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Abstract: We consider the problem of testing a particular type of compos-
ite null hypothesis under a nonparametric multivariate regression model.
For a given quadratic functional Q, the null hypothesis states that the re-
gression function f satisfies the constraint Q[f ] = 0, while the alternative
corresponds to the functions for which Q[f ] is bounded away from zero. On
the one hand, we provide minimax rates of testing and the exact separa-
tion constants, along with a sharp-optimal testing procedure, for diagonal
and nonnegative quadratic functionals. We consider smoothness classes of
ellipsoidal form and check that our conditions are fulfilled in the particular
case of ellipsoids corresponding to anisotropic Sobolev classes. In this case,
we present a closed form of the minimax rate and the separation constant.
On the other hand, minimax rates for quadratic functionals which are nei-
ther positive nor negative makes appear two different regimes: “regular”
and “irregular”. In the “regular” case, the minimax rate is equal to n−1/4

while in the “irregular” case, the rate depends on the smoothness class
and is slower than in the “regular” case. We apply this to the problem of
testing the equality of Sobolev norms of two functions observed in noisy
environments.
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1. Introduction

1.1. Problem statement

Consider the nonparametric regression model with multi-dimensional random
design: We observe (xi, ti)i=1,...,n obeying the relation

xi = f(ti) + ξi, i = 1, . . . , n, (1)

where ti ∈ ∆ ⊂ R
d are random design points, 1 ≤ d <∞, f : ∆ → R is the un-

known regression function and ξis represent observation noise. Throughout this
work, we assume that the vectors ti = (t1i , . . . , t

d
i ), for i = 1, . . . , n, are indepen-

dent and identically distributed with uniform distribution on ∆ = [0, 1]d, which
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is equivalent to tki
iid∼ U(0, 1). Furthermore, conditionally on Tn = {t1, . . . , tn},

the variables ξ1, . . . , ξn are assumed i.i.d. with zero mean and variance τ2, for
some known τ ∈ (0,∞).

Let L2(∆) denote the Hilbert space of all squared integrable functions defined
on ∆. Assume that we are given two disjoint subsets F0 and F1 of L2(∆). We
are interested in analyzing the problem of testing hypotheses:

H0 : f ∈ F0 against H1 : f ∈ F1. (2)

To be more precise, let us set zi = (xi, ti) and denote by Pf be the probability
distribution of the data vector (z1, . . . , zn) given by (1). The expectation with
respect to Pf is denoted by Ef . The goal is to design a testing procedure φn :
(R×∆)n → {0, 1} for which we are able to establish theoretical guarantees in
terms of the cumulative error rate (the sum of the probabilities of type I and
type II errors):

γn(F0,F1, φn) = sup
f∈F0

Pf (φn = 1) + sup
f∈F1

Pf (φn = 0). (3)

To measure the statistical complexity of this testing problem, it is relevant to
analyze the minimax error rate

γn(F0,F1) = inf
φn

γn(F0,F1, φn), (4)

where infφn denotes the infimum over all testing procedures.

The focus in this paper is on a particular type of null hypotheses H0 that can
be defined as the set of functions lying in the kernel of some quadratic functional
Q : L2(∆) → R, i.e., F0 ⊂

{
f ∈ L2(∆) : Q[f ] = 0

}
. As described later in

this section, this kind of null hypotheses naturally arises in several problems
including variable selection, testing partial linearity of a regression function
or the equality of norms of two signals. Then, it is appealing to define the
alternative as the set of functions satisfying |Q[f ]| > ρ2 for some ρ > 0. However,
without further assumptions on the nature of functions f , it is impossible to
design consistent testing procedures for discriminating between F0 and F1. One
approach to making the problem meaningful is to assume that the function
f belongs to a smoothness class. Typical examples of smoothness classes are
Sobolev and Hölder classes, Besov bodies or balls in reproducing kernel Hilbert
spaces.

In the present work, we assume that the function f belongs to a smoothness
class Σ that can be seen as an ellipsoid in the infinite-dimensional space L2(∆).
Thus, the null and the alternative are defined by

F0 =
{
f ∈ Σ : Q[f ] = 0

}
, F1 = F1(ρ) =

{
f ∈ Σ : |Q[f ]| ≥ ρ2

}
. (5)

One can take note that both hypotheses are composite and nonparametric.
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1.2. Background on minimax rate- and sharp-optimality

Given the observations (xi, ti)i=1,...,n, we consider the problem of testing the
composite hypothesis F0 against the nonparametric alternative F1(ρ) defined
by (5). The goal here is to obtain, if possible, both rate and sharp asymptotics
for the cumulative error rate in the minimax setup. These notions are defined as
follows. For a fixed small number γ ∈ (0, 1), the function r∗n is called minimax
rate of testing if:

• ∃C′ > 0 such that ∀C < C′, we have lim inf
n→∞

γn(F0,F1(Cr
∗
n)) ≥ γ,

• ∃C ′′

> 0 and a test φn s.t. ∀C > C
′′

, lim sup
n→∞

γn(F0,F1(Cr
∗
n), φn) ≤ γ.

A testing procedure φn is called minimax rate-optimal if the condition
lim supn→∞ γn(F0,F1(Cr

∗
n), φn) ≤ γ holds for some C > 0. Note that the min-

imax rate and the rate-optimal test may depend on the prescribed significance
level γ. However, in most situations this dependence cancels out from the rate
and appears only in the constants. If the constants C′ and C′′ coincide, then their
common value is called exact separation constant and any test satisfying the sec-
ond condition is called minimax sharp optimal. The minimax rate r∗n is actually
not uniquely defined, but the product of the minimax rate with the exact sep-
aration constant is uniquely defined up to an asymptotic equivalence. For more
details on minimax hypotheses testing we refer to (Ingster and Suslina, 2003).

While minimax rate-optimality is a desirable feature for a testing procedure,
it may still lead to overly conservative tests. A (partial) remedy for this issue
is to consider sharp asymptotics of the error rate. In fact, one can often prove
that when n→ ∞,

γn(F0,F1(ρ)) = 2Φ(−un(ρ)) + o(1), (6)

where Φ is the c.d.f. of the standard Gaussian distribution, un(·) is some “sim-
ple” function from R+ to R and o(1) is a term tending to zero uniformly in ρ as
n→ ∞. This relation implies that by determining r∗n as a solution with respect
to ρ to the equation un(ρ) = z1−γ/2—where zα stands for the α-quantile of the
standard Gaussian distribution—we get not only the minimax rate, but also the
exact separation constant. When relation (6) is satisfied, we say that Gaussian
asymptotics hold.

1.3. Overview of the main contributions

Our contributions focus on the case where the smoothness class Σ is an ellip-
soid in L2(∆) and the quadratic functional Q admits a diagonal form in the
orthonormal basis corresponding to the directions of the axes of the ellipsoid Σ.
To be more precise, let L be a countable set and {ϕl}l∈L be an orthonormal
system in L2(∆). For a function f ∈ L2(∆), let θ[f ] = {θl[f ]}l∈L be the gener-
alized Fourier coefficients with respect to this system, i.e., θl[f ] = 〈f, ϕl〉, where
〈·, ·〉 denotes the inner product in L2(∆). The functional sets Σ ⊂ L2(∆) under



Minimax testing of hypotheses defined via quadratic functionals 149

consideration are subsets of ellipsoids with directions of axes {ϕl}l∈L and with
coefficients c = {cl}l∈L ∈ R

L
+:

Σ ⊂
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]

2 ≤ 1
}
. (7)

The diagonal quadratic functional is defined by a set of coefficients q = {ql}l∈L:
Q[f ] =

∑
l∈L qlθl[f ]

2. Note that if Q is definite positive, i.e., ql > 0 for all l ∈ L,
then the null hypothesis becomes f = 0 and the problem under consideration is
known as detection problem. However, the goal of the present work is to consider
more general types of diagonal quadratic functionals. Namely, two situations
are examined: (a) all the coefficients ql are nonnegative and (b) the two sets
L+ = {l ∈ L : ql > 0} and L− = {l ∈ L : ql < 0} are nonempty.

In the first situation, we establish Gaussian asymptotics of the cumulative
error rate and propose a minimax sharp-optimal test. Under some conditions,
we show that the sequence1

r∗n,γ = min
{
ρ > 0 : inf

v∈R
L

+:〈v,c〉≤1;〈v,q〉≥ρ2
‖v‖22 ≥ 8n−2z1−γ/2

}
(8)

provides the minimax rate of testing with constants C′ = C′′ = 1. This result is
instantiated to some examples motivating our interest for testing the hypothe-
ses (5). One example, closely related to the problem of variable selection (Com-
minges and Dalalyan, 2012), is testing the relevance of a particular covariate in
high-dimensional regression. This problem is considered in a more general setup
corresponding to testing that a partial derivative of order α = (α1, . . . , αd),
denoted by ∂α1+...+αdf/∂tα1

1 . . . ∂tαd

d , is identically equal to zero against the hy-
pothesis that this derivative is significantly different from 0. As a consequence
of our main result, we show that if f lies in the anisotropic Sobolev ball of

smoothness σ = (σ1, . . . , σd), and we set δ =
∑d
i=1 αi/σi, σ̄ =

(
1
d

∑d
i=1 σ

−1
i

)−1
,

then the minimax optimal-rate is r∗n = n−2σ̄(1−δ)/(4σ̄+d) provided that δ < 1
and σ̄ > d/4. Furthermore, we derive Gaussian asymptotics and exhibit the
exact separation constant in this problem.

The second situation we examine in this paper concerns the case where the
cardinalities of both L+ and L− are nonzero. A typical application of this kind
of problem is testing the equality of the norms of two signals observed in noisy
environments. In this set-up, we provide minimax rates of testing and exhibit
the presence of two regimes that we call regular regime and irregular regime.
In the regular regime, the minimax rate is r∗n = n−1/4, while in the irregular
case it may be of the form n−a with an a < 1/4 that depends on the degree of
smoothness of the functional class.

Note that all our results are non-adaptive: our testing procedures make ex-
plicit use of the smoothness characteristics of the function f . Adaptation to
the unknown smoothness for the problem we consider is an open question for
which the works (Spokoiny, 1996, Gayraud and Pouet, 2005) may be of valuable
guidance.

1We denote by ‖ · ‖
2
and by 〈·, ·〉 the usual norm and the inner product in ℓ2(L), the space

of squared summable arrays indexed by L.
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1.4. Relation to previous work

Starting from the seminal papers by Ermakov (1990) and Ingster (1993a,b,c),
minimax testing of nonparametric hypotheses received a great deal of atten-
tion. A detailed review of the literature on this topic being out of scope of this
section, we only focus on discussing those previous results which are closely re-
lated to the present work. The goal here is to highlight the common points and
the most striking differences with the existing literature. The major part of the
statistical inference for nonparametric hypotheses testing was developed for the
Gaussian white noise model (GWNM) and its equivalent formulation as Gaus-
sian sequence model (GSM). As recent references for the problem of testing a
simple hypothesis in these models, we cite (Ermakov, 2011, Ingster et al., 2012),
where the reader may find further pointers to previous work. In the present
work, the null hypothesis defined by (5) is composite and nonparametric. Early
references for minimax results for composite null hypotheses include (Horowitz
and Spokoiny, 2001, Pouet, 2001, Gayraud and Pouet, 2001, 2005), where the
case of parametric null hypothesis is of main interest. These papers deal with
the one-dimensional situation and provide only minimax rates of testing without
attaining the exact separation constant. Furthermore, the alternative is defined
as the set of functions that are at least at a Euclidean distance ρ from the
null hypothesis, which is very different from the alternatives considered in this
work.

More recently, the nonasymptotic approach to the minimax testing gained
popularity (Baraud et al., 2003, 2005, Laurent et al., 2011, 2012). One of the
advantages of the nonasymptotic approach is that it removes the frontier be-
tween the concepts of parametric and nonparametric hypotheses, while its limi-
tation is that there is no result on sharp optimality (even the notion itself is not
well defined). Note also that all these papers deal with the GSM considering as
main application the case of one dimensional signals, as opposed to our set-up
of regression with high-dimensional covariates.

Let us review in more details the papers (Ingster and Sapatinas, 2009) and
(Laurent et al., 2011) that are very closely related to our work either by the
methodology which is used or by the problem of interest. Ingster and Sapatinas
(2009) extended some results on the goodness-of-fit testing for the d-dimensional
GWNM to the goodness-of-fit testing for the multivariate nonparametric regres-
sion model. More precisely, they tested the null hypothesis H0 : f = f0, where
f0 is a known function, against the alternative H1 : f ∈ Σ,

∫
∆
(f − f0)

2 ≥ r2n,
where Σ is an ellipsoid in the Hilbert space L2(∆). They obtained both rate
and sharp asymptotics for the error probabilities in the minimax setup. So the
model they considered is the same as the one we are interested in here, but
the hypotheses H0 and H1 are substantially different. As a consequence, the
testing procedure we propose takes into account the general forms of H0 and
H1 given by (5) and is different from the asymptotically minimax test of Ingster
and Sapatinas (2009). Furthermore, we substantially relaxed the contraint on
the noise distribution by replacing Gaussianity assumption by the condition of
bounded 4th moment.
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Laurent et al. (2011) considered the GWNM from the inverse problem point
of view, i.e., when the signal of interest g undergoes a linear transformation T
before being observed in noisy environment. This corresponds to f = T [g] with
a compact injective operator T . Then the two assertions g = 0 and T [g] = 0 are
equivalent. Consequently, if the goal is to detect the signal f , one can consider
the two testing problems:

1. (inverse formulation) H0 : T−1[f ] = 0 against H1 : ‖T−1[f ]‖2 ≥ ρ.
2. (direct formulation) H0 : f = 0 against H1 : ‖f‖2 ≥ ρ.

The authors discussed advantages and limitations of each of these two formu-
lations in terms of minimax rates. Depending on the complexity of the inverse
problem and on the assumptions on the function to be detected (sparsity or
smoothness), they proved that the specific treatment devoted to inverse prob-
lem which includes an underlying inversion of the operator, may worsen the
detection accuracy. For each situation, they also highlighted the cases where
the direct strategy fails while a specific test for inverse formulation works well.
The inverse formulation is closely related to our definition (5) of the hypotheses
H0 and H1, since Q[f ] = ‖T−1[f ]‖22 is a quadratic functional. However, our
setting is more general in that we consider functionals with non-trivial kernels
and with possibly negative diagonal entries.

1.5. Organization

The rest of the paper is organized as follows. The results concerning sharp
asymptotics for positive semi-definite diagonal functionals are provided in Sec-
tion 2. In particular, the rates of separation for a general class of tests called
linear U-tests are explored in Subsection 2.2. The asymptotically optimal linear
U-test is provided in Subsection 2.3 along with its rate of separation, which
is shown to coincide with the minimax exact rate in Subsection 2.4. Section 3
is devoted to a discussion of the assumptions and to the consequences of the
main result for some relevant examples. The results for nonpositive and non-
negative diagonal quadratic functionals are stated in Section 4 along with an
application to testing the equality of the norms of two signals. A summary and
some perspectives are provided in Section 5. Finally, the proofs of the results
are postponed to the Appendix.

2. Minimax testing for nonnegative quadratic functionals

2.1. Additional notation

In what follows, the notation An = O(Bn) means that there exists a constant
c > 0 such that An ≤ cBn and the notation An = o(Bn) means that the ratio
An/Bn tends to zero. The relation An ∼ Bn means that An/Bn tends to 1,
while the relation An ≍ Bn means that there exist constants 0 < c1 < c2 < ∞
and n0 large enough such that c1 ≤ An/Bn ≤ c2 for n ≥ n0. For a real number
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c, we denote by c+ its positive part max(0, c) and by ⌊c⌋ its integer part. For
a set A, 1A stands for its indicator function and |A| denotes its cardinality.

Given a q > 0 and a function f , ‖f‖q =
( ∫

∆
|f(t)|qdt

)1/q
is the conventional

ℓq-norm of f . Similarly, for a vector or an array u indexed by a countable set
L, ‖u‖q = (

∑
l∈L |ul|q)1/q is the ℓq-norm of u. As usual, we also denote by ‖u‖0

and ‖u‖∞, respectively, the number of nonzero entries and the magnitude of
the largest entry of u ∈ R

L.
In the sequel, without loss of generality, we assume that the standard devia-

tion of the noise is equal to one: τ = 1. The case of general but known τ can be
deduced as a consequence of our results.

Recall that we consider quadratic functionals Q that are of the form Q[f ] =∑
l∈L qlθl[f ]

2, for some given array q = {ql}l∈L. The major difference between
the functional

∑
l∈L θl[f ]

2 that appears in the problem of detection (Ingster and
Sapatinas, 2009, Ingster et al., 2012) and this general functional actually lies in
the fact that the support of q defined by SF = supp(q) =

{
l ∈ L : ql 6= 0

}
is

generally different from L. Furthermore, large coefficients ql amplify the error of
estimating Q[f ] and, therefore, it becomes more difficult to distinguish H0 from
H1. An interesting question, to which we answer in the next sections, is what
is the interplay between c and q that makes it possible to distinguish between
the null and the alternative.

Let ScF denote the complement of SF and, for a set L ⊂ L, span
(
{ϕl}l∈L

)
be

the closed linear subspace of L2(∆) spanned by the set {ϕl}l∈L. Let ΠSF f and
ΠSc

F
f be the orthogonal projections of a function f ∈ Σ on span

(
{ϕl}l∈SF

)
and

span
(
{ϕl}l∈Sc

F

)
respectively. To simplify notation, the subscript ScF is omitted

in the rest of the paper, i.e., ΠSc
F
f is replaced by Πf . Finally, throughout this

work we will assume that f is centered, i.e.,
∫
∆ f(t) dt = 0, and that {ϕl} is an

orthonormal basis of the subspace of L2(∆) consisting of all centered functions.
In other terms, all the functions ϕi are orthogonal to the constant function.

2.2. Linear U-tests and their error rate

We start by introducing a family of testing procedures that we call linear U-
tests. To this end, we split the sample into two parts: a small part of the sample

is used to build a pilot estimator Π̂fn of Πf , whereas the remaining observations
are used for distinguishing betweenH0 andH1. Let us setm = n−⌊√n⌋ and call
the two parts of the sample D1 = {(xi, ti) : i = 1, . . . ,m} and D2 = {(xi, ti) :
i = m + 1, . . . , n}. Using a pilot estimator Π̂fn of Πf , we define the adjusted

observations x̃i = xi − Π̂fn(ti) and z̃i = (x̃i, ti).

Definition 1. Let wn = {wl,n}l∈SF be an array of real numbers containing
a finite number of nonzero entries and such that ‖wn‖2 = 1. Let u be a real
number. We call a linear U-test based on the array wn the procedure φwn =
1{Uw

n >u}, where Un is the linear in wn U-statistic defined by

Un =

(
2

m(m− 1)

)1/2 ∑

1≤i<j≤m
x̃ix̃j

∑

l∈SF

wl,nϕl(ti)ϕl(tj). (9)
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We shall prove that an appropriate choice of wn and u leads to a linear U-test
that is asymptotically sharp-optimal. The rationale behind this property relies
on the by now well-understood principle of smoothing out high frequencies of
a noisy signal. In fact, if we call {θl[f ]}l∈SF the (relevant part of the) repre-
sentation of f in the frequency domain, then { 1

m

∑m
i=1 x̃iϕl(ti)}l∈SF is a nearly

unbiased estimator of this representation. Then, the arraywn acts as a low pass
filter that shrinks to zero the coefficients corresponding to high frequencies in
order to prevent over-fitting.

The first step in establishing theoretical guarantees on the error rate of a
linear U-test consists in exploring the behavior of the statistic Un under the
null.

Proposition 1. Let wn,l ≥ 0 for all n ∈ N and l ∈ L. Assume that E[ξ41 ] <∞
and the following conditions are fulfilled:

• For some Cw <∞, ‖wn‖2∞‖wn‖0 ≤ Cw.
• As n→ ∞, ‖wn‖0 → ∞ so that ‖wn‖0 = o(n).
• For some Cϕ <∞, supt∈∆

∑
l:wl,n 6=0 ϕ

2
l (t) ≤ Cϕ‖wn‖0.

• As n→ ∞, supf∈ΣEf [‖Πf − Π̂fn‖44] = o(1).

Then, uniformly in f ∈ F0, the U-statistic defined by (9) converges in distribu-
tion to the standard Gaussian distribution N (0, 1).

In other terms, this proposition claims that under appropriate conditions,
for every u ∈ R, the sequence supf∈F0

|Pf (Un > u) − Φ(u)| tends to zero, as
n goes to infinity. This means that under the null, the distribution of the test
statistic Un is asymptotically parameter free. This is frequently referred to as
Wilks’ phenomenon.

To complete the investigation of the error rate of a linear U-test, we need
to characterize the behavior of the test statistic Un under the alternative. As
usual, this step is more involved. Roughly speaking, we will show that under
the alternative the test statistic Un is close to a Gaussian random variable with

mean hn[f,wn] =
(m(m−1)

2

)1/2 ∑
l∈L(wn)

wl,nθ
2
l [f ] and variance 1. The rigorous

statement is provided in the next proposition.

Proposition 2. Let the assumptions of Proposition 1 be satisfied. Assume that
in addition:
• There exists a sequence ζn such that ζ−1

n = o(n) and sup
l∈SF :wl,n<ζn

c−1
l = o(1).

• For some p > 4, we have supf∈Σ ‖ΠSF f‖p <∞.
Then, for every ρ > 0, the type II error of the linear U-test based on wn satisfies:

supf∈F1(ρ) Pf (φ
w
n = 0) ≤ supf∈F1(ρ) Φ(u− hn[f,wn]) + o(1), (10)

where the term o(1) does not depend on ρ.

Let us provide an informal discussion of the assumptions introduced in the
previous propositions. The first two assumptions in Proposition 1 mean that
most nonzero entries of the array wn should be of the same order. Arrays that
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have a few spikes and many small entries are discarded by these assumptions.
Furthermore, the number of samples in the frequency domain that are not an-
nihilated by wn should be small as compared to the sample size n. The third
assumption of Proposition 1 is trivially satisfied for bases of bounded functions
such as sine and cosine bases and their tensor products. For localized bases like
wavelets, this assumption imposes a constraint on the size of the support of
wn: it should not be too small. The last assumption of Proposition 1 will be
discussed in more detail later. One should also take note that the only reason
for requiring from the functions f to be smooth under the null is the need to be
able to construct a uniformly consistent pilot estimator of Πf .

Concerning the assumptions imposed in Proposition 2, the first one means
that only coefficients θl corresponding to high frequencies are strongly shrunk
by wn. This is a kind of coherence assumption between the smoothing filter wn

and the coefficients c = {cl}l∈L encoding the prior information on the signal
smoothness. The second assumption of Proposition 2 is rather weak and usual
in the context of regression with random design. It is only needed for getting
uniform control of the error rate and the actual value of the norm ‖ΠSF f‖p does
not enter in any manner in the definition of the testing procedure.

Let us draw now the consequences of the previous propositions on the cumu-
lated error rate of a linear U-test. Using the monotonicity of the Gaussian c.d.f.
Φ, under the assumptions of Proposition 2, we get

γn(F0,F1(ρ), φ
w
n ) ≤ Φ(−u) + Φ

(
u− inff∈F1(ρ) hn[f,wn]

)
+ o(1), (11)

where the term o(1) is uniform in ρ > 0. Using the symmetry of Φ and the
monotonicity of Φ′ on R+, one easily checks that the value of the threshold
u minimizing the main term in the right-hand side of the last display is u =
1
2 inff∈F1(ρ) hn[f,wn]. This result provides a constructive tool for determining
the rate of separation of a given linear U-test. In fact, one only needs to set
u = z1−γ/2 and find a sequence rn such that inff∈F1(rn) hn[f,wn] ∼ 2z1−γ/2,
where zα is the α-quantile of N (0, 1).

Remark 1. We explain here the use of x̃i instead of xi in our testing procedure.
Actually if we were only interested in rate-optimality, this precaution would
not have been necessary. The problem only arises when dealing with sharp-
optimality and it concerns the variance of Un. Indeed we need some terms that
appear in the variance to tend to zero when Q[f ] = 0 or Q[f ] is small (those
terms only need to be bounded for the rate-optimality). If we had used xi
instead of x̃i, we would have ended up with terms like ‖f‖2 in the variance.
The information contained in the assertion “Q[f ] is small” concerns only the
coefficients {θl}l∈SF , thus it implies that ‖ΠSF f‖2 is small but it does not say
anything about ‖f‖2. We can also remark that this problem does not arise in the
Gaussian sequence model as one estimates θ2l by an unbiased estimator whose
variance makes appear only θl.

Remark 2. We chose to consider only the criterion γn(F0,F1(ρ), φ
w
n ) so as to

simplify the exposition of our results. But we could have dealt with the classical
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Neyman-Pearson criterion that we recall here. For a significance level 0 < α < 1
and a test ψ, we set

α(F0, ψ) = supf∈F0
Pf (ψ = 1), β(F1, ψ) = infψ supf∈F1

Pf (ψ = 0),

Instead of the minimax risk γn(F0,F1(ρ)) we could have considered the quan-
tity βn(F0,F1(ρ)) = infψ:α(F0,ψ)≤α β(F1(ρ), ψ). This criterion is considered in
Ingster and Sapatinas (2009) and more generally in Ingster and Suslina (2003).
The transposition to our case is straightforward.

2.3. Minimax linear U-tests

The relation (11) being valid for a large variety of arrays wn, it is natural to
look for a wn minimizing the right-hand side of (11). This leads to the following
saddle point problem:

sup
w∈R

L

+

‖w‖2=1

inf
f∈F1(ρ)

∑

l∈L
wlθl[f ]

2 = sup
w∈R

L

+

‖w‖2=1

inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉. (12)

It turns out that this saddle point problem can be solved with respect to w and
leads to a one-parameter family of smoothing filters w.

Proposition 3. Assume that for every T > 0, the set N (T ) = {l ∈ SF : cl <
Tql} is finite. For a given ρ > 0, assume that the equation

∑
l∈L ql(Tql − cl)+∑
l∈L cl(Tql − cl)+

= ρ2 (13)

has a solution and denote it by Tρ. Then, the pair (w∗,v∗) defined by

v∗l =
(Tρql − cl)+∑

l∈L cl(Tρql − cl)+
w∗
l =

v∗l
‖v∗‖2

(14)

provides a solution to the saddle point problem (12), that is

〈w∗,v∗〉 = sup
w∈R

L

+

‖w‖2=1

inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉 = inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w∗,v〉.

This result tells us that the “optimal” weights wn for the linear U-test φwn
should be of the form (14), which is particularly interesting because of its de-
pendence on only one parameter T > 0. The next theorem provides a simple
strategy for determining the minimax sharp-optimal test among linear U-tests
satisfying some mild assumptions. We will show later in this section that this
test is also minimax sharp-optimal among all possible tests.

Theorem 1. Assume that E[ξ41 ] <∞ and for every T > 0, the set N (T ) = {l ∈
SF : cl < Tql} is finite. For a prescribed significance level γ ∈ (0, 1), let Tn,γ
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be a sequence of positive numbers such that the following relation holds true: as
n→ ∞,

(
m(m− 1)

2

∑

l∈L
(Tn,γql − cl)

2
+

)1/2

=

(∑

l∈L
cl(Tn,γql − cl)+

)
(2z1−γ/2 + o(1)).

(15)
Let us define

r∗n,γ =

{∑
l∈L ql(Tn,γql − cl)+∑
l∈L cl(Tn,γql − cl)+

}1/2

. (16)

If the following conditions are fulfilled:

[C1] For some C1 > 0, |N (Tn,γ)| max
l∈N (Tn,γ)

q2l ≤ C1

∑
l∈N (Tn,γ)

(
ql − cl

Tn,γ

)2
.

[C2] As n→ ∞,
∑

l∈N (Tn,γ)
q2l = o(n2 minl∈N (Tn,γ) q

2
l ).

[C3] For some constant C3 > 0, supt∈∆

∑
l∈N (Tn,γ)

ϕ2
l (t) ≤ C3|N (Tn,γ)|.

[C4] As n→ ∞, |N (Tn,γ)| → ∞ so that |N (Tn,γ)| = o(n).

[C5] As n→ ∞, Tn,γ inf l∈SF ql tends to +∞.

[C6] As n→ ∞, supf∈ΣEf [‖Πf − Π̂fn‖44] = o(1).

[C7] For some p > 4, it holds that supf∈Σ ‖ΠSF f‖p <∞.

then the linear U-test φ̂∗n = 1{Uŵ
∗

n >z1−γ/2} based on the array ŵ∗
n defined by

ŵ∗
l,n =

(Tn,γql − cl)+[∑
l′∈L(Tn,γql′ − cl′)2+

]1/2

satisfies
γn(F0,F1(r

∗
n,γ), φ̂

∗
n) ≤ γ + o(1), as n→ ∞. (17)

The proof of this result, provided in the Appendix, is a direct consequence of
Proposition 1, 2 and 3. As we shall see below, the rate r∗n,γ defined in Theorem 1
is the minimax sharp-rate in the problem of testing hypotheses (5), provided
that the assumptions of the theorem are fulfilled. As expected, getting such a
strong result requires non-trivial assumptions on the nature of the functional
class, that of the hypotheses to be tested, as well as the interplay between them.
Some short comments on these assumptions are provided in the remark below,
with a further development left to subsequent sections.

Remark 3. The very first assumption is that the setN (T ) is finite. It is necessary
for ensuring that the linear U-test we introduced is computable. This assumption
is fulfilled when, roughly speaking, the coefficients which express the regularity,
{cl}l∈L, grow at a faster rate than the coefficients {ql}l∈L of the quadratic func-
tional Q. Assumptions [C1], [C2], [C4] and [C5] are satisfied in most cases we
are interested in. Two illustrative examples—concerning Sobolev ellipsoids with
quadratic functionals related to partial derivatives—for which these hypothe-
ses are satisfied are presented in Subsections 3.3 and 3.4. Assumption [C3] is
essentially a constraint on the basis {ϕl}; we show in Subsection 3.1 that it is
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satisfied by many bases commonly used in statistical literature. [C6] and [C7]
are related to additional technicalities brought by the regression model, which
force us to impose more regularity than in the Gaussian sequence model.

Remark 4. The result stated in Theorem 1 is in the spirit of the previous work
on the sharp asymptotics in minimax testing, initiated by Ermakov (1990) in
the problem of detection (i.e., Q[f ] = ‖f‖22) under Gaussian white noise. The
explicit form2 of the weights ŵ∗

l,n is obtained by solving a quadratic optimization
problem called the extremal problem in a series of recent works (Ingster and
Suslina, 2003, Ingster and Sapatinas, 2009, Ingster and Stepanova, 2011, Ingster
et al., 2012), see also Ermakov (2004) for a similar result in the heteroscedastic
GWNM. In the case ql = 1, ∀l ∈ L, the aforementioned extremal problem is
equivalent to the saddle point problem (12). In a nutshell, the main differences
of Theorem 1 as compared to the existing results is the extension to the case
of general coefficients ql and to non-Gaussian error distribution, as well as the
use in the test statistic Uw

n of the adjusted responses {x̃i} instead of the raw
data {xi}.

2.4. Lower bound

We shall state in this section the result showing that the rate r∗n,γ introduced
in Theorem 1 is the minimax rate of testing and the exact separation constant
associated with this rate is equal to one. This also implies that the testing
procedure proposed in previous subsection is not only minimax rate-optimal
but also minimax sharp-optimal among all possible testing procedures. In this
subsection, we consider the functional classes Σ = Σp,L defined by

Σp,L =
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]

2 ≤ 1, ‖f‖p ≤ L, ΠSc
F
f = 0

}
.

Clearly, for p > 4, this functional class is smaller than those satisfying conditions
of Theorem 1. Therefore, any lower bound proven for these functional classes
will also be a lower bound for the functional classes for which Theorem 1 is
applicable.

Theorem 2. Assume that ξis are standard Gaussian random variables and that
for every T > 0, the set N (T ) = {l ∈ SF : cl < Tql} is finite. For a prescribed
significance level γ ∈ (0, 1), let Tn,γ and r∗n,γ be as in Theorem 1. If conditions
[C1], [C3] and

[C8] as n→ ∞, |N (Tn,γ)| → ∞ so that |N (Tn,γ)| log(|N (Tn,γ)|) = o(n),

[C9] as n→ ∞, maxl∈N (Tn,γ) cl = o(n|N (Tn,γ)|1/2),
are fulfilled, then for every C < 1 the minimax risk satisfies

γn(F0,F1(Cr
∗
n,γ)) ≥ γ + o(1), as n→ ∞. (18)

2The first use of this type of weights for statistical purposes goes back to Pinsker (1980),
who showed that these weights lead to asymptotically minimax nonparametric estimators of
the signal observed in Gaussian white noise.
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Although the main steps of the proof of this theorem, postponed to the
Appendix, are close to those of (Ingster and Sapatinas, 2009), we have made
several improvements which resulted in both shorter and more transparent proof
and relaxed assumptions. The most notable improvement is perhaps the fact
that in condition [C3] it is not necessary to have C3 = 1. We will further
discuss this point and the other assumptions in the next section.

Remark 5. If we were only interested in minimax rate-optimality, we could have
used simpler prior in the proof of Theorem 2 which would also yield the desired
lower bound under slightly weaker assumptions. One can also deduce from the
proof that for a concrete pair (c,q), a simple way to deduce the minimax rate
of separation consists in finding a sequence rn such that n(rn)

2 ≍ M(r−2
n )1/2,

where M(T ) =
∑

l∈N (T ) q
2
l .

3. Examples

3.1. Bases satisfying assumption [C3]

First we give examples of orthonormal bases satisfying assumption [C3], irre-
spectively of the nature of arrays c and q defining the smoothness class and the
quadratic functional Q. One can take note that despite more general settings
considered in the present work, our assumption [C3] is significantly weaker than
the corresponding assumption in (Ingster and Sapatinas, 2009), which requires
C3 to be equal to one. In fact, in a remark, Ingster and Sapatinas (2009) suggest
that their proof remains valid under our assumption [C3] if assumption [C4] is
strengthened to |N (Tn,γ)| = o(n2/3). Due to a better analysis, we succeeded to
establish sharp asymptotics under the weak version of [C3] without any addi-
tional price (except that a logarithmic factor appears now in the corresponding
condition in Theorem 2).

Fourier basis Let us consider first the following Fourier basis in dimension d
for which L = Z

d and

ϕk(t) =





1, k = 0,√
2 cos(2π k · t), k ∈ (Zd)+,√
2 sin(2π k · t), −k ∈ (Zd)+,

(19)

where (Zd)+ denotes the set of all k ∈ Z
d \ {0} such that the first nonzero

element of k is positive and k · t stands for the usual inner product in R
d.

Since all the basis functions are bounded by
√
2, [C3] is obviously satisfied with

C3 = 2. Furthermore, if the set N (T ) is symmetric, i.e., k ∈ N (T ) implies
−k ∈ N (T ), then [C3] is fulfilled with C3 = 1.

Tensor product Fourier basis We can also consider the traditional tensor
product Fourier basis as in Ingster and Sapatinas (2009). [C3] is then obvi-
ously satisfied with C3 = 2d. Moreover, if the set N (T ) is orthosymmetric, i.e.,
(k1, . . . , kd) ∈ N (T ) implies (±k1, . . . ,±kd) ∈ N (T ), then [C3] is fulfilled with
C3 = 1.
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Haar basis Let
{
ϕj,k(·), j ∈ N, k ∈ {1, . . . , 2j}

}
, be the standard orthonormal

Haar basis on [0, 1], where j is the scale parameter and k is the shift. The tensor
product (ϕj,k)j,k Haar basis is then

ϕj,k =

d∏

i=1

ϕji,ki ,

where j = (j1, . . . , jd) and k = (k1, . . . , kd). As shown in (Ingster and Sap-
atinas, 2009), under the extra assumption that the coefficients cl = cj,k and
ql = qj,k depend only on the scale parameter, i.e., cj,k = cj and qj,k = qj ,
assumption [C3] is satisfied with C3 = 1. Note that the same holds true for
the multivariate Haar basis defined in the more commonly used way (see Cohen

(2003), chapter 2):
{
ϕl(t) =

∏d
i=1 ψ

ωi

j,ki
(ti)

}
, where l = (j,k,ω) such that j ∈ N,

k ∈ {1, . . . , 2j}d and ω ∈ {0, 1}d \ {0} with ψ0
j,k and ψ1

j,k being the scaled and
shifted mother wavelet and father wavelet, respectively.

Compactly supported wavelet basis Since we are not limited to the case
C3 = 1, any orthonormal wavelet basis satisfies assumption [C3], as long as the
wavelets are compactly supported and provided that the coefficients cl and ql
depend on the level of the resolution and not on the shift.

3.2. Examples of estimators satisfying [C6]

We present below pilot estimators that in two different contexts satisfy assump-
tion [C6].

Tensor-product Fourier basis For the first example, we assume that the
orthonormal system {ϕl} is the tensor product Fourier basis. Then we have
supl supt∈∆ |ϕl(t)| ≤ 2d/2. The anisotropic Sobolev ball with radius R and
smoothness σ = (σ1, . . . , σd) ∈ (0,∞)d is defined by

Wσ
2 (R) =

{
f :

∑
l∈Zd

∑d

i=1
(2πli)

2σiθl[f ]
2 ≤ R

}
.

The estimator we suggest to use is constructed as follows. We first estimate θl[f ]

by θ̂l =
1
n

∑n
i=1 xiϕl(ti). Then we choose a tuning parameter T = Tn > 0 and

define the pilot estimator

Π̂fn =
∑

l∈Sc
F :cl<T

θ̂lϕl. (20)

To ease notation, we set N1(T ) = {l ∈ ScF : cl < T } and N2(T ) = ScF \ N1(T ).

Lemma 1. Assume that either one of the following conditions is satisfied:

• c satisfies the condition
∑
l c

−1
l <∞,

• Σ ⊂ Wσ
2 (R) for some R > 0 and for some σ ∈ (0,∞)d such that σ̄ =

( 1d
∑
i

1
σi
)−1 > d/4.
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If T = Tn → ∞ so that |N1(T )| = o(n1/2), then Π̂fn defined by (20) satisfies
condition [C6].

Compactly supported orthonormal wavelet basis The same method can
be applied in the case of an orthonormal basis of compactly supported wavelets
of L2[0, 1]

d. We suppose that the coefficients cl = cj,k correspond to those of a
Besov ball Bs2,2, i.e., cj = 2js, and that σ = s− d/4 > 0. Let us set, for J ∈ N,

Π̂fn =
∑

k∈[1,2J ]d
α̂J,kϕJ,k where α̂J,k =

1

n

∑n

i=1
xiϕJ,k(ti).

Lemma 2. If the sequence J = Jn tends to infinity so that 2Jd = o(n), then

supf∈ΣEf‖Πf − Π̂fn‖4 → 0 as n→ ∞.

In the following two subsections, we apply the previous results to two exam-
ples of quadratic functionals involving derivatives. The orthonormal system we
use is the tensor product Fourier basis.

3.3. Testing partial derivatives

We assume here that f belongs to a Sobolev class with anisotropic constraints
and the quadratic functional Q corresponds, roughly speaking, to the squared
L2-norm of a partial derivative. More precisely, let α ∈ R

d
+ and σ ∈ R

d
+ be two

given vectors and define, for every l ∈ L = Z
d \ {0},

ql =
∏d

j=1
(2πlj)

2αj , and cl =
∑d

j=1
(2πlj)

2σj .

We will assume that
∑d

j=1(αj/σj) < 1.

For a function f =
∑
l∈L θlϕl ∈ L2(∆), we set ‖f‖22,c =

∑
l∈L clθ

2
l and

‖f‖22,q =
∑

l∈L qlθ
2
l . Then, for a 1-periodic function which is differentiable

enough, and if the αj and σj are integers, we have

‖f‖22,q = ‖∂
∑

j αjf/∂tα1
1 . . . ∂tαd

d ‖22, and ‖f‖22,c =
∑d

j=1
‖∂σjf/∂t

σj

j ‖22.

Proposition 4. Let us define δ, σ̄, (κj) and κ by δ =
∑d

j=1 αj/σj,
1
σ̄ =

1
d

∑d
j=1

1
σj
, κj = 1

2σj
+

αj

σj

4σ̄+d
2σ̄(1−δ) and κ =

∑d
j=1 κj. If δ < 1 and σ̄ > d/4,

then the exact minimax rate r∗n,γ is given by r∗n,γ = C∗
γr

∗
n(1 + o(1)), where the

minimax rate r∗n and the exact separation constant are

r∗n = n− 2σ̄(1−δ)
4σ̄+d , and C∗

γ =
(
4z21−γ/2κC(d,σ,α)

) σ̄(1−δ)
4σ̄+d (1 + 2κ−1)

2(1+δ)σ̄+d
2(4σ̄+d)

with

C(d,σ,α) = π−d
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1 − δ)Γ(κ+ 2)

.

Furthermore, the sequence of linear U-tests φn of Theorem 1 is asymptotically
minimax with Tn,γ ∼ (r∗n,γ)

−2(1 + 2κ−1).
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Remark 6. The previous result can be used for performing dimensionality reduc-
tion through variable selection (Comminges and Dalalyan, 2011, 2012). Indeed,
in a high-dimensional set-up it is of central interest to eliminate the irrele-
vant covariates. The coordinate ti of t is irrelevant if f is constant on the line
{t ∈ ∆ : tj = aj for all j 6= i}, whatever the vector a ∈ ∆ is. This implies that
the ith partial derivative of f is zero. Therefore, one can test the relevance of a
variable, say t1, by comparing ‖∂f/∂t1‖2 with 0. In our notation, this amounts
to testing hypotheses (5) with Q[f ] = ‖f‖22,q such that ql = (2πl1)

2. Combining
Proposition 4 and Theorem 1, one can easily deduce a minimax sharp-optimal
test and the minimax sharp-rates for this variable selection problem.

Remark 7. Another interesting particular case of the setting described in this
subsection concerns the problem of component identification in partial linear
models (Samarov et al., 2005). We say that f obeys a partial linear model if for
some small subset J of indices {1, . . . , d} and for a vector β ∈ R

|Jc|, one can write
f(t) = g(tJ) +β⊤tJc for every t ∈ ∆. The problem of component identification
in this model is to determine for an index j whether j ∈ J or not. One way
of addressing this issue is to perform a test of hypothesis Q[f ] = ‖f‖22,q = 0,
where ql = (2πlj)

4. Roughly speaking, this corresponds to checking whether the
second order partial derivative of f with respect to tj is zero or not (if the null
is not rejected, then j ∈ Jc). Once again, Proposition 4 and Theorem 1 provide
a minimax sharp-optimal test for this problem along with the minimax rates
and exact separation constants.

Remark 8. In the case where the covariates ti are not observable and only xi’s
are available, our model coincides with the convolution model, for which the min-
imax rates of testing were obtained by Butucea (2007) in the one-dimensional
case with simple null hypothesis. It would be interesting to extend our results
to such a model and to get minimax rates and, if possible, separation constants
in the multidimensional convolution model.

3.4. Testing the relevance of a direction in a single-index model

Recall that a single-index model is a particular case of (1) corresponding to
functions f that can be written in the form f(t) = g(β⊤

0 t) for some univariate
function g : R → R and some vector β0 ∈ R

d. Assume now that for a candidate
vector β ∈ R

d \{0} we wish to test the goodness-of-fit of the single-index model
(Dalalyan et al., 2008, Gäıffas and Lecué, 2007). This corresponds to testing the
hypothesis

∃g : R → R such that f(t) = g(β⊤t), ∀t ∈ ∆.

This condition implies that ∂f
∂ti

(t) ≡ βi

‖β‖2
2

∑d
j=1 βj

∂f
∂tj

(t) = βi

‖β‖2
2
β
⊤∇f(t), ∀i ∈

{1, . . . , d}, which in turn can be written as

d∑

i=1

( ∂f
∂ti

− βi
‖β‖22

β⊤∇f(t)
)2

≡ 0.
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Without loss of generality, we assume that ‖β‖2 = 1. Let us set ql =
∑d

i=1(2π)
2 ×(

li − (β⊤l)βi
)2

= (2π)2
(
‖l‖22 − (β⊤l)2

)
. We consider homogeneous Sobolev

smoothness classes, that is cl =
∑d
i=1(2πli)

2σ, with σ > d/4. Then, when σ is
an integer, for a 1-periodic function which is smooth enough,

‖f‖22,c =
d∑

i=1

∥∥∥∂
σf

∂tσi

∥∥∥
2

2
and ‖f‖22,q =

d∑

i=1

∥∥∥ ∂f
∂ti

− βi[β
⊤∇f ]

∥∥∥
2

.

To state the result providing the minimax rate and the exact constant in this
problem, we introduce the constants

C̄0 =
1

(2π)d

∫

Rd

[
‖x‖22 − (β⊤x)2 − ‖x‖2σ2σ

]2
+
dx,

C̄1 =
1

(2π)d

∫

Rd

(
‖x‖22 − (β⊤x)2

)(
‖x‖22 − (β⊤x)2 − ‖x‖2σ2σ

)
+
dx,

and C̄2 = C̄1 − C̄0.

Proposition 5. In the setting described above, the exact minimax rate r∗n,γ is
given by r∗n,γ = C∗

γr
∗
n(1 + o(1)), where

r∗n = n− 2(σ−1)
4σ+d and C∗

γ =
(4z1−γ/2(C̄1/C̄2)

d+4
2(σ−1) C̄2

1

σd−1(σ − 1)C̄0

) σ−1
4σ+d

.

The sequence of tests φn of Theorem 1 is minimax sharp-optimal if T = Tn,γ is
chosen as T = (C∗

γr
∗
n)

−2
(
C̄1/C̄2

)
.

Remark 9. The testing procedures provided in Propositions 4 and 5 require the
precise knowledge of the smoothness parameter σ, which may not be available in
practice. Indeed, the parameter σ explicitly enters in the definition of the tuning
parameter Tn. The adaptation to the unknown smoothness σ is an interesting
problem for future research. We believe that rates of separation similar to those
of Propositions 4 and 5 can be established for adaptive tests (up to logarith-
mic factors) using the Berry-Esseen type theorem for degenerate U -statistics of
Butucea et al. (2009).

4. Nonpositive and nonnegative diagonal quadratic functionals

In this section we consider the more general setting obtained by abandoning the
assumption that all the entries ql of the array q have the same sign. That is, we
still have Q[f ] =

∑
l∈L qlθ

2
l , but now

L+ = {l : ql > 0} 6= ∅ and L− = {l : ql < 0} 6= ∅. (21)

The sets F0 and F1(rn) are defined as before, cf. (5), and we use the same
notation as in the positive case. Namely, for T > 0, we set N (T ) =

{
l ∈ SF :

cl < T |ql|
}
, N(T ) = |N (T )| and M(T ) =

∑
l∈N (T ) q

2
l .
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We point out that, in the case considered in this section, a phenomenon of
phase transition occurs: there is a regular case in which the rate is independent
of the precise degree of smoothness, and an irregular case where the rate is
smoothness-dependent. To be more precise, let |Q| denote the diagonal positive
quadratic functional whose coefficients are |ql| for every l ∈ L. Let us recall
that the minimax rate r∗n in testing the significance of |Q|[f ] (see Remark 5) is
determined by

n(r∗n)
2 ≍M(r∗n

−2)1/2.

In our context, this rate corresponds to the irregular case: if Σ contains functions
that are not smooth enough (compared to the difficulty of the problem, that is to
say if ql’s are “too large” compared to cl’s), the minimax rate corresponding to
Q is the same as for |Q| obtained in previous sections. By contrast, in the regular
case, the minimax rate is smoothness-independent and equals r∗n = n−1/4.

4.1. Testing procedure and upper bound on the minimax rate

The testing procedure we use in the present context is of the same type as
the one used for nonnegative quadratic functionals. More precisely, for a tuning
parameter Tn and for a threshold u, we set φn(T ) = 1|Un(T )|>u, where the
U -statistic Un(T ) is defined by

Un(T ) =

(
n

2

)−1/2 ∑

1≤i<j≤n
xixjGT (ti, tj).

with GT (t1, t2) =M(T )−1/2
∑

l∈N (T ) qlϕl(t1)ϕl(t2).

Theorem 3. Let γ ∈ (0, 1) be a fixed significance level. Let us denote by TQ[f ]
the linear functional TQ[f ] =

∑
l∈N (T ) qlθl[f ]ϕl. Assume that T > 0 is such that

the assumptions

[D1] there exists D1 > 0 such that |N (T )|maxl∈N (T ) q
2
l ≤ D1

∑
l∈N (T ) q

2
l ,

[D2] there exists D2 > 0 such that supt∈∆

∑
l∈N (T ) ϕl(t)

2 ≤ D2|N (T )|,
[D3] there exists D3 > 0 such that supf∈Σ ‖f‖4 ≤ D3,

[D4] there exists D4 > 0 such that supf∈Σ ‖f · TQ[f ]‖2 ≤ D4,

are fulfilled. Set B1 = 6 + 12D1D2D
2
3 + 6D1D2D

4
3 and B2 = 4D4. Then, for

every

u ≥ n

T
√
2M(T )

+ γ−1/2
(
B1 +B2nM(T )−1

)1/2
,

the type I error is bounded by γ/2: supf∈F0
Pf (φn(T ) = 1) ≤ γ

2 .
If, in addition,

ρ2 ≥
[
u+ γ−1/2

(
B1 +B2nM(T )−1

)1/2]
√
2M(T )

n
+

1

T

then the type II error is also bounded by γ/2: supf∈F1(ρ) Pf (φn(T ) = 0) ≤ γ
2 .
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As a consequence, if we choose

u = (2M(T ))−1/2(n/T ) + γ−1/2
(
B1 +B2nM(T )−1

)1/2

then the cumulative error rate of the test φn(T ) is bounded by γ for every alter-

native F1(ρ) such that ρ2 ≥ 2
√
2γ−1/2n−1

(
B1M(T ) +B2n

)1/2
+ 2T−1.

This theorem provides a nonasymptotic evaluation of the cumulative error
rate of the linear U-test based on the array wl ∝ ql truncated at the level T .
In the cases where the constants B1 and B2 can be reliably estimated and the
function M(T ) admits a simple form, it is reasonable to choose the truncation

level T by minimizing the expression 2
√
2γ−1/2n−1

(
B1M(T )+B2n

)1/2
+2T−1.

By choosing T in such a way, we try to enlarge the set of alternatives for which
the cumulative error rate stays below the prescribed level γ. Therefore, the last
theorem implies the following non-asymptotic upper bound on the minimax rate
of separation:

(r∗n,γ)
2 ≤ inf

T>0

(2
√
2
(
B1M(T ) +B2n

)1/2

nγ1/2
+

2

T

)
. (22)

This non-asymptotic bound clearly shows the presence of two asymptotic regimes.
The first one corresponds to the case where n is much larger than M(T ∗),
whereas the second regime corresponds to n = o(M(T ∗)). Here, T ∗ is the min-
imizer of the bound on ρ2 obtained in the theorem above. The next corollary
exhibits the rates of separation in these two different regimes.

Corollary 1. Assume that the arrays q and c are such that M(αT ) ≍T→∞
M(T ) for every α > 0. Let T 0

n be any sequence of positive numbers satisfying
T 0
n

√
M(T 0

n) ≍ n. If for the sequence Tn = T 0
n ∧ n1/2 all the assumptions of

Theorem 3 are satisfied, then for some C > 0 the linear U-test φn(T ) based on
the threshold T = Tn satisfies

γn(F0,F1(CT
−1/2
n ), φn) ≤ γ.

Thus, the rate of convergence is r∗n = (T 0
n)

−1/2 if T 0
n = o(n1/2) and r∗n = n−1/4

otherwise.

Remark 10. Condition [D4] of Theorem 3 is more obscure than the other as-
sumptions of theorem. Clearly, it imposes additional smoothness constraints on
the function f . Using the Cauchy-Schwarz inequality, one can easily check that
either one of the assumptions [D4-1] and [D4-2] below is sufficient for [D4]:

[D4-1] For some D5 and D6, supf∈Σ ‖f‖∞ ≤ D5 and maxl∈N (T ) |ql/cl| ≤ D6.
[D4-2] For some constant D′

4, supf∈Σ ‖TQ[f ]‖4 ≤ D′
4.

4.2. Lower bound on the minimax rate

We will show in this subsection that the asymptotic rate of separation provided
by Corollary 1 is unimprovable, in the sense that there is no testing procedure
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having a faster separation rate. To this end, for every a ∈ {−,+}we setMa(T ) =∑
l∈La∩N (T ) q

2
l , Na(T ) = |La ∩N (T )|, M∗(T ) =M+(T ) ∨M−(T ), and

N∗(T ) = N+(T )1{M+(T )>M−(T )} +N−(T )1{M+(T )≤M−(T )}.

Theorem 4. Let us consider the problem of testing H0 : f ∈ F0 against H1 :
f ∈ F1(ρ), where F0 and F1 are defined by (5) and

ΣL =
{
f =

∑
l∈L

θl[f ]ϕl :
∑

l∈L
clθl[f ]

2 ≤ 1, ‖f‖4 ∨ ‖f · TQ[f ]‖2 ≤ L
}
.

Assume that the sets L+ and L− defined by (21) are both nonempty and that
ξi’s are Gaussian. The following assertions are true.

1. For every γ < 1/4 there exists a constant C > 0 such that the inequality
lim infn→∞ γn(F0,F1(Cn

−1/4)) > γ is satisfied.
2. Let T 0

n be a sequence of reals such that 4T 0
n

√
M(T 0

n) ≥ nz−1
1−γ/2 as n→ ∞.

If the assumptions [D1] (cf. Theorem 3) and

[D5] N∗(T 0
n) → ∞ so that N∗(T 0

n) logN
∗(T 0

n) = o(n),

[D6] ∃D6 > 0 such that supt∈∆

∑
l∈N∗(T 0

n)
ϕl(t)

2 ≤ D6N
∗(T 0

n),

are fulfilled, then there exists a constant C > 0 such that the inequality

lim infn→∞ γn
(
F0,F1

(
C(T 0

n)
−1/2)) ≥ γ is satisfied.

Corollary 2. Combining the two assertions of this theorem, we get that the
minimax rate of separation r∗n is lower bounded by n−1/4 ∨ (T 0

n)
−1/2 = (n1/2 ∧

T 0
n)

−1/2 = T
−1/2
n . Thus, if the conditions of Theorems 3 and 4 are satisfied, then

the minimax rate of separation is given by r∗n = T
−1/2
n , where Tn = n1/2 ∧ T 0

n

and T 0
n is determined from the relation T 0

nM(T 0
n)

1/2 ≍ n.

4.3. Testing equality of norms

As an application of the testing methodology developed in this section, we con-
sider the problem of testing the equality of norms of two functions observed
in noisy environment. More precisely, let us consider the following two-sample
problem: for i = 1, . . . , n we observe (x1,i, t1,i) and (x2,i, t2,i) such that

xs,i = gs(ts,i) + ξs,i, i = 1, . . . , n; s = 1, 2,

where ts,i’s are independent random vectors drawn from the uniform
distribution over [0, 1]d. Furthermore, we assume that ξs,i’s are i.i.d. such that
E(ξs,i|{ts,j}) = 0, E(ξ2s,i|{ts,j}) = 1 and, for some Cξ <∞, E(ξ4s,i|{ts,j}) ≤ Cξ
almost surely.

Assuming that both g1 and g2 belong to a smoothness class Σ, we wish to
test the hypothesis

H0 : ‖g1‖Wα

2
= ‖g2‖Wα

2
, against H1 :

∣∣‖g1‖2Wα

2
− ‖g2‖2Wα

2

∣∣ ≥ ρ2,
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where for any function g we denoted by ‖g‖Wα

2
the (anisotropic) Sobolev norm

of order α ∈ R
d
+ (the precise definition is given below). It can be useful to

perform such a test prior to using a shifted curve model in the context of curve
registration (Dalalyan and Collier, 2012, Collier, 2012). Indeed, if there exists
τ ∈ [0, 1]d such that g1(t) = g2(t−τ ) for every t ∈ [0, 1]d and the function g1 is
one-periodic, then necessarily ‖g1‖Wα

2
= ‖g2‖Wα

2
for any α. Thus, the rejection

of the null hypothesis implies the inadequacy of the shifted curve model. In order
to show how this type of test can be derived from the framework presented in
the previous subsections, let us consider the case of a Sobolev ellipsoid Σ.

Let the family {ψm}l∈M be an orthonormal basis of the subspace L2,c([0, 1]
d)

of L2([0, 1]
d) consisting of all the functions orthogonal to the constant function.

We will assume that both g1 and g2 are centered (this implies that they are or-
thogonal to the constant function as well). The Fourier coefficients of a function
g w.r.t. a basis {ψm} will be denoted by θψm[g]. We assume that for some array
c and some constant L > 0 it holds that

gs ∈ Σ0
L =

{
g ∈ L2,c([0, 1]

d) :
∑

m∈M
cmθ

ψ
m[g]2 ≤ 1, ‖g‖4 ≤ L

}
, ∀s ∈ {1, 2}.

Assume now that we wish to test H0 against H1, where

H0 :
∑

m∈M
qmθ

ψ
m[g1]

2 =
∑

m∈M
qmθ

ψ
m[g2]

2,

H1 :

∣∣∣∣
∑

m∈M
qm(θψm[g1]

2 − θψm[g2]
2)

∣∣∣∣ ≥ ρ2,

and q = {qm} is a given array. In order to show that this problem can be solved
within the framework of the previous subsections, we introduce the functional
set

ΣL =
{
f : [0, 1]2d → R : f(t) = g1(t1) + g2(t2) with g1, g2 ∈ Σ0

L

}
.

Setting L = M×{1, 2} and for l = (m, s) ∈ M× {1, 2}
ϕl(t1, t2) = ψm(ts), for all t = (t1, t2) ∈ [0, 1]d × [0, 1]d,

we get an orthonormal basis of ΣL. Clearly, for a function f ∈ ΣL, we have
θϕl [f ] = θϕm,s[f ] = θψm[gs]. This implies that ΣL is included in the set Σ2

L =
{f :

∑
(m,s) cmθ

ϕ
m,s[f ]

2 ≤ 2; ‖f‖4 ≤ 2L} and contains the set Σ1
L = {f :∑

(m,s) cmθ
ϕ
m,s[f ]

2 ≤ 1, ‖f‖4 ≤ L}. Therefore, for studying the rate of separation
of a testing procedure we can assume that f ∈ Σ2

L, whereas for establishing lower
bounds on the minimax rate of separation we can use the relation Σ1

L ⊂ ΣL. In
both cases, this perfectly matches the framework of the previous subsections.

We give a concrete example by setting M = Z
d and choosing as {ψm} the

Fourier basis in dimension d. Similarly to the example in Subsection 3.3, we
focus on anisotropic Sobolev smoothness classes defined via coefficients

cm =

d∑

j=1

(2πmj)
2σj , m ∈ Z

d,
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for some σ = (σ1, . . . , σd) ∈ R
d
+. As it was done previously, δ =

∑d
j=1 αj/σj and

σ̄ stands for the harmonic mean of σj ’s: σ̄ =
(
1
d

∑d
j=1 σ

−1
j

)−1
. We still assume

that δ < 1 and σ̄ > d/4. To test the equality of Sobolev norms, we introduce
the coefficients ql, l = (m, s) ∈ Z

d × {1, 2}, of the quadratic functional Q:

qm,s = (−1)s
d∏

j=1

(2πmj)
2αj , (m, s) ∈ Z

d × {1, 2}.

Theorems 3 and 4, as well as the computations done in the proof of Proposition 4,
imply that the minimax rate of separation in the problem described above is:

r∗n = n− 2(1−δ)σ̄
4σ̄+d ∧ 1

4 . It is interesting to note that if δ ≥ 1/2 then we are in
the irregular regime irrespectively of the value of σ̄ and, therefore, the rate of
separation is strictly slower than the rate n−1/4.

5. Conclusion and outlook

We have presented a statistical analysis of the problem of testing the signifi-
cance of the value Q[f ] for a quadratic functional Q of a regression function f .
While the overwhelming majority of previous research focused on the case of a
function f observed at any point in Gaussian white noise, we have considered
here the more realistic setting when the observations are noisy values of f at a
finite number of points uniformly randomly drawn from [0, 1]d. Furthermore, we
have explored not only the case of positive semi-definite functional Q but also
the situation when Q is neither positive nor negative semi-definite. In the first
situation we have established asymptotic results providing the minimax rates
of separation along with the sharp constants. In the second case, the analysis
we have carried out is nonasymptotic and leads to the asymptotically minimax
rate of separation, which exhibits two different regimes: the regular and the
irregular regimes. Another distinctive feature of our approach is that we have
put the emphasis on the multidimensional setting d > 1, even if at this stage we
have not tackled the problem of increasingly high dimensionality: d = dn → ∞
as the sample size n tends to infinity.

The results we have obtained are closely related to those of estimating quadratic
functionals. While the presence of such a relation is not surprising in itself, the
actual nature of the relation uncovers some interesting new phenomena. In fact,
the test statistic used in our work is a properly normalized estimator of the
quadratic functional Q[f ], which is constructed following the classical approach
of weighted squared linear functional estimation (cf., for instance, Donoho and
Nussbaum (1990)). Usually, the proper choice of the shrinkage weights and the
resulting rates of convergence differ in the problem of hypothesis testing and
in the problem of estimation. This is why the well-known “elbow” effect (phase
transition) in estimating quadratic functionals disappears when the problem of
hypotheses testing is considered for Q[f ] =

∫
[0,1]

f2(t) dt. Interestingly, the re-

sults of Section 4 show that this difference between the rates of convergence
is erased when the quadratic functional Q[f ] is neither positive nor negative.



168 L. Comminges and A. Dalalyan

In fact, the rates of separation we have obtained in this case coincide with the
square-root of the rates of estimation (Donoho and Nussbaum, 1990, Fan, 1991).
Therefore, the “elbow” effect is present in this problem of hypotheses testing.
More interestingly, the rates of separation we obtained in the case of positive
semi-definite functionals Q coincide with the rates of estimation of the func-
tional

√
Q[f ] in the case Q[f ] =

∫
[0,1] f

2(t) dt, at least in the Gaussian white

noise model (Lepski et al., 1999). An intriguing question worth of being further
explored is whether this analogy extends to the model of regression with random
design and general positive semi-definite functionals Q[f ].

Several relevant problems remained out of scope of the present paper. Most
important ones are the possibility of extending our results to the case of nondiag-
onal functionals Q[f ] and the attainability of the obtained rates of separation by
adaptive tests. More specifically, in some applications such as in deconvolution it
may be more realistic to assume that the functional basis in which the smooth-
ness of f is expressed does not coincide with the basis of the singular vectors of
(the bilinear operator underlying) Q. This means that Q[f ] will be of the form
Q[f ] =

∑
l,l′∈L ql,l′θl[f ]θl′ [f ] rather than Q[f ] =

∑
l∈L qlθl[f ]

2. Furthermore,

it would be more reasonable to replace the assumption
∑

l∈L clθl[f ]
2 ≤ 1 with

some known array c = {cl}l∈L by the assumption
∑

l∈L cl(µ
∗)θl[f ]2 ≤ 1, where

c(µ) = {cl(µ)}l∈L is a collection of arrays such that the mapping µ 7→ c(µ)
is known but the precise value µ∗ for which the smoothness constraint is valid
is unknown. In the light of the previous discussion, it seems natural to study
these two extensions (nondiagonal Q and adaptation to the smoothness class)
by considering the problem of testing and the problem of estimating functionals
in a joint framework. In particular, any progress in establishing upper bounds
for estimators of Q[f ] or

√
|Q[f ]| will straightforwardly lead to upper bounds for

the rates of separation. Quite surprisingly, these problems of estimation received
little attention in the context of nonparametric regression3. They constitute in-
teresting avenues for future research.

Appendix A: Proofs of results stated in Section 2

A.1. Proof of Proposition 1

Throughout the proof, the terms o(1), O(1) and the equivalences are uniform
over Σ. Let L(wn) be the support of wn. E

D2

f will denote the conditional ex-
pectation with respect to D2. We define

hn[f,wn] =
(m(m− 1)

2

)1/2 ∑
l∈L(wn)

wl,nθ
2
l [f ], (23)

Gn(t1, t2) =
∑

l∈L(wn)

wl,nϕl(t1)ϕl(t2). (24)

3 Minimax and adaptive estimation for quadratic functionals is well studied in the case of
Gaussian white noise model. However, these results do not always carry over the regression
model as noticed by Efromovich (2003).
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This allows us to rewrite the U-statistic Un in the form Un = Un,0+Un,1+Un,2
where

Un,k =
( 2

m(m− 1)

)1/2 ∑

1≤i<j≤m
Kn,k(z̃i, z̃j), k = 0, 1, 2,

are U-statistics with the kernels

Kn,0(z̃1, z̃2) = ξ1ξ2Gn(t1, t2), (25)

Kn,1(z̃1, z̃2) =
[
ξ1
(
f − Π̂fn

)
(t2) + ξ2

(
f − Π̂fn

)
(t1)

]
Gn(t1, t2), (26)

Kn,2(z̃1, z̃2) =
(
f − Π̂fn

)
(t1)

(
f − Π̂fn

)
(t2)Gn(t1, t2). (27)

To prove Proposition 1 and the subsequent results, we need two auxiliary lem-
mas. For an integer p > 0, let us define

Mp = ‖ΠSF f‖pp + Ef
[
‖Πf − Π̂fn‖pp

Lemma 3. Let wn = (wl,n)l∈L be a family of positive numbers containing only
a finite number of nonzero entries and such that

∑
l∈L w

2
l,n = 1. Let L(wn) be

the support of wn. Then the expectation of the U-statistic Un is given by:

Ef [Un] = Ef [Un,2] = hn[f,wn],

whereas for the variances it holds

Ef [U
2
n,0] = 1,

Ef [U
2
n,1] ≤ 2‖wn‖2∞

(
sup
t∈∆

∑

l∈L(wn)

ϕ2
l (t)

)
M2, (28)

Varf [Un,2] ≤ 8‖wn‖2∞
(
sup
t∈∆

∑

l∈L(wn)

ϕ2
l (t)

)
M4

+ 8hn[f,wn]‖wn‖∞
(
sup
t∈∆

∑

l∈L(wn)

ϕ2
l (t)

)1/2

M1/2
4 . (29)

Proof. It is clear that EfUn,0 = EfUn,1 = 0, while

Ef [Un,2] =
(m(m− 1)

2

)1/2

Ef [Kn,2(z̃1, z̃2)]

with

Ef [Kn,2(z̃1, z̃2)] = Ef

[∑
l∈L(wn)

wl,n

( ∫ (
f(t)− Π̂fn(t)

)
ϕl(t)dt

)2]
.

As Π̂fn ∈ span
(
{ϕl}l∈Sc

F

)
, we have

∫
Π̂fnϕl = 0 for all l ∈ SF . Therefore

Ef [Un,2] =
(m(m− 1)

2

)1/2 ∑
l∈L(wn)

wl,nθ
2
l [f ] = hn[f,wn].
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Now, let us evaluate the variances. Since ξis are non correlated zero-mean
random variables with variance one, and ϕl’s are orthonormal, it holds that
Ef [U

2
n,0] = Ef [Gn(t1, t2)

2] =
∑
l w

2
l,n = 1. For Un,1, we have

Varf [Un,1] = Ef [U
2
n,1] = EfE

D2

f [K2
n,1(z̃1, z̃2)].

Using the definition of Gn(t1, t2), we get

ED2

f [K2
n,1(z̃1, z̃2)] = 2

∫

∆

∫

∆

(
f − Π̂fn

)2
(t1)G

2
n(t1, t2)dt1dt2

= 2

∫

∆

(
f − Π̂fn

)2
(t1)

∑

l∈L(wn)

w2
l,nϕ

2
l (t1)dt1

≤ 2
(

max
l∈L(wn)

w2
l,n

)(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)
‖f − Π̂fn‖22.

Then, the Pythagoras theorem yields

Ef‖f − Π̂fn‖22 = ‖f −Πf‖22 + Ef‖Πf − Π̂fn‖22 = M2.

This completes the proof (28). As for the variance of Un,2, we have

Varf [Un,2] = EfE
D2

f [U2
n,2]− (Ef [Un,2])

2 = An,1 +An,2 +An,3,

where

An,1 = Ef

∫∫ (
f − Π̂fn

)2
(t1)

(
f − Π̂fn

)2
(t2)G

2
n(t1, t2)dt1dt2,

An,2 =
4
(
m
3

)

m(m− 1)
Ef

∫∫∫ (
f − Π̂fn

)2
(t1)

(
f − Π̂fn

)
(t2)Gn(t1, t2)

×
(
f − Π̂fn

)
(t3)Gn(t1, t3)dt1dt2dt3,

and

An,3 =
4
(
m
4

)

m(m− 1)
Ef

{∫∫
f(t1)f(t2)Gn(t1, t2)dt1dt2

}2

− (EfUn,2)
2.

Let us bound the first term An,1:

An,1 = Ef
∑

l,l′∈L(wn)

wl,nwl′,n

(∫
(f − Π̂fn)

2(t)ϕl(t)ϕl′ (t) dt
)2

.

Now, in view of Bessel’s inequality,

An,1 ≤ max
l∈L(wn)

w2
l,nEf,B

∑

l∈L(wn)

∫
(f − Π̂fn)

4(t)ϕ2
l (t) dt

≤
(

max
l∈L(wn)

w2
l,n

)(
sup
t∈∆

∑
l∈L(wn)

ϕ2
l (t)

)
Ef

[∥∥f − Π̂fn
∥∥4
4

]
,
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and the expression inside the last expectation can be bounded using the inequal-

ity
∥∥f − Π̂fn

∥∥4
4
≤ 8(‖ΠSF f‖44 + ‖Πf − Π̂fn‖44).

The term An,2 can be dealt with similarly. Using the Cauchy-Schwarz in-
equality,

An,2 =
4
(
m
3

)

m(m− 1)

∑

l,l′∈L(wn)

wl,nwl′,nθl[f ]θl′ [f ]Ef

{∫ (
f − Π̂fn

)2
ϕlϕl′

}

≤
(
m

2

)1/2(∑

l

w2
l,nθl[f ]

2
)( ∑

l,l′∈L(wn)

{∫
Ef

[(
f − Π̂fn

)2]
ϕlϕl′

}2)1/2

≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

( ∑

l,l′∈L(wn)

Ef

{∫ (
f − Π̂fn

)2
ϕlϕl′

}2)1/2

.

By virtue of the Bessel inequality, it holds that

An,2 ≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

( ∑

l∈L(wn)

∫
Ef

[(
f − Π̂fn

)4
(t)

]
ϕ2
l (t) dt

)1/2

≤
(

max
l∈L(wn)

wl,n

)
hn[f,wn]

(
sup
t∈∆

∑

l∈L(wn)

ϕ2
l (t)

)1/2(
Ef [‖f − Π̂fn‖44]

)1/2
.

The last expectation can be bounded in the same way as we did several lines
above for the term An,1. The last term An,3 is actually negative

An,3 =
4
(
m
4

)

m(m− 1)

( ∑

l∈L(wn)

wl,nθ
2
l

)2

− m(m− 1)

2

( ∑

l∈L(wn)

wl,nθ
2
l

)2

≤ 0.

Combining all these estimates, we get (29).

Lemma 4. Let wn = (wl,n)l∈L be a family of positive numbers containing only
a finite number of nonzero entries and such that

∑
l∈L w

2
l,n = 1. Assume that

the random variable ξ1 has finite fourth moment: Ef [ξ
4
1 ] <∞. If, as n→ ∞,

‖wn‖∞ = o(1) and ‖wn‖2∞
(
sup
t∈∆

∑
l∈L(wn)

ϕl(t)
2
)2

= o(n), (30)

then Un,0 is asymptotically Gaussian N (0, 1).

Proof. This result is an immediate consequence of (Hall, 1984, Theorem 1).

With these tools at hand, we are now in a position to establish the asymptotic
normality of the U-statistic Un which leads to an evaluation of the type I error
of the U-test. Let us recall that, for f ∈ F0, it holds Q[f ] =

∑
qlθl[f ]

2 = 0
and, therefore, θl[f ] = 0 for all l ∈ SF = {l : ql 6= 0}. Hence, for every f ∈ F0,
hn[f,wn] = 0 and ΠSF f = 0. So, it follows from Lemma 3 that under the
assumptions of the proposition, the convergences Ef [U

2
n,1] → 0 and Ef [U

2
n,2] →

0 hold true uniformly in f ∈ F0. This implies that Un,1 and Un,2 tend to
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zero in Pf -probability, uniformly in f ∈ F0. On the other hand, according to
Lemma 4, Un,0 → N (0, 1) in distribution. The claim of the proposition follows
from Slutsky’s lemma.

A.2. Proof of Proposition 2

We first note that for every h̄ > 0 it holds

sup
f∈F1(ρ)

Pf (Un ≤ u) =
(

sup
f∈F1(ρ)

hn[f,wn]>h̄

Pf (Un ≤ u)
)∨(

sup
f∈F1(ρ)

hn[f,wn]≤h̄

Pf (Un ≤ u)
)
.

(31)

The value of h̄ will be made precise later in the proof. Assume merely by now
that h̄ > 2(1 + u). Then,

sup
f∈F1(ρ);

hn[f,wn]>h̄

Pf (Un ≤ u) ≤ sup
f∈Σ;hn[f,wn]>h̄

Varf [Un](
Ef [Un]− u

)2

= sup
f∈Σ;hn[f,wn]>h̄

Varf [Un](
hn[f,wn]− u

)2 .

Using the conditions of the proposition and the inequalities of Lemma 3, we get
that for some constants C,C′ independent of h̄,

sup
f∈F1(ρ)

hn[f,wn]>h̄

Pf (Un ≤ u) ≤ sup
f∈Σ;hn[f,wn]>h̄

C(1 + hn[f,wn])(
hn[f,wn]− u

)2

≤ C
1 + h̄

(
h̄− u

)2 ≤ C′h̄−1. (32)

Let us switch to the second sup in (31). Let δn > 0 be a sequence tending to
zero. One readily checks that

Pf (Un ≤ u) = Pf (hn[f,wn] + Un,0 + Un,1 + (Un,2 − hn[f,wn]) ≤ u)

≤ Pf (hn[f,wn] + Un,0 ≤ u+ δn)

+ Pf (−Un,1 − (Un,2 − hn[f,wn]) ≥ δn)

≤ FU0,n(u− hn[f,wn] + δn) +
2Varf (Un,1) + 2Varf (Un,2)

δ2n
, (33)

where FU0,n(·) is the c.d.f. of U0,n. On the one hand, we know from Lemma 4
that Un,0 converges in distribution to N (0, 1). This entails that FU0,n converges
uniformly over R to Φ. Therefore,

FU0,n(u − hn[f,wn] + δn) = Φ(u − hn[f,wn] + δn) + o(1)

= Φ(u − hn[f,wn]) + o(1) + δnO(1).

On the other hand, in view of Lemma 3, Varf (Un,1)+Varf (Un,2) = O(‖ΠSF f‖44+
‖ΠSF f‖22).
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Then we have,

‖ΠSF f‖22 =
∑

l∈SF

θ2l ≤
1

ζn

∑

wl,n≥ζn
wl,nθ

2
l +

∑

wl,n<ζn

θ2l

≤
√
2hn[f,wn]

ζn(m− 1)
+ sup
l∈SF :wl,n<ζn

c−1
l .

Applying Hölder’s inequality we get

‖ΠSF f‖44 ≤ ‖ΠSF f‖2(p−4)/(p−2)
2 ‖ΠSF f‖2p/(p−2)

p .

Therefore, we have

sup
f∈F1(ρ)

hn[f,wn]≤h̄

Pf (Un ≤ u) ≤ sup
f∈F1(ρ)

Φ(u − hn[f,wn]) + o(1)

+ δnO(1) +
o(1)(h̄(p−4)/(p−2) + h̄)

δ2n
.

Choosing h̄ large enough and then making δn tend to zero sufficiently slowly we
get the desired result.

A.3. Proof of Proposition 3

Using Kneser’s minimax theorem for bilinear forms (Kneser, 1952), we can in-
terchange the sup and the inf as follows:

sup
w∈R

L

+

‖w‖2=1

inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

〈w,v〉 = inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

sup
w∈R

L

+

‖w‖2=1

〈w,v〉

= inf
v∈R

L

+

〈v,c〉≤1,〈v,q〉≥ρ2

‖v‖2, (34)

Furthermore, the array w∗ attaining the sup is given by w∗
l = vl/‖v‖2. Now,

the minimization at the right-hand side of (34) involves a convex second-order
cost function ‖v‖22 and linear constraints vl ≥ 0, 〈v, c〉 ≤ 1 and 〈v,q〉 ≤ ρ2.
Therefore, according to KKT conditions, if there exist µ, λ ≥ 0 and ν ∈ R

L
+

satisfying for some v∗ ∈ R
L
+ the conditions 2v∗+λc−µq−ν = 0 and λ(〈v∗, c〉−

1) = 0, µ(〈v∗,q〉 − ρ2) = 0 and νlv
∗
l = 0 for all l, then v∗ is a solution to the

minimization problem (34). Under the conditions of the proposition, one easily
checks that these KKT conditions are fulfilled with λ = 2/

∑
l cl(Tρql − cl)+,

µ = 2Tρ/
∑
l cl(Tρql − cl)+ and νl = 2(cl − Tρql)+/

∑
l cl(Tρql − cl)+.

A.4. Proof of Theorem 1

To ease notation, we set Nn,γ = N (Tn,γ). We first check that under the assump-
tions of the theorem all the conditions required in Propositions 1 and 2 are ful-

filled. Since ‖ŵ∗
n‖0 = |Nn,γ | and ‖ŵ∗

n‖2∞ ≤ maxl∈Nn,γ q
2
l /

∑
l∈Nn,γ

(
ql − cl

Tn,γ

)2
,
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condition [C1] implies the first condition of Proposition 1. Conditions [C3]
and [C4] imply respectively the third and the second conditions of Proposi-
tion 1. Finally, condition [C6] implies the fourth condition of Proposition 1.
Thus, we have checked that under the conditions of the theorem, the claim of
Proposition 1 holds true. To check that the claim of Proposition 2 holds true
as well, it suffices to check the first assumption of that proposition (the second
one being identical to [C7]). In fact, it is not difficult to check that the first
assumption of Proposition 2 follows from [C2], [C4] and [C5] for the sequence
ζ2n = minl∈Nn,γ q

2
l /4

∑
l∈Nn,γ

q2l .
Therefore, combining the results of Proposition 1 and 2, we upper-bound

γn(F0,F1(r
∗
n,γ), φ̂

∗
n) by

Φ(−z1−γ/2) + Φ
(
z1−γ/2 − inff∈F1(r∗n,γ)

hn[f, ŵ
∗
n]
)
+ o(1). (35)

In view of Proposition 3, the infimum over f of hn[f, ŵ
∗
n] can be evaluated as

follows:

inff∈F1(r∗n,γ)
hn[f, ŵ

∗
n] =

(m(m− 1)

2

)1/2

inf
θ∈R

L:
∑

l clθ
2
l ≤1∑

l qlθ
2
l ≥(r∗n,γ)

2

∑

l

ŵ∗
l,nθ

2
l

=
(m(m− 1)

2

)1/2

inf
v∈R

L

+:〈v,c〉≤1

〈v,q〉≥(r∗n,γ)
2

〈ŵ∗
n,v〉

=
(m(m− 1)

2

)1/2

‖v∗‖2

=
(m(m− 1)

2

)1/2
(∑

l∈Nn,γ
(Tn,γql − cl)

2
)1/2

∑
l∈Nn,γ

cl(Tn,γql − cl)
.

Inserting this expression in (35) and using (15), we get that

γn(F0,F1(r
∗
n,γ), φ̂

∗
n) ≤ Φ(−z1−γ/2) + Φ

(
z1−γ/2 − 2z1−γ/2 + o(1)

)
+ o(1)

= 2Φ(−z1−γ/2) + o(1) = γ + o(1).

A.5. Proof of Theorem 2

The proof of the lower bound follows the steps of (Ingster and Sapatinas, 2009).
However, we considerably modified the way some of these steps are carried out
which allowed us to relax several assumptions and resulted in a shorter proof.

Let us recall that θ[f ] = (θl[f ])l∈L ∈ ℓ2(L) is the array of Fourier coefficients
of a function in L2(∆) w.r.t. the system (ϕl)l∈L. We introduce the sets Θ1(ρ) ={
θ ∈ ℓ2(L) : 〈c, θ2〉 ≤ 1, 〈q, θ2〉 ≥ ρ2

}
and Θ0 =

{
θ ∈ ℓ(L) : 〈c, θ2〉 ≤

1, 〈q, θ2〉 = 0
}
, where we used the notation θ2 = {θ2l }l∈L. Clearly, if f belongs

to the functional class F1(ρ) (resp. F0) then θ[f ] ∈ Θ1(ρ) (resp. θ[f ] ∈ Θ0).
Let C < 1 be a constant. Our goal is to prove that γn(F0,F1(Cr

∗
n,γ)) ≥

γ + o(1). To get this lower bound, we define prior measures that are essentially
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concentrated on the sets Θ0 and Θ1. Let π
1
n and π2

n be measures on the space
ℓ2(L) such that π1

n(Θ0) = 1 + o(1) and π2
n(Θ1(Cr

∗
n,γ)) = 1 + o(1). Those priors

lead to the corresponding mixtures:

Pπi
n
(A) =

∫
Pθ(A)π

i
n(dθ) ∀ measurable set A ⊂ (∆× R)n, i = 1, 2.

If γn(Pπ1
n
, Pπ2

n
) = infψ:(∆×R)n→{1,2}

{
Pπ1

n
(ψ = 2) + Pπ2

n
(ψ = 1)

}
is the minimal

total error probability for testing the simple null hypothesis H0 : P = Pπ1
n

against the simple alternative H1 : P = Pπ2
n
, then we have (see Proposition 2.11

in Ingster and Suslina (2003))

γn
(
F0,F1(Cr

∗
n,γ)

)
≥ γn(Pπ1

n
, Pπ2

n
) + o(1).

As shows the next result, to get the desired lower bound, it suffices to show
that the Bayesian log-likelihood log(dPπ2

n
/dPπ1

n
) is asymptotically equivalent to

a Gaussian log-likelihood.

Lemma 5 (section 4.3.1 in Ingster and Suslina (2003)). If there exists a de-
terministic sequence un and a sequence of random variables ηn such that under
Pπ1

n
-probability ηn converges in distribution to N (0, 1) and

log(dPπ2
n
/dPπ1

n
) = unηn − u2n

2
+ oP (1), (36)

then γn(Pπ1
n
, Pπ2

n
) ≥ 2Φ(−un/2) + o(1).

For our purposes, we choose π1
n to be the Dirac measure in 0 and denote the

corresponding mixture probability Pπ1
n
by P0. It is clear that with this choice

π1
n(Θ0) = 1. We now explain how π2

n, that we will call πn from now on, is built.
Let an ∈ R

L
+ be an array containing a finite number of nonzero elements. Let

L(an) be the support of an, i.e., al 6= 0 if and only if l ∈ L(an). We assume that
L(an) ⊂ SF and define πn(dθ) as the Gaussian product measure such that under
πn the entries θl are independent Gaussian with zero mean and variance al.

Proposition 6. Let δ ∈ (0, 1) be such that 1 − δ ≥ C. Assume that an =
(1− δ)vn and, as n→ ∞, the following assumptions are fulfilled:

[L1] 〈c,vn〉 ≤ 1 and 〈q,vn〉 ≥ (r∗n,γ)
2,

[L2] maxl∈L(vn)(qlvl) = o(〈q,v〉) and maxl∈L(vn)(clvl) = o(〈c,v〉),
[L3] ‖vn‖0 → ∞ and n‖vn‖2∞‖vn‖20 log ‖vn‖0 → 0,

[L4] n‖vn‖∞‖vn‖1/30 → 0 and ‖vn‖3 = o(‖vn‖2).
[L5] For some L5 > 0, it holds

∑
l∈L(an)

ϕ2
l (t) ≤ L5‖an‖0.

Then, as n→ ∞,

γn(F0,F1(Cr
∗
n,γ)) ≥ 2Φ

(
− n(1− δ)

2
√
2

‖vn‖2
)
+ o(1). (37)

Proof. The proof of this proposition will be carried out with the help of several
lemmas. The fact that πn

(
Θ1(Cr

∗
n,γ)

)
= 1 + o(1) is proved in the following

lemma.
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Lemma 6. Assume that an = (1−δ)vn satisfies [L1] and [L2]. Then, for every
δ ∈ (0, 1), it holds that πn

(
Θ1(Cr

∗
n)
)
= 1 + o(1).

Proof. Let us denote H1(θ) =
∑
l∈L qlθ

2
l and H2(θ) =

∑
l∈L clθ

2
l . In view of

[L1], we have

∫
H1(θ)πn(dθ) =

∑

l∈L
qlal ≥ (r∗n,γ)

2(1 − δ),

∫
H2(θ)πn(dθ) =

∑

l∈L
clal ≤ 1− δ.

On the other hand, since the variance of the sum of independent random vari-
ables equals the sum of the variances of these random variables, we get

∫
H1(θ)

2πn(dθ)−
(∫

H1(θ)πn(dθ)
)2

= 2
∑

l∈L
q2l a

2
l ≤ 2〈q, an〉 max

l∈L(an)
(qlal).

By Tchebychev’s inequality, we arrive at

πn
(
θ : H1(θ) < (Cr∗n,γ)

2
)
≤ 2maxl∈L(vn)(qlvl)

C2(1− C)2〈q,vn〉
,

πn
(
θ : H2(θ) > 1

)
≤ 2maxl∈L(vn)(clvl)

δ2〈c,vn〉
.

The claim of the lemma follows now from condition [L2].

Second, we show that for every p > 2 and every L > 0, the probability πn(θ :
‖∑l θlϕl‖p > L) tends to zero. Indeed, in view of the Tchebychev inequality
and Fubini’s theorem,

πn

(
θ :

∥∥∥
∑

l
θlϕl

∥∥∥
p
> L

)
≤ L−p

∫

∆

Eπn

[∣∣∣∣
∑

l

θlϕl(t)

∣∣∣∣
p]
dt.

Using the fact that for every fixed t, the random variable
∑
l θlϕl(t) is Gaussian

with zero mean and variance
∑
l alϕ

2
l (t), we get

πn

(
θ :

∥∥∥
∑

l
θlϕl

∥∥∥
p
> L

)
≤ p!L−p

∫

∆

∣∣∣∣
∑

l

alϕ
2
l (t)

∣∣∣∣
p/2

dt

≤ p!L
p/2
5 L−p(‖an‖∞‖an‖0)p/2.

The last expression tends to zero as n→ ∞ in view of condition [L3].
We focus now on the proof of (36). Set m = |L(an)| and let Φn be the m×n

matrix having as generic element (Φn)li = ϕl(ti). Let An be m × m diagonal
matrix having the nonzero entries of an on its main diagonal. It is clear that
under Pπn , conditionally to Tn, x = (x1, . . . , xn)

⊤ is distributed according to a
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multivariate Gaussian distribution with zero mean and n×n covariance matrix
Rn = Φ⊤

n AnΦn+ In. Therefore, the logarithm of its density w.r.t. P0 is given by

log
(dPπn

dP0
(x; t1, . . . , tn)

)
= −1

2

(
log det Rn + x⊤(R−1

n − In)x
)
.

In what follows, we denote by |||M||| = sup‖x‖2=1 ‖Mx‖2 the spectral norm of a
matrix M.

Lemma 7. Let R̄n = nAn + Im and m = mn → ∞ as n tends to infinity. If
n2‖an‖2∞‖an‖0||| 1nΦnΦ⊤

n −Im|||2+ |Tr[R̄−1
n Bn]|+E[|ξ⊤R̄−1

n BnR̄
−1
n ξ|] = oP (1), then

under P0 it holds log
(
dPπn/dP0

)
= − 1

2

(
log det R̄n + ξ⊤(R̄−1

n − Im)ξ
)
+ oP (1),

where ξ ∼ Nm(0, Im).

Proof. Let us denote R̃n = A
1/2
n ΦnΦ

⊤
n A

1/2
n + Im, Bn = R̃n − R̄n and introduce

the function g(z) = log det(R̄n + zBn) for z ∈ [0, 1]. One easily checks that
g(1) = log det R̃n = log det Rn, g(0) = log det R̄n and g′(z) = Tr[(R̄n+ zBn)

−1
Bn].

Therefore, the relation g(1)− g(0) = g′(z̄) for some z̄ ∈ [0, 1] implies

| log det Rn − log det R̄n| = |Tr[(R̄n + z̄Bn)
−1

Bn]|
≤ |Tr[R̄−1

n Bn]|+m|||(R̄n + z̄Bn)
−1 − R̄

−1
n ||||||Bn|||.

Using the identity (R̄n + z̄Bn)
−1 − R̄

−1
n = −z̄(R̄n + z̄Bn)

−1
BnR̄

−1
n , we get

| log det Rn − log det R̄n| ≤ |Tr[R̄−1
n Bn]|+m|||(R̄n + z̄Bn)

−1||||||R̄−1
n ||||||Bn|||2

≤ |Tr[R̄−1
n Bn]|+m|||Bn|||2,

where we used that R̄n and R̄n + z̄Bn = Im + z̄A
1/2
n ΦnΦ

⊤
n A

1/2
n + (1 − z̄)nAn

have all their eigenvalues ≥ 1. On the other hand, one can check that |||Bn||| ≤
n|||An|||||| 1nΦΦ⊤−Im|||. Combining these inequalities with the facts |||An||| = ‖an‖∞
and m = ‖an‖0 → ∞ we arrive at log det Rn = log det R̄n + oP (1).

The term x⊤
R
−1
n x is dealt with similarly. First, using the singular values

decomposition of the matrix A
1/2
n Φn, one can note that for an appropriately

chosen vector ξ ∼ Nm(0, Im), it holds that x⊤(R−1
n − In)x = ξ⊤(R̃

−1
n − Im)ξ.

Then, we introduce the function ḡ(z) = ξ⊤[R̄n + zBn]
−1ξ, the derivative of

which is given by g′(z) = −ξ
⊤(R̄n + zBn)

−1
Bn(R̄n + zBn)

−1ξ. Therefore, for
some z̄ ∈ [0, 1],

|ξ⊤R̃−1
n ξ − ξ⊤R̄−1

n ξ| = |ξ⊤(R̄n + z̄Bn)
−1

Bn(R̄n + z̄Bn)
−1ξ|

≤ |ξ⊤R̄−1
n BnR̄

−1
n ξ|+ |ξ⊤[(R̄n + z̄Bn)

−1 − R̄n]
−1

BnR̄
−1
n ξ|

+ |ξ⊤[(R̄n + z̄Bn)
−1 − R̄n]

−1
Bn(R̄n + z̄Bn)

−1ξ|
≤ |ξ⊤R̄−1

n BnR̄
−1
n ξ|+ 2‖ξ‖22|||Bn|||2.

It is well-known that ‖ξ‖22 being distributed according to the χ2
m distribution is

OP (m), as m→ ∞. This completes the proof of the lemma.
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According to (Vershynin, 2012, Cor. 5.52), under [C3], we have ||| 1nΦnΦ⊤
n −

Im||| ≤ C(m logm
n )1/2 with probability at least 1 − 1/n. Furthermore, using

the facts that the R̄n is a diagonal matrix with diagonal entries ≥ 1 and
that the variance of the sum of independent random variables equals the sum
of variances, one readily checks that E|Tr[R̄−1

n Bn]|2 + E[|ξ⊤R̄−1
n BnR̄

−1
n ξ|2] ≤

3C2
3n‖vn‖2∞‖vn‖20. Hence, condition [L3] implies that the two conditions of the

last lemma are fulfilled and, therefore, its claim holds true. Using the fact that
An is diagonal, we get

log
(
dPπn/dP0

)
=

1

2

∑

l

( nalξ
2
l

nal + 1
− log(nal + 1)

)
+ oP (1)

=
1

2

∑

l

( nal
nal + 1

− log(nal + 1)
)
+
∑

l

nal(ξ
2
l − 1)

2(nal + 1)
+ oP (1).

(38)

Lemma 8. Let us denote

un =
n‖an‖2√

2
, ηn =

1

un

∑

l∈L

nal(ξ
2
l − 1)

2(nal + 1)
.

If the conditions mn3‖an‖3∞ → 0, and ‖an‖3 = o(‖an‖2) are fulfilled, then ηn
converges in distribution to N (0, 1) and

1

2

∑

l∈L

( nal
nal + 1

− log(nal + 1)
)
+
∑

l∈L

nal(ξ
2
l − 1)

2(nal + 1)
= unηn − u2n

2
+ o(1). (39)

Proof. Since n‖a‖∞ → 0, we have nal
nal+1 = nal−(nal)

2+O((nal)
3) and log(nal+

1) = nal − (nal)
2

2 +O((nal)
3). This implies that

∑
l∈L

(
nal
nal+1 − log(nal + 1)

)
=

− 1
2u

2
n +O(mn3‖an‖3∞). On the other hand, using the central limit theorem for

triangular arrays, we get the weak convergence of ηn to N (0, 1) provided that
u−3
n

∑
l(nal)

3/(nal+1)3 tends to zero. Since under the conditions of the lemma
this convergence trivially holds, we get the claim of the lemma.

Combining Lemma 5 with (38) and (39), we get (37) and the proposition
follows.

To complete the proof of Theorem 2, we shall show now that if we choose
Tn,γ as in Theorem 1 and define vn by

vl = vl,n =
(Tn,γql − cl)+∑

l∈L cl(Tn,γql − cl)+
,

then all the conditions of Proposition 6 are fulfilled. We start by noting that
[L1] is straightforward. To check the first relation in [L2], we use [C1] and
|N (Tn,γ)| → ∞, along with the following evaluations: ∀l ∈ N (Tn,γ),

qlvl
〈q,v〉 =

ql(Tn,γql − cl)∑
l ql(Tn,γql − cl)+

≤ q2l∑
l(ql − cl

Tn,γ
)2+

≤ C1

|N (Tn,γ)|
.
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For the second relation in [L2], in view of (15), ∀l ∈ N (Tn,γ) we have

clvl
〈c,v〉 =

cl(Tn,γql − cl)∑
l cl(Tn,γql − cl)+

≤ Tn,γclql∑
l cl(Tn,γql − cl)+

≤ Tn,γclql O(1)

nTn,γ
(∑

l(ql − cl
Tn,γ

)2+
)1/2 ≤ maxl∈N (Tn,γ) cl

n|N (Tn,γ)|1/2
O(1).

The last term tends to zero due to [C9]. From the definition of vn, equation
(15) and condition [C1] one can deduce that

‖vn‖∞ =
maxl(Tn,γql − cl)+∑
l cl(Tn,γql − cl)+

≤ Tn,γmaxl ql

n
(∑

l(Tn,γql − cl)2+
)1/2O(1)

≤ maxl ql
n|N (Tn,γ)|1/2 maxl ql

O(1) =
O(1)

n|N (Tn,γ)|1/2
.

This inequality yields n‖vn‖2∞‖vn‖20 = O(|N (Tn,γ)|/n). Therefore, [L3] fol-
lows from [C8]. Finally, to check that condition [L4] is true, we notice that

n‖vn‖∞‖vn‖1/30 = O(|N (Tn,γ)|
1
3− 1

2 ) = o(1) and

‖vn‖33
‖vn‖32

=

∑
l(Tn,γql − cl)

3
+(∑

l(Tn,γql − cl)2+
)3/2 ≤ maxl ql(∑

l(ql − cl
Tn,γ

)2+
)1/2 ≤ C

1/2
1

|N (Tn,γ)|1/2
.

Thus, all the conditions of Proposition 6 are fulfilled and, therefore,

γn(F0,F1(Cr
∗
n,γ)) ≥ 2Φ

(
− n(1− δ)

2
√
2

‖vn‖2
)
+ o(1).

Since this equation is true for every δ ∈ (0, 1−C), it is also true for δ = 0, and
the claim of Theorem 2 follows from (15).

Appendix B: Proofs of lemmas and propositions of Section 3

B.1. Proof of Lemma 1

Let us write Πf = Π1f +Π2f , where Π1 and Π2 are the orthogonal projectors
in L2(∆) onto the subspaces span{ϕl : l ∈ N1(T )} and span{ϕl : l ∈ N2(T )},
respectively. We first assume that the inequality

∑
l c

−1
l <∞ is fulfilled.

On the one hand, using the Cauchy-Schwarz inequality,

‖Π2f‖44 =
∫

∆

(∑
l∈N2(T )

θl[f ]ϕl(t)
)4

dt ≤ 22d
(∑

l∈N2(T )
|θl[f ]|

)4

≤ 22d
(∑

N2(T )
clθl[f ]

2
)2(∑

N2(T )
c−1
l

)2

≤ 22d
(∑

N2(T )
c−1
l

)2

.
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On the other hand,

‖Π1f − Π̂fn‖44 =

∫

∆

( ∑

l∈N1(T )

(
θ̂l − θl[f ]

)
ϕl(t)

)4

dt

=

∫

∆

(
1

n

n∑

i=1

∑

l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

dt.

Using Fubini’s theorem and Rosenthal’s inequality, for some constant C > 0,
we get

Ef‖Π1f − Π̂fn‖44 ≤ C

n4

∫

∆

n∑

i=1

Ef

( ∑

l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

dt

+
C

n4

∫

∆

{ n∑

i=1

Ef

( ∑

N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)2}2

dt

By Hölder’s inequality, we get

Ef

( ∑

l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)4

≤ |N1(T )|3
∑

l∈N1(T )

Ef
(
xiϕl(ti)− θl[f ]

)4
ϕl(t)

4

≤ 22d|N1(T )|3
∑

l∈N1(T )

Ef
(
f(ti)ϕl(ti) + ξiϕl(ti)− θl[f ]

)4

= O(|N1(T )|4),

where we used the fact that E[ξ4] <∞ and that E[f(ti)
4] ≤ 22d(

∑
l c

−1
l )2 <∞

under the conditions of the lemma. Similar arguments lead to

∫

∆

{ n∑

i=1

Ef

( ∑

l∈N1(T )

(
xiϕl(ti)− θl[f ]

)
ϕl(t)

)2}2

dt = O(n2|N1(T )|4),

which implies that Ef‖Π1f−Π̂fn‖44 = O(|N1(T )|4/n2). Combining the obtained
evaluations, we get

Ef‖Πf − Π̂fn‖44 ≤ |N1(T )|4
n2

+ C
(∑

l:cl>T
c−1
l

)2

.

The required consistency follows from the assumption |N1(Tn)| = o(n1/2).
Let us consider the case Σ ⊂ Wσ

2 (R). Without loss of generality, we will

assume that Σ =Wσ
2 (R) and cl =

∑d
i=1(2πli)

2σi/R2. The computations remain
the same as in the previous case but the term ‖Π2f‖44 is bounded using Sobolev



Minimax testing of hypotheses defined via quadratic functionals 181

inequality (Kolyada, 1993). Indeed, choosing σ′ so that σ′
i = (1 − τ)σi and

τ < 1− d/(4σ̄) (this implies that σ̄′ > d/4), we get

‖Π2f‖24 ≤ C‖Π2f‖2Wσ
′

2

= C

[ ∑

l∈N2(T )

d∑

i=1

(2πli)
2σ′

iθl[f ]
2

]

≤ C

[ ∑

l∈N2(T )

dτ
(
clR

2
)1−τ

θl[f ]
2

]

≤ C(d/T )τR2(1−τ)
[ ∑

l∈N2(T )

clθl[f ]
2

]
≤ C(d/T )τR2(1−τ).

This completes the proof, since the last term tends to zero as T → ∞.

B.2. Proof of Lemma 2

Let us introduce ΠJf =
∑

k∈[1,2J ]d αJ,kϕJ,k. We first decompose the empirical
coefficients as follows:

α̂J,k =
1

n

n∑

i=1

ϕJ,k(ti)xi =
1

n

n∑

i=1

ϕJ,k(ti)f(ti) +
1

n

n∑

i=1

ϕJ,k(ti)ξi := α̃J,k + ǫj,k.

Then, using standard arguments, we have

∥∥∥Πf − Π̂fn

∥∥∥
4

4
≤33

(∥∥∥
∑

k∈[1,2J ]d

(αJ,k − α̃J,k)ϕJ,k

∥∥∥
4

4
+
∥∥∥

∑

k∈[1,2J ]d

ǫJ,kϕJ,k

∥∥∥
4

4

)

+33
∥∥Πf −ΠJf

∥∥4
4

with
∥∥Πf − ΠJf

∥∥4
4

= O(2−4Jσ). Furthermore, by well-known properties of
wavelet bases (Cohen, 2003) and the Rosenthal inequality,

Ef

∥∥∥
∑

k∈[1,2J ]d

(αJ,k − α̃J,k)ϕJ,k

∥∥∥
4

4
= O(2Jd)

∑

k

Ef (αJ,k − α̃J,k)
4 = O

(
22Jd

n2

)

and

E
∥∥∥
∑

k

ǫJ,kϕJ,k

∥∥∥
4

4
= O(2Jd)

∑

k

E[ǫ4J,k] = O(2Jd)
∑

k

E
( 1

n2

n∑

i=1

ϕ2
J,k(ti)

)2

= 22JdO
( 1

n2
+

2Jd

n3

)
.

Finally, we obtain, uniformly in f ∈ Σ, Ef‖Πf − Π̂fn‖4 = O
(
22Jd

n2 + 23Jd

n3 +

2−4Jσ
)
, and the announced result follows.
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Appendix C: Proof of Proposition 4

We are going to check that all the assumptions of Theorem 1 and Theorem 2
are satisfied. We can use the Sobolev embedding theorem (Kolyada, 1993) for
[C7]: if σ̄ > d/4, then [C7] is satisfied. For the pilot estimator proposed in
subsection 3.2, [C6] holds as well. Since the Fourier basis is uniformly bounded,
checking [C3] is straightforward.

Let now Tn,γ = (C∗
γr

∗
n)

−2(1 + 2κ−1), where r∗n and C∗
γ are defined in Propo-

sition 4. We will show that

• Tn,γ satisfies (15),
• r∗n,γ defined by (16) satisfies r∗n,γ ∼ C∗

γr
∗
n,

• conditions [C1], [C2], [C5], [C8] and [C9] are fulfilled.

To this end, we need an asymptotic analysis of the terms

I0(T ) =
∑

l∈Zd

(
ql −

cl
T

)2

+
, I1(T ) =

∑

l∈Zd

ql

(
ql −

cl
T

)
+

and I2(T ) = I1(T )− I0(T ). For the first one, it holds that

I0(T ) =
∑

l∈Zd

( d∏

j=1

(2πlj)
2αj −

d∑

i=1

(2πli)
2σi

T

)2

+
.

For every i ∈ {1, . . . , d}, we set

mi =
T γi

2π
, γi =

1

2σi(1− δ)
and xl,i =

2πli
T γi

=
li
mi

.

Note that, as δ < 1, we have γi > 0. With this notation,

I0(T ) = T
2δ

1−δm1 · . . . ·md

∑

l∈Zd

( d∏

j=1

|xl,j |2αj −
d∑

i=1

|xl,i|2σi

)2

+
/(m1 · . . . ·md).

As mi → ∞ for every i, we can replace the sums by integrals

I0(T ) ∼
T

4δσ̄+d
2(1−δ)σ̄

(2π)d

∫
∑

d
i=1 |xj|2σj<

∏
d
j=1 |xj|2αj

( d∏

j=1

|xj |2αj −
d∑

i=1

|xi|2σi

)2

dx.

Next, we make the change of variables yj = x
2σj

j , j = 1, . . . , d and set D =
{
y ∈

R
d
+ :

∑d
j=1 yj <

∏d
i=1 y

αi/σi

i

}
. We get

I0(T ) ∼
T

4δσ̄+d
2(1−δ)σ̄

πdσ1 . . . σd

∫

D

( d∏

i=1

y
αi
σi

i −
d∑

j=1

yj

)2

y
1

2σ1
−1

1 . . . y
1

2σd
−1

d dy.
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Now, we make another change of variables: zi = yi
(∏d

j=1 y
αj/σj

j

)−1
. Note that

∏d
i=1 z

αi/σi

i =
(∏d

i=1 y
αi/σi

i

)1−δ
. Therefore, using the notation Σd =

{
z ∈ R

d
+ :

‖z‖1 ≤ 1
}
,

I0(T ) ∼
T

4δσ̄+d
2(1−δ)σ̄

πdσ1 . . . σd

∫

Σd

( d∏

i=1

z
αi
σi

i

) 4σ̄+d−2dσ̄
2σ̄(1−δ)

(1− ‖z‖1)2z
1

2σ1
−1

1 . . . z
1

2σd
−1

d ∆(z) dz,

where ∆(z) is the Jacobian. For the latter, standard algebra yields ∆(z) =(∏d
i=1 z

αi/σi

i

)d/(1−δ)
/(1 − δ). Next we give an explicit form for this integral

I0(T ) ∼ π−dT
4δσ̄+d

2(1−δ)σ̄ I, where

I =
1(∏d

i=1 σi
)
(1− δ)

∫

Σd

( d∏

i=1

z
αi
σi

i

) 4σ̄+d
2σ̄(1−δ)

(1− ‖z‖1)2z
1

2σ1
−1

1 . . . z
1

2σd
−1

d dz.

Now, the Liouville formula (see Ingster and Stepanova (2011)) combined with

the well-known identity
∫ 1

0
uα−1(1− u)β−1 du = Γ(α)Γ(β)/Γ(α + β) yields

I =

∏d
i=1 Γ

(
1

2σi
+ αi

σi

4σ̄+d
2σ̄(1−δ)

)
(∏d

i=1 σi
)
(1− δ)Γ

(
d
2σ̄ + (2 + d

2σ̄ )
δ

1−δ
)
∫ 1

0

(1 − u)2u
d
2σ̄+ (4σ̄+d)δ

2σ̄(1−δ)
−1du

=
2
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)Γ(κ+ 3)

=
2
∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1− δ)(κ+ 2)Γ(κ+ 2)

=
2πdC(d,σ,α)

κ+ 2
.

Therefore,

I0(T ) ∼
2C(d,σ,α)

κ+ 2
T

4δσ̄+d
2(1−δ)σ̄ .

Very similar computations imply that, as T → ∞, we have

I1(T ) ∼
T

4δσ̄+d
2(1−δ)σ̄

πd

∏d
i=1 Γ(κi)(∏d

i=1 σi
)
(1 − δ)Γ(κ+ 2)

= C(d,σ,α)T
4δσ̄+d

2(1−δ)σ̄ .

Note now that (15) is equivalent to n2T 2I0(T ) ∼ 8T 4(I1(T )− I0(T ))
2z21−γ/2.

Using the asymptotic equivalents for I0 and I1 we have derived above, one
directly checks that the value of Tn,γ proposed in Proposition 4 satisfies (15).
Furthermore, since (16) is equivalent to (r∗n,γ)

2 = I1(Tn,γ)/Tn,γI2(Tn,γ), we get
r∗n,γ = C∗

γr
∗
n(1 + o(1)), as announced in proposition.

It remains to check that for the sequence Tn,γ ≍ n
4σ̄(1−δ)
4σ̄+d conditions [C1],

[C2], [C5], [C8] and [C9] are fulfilled. Using the same method as the one used
above to evaluate I0, we get

|N (Tn,γ)| ≍ n
2d

4σ̄+d and M(Tn,γ) =
∑

l∈N (Tn,γ)

q2l ≍ n
2(4δσ̄+d)

4σ̄+d . (40)
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The assumption σ̄ > d/4 implies |N (Tn,γ)| log |N (Tn,γ)| = o(n) and, as a con-
sequence, conditions [C4] and [C8] are true. Furthermore, the second relation
in (40) combined with δ < 1 implies [C2]. Condition [C5] follows from the fact
that all the nonzero entries of q are lower-bounded by 1.

In order to check [C1] and [C9], we need to find an upper bound for
maxl∈N (Tn,γ) ql. In the following calculations, the term C is a constant which
depends only on d, α and σ and can vary from line to line. Let l ∈ N (T ), then

cl ≤ Tql, which implies, for every i = 1, . . . , d, l
2(σi−αi)
i ≤ CT

∏
j 6=i l

2αj

j . In
particular

l
2(σ1−α1)
1 ≤ CT

∏

j 6=1

l
2αj

j , l
2(σ2−α2)
2 ≤ CT

∏

j 6=2

l
2αj

j , l
2(σ3−α3)
3 ≤ CT

∏

j 6=3

l
2αj

j .

(41)
Injecting the first inequality of (41) in the second one, we obtain

l
2(σ2−α2)
2 ≤ CT

(∏

j≥3

l
2αj

j

)(
T
∏

j≥2

l
2αj

j

) α1
σ1−α1

≤ C
(
T
∏

j≥3

l
2αj

j

) σ1
σ1−α1

(
l2α2
2

) α1
σ1−α1

.

Hence

l2σ2
2 ≤ C

(
T
∏

j≥3
l
2αj

j

) 1
1−α1/σ1−α2/σ2

(42)

and by symmetry,

l2σ1
1 ≤ C

(
T
∏

j≥3
l
2αj

j

) 1
1−α1/σ1−α2/σ2

. (43)

Next, using (42), (43) and the third inequality in (41), we get

l2σ3
3 ≤ C

(
T
∏

j≥4
l
2αj

j

) 1
1−α1/σ1−α2/σ2−α3/σ3

.

Iterations of the previous process lead to the bound maxj l
2σj

j ≤ CT 1/(1−δ).

Therefore, maxl∈N (T ) ql = C
∏d
j=1 l

2αj

j ≤ CT
δ

1−δ . Combining this bound with

Tn,γ ≍ n
4σ̄(1−δ)
4σ̄+d and (40) yields the inequalities of [C1] and [C9].

Appendix D: Proof of Proposition 5

As in the previous subsection, we begin with the calculation of I0. Setting xl,i =
2πli

T
1

σ−1
and using the same method to get an integral, we have

I0 = T
4

σ−1

∑

l∈Zd

[
‖xl‖22 − (β⊤xl)

2 − ‖xl‖2σ2σ
]2
+

∼ T
d+4
σ−1

(2π)d

∫

Rd

[
‖x‖22 − (β⊤x)2 − ‖x‖2σ2σ

]2
+
dx.
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This implies the asymptotic relation I0 ∼ C0T
d+4
σ−1 with the constant C0 =

1
(2π)d

∫
Rd

[∑d
i=1(xi − 1

d

∑d
j=1 xj)

2 −∑d
i=1 x

2σ
i

]2
+
dx. Similar computations yield

I1 ∼ C1T
(d+4)/(σ−1) and I2 ∼ C2T

(d+4)/(σ−1), where C1 and C2 have the values
given in the paragraph preceding the proposition.

The rest of the proof can be carried out exactly in the same way as the

proof of the previous proposition, based on the relation N(T ) ≍ T
d

σ−1 and

M(T ) ≍ T
d+4
σ−1 .

Appendix E: Proofs of results stated in Section 4

E.1. Proof of Theorem 3

The arguments are almost the same as in the proof of Theorem 1. We use the
array wn with entries wl = ql1{l∈N (T )}/M(T )1/2 and the kernel Gn(t1, t2) =∑
l∈L wlϕl(t1)ϕl(t2) in order to define the linear U-test statistic:

Un =

(
n

2

)−1/2 ∑

1≤i<j≤n
xixjGn(ti, tj).

We write as Un = Un,0 + Un,1 + Un,2, where

Un,0 =

(
n

2

)−1/2 ∑

i<j

ξiξjGn(ti, tj),

Un,1 =

(
n

2

)−1/2 ∑

i<j

(ξif(tj) + ξjf(ti))Gn(ti, tj)

and Un,2 =
(
n
2

)−1/2 ∑
i<j f(ti)f(tj)Gn(ti, tj). The first and the second mo-

ments of this U-statistic are described in the next result, in which we use the
notation Tw[f ] =

∑
l wlθl[f ]ϕl.

Lemma 9. Let wn = (wl,n)l∈L be an array containing only a finite number of
nonzero entries and such that

∑
l∈L w

2
l,n = 1. Let L(wn) be the support of wn.

The expectation of the U-statistic Un is given by:

Ef [Un] = Ef [Un,2] = h̄n[f,wn] =
(n(n− 1)

2

)1/2 ∑

l

wlθ
2
l [f ].

Furthermore, if condition [D2] holds true, then E[U2
n,0] = 1, E[U2

n,1] ≤
2D2‖wn‖2∞‖wn‖0‖f‖22 and

Var[Un,2] ≤ D2‖wn‖2∞‖wn‖0‖f‖44 +
2n

3
‖f · Tw[f ]‖22.
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Proof. This result can be proved along the lines of the proof of Lemma 3. The
only difference is in the evaluation of the term An,2, for which we have

An,2 =
4

n(n− 1)

(
n

3

) ∑

l,l′∈L(wn)

wlwl′θl[f ]θl′ [f ]
{∫

f(t)2ϕl(t)ϕl′ (t) dt
}

=
2(n− 2)

3

{∫
f(t)2

(∑

l

wlθl[f ]ϕl(t)
)2

dt
}
≤ 2n

3
‖f · Tw[f ]‖22.

This yields the desired result.

Let us now study the type I and type II error probabilities of the test φn(T ) =
1{|Un(T )|>u}.

Evaluation of type I error Using Tchebychev’s inequality, for every u >
|E[Un(T )]|, we have

sup
f∈F0

Pf
(
|Un(T )| > u

)
≤ sup
f∈F0

Pf

(∣∣Un(T )− E[Un(T )]
∣∣ > u−

∣∣E[Un(T )]
∣∣
)

≤ sup
f∈F0

Var(Un(T ))

(u− |E[Un(T )]|)2
.

Let us denote νn,T = nT−1(2M(T ))−1/2. Using Lemma 9, we get

|E[Un(T )]| ≤
n√

2M(T )

∣∣∣
∑

l∈N (T )

qlθ
2
l [f ]

∣∣∣ = Tνn,T

∣∣∣
∑

l∈N (T )

qlθ
2
l [f ]

∣∣∣.

Since, under H0, we have Q[f ] =
∑
l qlθl[f ]

2 = 0 and
∑

l clθl[f ]
2 ≤ 1, the last

sum can be bounded as follows:
∣∣∑

l∈N (T ) qlθ
2
l [f ]

∣∣ =
∣∣∑

l:|ql|<cl/T qlθ
2
l [f ]

∣∣ ≤
T−1

∑
l clθl[f ]

2 ≤ T−1. Thus, |E[Un(T )]| = |h̄n[wn, f ]| ≤ νn,T . Combining this
bound with those of Lemma 9, we arrive at

sup
f∈F0

Pf (φn(T ) = 1) ≤ 3(1 + 2D1D2D
2
3 +D1D2D

4
3 + 2nD4/(3M(T ))

(u− νn,T )2

=
B1 +B2nM(T )−1

2(u− νn,T )2

Consequently, if we choose u ≥ νn,T +
(
B1 + B2nM(T )−1

)1/2
γ−1/2, then

supf∈F0
Pf (φn(T ) = 1) ≤ γ

2 .

Evaluation of type II error Using similar arguments, we get

sup
f∈F1(ρ)

Pf (φn(T ) = 0) = sup
f∈F1(ρ)

Pf (|Un(T )| ≤ u)

≤ sup
f∈F1(ρ)

Pf
(
|E[Un(T )]| − |Un(T )− E[Un(T )]| ≤ u

)

≤ sup
f∈F1(ρ)

Pf
(
Tνn,T |Q[f ]| − νn,T −

∣∣Un(T )− E[Un(T )]
∣∣ ≤ u

)

≤ P
(
Tνn,Tρ

2 −
∣∣Un(T )− E[Un(T )]

∣∣ ≤ u+ νn,T
)
.



Minimax testing of hypotheses defined via quadratic functionals 187

This can also be written as:

sup
f∈F1(ρ)

Pf (φn(T ) = 0) ≤ P
(∣∣Un(T )− E[Un(T )]

∣∣ ≥ (Tρ2 − 1)νn,T − u
)
.

Using the Tchebychev inequality and the evaluations obtained in Lemma 9, we
get

sup
f∈F1(ρ)

Pf (φn(T ) = 0) ≤ B1 +B2nM(T )−1

2
(
(Tρ2 − 1)νn,T − u

)2 .

Clearly, the right hand-side of this inequality is lower than γ/2 if

ρ2 ≥
[
u+

1

γ1/2

(
B1 +

B2n

M(T )

)1/2]
1

Tνn,T
+

1

T
.

This completes the proof of Theorem 3.

E.2. Proof of Corollary 1

It is enough to remark that (since M(·) is increasing and Tn ≤ T 0
n)

√
M(Tn)

n
≤

√
M(T 0

n)

n
≍ 1

T 0
n

≤ 1

Tn

and 1√
n
≤ T−1

n . In view of these inequalities, the claim of the corollary immedi-

ately follows from Theorem 3.

E.3. Proof of Theorem 4

We start by proving that the minimax rate of separation is lower bounded by
n−1/4. Let la = argminl∈La

{cl} for a ∈ {+,−}. We define two functions f0 and
f1 as linear combinations of the basis functions ϕl− and ϕl+ . More precisely,
fi = θi,−ϕl− + θi,+ϕl+ , for i = 0, 1, with

θ20,− =
|ql+ |

cl− |ql+ |+ cl+ |ql− |
θ20,+ =

|ql− |
cl−ql+ + cl+ |ql− |

and, for some z > 0,

θ1,− = θ0,− θ21,+ = θ20,+ − z/
√
n.

One easily checks that f0 ∈ F0 and f1 ∈ F1(rn) with r2n = zql+/
√
n. Further-

more, the Kullback-Leibler divergence K(Pf0 , Pf1) =
∫
log

dPf0

dPf1
dPf0 between

the probability measures Pf0 and Pf1 can be bounded as follows:

K(Pf0 , Pf1 ) = E

(
Ef0

[
log

dPf0
dPf1

(x1, . . . , xn, t1, . . . , tn)

∣∣∣∣t1, . . . , tn
])
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= E

(
Ef0

[ n∑

i=1

(xi − f1(ti))
2 − (xi − f0(ti))

2

∣∣∣∣t1, . . . , tn
])

= nE
[(
f0(t1)− f1(t1)

)2]
= n

∑
a∈{+,−}

(θ0,a − θ1,a)
2

= n
(
θ0,+ − |θ20,+ − zn−1/2|1/2

)2 ≤ z2(2θ0,+)
−2.

To conclude, it suffices to use inequality (2.74) from (Tsybakov, 2009), which

implies that γn(F0,F1(rn)) ≥ 0.25e−z
2(2θ0,+)−2

= γ for z = 2θ0,+[ln(4γ)
−1]1/2.

It remains to prove the second assertion of the theorem. To ease notation, we
write Tn instead of T 0

n and set

Qa[f ] =
∑

l∈La

qlθ
2
l [f ] and Fa = {f : Qa[f ] = 0}, for a ∈ {+,−}.

Let us assume that M+(Tn) ≥ M−(Tn). We use the fact that testing Q[f ] = 0
against |Q[f ]| ≥ r2n, with f ∈ Σ is harder than testing Q+[f ] = 0 against
Q+[f ] ≥ r2n, with f ∈ F−.

The rest of the proof follows the same steps as those of the proof of Theorem
2. As indicated in Remark 5, we use as πn the simplified prior for which θl’s
are independent Gaussian random variables with zero mean and variance al =

ql
2TnM+(Tn)

1{l∈L+∪N (Tn)}. It is an easy exercice to show that conditions [L1]-

[L5] of Proposition 6 are fulfilled with δ = 1/2. This completes the proof of the
theorem.
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