky

2σ2

}

q[h]k

∑n−1
j=0 exp

{

γ[h]

γ[h]+1

y′Hjy

2σ2

}

q[h]j

At the M-step we maximize l̂[h] w.r.t. γ and q to get

γ̂[h+1] =

(

∑n−1
k=0 û

[h]
k y′Hky

σ2
∑n−1

k=0 û
[h]
k k

− 1

)

+
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There is no closed form solution for q̂[h+1]. However, replacing the truncated
geometric distribution by a usual one and ignoring thus the last term ln(1− qn)
in the RHS of (13), implies a good approximation of q̂[h+1] for large n:

q̂[h+1] =

∑n−1
k=0 û

[h]
k k

1 +
∑n−1

k=0 û
[h]
k k

4.2. The results

We used two test functions: a fifth degree polynomial g1(x) = (x + 0.1)(x −
0.2)(x−0.4)(x−0.8)(x−1.1) and the Doppler function g2(x) =

√

x(1 − x) sin(2π·
1.05/(x+ 0.05)) (see Donoho and Johnstone [11]) which does not have a sparse
polynomial approximation. Both functions were then normalized to have unit
L2[0, 1]-norms. The data were generated according to the model

yi = g1,2(i/n) + ǫi, i = 1, . . . , n

for n = 100, where ǫi ∼ N (0, σ2) and independent. The noise variance σ2 was
chosen to ensure the signal-to-noise ratio SNR at levels 3, 5 and 7 and was
assumed to be known. The number of replications was 100.

The proposed MAP model selector results in a model selection procedure
with a linear type penalty of the form Pen(k) = 2σ2λk with λMAP = (1 +
1/γ) ln(q−1

√
1 + γ) (see (12)). We compared it with two other well-known model

selection procedures with linear penalties, namely, AIC (λAIC = 1) and RIC
(λRIC = ln p) (see Section 1). In our case, λRIC = ln 100 = 4.6.

Table 1 summarizes mean squared errors averaged over 100 replications (AMSE).
We also present the average polynomial degrees selected by the three methods
for approximating the true response functions.

As expected, a more conservative RIC tends to include less terms in the model
and outperforms AIC for a polynomial g1, while the latter is superior for g2,
where a high order polynomial approximation is required. The MAP estimator
with estimated γ and q yields a data-driven λ and is adaptive to the unknown
polynomial degree – it behaves very similar to RIC when it is low and to AIC
when it is high.

Table 1

AMSEs and polynomial degrees (in parentheses) averaged over 100 replications for three
estimators

g1 g2

SNR MAP AIC RIC MAP AIC RIC
3 0.661 0.813 0.652 28.844 27.818 35.188

(5.01) (5.50) (5.00) (29.07) (33.66) (18.11)
5 0.238 0.293 0.235 24.677 23.450 27.056

(5.01) (5.50) (5.00) (44.13) (53.48) (29.40)
7 0.121 0.149 0.120 22.995 22.698 26.036

(5.01) (5.50) (5.00) (52.72) (58.57) (32.21)
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5. Concluding remarks

In this paper we considered model selection in linear regression under general
structural constraints and extended the existing results for the complete variable
selection. In particular, we utilized a Bayesian MAP model selection procedure
of Abramovich and Grinshtein [2] and modified it correspondingly. From a fre-
quentist view, the resulting MAP model selector is a penalized least squares
estimator with a complexity penalty associated with a prior on the model size
which is adaptive to the structural constraints. In fact, the proposed Bayesian
approach can be used as a tool for generating a wide class of penalized least
squares estimators with various complexity penalties.

We established the general upper bound for the quadratic risk of the MAP
estimator over a set of admissible models of a given size and the lower bound for
the corresponding minimax risk. Based on these results, we showed that for the
nearly-orthogonal design, the MAP estimator is asymptotically at least nearly
minimax (up to a log-factor) for the entire range of sparse and dense models.
Moreover, when the numbers of admissible models are “small” or, on the oppo-
site, for the case of complete variable selection, it achieves the exact minimax
rates. The corresponding MAP model selection procedures lead respectively
to AIC-type and 2k ln(p/k)-type criteria. Whether these results on asymptotic
minimaxity are true for the intermediate case remains so far a conjecture.

There are also other challenges for future research. The assumption of nearly-
orthogonal design used in investigating asymptotic minimaxity of MAP estima-
tors in Section 3.2 typically does not hold for p ≫ n setup due to the multi-
collinearity phenomenon. The analysis of multicollinear design, where the se-
quence of sparse eigenvalues ratios τp[r] may tend to zero as p increases is much
more delicate. In this case there is a gap (in addition to a log-factor) between
the rates in the upper and lower bounds (7) and (9). Unlike model identification
or coefficients estimation, where multicollinearity is a “curse”, it may essentially
become a “blessing” for estimating the mean vector allowing one to exploit cor-
relations between predictors to reduce the size of a model (hence, to decrease
the variance) without paying much extra price in the bias term. Interestingly,
a similar phenomenon also occurs in a testing setup (e.g., Hall and Jin [17]).
Abramovich and Grinshtein [2] investigated the complete variable selection for
multicollinear design and showed that under certain additional assumptions on
the design and the regression coefficients, the MAP estimator corresponding
to the 2k ln(p/k)-type complexity penalty remains asymptotically rate-optimal
(in the minimax sense) even for this case. Whether it is true and what are the
additional conditions in the presence of structural constraints is a challenging
topic for future research.

Computational issues are another important problem. When the numbers
of admissible models are large (e.g., complete variable selection or hierarchical
model selection with interactions), minimizing (2) (and (4) in particular) re-
quires generally an NP-hard combinatorial search. During the last decade there
have been substantial efforts to develop various approximated algorithms for
solving (2) that are computationally feasible for high-dimensional data (see,



Model selection under structural constraints 493

e.g. Tropp and Wright [24] for a survey and references therein). The common
remedies involve either greedy algorithms (e.g., forward selection, matching pur-
suit) approximating the global solution by a stepwise sequence of local ones, or
convex relaxation methods replacing the original combinatorial problem by a
related convex program (e.g., Lasso and Dantzig selector for linear penalties).
Abramovich and Grinshtein [2] proposed to utilize the developed Bayesian for-
malism for solving (4) by using a stochastic search variable selection (SSVS)
techniques originated in George and McCullogh [14, 15]. The underlying idea of
SSVS is based on generating a sequence of models from the posterior distribu-
tion P (M |y) in (3). The key point is that the relevant models with the highest
posterior probabilities will appear most frequently and can be identified even
for a generated sample of a relatively small size avoiding computations of the
entire posterior distribution. However, most of the above approaches have been
developed and studied for complete variable selection. Their adaptation to min-
imization of (4) subject to the additional structural constraints while remaining
computationally feasible should depend on the specific type of constraints at
hand. In particular, for somewhat different priors, Chipman [9] and Farcomeni
[12] considered SVSS for hierarchical model selection in regression with paired
interactions (see the example in Section 3) and for model selection with factor
predictors, where the corresponding dummy variables are all included or ex-
cluded. Bien et al. [5] modified Lasso for hierarchical paired interactions (see
also references therein). However, to the best of our knowledge, there are no
theoretical results on the optimality of the resulting estimators.

Finally, we should note that the obtained theoretical results assume that the
noise variance σ2 is known which is rarely the case in practical applications.
One can estimate σ2 from the data with the additional tuning parameters of
the MAP procedure (see Section 4.1). Alternatively, he can follow the fully
Bayesian approach and impose some prior distribution on it (see, e.g., Chipman
[9], Chipman et al. [10] and Farcomeni [12]).

6. Appendix

Throughout the proofs we use C to denote a generic positive constant, not
necessarily the same each time it is used, even within a single equation.

6.1. Proof of Theorem 1

We first show that under the conditions on a prior in Theorem 1, the corre-
sponding penalty Pen(k) in (5) belongs to the class of penalties considered in
Birgé and Massart [6] and then use their Theorem 2 to establish the general
upper bound for the quadratic risk of the MAP estimator (4).

Define

Lk =
1

k
ln
(

m(k)π−1(k)
)

, k = 1, . . . , r, (14)

where under the conditions on the prior π(·) in Theorem 1, Lk ≥ c(γ). In terms
of Lk the complexity penalty (5) is Pen(k) = σ2(1 + 1/γ)k(2Lk + ln(1 + γ)).
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In our notations the conditions (3.3) and (3.4) on Lk in Theorem 2 of Birgé
and Massart [6] correspond respectively to

r
∑

k=1

m(k)e−kLk < c (15)

and

(1 + 1/γ)(2Lk + ln(1 + γ)) ≥ C(1 +
√

2Lk)
2, k = 1, . . . , r (16)

for some C > 1.

The condition (15) follows immediately from the definition of Lk:

r
∑

k=1

m(k)e−kLk =

r
∑

k=1

π(k) = 1− π(0) < 1

Consider now (16) which is equivalent to the inequality

2(1 + 1/γ − C)Lk − 2C
√

2Lk + (1 + 1/γ) ln(1 + γ)− C ≥ 0 (17)

Repeating the calculus in the proof of Theorem 1 of Abramovich et al. [3], one
verifies that with the upper bound on the prior π(k) in (6), for C = 1+1/(2γ),
(17) and therefore (16) are satisfied for all Lk, k = 1, . . . , r.

Given (15)-(16), Theorem 2 of Birgé and Massart [6] yields the following
upper bound for the quadratic risk of the MAP estimator (4) of the mean
vector Xβ in (1):

E||Xβ̂M̂−Xβ||2 ≤ c0(γ) inf
M∈Mr

{

||XβM −Xβ||2 + Pen(|M |)
}

+c1(γ)σ
2 (18)

for some c0(γ) and c1(γ) depending only on γ, where Pen(|M |) is given in (5).

Recall that m(r) = 1. Then, using the lower bound on π(r), (18) and (8)
imply

sup
β

M
:M∈Mp0

E||Xβ̂M̂ −XβM ||2 ≤ sup
β

M
:M∈Mr

E||Xβ̂M̂ −XβM ||2

≤ c0(γ)Pen(r) + c1(γ)σ
2 ≤ C(γ)σ2r

(19)

for all 1 ≤ p0 ≤ r.

On the other hand, for p0 < r from (18) and (8) we have

sup
β

M
:M∈Mp0

E||Xβ̂M̂ −XβM ||2 ≤ c0(γ)Pen(p0) + c1(γ)σ
2

≤ C(γ)σ2 max {lnm(p0), p0}
(20)

Combining (19) and (20) completes the proof.
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6.2. Proof of Theorem 2

We first show that

inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XβM ||2 ≥ τ [p0]σ
2p0 (21)

for all 1 ≤ p0 ≤ r.
Consider the original regression model (1) and assume that the true coeffi-

cients vector βM ∈ Mp0 . Define XM = XDM , where the p×p diagonal indicator
matrix DM was defined in Section 2. In the coefficients domain one then has

w = βM + ǫ′, (22)

where w = (X ′
MXM )+X ′

My and ǫ′ ∼ N (0, σ2(X ′
MXM )+).

Let R(Mp0 , σ
2(X ′

MXM )+) be the minimax risk of estimating βM in (22) over
Mp0 , that is,

R(Mp0 , σ
2(X ′

MXM )+) = inf
˜β

sup
β

M
:M∈Mp0

E||β̃ − βM ||2

Evidently,

inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XβM ||2 ≥ φmin[p0] R(Mp0 , σ
2(X ′

MXM )+) (23)

Consider also the model (22) but with the uncorrelated noise ǫ′′ ∼ N (0,
σ2φ−1

max[p0]DM ):
w = βM + ǫ′′ (24)

and the corresponding minimax risk R(Mp0 , σ
2φ−1

max[p0]DM ).
Since (X ′

MXM )+ ≥ φ−1
max[p0]DM in the usual sense that (X ′

MXM )+ −
φ−1
max[p0]DM is positive semi-definite,

R(Mp0 , σ
2(X ′

MXM )+) ≥ R(Mp0 , σ
2φ−1

max[p0]DM ) (25)

(see, e.g., Lemma 4.27 of Johnstone [18]).
No estimator of βM in (24) obviously cannot outperform the oracle esti-

mator that knows the true βM ∈ Mp0 whose ideal minimal quadratic risk is
∑p

j=1 min(β2
M,j , σ

2φ−1
max[p0]) (e.g., Donoho and Johnstone [11]). Hence,

R(Mp0 , σ
2φ−1

max[p0]DM ) ≥ sup
β

M
:M∈Mp0

p
∑

j=1

min(β2
M,j , σ

2φ−1
max[p0])

≥ σ2φ−1
max[p0] p0

(26)

Combining (23), (25) and (26) implies (21).
Consider now 1 ≤ p0 ≤ r/2 and show that in this case, in addition to the

lower bound (21),

inf
ỹ

sup
β

M
:M∈Mp0

E||ỹ −XβM ||2 ≥ Cσ2τ [2p0]
lnm(p0)

max(1, ln p0)
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Let

s2(p0) = Cσ2τ [2p0]
lnm(p0)

max(1, ln p0)
(27)

The core of the proof is to find a subset Bp0 of vectors βM ,M ∈ Mp0 and the
corresponding subset of mean vectors Gp0 = {g ∈ R

n : g = XβM , βM ∈ Bp0}
such that for any g1, g2 ∈ Gp0 , ||g1 − g2||2 ≥ 4s2(p0) and the Kullback-Leibler

divergence K(Pg1 ,Pg2) =
||g1−g2||

2

2σ2 ≤ (1/16) ln card(Gp0). Lemma A.1 of Bunea
et al. [8] will imply then that s2(p0) is the minimax lower bound over Mp0 .

The standard techniques for constructing such sets of vectors for the complete
variable selection setup is based on generalizations of Varshamov-Gilbert bound
(e.g, Abramovich and Grinshtein [2], Rigollet and Tsybakov [22], Raskutti et
al. [21]). Unfortunately, it cannot be applied when there are additional struc-
tural constraints on the set of admissible models. We utilize instead the recent
combinatorial results of Gutin and Jones [16].

Define the subset B̃p0 of all vectors βM ,M ∈ Mp0 ⊂ Mp0 that have p0 entries

equal to Cp0 defined later, while the remaining entries are zeros: B̃p0 = {βM :
βM ∈ {{0, Cp0}p}, M ∈ Mp0}. Let ρ(β1M ,β2M ) =

∑p
j=1 I{β1M,j 6= β2M,j} be

the Hamming distance between β1M , β2M ∈ B̃p0 and define

ρmax = max
β1M , β2M∈B̃p0

ρ(β1M ,β2M ) and ρmin = min
(β1M 6=β2M )∈B̃p0

ρ(β1M ,β2M )

Theorem 2 of Gutin and Jones [16] ensures that for any constant C > 2 there
exists a subset Bp0 ⊂ B̃p0 such that

ρmax

ρmin
≤ C and ln card(Bp0) ≥ α lnm(p0),

where

α =

⌈

ln(p0/2)

ln(C/2)

⌉−1

Consider the corresponding subset of mean vectors Gp0 , where card(Gp0 ) =
card(Bp0). For any g1, g2 ∈ Gp0 and the associated with them β1M , β2M ∈ Bp0

we then have

||g1−g2||2= ||X(β1M −β2M )||2≥φmin[2p0] ||β1M −β2M ||2≥φmin[2p0]C
2
p0
ρmin

(28)
On the other hand, by similar arguments, the Kullback-Leibler divergence

satisfies

K(Pg1 ,Pg2) ≤
φmax[2p0]C

2
p0
ρ(β1M ,β2M )

2σ2
≤ φmax[2p0]C

2
p0
ρmax

2σ2
(29)

Set now

C2
p0

=
σ2α lnm(p0)

8ρmaxφmax[2p0]

Then, (28) and (29) yield ||g1−g2||2 ≥ τ [2p0]σ
2α lnm(p0)/(8C), K(Pg1,Pg2) ≤

(1/16) ln card(Gp0 ), and Lemma A.1 of Bunea et al. [8] with s2(p0) from (27)
completes the proof.
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6.3. Proof of Lemma 1

1. 3 ≤ k ≤ 3
2K

Consider first all models that include any ⌊k
3⌋ paired interactions and the cor-

responding main effects. Evidently, the size of any such a model is at most k. If
it is less than k (it happens when the same main effect appears in several inter-
actions), we complete it to k by adding other main effects from the remaining
ones (one can easily verify that there are enough remaining main effects since
k − ⌊k

3⌋ ≤ K). We then have

m(k) ≥
(K(K−1)

2

⌊k
3 ⌋

)

and, therefore, by straightforward calculus,

lnm(k) ≥
⌊

k

3

⌋

ln

(

K(K − 1)

2⌊k
3 ⌋

)

≥
⌊

k

3

⌋

ln

(

K(K + 1)

2k

)

=

⌊

k

3

⌋

ln(p/k)

2. 3
2K < k ≤ r − 1

For this case we consider models of size k that include all K main effects and
any k −K paired interactions. Thus,

m(k) ≥
(K(K−1)

2

k −K

)

and

lnm(k) ≥ (k −K) ln

(

K(K − 1)

2(k −K)

)

≥ k

3
ln

(

K(K − 1)

2(k −K)

)

To complete the proof one can easily verify that K(K−1)
2(k−K) ≥ K(K+1)

2k .
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