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ON FRACTIONAL SMOOTHNESS AND Lp-APPROXIMATION
ON THE GAUSSIAN SPACE

BY STEFAN GEISS1 AND ANNI TOIVOLA2

University of Jyväskylä and University of Innsbruck, and University of Jyväskylä

We consider Gaussian Besov spaces obtained by real interpolation and
Riemann–Liouville operators of fractional integration on the Gaussian space
and relate the fractional smoothness of a functional to the regularity of its
heat extension. The results are applied to study an approximation problem in
Lp for 2 ≤ p < ∞ for stochastic integrals with respect to the d-dimensional
(geometric) Brownian motion.

1. Introduction. This paper is devoted to Besov spaces defined on a Gaussian
space, associated Riemann–Liouville operators of fractional integration, and ap-
proximation theory. As Gaussian space, we consider Lp(Rd, γd) with 2 ≤ p < ∞
and dγd = e−|x|2/2 dx/(2π)d/2 being the d-dimensional standard Gaussian mea-
sure. The (Gaussian) Besov spaces are obtained by the real interpolation method
and the approximation problem concerns an approximation of stochastic integrals
in Lp . Some of the results are extensions of corresponding statements proved
mainly in L2; see [7, 8, 11, 12, 14, 17, 19, 20, 26, 31]. However, the L2-theory
and the Lp-theory for 2 < p < ∞ on a Gaussian space may differ significantly.
For example, the Meyer inequalities can be proved in L2 using orthogonality
by standard ideas, but they are considerably more involved in the Lp-case when
1 < p �= 2 < ∞ (see [23], Proposition 1.5.3, and [24]). Another example is the
phenomenon that, for instance, for 2 < p < ∞ and f ∈ Lp(R, γ1), the orthogonal
Hermite expansion does not necessarily converge in Lp(R, γ1) (see [25]).

Regarding the multi-step Lp-approximation problem on the Gaussian space for
2 < p < ∞ we study in this paper, we cannot exploit chaos expansion techniques
like in [10] nor can we reduce the problem by orthogonality to a question about
a one-step approximation as in the L2-setting [7, 11] and BMO-setting [12]. The
difference between the L2- and the Lp-context for 2 < p < ∞ is also visible by
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the fact that we have to describe the optimal Lp-approximation in Theorem 5.5
below by a Riemann–Liouville operator instead of the real interpolation spaces.

To explain the purpose of this paper in more detail, let us introduce some nota-
tion. We let W = (Wt)t∈[0,1] be a standard d-dimensional Brownian motion start-
ing in zero defined on (�,F,P, (Ft )t∈[0,1]), where (�,F,P) is complete and
(Ft )t∈[0,1] is the augmentation of the natural filtration and where we can assume
that F = F1. As processes driving the stochastic integrals, we use the Brownian
motion and the coordinate-wise geometric Brownian motion, that is,

Yt := (
W

(1)
t , . . . ,W

(d)
t

)� and E := R
d

or

Yt := (
eW

(1)
t −(t/2), . . . , eW

(d)
t −(t/2))� and E := (0,∞)d .

Then we have

dYt = σ(Yt ) dWt,

where Y is considered as a column vector and the d × d-matrix σ(y) is given by
σ(y) = Id or (σij (y))di,j=1 = (δi,j yi)

d
i,j=1, respectively, where δi,j = 1 if i = j

and δi,j = 0 otherwise. The parabolic differential operator associated to the diffu-
sion Y is

A := ∂

∂t
+ 1

2

d∑
k=1

σ 2
kk

∂2

∂y2
k

.

Given a Borel-function g :E →R with g(Y1) ∈ L2, we let

G(t, y) := E
(
g(Y1)|Yt = y

)
(1)

and notice that G(1, y) = g(y). Integrability properties of G and its derivatives are
given in Lemma A.2 below and are used implicitly in this paper. The function G

solves the backward parabolic PDE

AG = 0 on [0,1) × E.

For 0 ≤ s < t < 1, Itô’s formula implies that

G(t,Yt ) − G(s,Ys) =
∫ t

s
∇G(u,Yu)σ (Yu) dWu a.s.,(2)

where ∇G(t, x) is considered as a row vector. Furthermore,

g(Y1) = Eg(Y1) +
∫ 1

0
∇G(u,Yu)σ (Yu) dWu a.s.(3)

by t ↑ 1, where the convergence takes place in L2 [or later in Lp if g(Y1) ∈ Lp with
2 ≤ p < ∞]. One purpose of this paper is to investigate Riemann approximations
of the stochastic integral in (3) by the following quantities.
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DEFINITION 1.1. (i) Let T rand be the set of all sequences of stopping times
τ = (τi)

n
i=0 with 0 = τ0 ≤ τ1 ≤ · · · ≤ τn−1 < τn = 1 where n = 1,2, . . . , such that

τi is Fτi−1 -measurable for i = 1, . . . , n − 1, that is,

{τi ∈ B} ∩ {τi−1 ≤ t} ∈Ft for t ∈ [0,1] and B ∈ B
([0,1]).

(ii) Given a time-net τ = (τi)
n
i=0 ∈ T rand, 0 ≤ t ≤ 1 and g(Y1) ∈ L2, we let

Ct

(
g(Y1), τ

) :=
∫ t

0
∇G(s,Ys) dYs −

n∑
i=1

∇G(τi−1, Yτi−1)(Yτi∧t − Yτi−1∧t ),

Ct

(
g(Y1), τ, v

) :=
∫ t

0
∇G(s,Ys) dYs −

n∑
i=1

vτi−1(Yτi∧t − Yτi−1∧t ),

where v = (vτi−1)
n
i=1 is a sequence of random row vectors vτi−1 :� →R

d measur-
able w.r.t. Fτi−1 .

Let us briefly describe the contents of this paper, which continues and extends
results from the preprint [28].

(1) In Theorem 3.1, we provide a characterization of functions f :Rd →R be-
longing to the Besov space B

θ
p,q(R

d, γd) by F : [0,1] × R
d → R with F(t, x) :=

E(f (W1)|Wt = x). Roughly speaking, considering F as the heat extension of
f ∈ L2(R

d, γd), the regularity of this extension precisely describes the Besov reg-
ularity of f . Theorem 3.1 mainly relies on Proposition A.4, which might be of
independent interest.

(2) Besides the real interpolation spaces Bθ
p,q , the Riemann–Liouville operator

DY,θ from Section 4 provides an alternative way to describe the fractional regu-
larity of a function g :E →R. It is defined as a functional of the Hessian matrices
(D2G(t, y))t∈[0,1) by

D
Y,θ
t g(Y1) :=

(∫ t

0
(1 − u)1−θH 2

G(u,Yu) du

)1/2

with

H 2
G(u, y) :=

d∑
k,l=1

∣∣∣∣(σkkσll

∂2G

∂yk ∂yl

)
(u, y)

∣∣∣∣2.
In Proposition 4.2, we relate DY,θ to the spaces Bθ

p,q(Rd, γd), which continues the
analysis in [15], where this operator was used in a different form.

(3) In the literature [3–5, 7, 8, 11, 17, 22], the question of the behavior
of the discretization error Ct(g(Y1), τ, v) has been treated mostly using the
L2-norm, ‖Ct(g(Y1), τ, v)‖L2 , or by weak or stable limits of the re-scaled error
processes limn

√
nCt(g(Y1), τn, vn), where τn is of cardinality n + 1. Many of
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the L2-results are of asymptotic nature as well, and, concerning random time-
nets, only asymptotic statements were obtained. There is a general lower bound
‖C1(g(Y1); τ)‖Lp ≥ δ/

√
n for nets τ of cardinality n + 1, see Remark 5.3. As one

of the main results of this paper, we obtain in Theorem 5.5 a characterization when
this lower bound is actually achieved by special time-nets. A particular case of this
statement is:

THEOREM 1.2. For 2 ≤ p < ∞, 0 < θ ≤ 1, and g(Y1) ∈ Lp , the following
assertions are equivalent:

(i) ‖DY,θ
1 g(Y1)‖Lp < ∞,

(ii) supn=1,2,...

√
n‖C1(g(Y1), τ

θ
n )‖Lp < ∞, where the time-nets τ θ

n = (tθi,n)
n
i=0

are given by tθi,n := 1 − (1 − i
n
)1/θ .

Using Proposition 4.2(iii), we can replace, in the case p = 2 and 0 < θ < 1,
condition (i) in the theorem above by f ∈ B

θ
2,2 [with convention (9)], which is in

accordance with the known one-dimensional L2-case; see [14].
The point of Theorem 1.2 is the usage of adapted time-nets. In the literature,

equidistant time-nets are often used in discretizations for simplicity. Therefore, we
provide in Theorem 5.7 a description of the random variables that can be approxi-
mated in Lp with equidistant time-nets with a rate n−θ/2 for 0 < θ < 1 in terms of
the Besov spaces B

θ
p,∞. In particular, this theorem shows the loss of accuracy in

the approximation when not using the optimal nets. A special case of this theorem
is the following.

THEOREM 1.3. For 2 ≤ p < ∞, 0 < θ < 1 and g(Y1) ∈ Lp the following
assertions are equivalent:

(i) f ∈ B
θ
p,∞ with f given by (9),

(ii) supn=1,2,... n
θ/2‖C1(g(Y1); τn)‖Lp < ∞, where τn = (i/n)ni=0 are the

equidistant time-nets.

(4) Theorems 1.2 and 1.3 (Theorems 5.5 and 5.7) are based on Theorem 5.1
which extends the curvature type description of the L2-approximation error
from [11] for deterministic nets to the Lp-error ‖C1(g(Y1), τ )‖Lp with 2 ≤ p < ∞
and to random time-nets τ = (τi)

n
i=0 ∈ T rand. To illustrate Theorem 5.1, let us for-

mulate a corollary that follows from Remark 5.2.

THEOREM 1.4. For 2 ≤ p < ∞ there is a constant c(1.4) ≥ 1 depending at
most on p such that for all g(Y1) ∈ Lp and τ = (τi)

n
i=0 ∈ T rand we have that

∥∥C1
(
g(Y1), τ

)∥∥
Lp

∼c(1.4)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

.
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For example, to connect Theorem 1.4 to Theorem 1.2, we measure the size of a
sequence 0 = t0 ≤ · · · ≤ tn−1 < tn = 1 by∣∣(ti)ni=0

∣∣
θ := |ti − ti−1|

(1 − ti−1)1−θ
with 0 < θ ≤ 1.

We get |τ θ
n |θ ≤ 1/(θn), where the nets τ θ

n are taken from Theorem 1.2, in contrast
to |(i/n)ni=0|θ = n−θ for the equidistant nets, and Theorem 1.4 yields∥∥C1

(
g(Y1), τ

)∥∥
Lp

≤ c(1.4)

∥∥√|τ |θDY,θ
1 g(Y1)

∥∥
Lp

for τ ∈ T rand

so that the implication (i) ⇒ (ii) of Theorem 1.2 follows.
The novelty of Theorem 1.4 (Theorem 5.1) concerns the range 2 < p < ∞

and the fact that certain fixed random nets (including all deterministic time-nets)
are allowed, which distinguishes the result from previous asymptotic ones. As al-
ready pointed out, the techniques for the Lp-estimates differ significantly from the
L2-estimates because the problem cannot be translated into a one-step approxima-
tion problem nor can we use orthogonality. Moreover, the extension from deter-
ministic nets to random nets does not seem to be straightforward as we still have
to use the sub-class T rand of random nets (τi)

n
i=1 where τi is Fτi−1 -measurable

(see Remark 5.4). Our Lp-estimates can be seen as an interpolation between the
L2-estimates mentioned above and the weighted BMO-estimates from [12]. How-
ever, pure interpolation techniques do not seem to be sufficient yet to fully treat
our problem.

2. Preliminaries.

Notation. We use A ∼c B for A/c ≤ B ≤ cA whenever A,B ≥ 0 and c ≥ 1,
a ∨ b = max{a, b} and a ∧ b = min{a, b}, and let | · | be the Euclidean norm for a
vector or the Hilbert–Schmidt norm for a matrix. Given a random vector or a ran-
dom matrix A, we write ‖A‖Lp := ‖|A|‖Lp and denote the transpose of A by A�.

Real interpolation. Let us recall the real interpolation method that we use to
generate the (Gaussian) Besov spaces.

DEFINITION 2.1 ([1, 2]). Let (X0,X1) be a compatible couple of Banach
spaces, that is, there exists a Hausdorff topological vector space in which both
X0 and X1 are continuously embedded. Given x ∈ X0 + X1 and λ > 0, the
K-functional is defined by

K(x,λ;X0,X1) := inf
{‖x0‖X0 + λ‖x1‖X1 :x = x0 + x1, xi ∈ Xi

}
.

Given 0 < θ < 1 and 1 ≤ q ≤ ∞, we let (X0,X1)θ,q be the space of all x ∈ X0 +
X1 such that

‖x‖(X0,X1)θ,q
:= ∥∥λ−θK(x,λ;X0,X1)

∥∥
Lq((0,∞),(dλ)/λ) < ∞.
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The K-functional yields to one of the basic approaches to define intermediate
spaces Y of a compatible couple of Banach spaces (X0,X1), that is, Banach spaces
Y such that one has continues embeddings X0 ∩ X1 ↪→ Y ↪→ X0 + X1. Assuming
X1 ↪→ X0 with norm one, this reduces to the embedding X1 ↪→ Y ↪→ X0. In this
case, K(x,λ;X0,X1) = ‖x‖X0 for λ ∈ [1,∞) which does not give any informa-
tion. However, for λ ∈ (0,1) we have that

λ‖x‖X0 ≤ K(x,λ;X0,X1) ≤ ‖x‖X0 .

The behavior of the function λ → K(x,λ;X0,X1) close to zero describes the dis-
tance of x to X1: intuitively we can say that the closer the function is to a linear
function in λ, the closer x is to X1. In general, without the restriction X1 ↪→ X0,
the functionals ∥∥λ−θK(x,λ;X0,X1)

∥∥
Lq((0,∞),(dλ)/λ)

examine the behavior of the K-functional (in particular at zero and at infinity)
and lead to the spaces (X0,X1)θ,q . For X1 ↪→ X0, we obtain the lexicographical
ordering

(X0,X1)θ0,q0 ⊆ (X0,X1)θ1,q1 and (X0,X1)η,r0 ⊆ (X0,X1)η,r1

if 0 < θ1 < θ0 < 1, 1 ≤ q0, q1 ≤ ∞, 0 < η < 1, and 1 ≤ r0 ≤ r1 ≤ ∞. The choice
of the measure dλ/λ ensures (also in the general case) the symmetry (X0,X1)θ,q =
(X1,X0)1−θ,q .

Gaussian Sobolev and Besov spaces. We let d ≥ 1 and γd be the standard
Gaussian measure on R

d . The space L2(R
d, γd) is equipped with the orthonormal

basis of generalized Hermite polynomials (hk1,...,kd
)∞k1,...,kd=0 given by

hk1,...,kd
(x1, . . . , xd) := hk1(x1) · · ·hkd

(xd),

where (hk)
∞
k=0 ⊂ L2(R, γ1) is the standard orthonormal basis of Hermite polyno-

mials. The Sobolev space D1,2 = D1,2(R
d, γd) consists of all f ∈ L2(R

d, γd) such
that

∞∑
k1,...,kd=0

〈f,hk1,...,kd
〉2
L2(R

d ,γd )
‖∇hk1,...,kd

‖2
L2(R

d ,γd )
< ∞.

The space D1,2 is a Banach space under the norm

‖f ‖D1,2 :=
√

‖f ‖2
L2(R

d ,γd )
+ ‖Df ‖2

L2(R
d ,γd )

,

where, for f ∈ D1,2, the gradient Df is given by

Df :=
∞∑

k1,...,kd=0

〈f,hk1,...,kd
〉L2(R

d ,γd )∇hk1,...,kd
.
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Given 2 ≤ p < ∞, the Banach space D1,p ⊆ Lp is given by

D1,p := {
f ∈ D1,2 :‖f ‖D1,p

:= (‖f ‖p
Lp

+ ‖Df ‖p
Lp

)1/p
< ∞}

.

Here and later, we use ‖f ‖Lp = ‖f ‖Lp(Rd ,γd ) and ‖Df ‖Lp = ‖Df ‖Lp(Rd ,γd ).

DEFINITION 2.2. For 0 < θ < 1 and 1 ≤ q ≤ ∞, we let

B
θ
p,q := (Lp,D1,p)θ,q

be the Gaussian Besov space on R
d of fractional smoothness θ and fine-index q .

Because D1,p is not closed in Lp , we get a scale of spaces indexed by (θ, q),
where the spaces are identical if and only if both indices coincide (see [21], The-
orem 3.1). A typical function which has fractional smoothness is given by the
following.

EXAMPLE 2.3. Let d = 1, K ∈ R, 2 ≤ p < ∞ and 0 ≤ α < 1 − 1
p

. Then one
has that

f (x) :=
{(

(x − K)+
)α

, α > 0
χ[K,∞)(x), α = 0

∈ B
(1/p)+α
p,∞ ,

which shows the trade-off between integrability and smoothness. This can be
proved by verifying

K(f,λ;Lp,D1,p) ≤ cλ(1/p)+α for 0 < λ < 1.

Using canonical representations of functions of bounded variation, one can ex-
tend the case α = 0 in Example 2.3 to certain functions of bounded variation by
considering convex combinations f (x) = ∑L

l=1 βlχ[Kl,∞)(x).

Burkholder–Davis–Gundy inequality. We use the Burkholder–Davis–Gundy
inequality for Brownian martingales with values in a separable Hilbert space. An
explicit formulation is as follows: assume for i = 1,2, . . . progressively measur-
able processes (Li

t )t∈[0,1] with Li
t :� → R

d considered as row vectors and such
that

∞∑
i=1

E

∫ 1

0

∣∣Li
t

∣∣2 dt < ∞,

then, for all 1 < p < ∞, there is a constant c(4) = c(4)(p) ≥ 1 such that∥∥∥∥∥
( ∞∑

i=1

∣∣∣∣∫ 1

0
Li

u dWu

∣∣∣∣2
)1/2∥∥∥∥∥

Lp

∼c(4)

∥∥∥∥∥
( ∞∑

i=1

∫ 1

0

∣∣Li
u

∣∣2 du

)1/2∥∥∥∥∥
Lp

.(4)
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3. Fractional smoothness on the Gaussian space. In this section, we char-
acterize the Gaussian Besov spaces Bθ

p,q by the behavior of G from (1) in the case
Y = W . To make this more clear, we do a change of notation and replace g by f

and G by F . This means that f ∈ L2(R
d, γd) and

F(t, x) := Ef (x + W1−t ) for (t, x) ∈ [0,1] ×R
d .

We also use the Hessian d × d matrix

D2F :=
(

∂2F

∂xi ∂xj

)d

i,j=1
.

One can check that

f ∈ D1,2 if and only if
∫ 1

0

∥∥D2F(t,Wt)
∥∥2
L2

dt < ∞.(5)

Moreover, for all f ∈ L2(R
d, γd) we have

∇F(t,Wt) = ∇F(0,0) +
(∫ t

0
D2F(u,Wu)dWu

)�
a.s.(6)

for 0 ≤ t < 1, where ∇F(t, x) is considered as a row vector. If f ∈ D1,2, then (6)
can be extended to t = 1 with the convention ∇F(1, ·) := Df . Now we general-
ize (5) to the scale of Besov spaces.

THEOREM 3.1. Let 2 ≤ p < ∞, 0 < θ < 1, 1 ≤ q ≤ ∞ and f ∈ Lp(Rd, γd).
Then

‖f ‖Bθ
p,q

∼c(3.1)
‖f ‖Lp + ∥∥(1 − t)−θ/2∥∥F(1,W1) − F(t,Wt)

∥∥
Lp

∥∥
Lq([0,1),(dt)/(1−t))

∼c(3.1)
‖f ‖Lp + ∥∥(1 − t)(1−θ)/2∥∥∇F(t,Wt)

∥∥
Lp

∥∥
Lq([0,1),(dt)/(1−t))

∼c(3.1)
‖f ‖Lp + ∥∥(1 − t)(2−θ)/2∥∥D2F(t,Wt)

∥∥
Lp

∥∥
Lq([0,1),(dt)/(1−t)),

where c(3.1) ≥ 1 depends uniquely on (p, θ, q).

REMARK 3.2. Theorem 3.1 generalizes [14], Theorem 2.2, where p = 2 was
considered, and [28], Lemma 4.7, which was proved for 2 < p < ∞ and q = ∞.

Before we prove Theorem 3.1, we derive a corollary in the case d = 1 concern-
ing the oscillation of a Borel function f :R→R given by

OSCp(f, x0, s) :=
(

1

4s2

∫
Q(x0,s)

∣∣f (y) − f (z)
∣∣p dy dz

)1/p

,

where 2 ≤ p < ∞, s > 0, x0 ∈ R and Q(x0, s) := {(y, z) : |y − x0| ≤ s,

|z − x0| ≤ s}.
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COROLLARY 3.3. For 2 ≤ p < ∞, 0 < θ < 1, 1 ≤ q ≤ ∞ and f ∈ B
θ
p,q , we

have that ∥∥s(1/p)−θOSCp(f, x0, s)
∥∥
Lq((0,1],(ds)/s) ≤ c(3.3)‖f ‖Bθ

p,q
,

where the constant c(3.3) > 0 depends at most on (p, θ, q, x0).

PROOF. From [15], Lemma 4.9, we know that

OSCp(f, x0,
√

1 − t) ≤ c(1 − t)−1/(2p)
∥∥f (Y ) − f (Z)

∥∥
Lp

for f ∈ Lp(R, γ1), 0 ≤ t < 1 and a two-dimensional Gaussian vector (Y,Z) with
Y,Z ∼ N(0,1) and cov(Y,Z) = t , where c > 0 depends at most on (x0,p). Look-
ing at [15], Proof of Proposition 4.5(iii), we see that∥∥f (Y ) − f (Z)

∥∥
Lp

≤ 2
∥∥f (W1) −E

(
f (W1)|Ft

)∥∥
Lp

,

so that we can conclude by Theorem 3.1 of this paper. �

Now we turn to the proof of Theorem 3.1. We start with the following proposi-
tion.

PROPOSITION 3.4. Let 2 ≤ p < ∞. There exists a constant c(3.4) ≥ 1 depend-
ing at most on p such that for any 0 < t < 1,

K(f,
√

1 − t;Lp,D1,p) ∼c(3.4)

(∥∥f (W1) − F(t,Wt)
∥∥
Lp

+ √
1 − t‖f ‖Lp

)
.

PROOF. (a) Fix 0 < t < 1 and ε > 0. We find f0 ∈ Lp and f1 ∈ D1,p such that
f = f0 + f1 and

‖f0‖Lp + √
1 − t‖f1‖D1,p

≤ K(f,
√

1 − t;Lp,D1,p) + ε.

For Fi(t, x) := E(fi(W1)|Wt = x) we obtain from (2) and (4) that∥∥f (W1) − F(t,Wt)
∥∥
Lp

≤ ∥∥f0(W1) − F0(t,Wt)
∥∥
Lp

+
∥∥∥∥∫ 1

t
∇F1(u,Wu)dWu

∥∥∥∥
Lp

≤ ∥∥f0(W1) − F0(t,Wt)
∥∥
Lp

+ c(4)

(∫ 1

t

∥∥∇F1(u,Wu)
∥∥2
Lp

du

)1/2

≤ 2‖f0‖Lp + c(4)

√
1 − t‖f1‖D1,p

≤ c
[
K(f,

√
1 − t;Lp,D1,p) + ε

]
,

where c := max{c(4),2} and we employed the facts that 2 ≤ p < ∞ and that (6)
yields ∥∥∇F1(u,Wu)

∥∥
Lp

≤ ‖f1‖D1,p
for all 0 ≤ u ≤ 1.
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Letting ε → 0 and observing that
√

1 − t‖f ‖Lp ≤ K(f,
√

1 − t;Lp,D1,p) we
achieve the first part of the desired inequality.

(b) For 0 < t < 1, we set

gt (x) := F(t,
√

tx) and ht (x) := f (x) − F(t,
√

tx)

so that

‖gt‖p
D1,p

= ∥∥F(t,
√

tx)
∥∥p
Lp

+ ∥∥∇F(t,
√

tx)
√

t
∥∥p
Lp

≤ ‖f ‖p
Lp

+ ∥∥∇F(t,Wt)
∥∥p
Lp

.

Applying (2) for Y = W , (4), the fact that ‖∇F(t,Wt)‖Lp is nondecreasing in t

and that 2 ≤ p < ∞, we estimate∥∥F(t,Wt)
∥∥
Lp

≤
∥∥∥∥∫ t

0
∇F(u,Wu)dWu

∥∥∥∥
Lp

+ ∥∥F(0,W0)
∥∥
Lp

≤ c(4)

∥∥∇F(t,Wt)
∥∥
Lp

+ ∣∣Ef (W1)
∣∣.

Thus,

‖gt‖D1,p
≤ ∥∥f (W1) − F(t,Wt)

∥∥
Lp

+ (1 + c(4))
∥∥∇F(t,Wt)

∥∥
Lp

+ ∣∣Ef (W1)
∣∣

≤ [
1 + (1 + c(4))c(A.3)(1 − t)−1/2]∥∥f (W1) − F(t,Wt)

∥∥
Lp

+ ∣∣Ef (W1)
∣∣,

where we used Lemma A.3. Exploiting an independent Brownian motion W̃ and
the fact that the covariance structures of (W1,

√
tW1 +√

1 − tW̃1) and (W1,W√
t +

W̃1−√
t ) are the same, we obtain for ht that

‖ht‖Lp = [
E

∣∣f (W1) − Ẽf (
√

tW1 + √
1 − tW̃1)

∣∣p]1/p

≤ [
EẼ

∣∣f (W1) − f (W√
t + W̃1−√

t )
∣∣p]1/p

≤ ∥∥f (W1) − F(
√

t,W√
t )

∥∥
Lp

+ ∥∥F(
√

t,W√
t ) − f (W√

t + W̃1−√
t )

∥∥
Lp

= 2
∥∥f (W1) − F(

√
t,W√

t )
∥∥
Lp

≤ 4
∥∥f (W1) − F(t,Wt)

∥∥
Lp

,

where in the last step F(t,Wt) was inserted. Hence,

K(f,
√

1 − t;Lp,D1,p)

≤ ‖ht‖Lp + (1 − t)1/2‖gt‖D1,p

≤ (1 − t)1/2∣∣Ef (W1)
∣∣ + [

5 + (1 + c(4))c(A.3)

]∥∥f (W1) − F(t,Wt)
∥∥
Lp

and the proof is complete. �
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We are now ready to prove the main result of this section.

PROOF OF THEOREM 3.1. To verify the assumptions of Proposition A.4, we
set

d0(t) := ∥∥f (W1) − F(t,Wt)
∥∥
Lp

,

d1(t) := ∥∥∇F(t,Wt)
∥∥
Lp

,

d2(t) := ∥∥D2F(t,Wt)
∥∥
Lp

,

A := 2c(A.3)‖f ‖Lp and α := c(4) ∨ c(A.3). Then Lemma A.3 implies that

dk(t) ≤ c(A.3)(1 − t)−k/2 d0(t) for k = 1,2.

By (2), (6), the Burkholder–Davis–Gundy inequalities (4) and 2 ≤ p < ∞, we also
see that

d0(t) ≤ c(4)

(∫ t

0

∥∥∇F(s,Ws)
∥∥2
Lp

ds

)1/2

= c(4)

(∫ t

0

[
d1(s)

]2
ds

)1/2

and

d1(t) ≤ ∥∥∇F(0,W0)
∥∥
Lp

+
∥∥∥∥∫ t

0
D2F(s,Ws) dWs

∥∥∥∥
Lp

≤ 2c(A.3)‖f ‖Lp + c(4)

(∫ t

0

∥∥D2F(s,Ws)
∥∥2
Lp

ds

)1/2

= 2c(A.3)‖f ‖Lp + c(4)

(∫ t

0

[
d2(s)

]2
ds

)1/2

,

where we used Lemma A.3. Now, applying (21) on page 634 gives the equivalence
between the last three expressions in Theorem 3.1. It remains to check that

‖f ‖Bθ
p,q

∼c ‖f ‖Lp + ∥∥(1 − t)−θ/2∥∥F(1,W1) − F(t,Wt)
∥∥
Lp

∥∥
Lq([0,1),(dt)/(1−t))

for some c = c(p, q, θ) ≥ 1, which follows from Proposition 3.4. �

REMARK 3.5. In the literature, interpolation spaces on the Wiener (or Gaus-
sian) space are considered, for example, in [14, 15, 18, 28, 30]. A classical ap-
proach is based on semi-groups. Instead of that, our approach uses the elementary
Proposition A.4, which is not related to semi-groups and makes it therefore possi-
ble to apply Proposition A.4 in more general situations (see [13]). Regarding the
present paper, Proposition A.4 opens the way to extend results from Sections 4
and 5 below to processes different from the (geometric) Brownian motion. Below
we want to indicate a possible semi-group approach to Theorem 3.1:
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(1) The first equivalence of Theorem 3.1 can be deduced in the case q = p

(q is the fine-tuning index in the interpolation, Lp the integrability of the under-
lying spaces) from [18], Remark on page 428. Using the simple observation [9],
equation (6), one can transform Hirsch’s condition into∫ ∞

0
s−(θp)/2∥∥f (W1) − F

(
e−s,We−s

)∥∥p
p

ds

s
,

which is our condition, up to a different scaling.
(2) To consider the general case, that is, q �= p, and also the other equivalences

in Theorem 3.1, one can check general results about interpolation and semi-groups.
There are two natural semi-groups one might use, the Ornstein–Uhlenbeck semi-
group and the Poisson semi-group (see [27]). Roughly speaking, switching from
the Ornstein–Uhlenbeck semi-group to the Poisson semi-group should result in
a change of the main interpolation parameter η to our parameter θ = η/2 in the
corresponding formulas, cf. [29], Section 1.15.2. Now assume 2 ≤ p < ∞ and
ξ = f (W1) ∈ Lp and let (Ts)s≥0 be the Ornstein–Uhlenbeck semi-group on Lp

with generator �. Then [29], Section 1.13.2, gives

‖f ‖p + ∥∥s−η‖Tsξ − ξ‖p

∥∥
Lq((0,∞),(ds)/s) < ∞(7)

for the interpolation space (Lp,D(�))η,q with 0 < η < 1 and 1 ≤ q ≤ ∞. By
Mehler’s formula, we have

Tsξ = Ẽf
(
f e−sW1 +

√
1 − e−2sW̃1

) = F
(
e−2s, e−sW1

)
for an independent Brownian motion W̃ . This would give a comparable state-
ment to the first equivalence of Theorem 3.1 for the Ornstein–Uhlenbeck semi-
group. To come closer to our statement, one can inspect the proof of Proposi-
tion 3.4, which gives ‖Tsξ − ξ‖p ≤ 4‖f (W1) − F(e−2s,We−2s )‖p . Inserting this
upper bound into (7) would give an expression like in the first equivalence of The-
orem 3.1. To get the full statement one would still need to try to upper bound
‖f (W1) − F(t,Wt)‖p by ‖Tsξ − ξ‖p in an appropriate way or to find an alterna-
tive way. Concerning the second and third equivalence of Theorem 3.1 one might
try to exploit [29], Section 1.14.5.

4. The Riemann–Liouville operator DY,θ . Riemann–Liouville type opera-
tors are typically used to describe fractional regularity. We use these operators to
replace the Besov regularity defined by real interpolation when we consider the
approximation along adapted time-nets in Theorem 5.5 below. The operator, intro-
duced in the following Definition 4.1, was also used in a slightly modified form
in [15], where the weak convergence of the error processes was considered.

DEFINITION 4.1. For g(Y1) ∈ L2, 0 < θ ≤ 1 and 0 ≤ t ≤ 1, we let

D
Y,θ
t g(Y1) :=

(∫ t

0
(1 − u)1−θH 2

G(u,Yu) du

)1/2

,
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where, with G given by (1),

H 2
G(u, y) :=

d∑
k,l=1

∣∣∣∣(σkkσll

∂2G

∂yk ∂yl

)
(u, y)

∣∣∣∣2.
From now on, we use the following convention: for x = (x1, . . . , xd)� ∈ R

d and
0 ≤ t ≤ 1 we let

yk(t) =
{

xk, Y = W

exk−(t/2), else
and y(t) := (

y1(t), . . . , yd(t)
)�(8)

and define the functions f :Rd →R and F : [0,1] ×R
d →R as

f (x) := g
(
y(1)

)
and F(t, x) := Ef (x + W1−t )(9)

so that f (W1) = g(Y1) and F(t, x) = G(t, y(t)). In the case that Y is the
coordinate-wise geometric Brownian motion, this notation implies that

yk(t)yl(t)
∂2G

∂yk ∂yl

(
t, y(t)

) = ∂2F

∂xk ∂xl

(t, x) − δk,l

∂F

∂xk

(t, x)(10)

for k, l = 1, . . . , d . Let us summarize the connections between the Besov spaces
and the operator DY,θ known to us.

PROPOSITION 4.2. For g(Y1) ∈ Lp with 2 ≤ p < ∞, the following assertions
hold true:

(i) If 2 < p < ∞ and 0 < θ < 1, then

(a) f ∈ B
θ
p,2 implies D

Y,θ
1 g(Y1) ∈ Lp ,

(b) D
Y,θ
1 g(Y1) ∈ Lp implies f ∈ B

θ
p,∞.

(ii) If 2 ≤ p < ∞, then D
Y,1
1 g(Y1) ∈ Lp if and only if f ∈ D1,p .

(iii) If 0 < θ < 1, then D
Y,θ
1 g(Y1) ∈ L2 if and only if f ∈ B

θ
2,2.

PROOF. (i)

(a) Because 2 ≤ p < ∞, we see that∥∥DY,θ
1 g(Y1)

∥∥
Lp

≤
(∫ 1

0
(1 − t)1−θ

∥∥HG(t, Yt )
∥∥2
Lp

dt

)1/2

= ∥∥(1 − t)(2−θ)/2∥∥HG(t, Yt )
∥∥
Lp

∥∥
L2([0,1),(dt)/(1−t)).

Theorem 3.1 completes the proof, since in the case that Y is the Brownian motion,
we have HG(t, Yt ) = |D2F(t,Wt)| and in the other case, we can use (10) and
Theorem 3.1 again to see that∥∥(1 − t)(2−θ)/2∥∥HG(t, Yt )

∥∥
Lp

∥∥
L2([0,1),(dt)/(1−t)) < ∞.
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(b) For all 0 < t ≤ 1,

∥∥DY,θ
1 g(Y1)

∥∥
Lp

≥
∥∥∥∥(∫ t

0
(1 − s)1−θH 2

G(s,Ys) ds

)1/2∥∥∥∥
Lp

≥ (1 − t)(1−θ)/2
∥∥∥∥(∫ t

0
H 2

G(s,Ys) ds

)1/2∥∥∥∥
Lp

.

If Y is the Brownian motion, then we can bound this from below by

1

c(4)

(1 − t)(1−θ)/2∥∥∇F(t,Wt) − ∇F(0,W0)
∥∥
Lp

,

where we have used (4) and (6). This implies that∥∥∇F(t,Wt)
∥∥
Lp

≤ ∥∥∇F(0,W0)
∥∥
Lp

+ c(4)(1 − t)(θ−1)/2∥∥DW,θ
1 f (W1)

∥∥
Lp

and Theorem 3.1 can be used again. If Y is the coordinate-wise geometric Brown-
ian motion, then we get from (10) that∥∥∥∥(∫ t

0
H 2

G(s,Ys) ds

)1/2∥∥∥∥
Lp

≥
∥∥∥∥(∫ t

0
H 2

F (s,Ws) ds

)1/2∥∥∥∥
Lp

−
∥∥∥∥(∫ 1

0

∣∣∇F(s,Ws)
∣∣2 ds

)1/2∥∥∥∥
Lp

≥ 1

c(4)

∥∥∇F(t,Wt) − ∇F(0,W0)
∥∥
Lp

−
∥∥∥∥(∫ 1

0

∣∣∇F(s,Ws)
∣∣2 ds

)1/2∥∥∥∥
Lp

≥ 1

c(4)

∥∥∇F(t,Wt)
∥∥
Lp

− 1

c(4)

∥∥∇F(0,W0)
∥∥
Lp

−
∥∥∥∥(∫ 1

0

∣∣∇F(s,Ws)
∣∣2 ds

)1/2∥∥∥∥
Lp

,

where we again used the Burkholder–Davis–Gundy inequalities (4). Because the
last two terms on the right-hand side are finite, we can conclude as in the case of
the Brownian motion.

(ii) Because of (10) and (
∫ 1

0 |∇F(t,Wt)|2 dt)1/2 ∈ Lp , we get D
Y,1
1 g(Y1) ∈ Lp

if and only if (
∫ 1

0 |D2F(t,Wt)|2 dt)1/2 ∈ Lp . Using relations (5) and (6), one easily
checks that this is equivalent to f ∈ D1,p .

(iii) Since (10) implies the equivalence of∥∥DY,θ
1 g(Y1)

∥∥2
L2

=
∫ 1

0
(1 − t)1−θ

∥∥HG(t, Yt )
∥∥2
L2

dt < ∞

and
∫ 1

0 (1 − t)1−θ‖D2F(t,Wt)‖2
L2

dt < ∞, we can use Theorem 3.1. �
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5. An approximation problem in Lp . In the whole section, we use the con-
vention (8) and (9).

Time-nets. Given a sequence 0 = t0 ≤ · · · ≤ tn−1 < tn = 1 and 0 < θ ≤ 1, we
let ∣∣(ti)ni=0

∣∣
θ := sup

i=1,...,n

sup
ti−1≤u<ti

|ti − u|
(1 − u)1−θ

= sup
i=1,...,n

|ti − ti−1|
(1 − ti−1)1−θ

,

∣∣(ti)ni=0

∣∣ := ∣∣(ti)ni=0

∣∣
1

so that |(ti)ni=0| is the usual mesh-size. As special adapted deterministic time-nets
we use τ θ

n = (tθi,n)
n
i=0 defined by

tθi,n := 1 −
(

1 − i

n

)1/θ

.

For these time-nets,∣∣tθi,n − u
∣∣ ≤ |tθi,n − u|

(1 − u)1−θ
≤ |tθi,n − tθi−1,n|

(1 − tθi−1,n)
1−θ

≤ 1

θn
(11)

for u ∈ [
tθi−1,n, t

θ
i,n

)
,

which implies that ∣∣τ θ
n

∣∣ ≤ ∣∣τ θ
n

∣∣
θ ≤ 1

θn
.(12)

Moreover, we have that

(1 − tθi−1,n)
1−θ

|tθi,n − tθi−1,n|
≤ βn(13)

for some β > 0 independent from n.

The basic equivalence in Lp . The following result reduces the computation
of the Lp-norm of the error processes defined in Definition 1.1 to an expression
involving the curvature HG(t, Yt ) similar to a square function. This result general-
izes [11], Theorem 4.4, proved for deterministic nets in the L2-case.

THEOREM 5.1. For 2 ≤ p < ∞, there is a constant c(5.1) ≥ 1 depending at
most on p such that for all g(Y1) ∈ Lp and τ = (τi)

n
i=0 ∈ T rand we have that

∥∥C1
(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

,

inf
v

∥∥C1
(
g(Y1), τ, v

)∥∥
Lp

≥ 1

c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

,
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where the infimum is taken over all simple random vectors vτi−1 :� →R
d that are

Fτi−1-measurable.

REMARK 5.2. Both inequalities in Theorem 5.1 are proved by stopping at
0 < T < 1 and letting T ↑ 1. Therefore, it might be possible for one or both sides
of an inequality to be infinite. However, this cannot be the case: step (b) of our
proof for the trivial time-net 0 = t0 < t1 = 1 gives by (15) that∥∥∥∥(∫ T

0
(T − t)H 2

G(t, Yt ) dt

)1/2∥∥∥∥
Lp

≤ c
∥∥E(

g(Y1)|FT

) −Eg(Y1) − ∇G(0, Y0)(YT − Y0)
∥∥
Lp

≤ c
∥∥g(Y1) −Eg(Y1) − ∇G(0, Y0)(Y1 − Y0)

∥∥
Lp

< ∞
so that ∥∥∥∥∥

(
n∑

i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≤
∥∥∥∥(∫ 1

0
(1 − t)H 2

G(t, Yt ) dt

)1/2∥∥∥∥
Lp

< ∞.

Following (16) from step (c), this implies that sup0≤T <1 ‖CT (g(Y1), τ )‖Lp < ∞,
from which we can conclude that(∫ 1

0

n∑
i=1

χ(τi−1,τi ](t)
∣∣∇G(τi−1, Yτi−1)σ (Yt )

∣∣2 dt

)1/2

∈ Lp

and C1(g(Y1), τ ) ∈ Lp . Finally, we have that

inf
v

∥∥C1
(
g(Y1), τ, v

)∥∥
Lp

≤ ∥∥C1
(
g(Y1), τ

)∥∥
Lp

,(14)

where the infimum is taken over all simple random vectors vτi−1 :� →R
d that are

Fτi−1 -measurable. The latter also implies that all three expressions—in particular
the simple and optimal Lp-approximation—in Theorem 5.1 are equivalent up to a
multiplicative constant.

REMARK 5.3. Theorem 5.1 provides an alternative way to prove the lower
bound ∥∥C1

(
g(Y1), τ

n)∥∥
Lp

≥ δ√
n

for some δ > 0, all n = 1,2, . . . and all nets τn = (τi)
n
i=1 ∈ T rand whenever there

is no row vector v0 ∈ R
d such that g(Y1) = Eg(Y1) + v0(Y1 − Y0) a.s. This lower
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bound was obtained in [8] in the one-dimensional case using an asymptotic argu-
ment. To check the lower bound, observe for 0 ≤ a < b ≤ 1 and ρi := (a ∨ τi) ∧ b

that ∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≥
∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≥
∥∥∥∥∥ inf
a≤t<b

HG(t, Yt )

n∑
i=1

ρi − ρi−1√
2n

∥∥∥∥∥
Lp

= b − a√
2n

∥∥∥ inf
a≤t<b

HG(t, Yt )
∥∥∥
Lp

.

Assume now sup0≤a<b≤1 ‖ infa≤t<b HG(t, Yt )‖Lp = 0 and fix 0 < T < 1 and 0 <

an ↑ T . Then

0 = lim
n

∥∥∥ inf
an≤t<T

HG(t, Yt )
∥∥∥
Lp

=
∥∥∥lim

n
inf

an≤t<T
HG(t, Yt )

∥∥∥
Lp

= ∥∥HG(T ,YT )
∥∥
Lp

so that HG(T ,YT ) = 0 a.s. for all 0 < T < 1. Applying Theorem 5.1 for the trivial
time-net {0,1} yields∥∥g(Y1) −Eg(Y1) − ∇G(0, Y0)(Y1 − Y0)

∥∥
Lp

= 0.

PROOF OF THEOREM 5.1. (a) Assume a deterministic time 0 < T < 1, two
stopping times 0 ≤ a ≤ b ≤ T and that va is a simple Fa-measurable random (row)
vector. Exploiting relations (6) and (10) one quickly checks that(

∂G

∂yk

(b,Yb) − vk
a

)
σkk(Yb) = ma(k) +

d∑
l=1

∫ b

a
λa

u(k, l) dWl
u

with

ma(k) :=
(

∂G

∂yk

(a,Ya) − vk
a

)
σkk(Ya)

and

λa
u(k, l) :=

(
σkkσll

∂2G

∂yk ∂yl

)
(u,Yu) +

(
∂G

∂yl

(u,Yu) − vl
a

)(
σll

∂σll

∂yk

)
(Yu),

where ma := (ma(1), . . . ,ma(d)) will be considered as a row vector.
(b) Lower bound for ‖C1(g(Y1), τ, v)‖Lp : Let us fix 0 < T < 1 and define ρi :=

τi ∧T and αρi−1 := vτi−1χ{τi−1<T }. Note that ρi and αρi−1 are Fρi−1 -measurable for
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i = 1, . . . , n. Replacing v by α in the definitions of m and λ from step (a), it follows
that

CT

(
g(Y1), τ, v

) =
n∑

i=1

∫ ρi

ρi−1

[
mρi−1 +

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�]
dWt .

Using (4) and the convexity inequality [6], pp. 104–105, p. 171, we achieve∥∥∥∥∥
n∑

i=1

∫ ρi

ρi−1

[
mρi−1 +

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�]
dWt

∥∥∥∥∥
p

Lp

≥ c
−p
(4) E

(
n∑

i=1

∫ ρi

ρi−1

∣∣∣∣mρi−1 +
[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�∣∣∣∣2 dt

)p/2

≥ c
−p
(4) (p/2)−p/2

E

(
n∑

i=1

EFρi−1

∫ ρi

ρi−1

∣∣∣∣mρi−1 +
[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�∣∣∣∣2 dt

)p/2

≥ (c(4)

√
p/2)−p

E

(
n∑

i=1

EFρi−1

∫ ρi

ρi−1

|mρi−1 |2 dt

)p/2

= (c(4)

√
p/2)−p

E

(
n∑

i=1

∫ ρi

ρi−1

|mρi−1 |2 dt

)p/2

,

where we used the assumption that ρi is Fρi−1 -measurable. From this, we deduce
that ∥∥∥∥∥

n∑
i=1

∫ ρi

ρi−1

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�
dWt

∥∥∥∥∥
Lp

≤
∥∥∥∥∥

n∑
i=1

∫ ρi

ρi−1

mρi−1 dWt

∥∥∥∥∥
Lp

+
∥∥∥∥∥

n∑
i=1

∫ ρi

ρi−1

[
mρi−1 +

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�]
dWt

∥∥∥∥∥
Lp

≤ c(4)

∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

|mρi−1 |2 dt

)1/2∥∥∥∥∥
Lp

+
∥∥∥∥∥

n∑
i=1

∫ ρi

ρi−1

[
mρi−1 +

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�]
dWt

∥∥∥∥∥
Lp

≤ [
c2
(4)

√
p/2 + 1

]∥∥∥∥∥
n∑

i=1

∫ ρi

ρi−1

[
mρi−1 +

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�]
dWt

∥∥∥∥∥
Lp
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so that ∥∥CT

(
g(Y1), τ, v

)∥∥
Lp

≥ [
c2
(4)

√
p/2 + 1

]−1
∥∥∥∥∥

n∑
i=1

∫ ρi

ρi−1

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�
dWt

∥∥∥∥∥
Lp

.

We continue by writing∥∥∥∥∥
n∑

i=1

∫ ρi

ρi−1

[∫ t∨ρi−1

ρi−1

λ
ρi−1
u dWu

]�
dWt

∥∥∥∥∥
Lp

=
∥∥∥∥∥

n∑
i=1

∫ 1

0

[∫ t

0

[
χ(ρi−1,t∨ρi−1](u)χ(ρi−1,ρi ](t)λ

ρi−1
u

]
dWu

]�
dWt

∥∥∥∥∥
Lp

=
∥∥∥∥∫ 1

0

[∫ t

0
μρ(t, u) dWu

]�
dWt

∥∥∥∥
Lp

with the d × d-matrix

μρ(t, u) :=
n∑

i=1

χ(ρi−1,t](u)χ(ρi−1,ρi ](t)λ
ρi−1
u =

n∑
i=1

χ{ρi−1<u≤t≤ρi}λ
ρi−1
u .

Here, we used again the condition that ρi is Fρi−1 -measurable. By (4) and
Lemma A.1 (note that ρi ≤ T < 1),∥∥∥∥∫ 1

0

[∫ t

0
μρ(t, u) dWu

]�
dWt

∥∥∥∥
Lp

∼c(4)

∥∥∥∥(∫ 1

0

∣∣∣∣∫ 1

0
μρ(t, u) dWu

∣∣∣∣2 dt

)1/2∥∥∥∥
Lp

∼c(A.1)

∥∥∥∥(∫ 1

0

∫ t

0

∣∣μρ(t, u)
∣∣2 dudt

)1/2∥∥∥∥
Lp

=
∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)
∣∣λρi−1

t

∣∣2 dt

)1/2∥∥∥∥∥
Lp

.

Letting δ = 0 if Y = W and δ = 1 if Y is the geometric Brownian motion, this can
be combined with∥∥∥∥∥

(
n∑

i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

− δ

∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)
∣∣(∇G(t,Yt ) − αρi−1

)
σ(Yt )

∣∣2 dt

)1/2∥∥∥∥∥
Lp
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≤
∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)
∣∣λρi−1

t

∣∣2 dt

)1/2∥∥∥∥∥
Lp

≤
∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

+ δ

∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)
∣∣(∇G(t,Yt ) − αρi−1

)
σ(Yt )

∣∣2 dt

)1/2∥∥∥∥∥
Lp

so that ∥∥CT

(
g(Y1), τ, v

)∥∥
Lp

≥ [
c2
(4)

√
p/2 + 1

]−1
c−1
(4)c

−1
(A.1)

×
[∥∥∥∥∥

(
n∑

i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

− δ

∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

∣∣(∇G(t,Yt ) − αρi−1

)
σ(Yt )

∣∣2 dt

)1/2∥∥∥∥∥
Lp

]
.

In the case of the Brownian motion, the last term disappears. In the case of the
geometric Brownian motion, we apply again (4) to see that∥∥∥∥∥

(
n∑

i=1

∫ ρi

ρi−1

∣∣(∇G(t,Yt ) − αρi−1

)
σ(Yt )

∣∣2 dt

)1/2∥∥∥∥∥
Lp

≤ c(4)

∥∥CT

(
g(Y1), τ, v

)∥∥
Lp

.

Hence, in both cases, we have that

inf
v

∥∥CT

(
g(Y1), τ, v

)∥∥
Lp

≥ 1

[c2
(4)

√
p/2 + 1]c(4)c(A.1) + c(4)

(15)

×
∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

.

By T ↑ 1, we obtain the lower bound of our theorem.
(c) Upper bound for ‖C1(g(Y1), τ )‖Lp : For 0 < T < 1, using the arguments and

notation from step (b) and

ν
ρi−1
u := (∇G(u,Yu) − ∇G(τi−1, Yτi−1)χ{τi−1<T }

)
σ(Yu),
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we obtain∥∥CT

(
g(Y1), τ

)∥∥
Lp

≤ c(4)c(A.1)

∥∥∥∥∥
(

n∑
i=1

∫ ρi

ρi−1

(ρi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

+ c(4)c(A.1)δ

∥∥∥∥∥
(∫ T

0

∫ t

0

∣∣∣∣∣
n∑

i=1

χ{ρi−1<u≤t≤ρi}ν
ρi−1
u

∣∣∣∣∣
2

dudt

)1/2∥∥∥∥∥
Lp

≤ c(4)c(A.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

+ c(4)c(A.1)δ

∥∥∥∥∥
(∫ T

0

∫ t

0

n∑
i=1

χ(ρi−1,ρi ](u)
∣∣νρi−1

u

∣∣2 dudt

)1/2∥∥∥∥∥
Lp

.

Because 2 ≤ p < ∞, we can continue by∥∥∥∥∥
(∫ T

0

∫ t

0

n∑
i=1

χ(ρi−1,ρi ](u)
∣∣νρi−1

u

∣∣2 dudt

)1/2∥∥∥∥∥
Lp

≤
(∫ T

0

∥∥∥∥∥
(∫ t

0

n∑
i=1

χ(ρi−1,ρi ](u)
∣∣νρi−1

u

∣∣2 du

)1/2∥∥∥∥∥
2

Lp

dt

)1/2

≤ c(4)

(∫ T

0

∥∥∥∥∥
∫ t

0

n∑
i=1

χ(ρi−1,ρi ](u)ν
ρi−1
u dWu

∥∥∥∥∥
2

Lp

dt

)1/2

= c(4)

(∫ T

0

∥∥Ct

(
g(Y1), τ

)∥∥2
Lp

dt

)1/2

.

Combining these estimates, we achieve∥∥CT

(
g(Y1), τ

)∥∥2
Lp

≤ 2c2
(4)c

2
(A.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
2

Lp

+ 2c4
(4)c

2
(A.1)

∫ T

0

∥∥Ct

(
g(Y1), τ

)∥∥2
Lp

dt.

Gronwall’s lemma thus implies that∥∥CT

(
g(Y1), τ

)∥∥
Lp

(16)
≤ √

2c(4)c(A.1)e
c4
(4)

c2
(A.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

.
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Finally, by T ↑ 1 we obtain the upper bound in Theorem 5.1. �

REMARK 5.4. Our proof requires the assumption that the stopping time τi

is Fτi−1 -measurable so that ρi is Fρi−1 -measurable. For example, we need that the
field (μρ(t, u))t,u∈[0,1] has the property that μρ(t, u) is Fu-measurable. Moreover,
in step (b) we used EFρi−1

∫ ρi
ρi−1

|mρi−1 |2 dt = ∫ ρi
ρi−1

|mρi−1 |2 dt .

Approximation with adapted time-nets in Lp . We recall that the nets τ θ
n are

given by

tθi,n = 1 −
(

1 − i

n

)1/θ

.

The following result extends [14], Theorem 3.2, from the one-dimensional
L2-setting, but see also [20], Theorem 1, for a related d-dimensional L2-result.

THEOREM 5.5. For 2 ≤ p < ∞, 0 < θ ≤ 1 and g(Y1) ∈ Lp , the following
assertions are equivalent:

(i) ‖DY,θ
1 g(Y1)‖Lp < ∞.

(ii) supτ∈T rand
‖C1(g(Y1),τ )‖Lp

‖√|τ |θ‖L∞
< ∞.

(iii) supn≥1
√

n‖C1(g(Y1), τ
θ
n )‖Lp < ∞.

In particular, for all τ ∈ T rand,∥∥C1
(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)

∥∥√|τ |θDY,θ
1 g(Y1)

∥∥
Lp

,(17)

where c(5.1) ≥ 1 is the constant from Theorem 5.1.

For the proof, we need the following lemma that extends [14], Lemma 3.8.

LEMMA 5.6. Let 0 < θ ≤ 1 and 0 < p < ∞. Assume that (φt )t∈[0,1) is a
measurable process where all paths are continuous and nonnegative. Then the
following assertions are equivalent:

(i) There exists a constant c1 > 0 such that∥∥∥∥∥
n∑

i=1

∫ ti

ti−1

(ti − u)φu du

∥∥∥∥∥
Lp

≤ c1 sup
1≤i≤n

ti − ti−1

(1 − ti−1)1−θ

for all deterministic time-nets 0 = t0 < t1 < · · · < tn = 1.
(ii) There exists a constant c2 > 0 such that, for all n = 1,2, . . . ,∥∥∥∥∥

n∑
i=1

∫ tθi,n

tθi−1,n

(
tθi,n − u

)
φu du

∥∥∥∥∥
Lp

≤ c2

n
.
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(iii) There exists a constant c3 > 0 such that∥∥∥∥∫ 1

0
(1 − u)1−θφu du

∥∥∥∥
Lp

≤ c3.

PROOF. The implications (iii) ⇒ (i) ⇒ (ii) are similar to [14], Lemma 3.8.
For (ii) ⇒ (iii), take a sequence of deterministic nets τn = (tni )ni=0 with 0 = tn0 <

tn1 < · · · < tnn = 1 such that

∣∣τn
∣∣ ≤ α

n
and sup

1≤i≤n

(1 − tni−1)
1−θ

tni − tni−1
≤ βn

for some α,β > 0 independent from n [see, e.g., (11) and (13)]. For a fixed 0 <

T < 1, we define

Nn
T := {

i ∈ {1, . . . , n} : tni−1 < T
}

and observe that ∫ T

0
(1 − u)1−θφu du

≤ lim inf
n→∞

∑
i∈Nn

T

(
1 − tni−1

)1−θ
φtni−1

(
tni − tni−1

)
for all ω ∈ � because φ is continuous on [0, T ]. Hence,∥∥∥∥∫ T

0
(1 − u)1−θφu du

∥∥∥∥
Lp

≤
∥∥∥∥lim inf

n→∞

[
sup

1≤i≤n

(1 − tni−1)
1−θ

tni − tni−1

][ ∑
i∈Nn

T

(
tni − tni−1

)2
φtni−1

]∥∥∥∥
Lp

≤ β

∥∥∥∥lim inf
n→∞ n

[ ∑
i∈Nn

T

(
tni − tni−1

)2
φtni−1

]∥∥∥∥
Lp

.

Noticing that (tni − tni−1)
2 = 2

∫ tni
tni−1

(tni − u)du we continue with

β

∥∥∥∥lim inf
n→∞ n

[
2

∑
i∈Nn

T

∫ tni

tni−1

(
tni − u

)
duφtni−1

]∥∥∥∥
Lp

≤ β

∥∥∥∥lim inf
n→∞ n

[
2

∑
i∈Nn

T

∫ tni

tni−1

(
tni − u

)
φu du

+ ∑
i∈Nn

T

sup
tni−1≤u<tni

∣∣φu − φtni−1

∣∣(tni − tni−1
)2

]∥∥∥∥
Lp
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≤ β

∥∥∥∥lim inf
n→∞

[
2n

∑
i∈Nn

T

∫ tni

tni−1

(
tni − u

)
φu du

+ α sup
i∈Nn

T

sup
tni−1≤u<tni

∣∣φu − φtni−1

∣∣]∥∥∥∥
Lp

≤ β

∥∥∥∥2 lim inf
n→∞ n

∑
i∈Nn

T

∫ tni

tni−1

(
tni − u

)
φu du

+ α lim sup
n→∞

sup
i∈Nn

T

sup
tni−1≤u<tni

∣∣φu − φtni−1

∣∣∥∥∥∥
Lp

= 2β

∥∥∥∥lim inf
n→∞ n

∑
i∈Nn

T

∫ tni

tni−1

(
tni − u

)
φu du

∥∥∥∥
Lp

≤ 2β lim inf
n→∞ n

∥∥∥∥ n∑
i=1

∫ tni

tni−1

(
tni − u

)
φu du

∥∥∥∥
Lp

,

where we used Fatou’s lemma. Finally, by monotone convergence this implies that∥∥∥∥∫ 1

0
(1 − u)1−θφu du

∥∥∥∥
Lp

≤ 2β lim inf
n→∞ n

∥∥∥∥∥
n∑

i=1

∫ tni

tni−1

(
tni − u

)
φu du

∥∥∥∥∥
Lp

.
�

PROOF OF THEOREM 5.5. First, we employ Theorem 5.1 to confirm equa-
tion (17) by∥∥C1

(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≤ c(5.1)

∥∥∥∥∥√|τ |θ
(

n∑
i=1

∫ τi

τi−1

(1 − t)1−θH 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

.

Part (i) ⇒ (ii) follows from (17) and part (ii) ⇒ (iii) from |τ θ
n |θ ≤ 1

θn
[see (12)].

To show that (iii) ⇒ (i), we apply Theorem 5.1 and (14) to see that

c√
n

≥ ∥∥C1
(
g(Y1), τ

θ
n

)∥∥
Lp

≥ 1

c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ tθi,n

tθi−1,n

(
tθi,n − t

)
H 2

G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

.

Lemma 5.6 completes the proof. �
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Approximation with equidistant time-nets in Lp . Here, we extend the L2-re-
sults [7], Theorem 2.3, and [14], Theorem 3.5 for q = ∞, to the Lp-case, as
well as [28], Theorem 1.2, which concerned deterministic time-nets and the one-
dimensional Brownian motion, to random time-nets and the geometric Brownian
motion.

THEOREM 5.7. For 2 ≤ p < ∞, 0 < θ < 1 and g(Y1) ∈ Lp , the following
assertions are equivalent:

(i) f ∈ B
θ
p,∞.

(ii) supτ∈T rand
‖C1(g(Y1);τ)‖Lp

‖|τ |θ/2‖L∞
< ∞.

(iii) supn=1,2,... n
θ/2‖C1(g(Y1); τn)‖Lp < ∞, where τn = (i/n)ni=0 are the

equidistant time-nets.

In particular, for 1
p

= 1
q

+ 1
r

with p ≤ q, r ≤ ∞ and for all τ ∈ T rand,

∥∥C1
(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)

(∫ 1

0

∥∥√
ψ(t)

∥∥2
Lq

(1 − t)θ−2 dt

)1/2

(18) × sup
t∈[0,1)

(1 − t)1−(θ/2)
∥∥HG(t, Yt )

∥∥
Lr

,

where c(5.1) ≥ 1 is the constant from Theorem 5.1 and

ψ(t,ω) :=
(

max
i=1,...,n

∣∣τi(ω) − τi−1(ω)
∣∣) ∧ (1 − t).

REMARK 5.8. The order for the equidistant nets can also be obtained from
Theorem 5.5 under the condition ‖DY,θ

1 g(Y1)‖Lp < ∞ because |(i/n)ni=0|θ = n−θ .

PROOF OF THEOREM 5.7. To verify (18), we use Theorem 5.1 and derive that

∥∥C1
(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ τi

τi−1

(τi − t)H 2
G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≤ c(5.1)

∥∥∥∥(∫ 1

0
ψ(t)H 2

G(t, Yt ) dt

)1/2∥∥∥∥
Lp

≤ c(5.1)

(∫ 1

0

∥∥√
ψ(t)HG(t, Yt )

∥∥2
Lp

dt

)1/2

≤ c(5.1)

(∫ 1

0

∥∥√
ψ(t)

∥∥2
Lq

∥∥HG(t, Yt )
∥∥2
Lr

dt

)1/2

≤ c(5.1)

(∫ 1

0

∥∥√
ψ(t)

∥∥2
Lq

(1 − t)θ−2 dt

)1/2

× sup
t∈[0,1)

(1 − t)1−(θ/2)
∥∥HG(t, Yt )

∥∥
Lr

.
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Part (i) ⇒ (ii): we first observe that for

|τ |(ω) = max
i=1,...,n

∣∣τi(ω) − τi−1(ω)
∣∣

we can compute (for q = ∞)∫ 1

0

∥∥√
ψ(t)

∥∥2
L∞(1 − t)θ−2 dt

= ‖|τ |‖L∞

∫ 1−‖|τ |‖L∞

0
(1 − t)θ−2 dt +

∫ 1

1−‖|τ |‖L∞
(1 − t)θ−1 dt

= ‖|τ |‖L∞
1

1 − θ

(‖|τ |‖θ−1
L∞ − 1

) + 1

θ
‖|τ |‖θ

L∞

≤ 1

θ(1 − θ)
‖|τ |‖θ

L∞,

so that letting q = ∞ and r = p in (18) we obtain∥∥C1
(
g(Y1), τ

)∥∥
Lp

≤ c(5.1)√
θ(1 − θ)

‖|τ |‖θ/2
L∞ sup

t∈[0,1)

(1 − t)1−(θ/2)
∥∥HG(t, Yt )

∥∥
Lp

.

It remains to check that

sup
t∈[0,1)

(1 − t)1−(θ/2)
∥∥HG(t, Yt )

∥∥
Lp

< ∞,

whenever f ∈ B
θ
p,∞. This follows from Theorem 3.1, where we additionally

use (10) and the a priori estimate

sup
t∈[0,1)

(1 − t)1/2∥∥∇F(t,Wt)
∥∥
Lp

< ∞(19)

from Lemma A.3 if Y is the geometric Brownian motion.
The implication (ii) ⇒ (iii) is trivial.
Part (iii) ⇒ (i): employing Theorem 5.1 and (14), we achieve

cn−θ/2 ≥ ∥∥C1
(
g(Y1), τn

)∥∥
Lp

≥ 1

c(5.1)

∥∥∥∥∥
(

n∑
i=1

∫ i/n

(i−1)/n

(
i

n
− t

)
H 2

G(t, Yt ) dt

)1/2∥∥∥∥∥
Lp

≥ 1

c(5.1)

∥∥∥∥(∫ 1

(n−1)/n
(1 − t)H 2

G(t, Yt ) dt

)1/2∥∥∥∥
Lp

≥ 1

c(5.1)

∥∥∥∥(∫ 1

(n−1)/n
(1 − t)H 2

G

(
1 − 1

n
,Y1−(1/n)

)
dt

)1/2∥∥∥∥
Lp

= 1

c(5.1)

√
1

2

1

n

∥∥∥∥HG

(
1 − 1

n
,Y1−(1/n)

)∥∥∥∥
Lp

,
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where we use in the last inequality the martingale property of the processes((
σkkσll

∂2G

∂yk ∂yl

)
(t, Yt )

)
t∈[0,1)

.

The estimate above means that∥∥∥∥HG

(
1 − 1

n
,Y1−(1/n)

)∥∥∥∥
Lp

≤ √
2cc(5.1)n

1−(θ/2)

for all n = 2,3, . . . . Consequently,∥∥HG(t, Yt )
∥∥
Lp

≤ 21−(θ/2)
√

2cc(5.1)(1 − t)(θ/2)−1,

which follows from the monotonicity of ‖HG(t, Yt )‖Lp . Theorem 3.1 completes
the proof, where we use (19) again. �

6. Further extensions. We see different open questions and possible exten-
sions, and briefly indicate some of them here: first, one should clarify whether
Theorem 5.1 holds true without the additional assumption on the stopping times
that τi is Fτi−1 -measurable. Second, the investigation to what extend the results of
this paper can be extended to path dependent terminal conditions g(Yr1, . . . , YrL)

and their limits would possibly require new techniques and yield to a deeper insight
into the approximation problem (cf. [9]). Finally, an extension to more general dif-
fusions would be of interest, but might require a modification of the Besov spaces
(see [7]) and a comparison of these modified spaces to the spaces we have used
in this paper. As described in Remark 3.5, Proposition A.4 below, which does not
relay on semi-groups, might be useful in this respect.

APPENDIX

A key step in the proof of Theorem 5.1 is the following-known formulation of
the Burkholder–Davis–Gundy inequalities.

LEMMA A.1. Assume that μ : [0,1]× [0,1]×� →R
d×d satisfies the follow-

ing assumptions:

(i) μ : [0,1] × [0, u] × � → R
d×d is B([0,1]) × B([0, u]) × Fu-measurable

for all u ∈ [0,1].
(ii)

∫ 1
0

∫ 1
0 E|μ(t, u)|2 dudt < ∞, where

∫ 1
0 E|μ(t, u)|2 du < ∞ for all t ∈

[0,1].
(iii) (

∫ 1
0 μ(t, u) dWu)t∈[0,1] is a measurable modification.

Then, for 1 < p < ∞, there exists a constant c(A.1) ≥ 1 depending only on p such
that∥∥∥∥(∫ 1

0

∣∣∣∣∫ 1

0
μ(t, u) dWu

∣∣∣∣2 dt

)1/2∥∥∥∥
Lp

∼c(A.1)

∥∥∥∥(∫ 1

0

∫ 1

0

∣∣μ(t, u)
∣∣2 dudt

)1/2∥∥∥∥
Lp

.
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PROOF. For the convenience of the reader, we sketch the proof. By a further
modification, we can assume that ((

∫ 1
0 μ(t, u) dWu)(ω))t∈[0,1] ∈ L2[0,1] for all

ω ∈ � because of assumption (ii). Assume that (hn)
∞
n=0 is the orthonormal basis

of Haar-functions in L2[0,1] and that μk(t, u) is the kth row of μ(t, u). Letting

Ln,k
u :=

∫ 1

0
hn(t)μk(t, u) dt

and using a stochastic Fubini argument we see that∥∥∥∥(∫ 1

0

∣∣∣∣∫ 1

0
μ(t, u) dWu

∣∣∣∣2 dt

)1/2∥∥∥∥
Lp

=
∥∥∥∥∥
( ∞∑

n=0

d∑
k=1

∣∣∣∣∫ 1

0
Ln,k

u dWu

∣∣∣∣2
)1/2∥∥∥∥∥

Lp

.

Using the Burkholder–Davis–Gundy inequalities (4), we obtain that∥∥∥∥(∫ 1

0

∣∣∣∣∫ 1

0
μ(t, u) dWu

∣∣∣∣2 dt

)1/2∥∥∥∥
Lp

∼c(4)

∥∥∥∥∥
( ∞∑

n=0

d∑
k=1

∫ 1

0

∣∣Ln,k
u

∣∣2 du

)1/2∥∥∥∥∥
Lp

=
∥∥∥∥∥
(

d∑
k=1

∫ 1

0

∫ 1

0

∣∣μk(t, u)
∣∣2 dt du

)1/2∥∥∥∥∥
Lp

=
∥∥∥∥(∫ 1

0

∫ 1

0

∣∣μ(t, u)
∣∣2 dt du

)1/2∥∥∥∥
Lp

. �

LEMMA A.2. Let 1 < p < ∞, g(Y1) ∈ Lp and 0 < t < 1, and let a =
(a1, . . . , ad) be a multi-index of differentiation. Assume that G is given by (1).
Then ∥∥∥ sup

0≤s≤t

∣∣Da
yG(s,Ys)

∣∣∥∥∥
Lq

< ∞ for 0 < q < q(p, t) := p − 1 + t

t
.

SKETCH OF THE PROOF. We use the notation (8) and (9) and consider first
the case that Y is the Brownian motion. A simple direct computation gives the
hyper-contraction property∣∣Da

xF (t, x)
∣∣ ≤ C(q, t, a)‖f ‖Lp(Rd ,γd )e

|x|2/(2tq)

for 0 < t < 1 and 0 < q < q(p, t). Moreover, the identity

Da
xF (s, x) = EDa

xF (t, x + Wt−s)

for 0 ≤ s ≤ t < 1 directly implies that (Da
s F (s,Ws))s∈[0,t] is an Lq -martingale.

Therefore, we can exploit Doob’s maximal inequality for 1 < q < q(p, t) to con-
clude

E sup
0≤s≤t

∣∣Da
xF (s,Ws)

∣∣q < ∞ for all 0 < q < q(p, t).(20)
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The case of the geometric Brownian motion can be deduced from the case of the
Brownian motion. Using the notation (8) and (9) to switch between the Brownian
motion and the geometric Brownian motion, we get for 0 ≤ t < 1 that

Da
yG(t, Yt ) =

[
d∏

k=1

(
Y k

t

)−ak

] ∑
0≤b≤a

κb
aDb

xF (t,Wt),

where 0 ≤ b ≤ a is the coordinate-wise ordering and κb
a are fixed coefficients.

Using (20), the integrability properties of the geometric Brownian motion and
Hölder’s inequality, we conclude that

E sup
0≤s≤t

∣∣Da
yG(s,Ys)

∣∣q < ∞ for all 0 < q < q(p, t). �

The following estimates are known for more general processes than the Brow-
nian motion (see [16] and [9], Remark 3). In our case, they can be easily ver-
ified by using the martingale property of the processes (∇F(t,Wt))t∈[0,1) and
(D2F(t,Wt))t∈[0,1).

LEMMA A.3. Let 2 ≤ p < ∞. Assume that f :Rd → R is measurable with
f ∈ Lp(Rd, γd) and that F : [0,1] × R

d → R is given by F(t, x) := Ef (x +
W1−t ). Then there exists a constant c(A.3) > 0 depending only on p such that,
for all 0 ≤ t < 1,

(i) ‖∇F(t,Wt)‖Lp ≤ c(A.3)(1 − t)−1/2‖f (W1) − F(t,Wt)‖Lp ,
(ii) ‖D2F(t,Wt)‖Lp ≤ c(A.3)(1 − t)−1‖f (W1) − F(t,Wt)‖Lp .

Next, we state some Hardy type inequalities we have used in the paper.

PROPOSITION A.4. Let 0 < θ < 1, 2 ≤ q ≤ ∞ and let dk : [0,1) → [0,∞),
k = 0,1,2, be measurable functions. Assume that

1

α
(1 − t)k/2 dk(t) ≤ d0(t) ≤ α

(∫ 1

t

[
d1(s)

]2
ds

)1/2

for t ∈ [0,1)

and for k = 1,2, and that

d1(t) ≤ A + α

(∫ t

0

[
d2(u)

]2
du

)1/2

for t ∈ [0,1)

for some A ≥ 0 and α > 0. Then∥∥(1 − t)−θ/2 d0(t)
∥∥
Lq([0,1),(dt)/(1−t))

∼c(A.4)

∥∥(1 − t)(1−θ)/2 d1(t)
∥∥
Lq([0,1),(dt)/(1−t))
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and ∥∥(1 − t)(2−θ)/2 d2(t)
∥∥
Lq([0,1),(dt)/(1−t))

≤ c(A.4)

∥∥(1 − t)−θ/2 d0(t)
∥∥
Lq([0,1),(dt)/(1−t))

≤ c2
(A.4)

[
A + ∥∥(1 − t)(2−θ)/2 d2(t)

∥∥
Lq([0,1),(dt)/(1−t))

]
,

where c(A.4) ≥ 1 depends at most on (α, θ, q). If the functions d1 and d2 are non-
decreasing, then the inequalities are true for 1 ≤ q < 2 as well.

From Proposition A.4, it follows that

A + ∥∥(1 − t)(k−θ)/2 dk(t)
∥∥
Lq

∼c(21)
A + ∥∥(1 − t)(l−θ)/2 dl(t)

∥∥
Lq

(21)

for Lq = Lq([0,1), dt
1−t

), k, l = 0,1,2 and c(21) := [1 + c(A.4)]2. To prove Propo-
sition A.4, we need:

LEMMA A.5. Let 0 < θ < 1, 2 ≤ q ≤ ∞ and let φ : [0,1) → [0,∞) be a
measurable function. Then there is a constant c(A.5) > 0, depending at most on θ ,
such that ∥∥∥∥(1 − t)(1−θ)/2

(∫ t

0
φ(u)2 du

)1/2∥∥∥∥
Lq([0,1),(dt)/(1−t))

(22)
≤ c(A.5)

∥∥(1 − t)1−(θ/2)φ(t)
∥∥
Lq([0,1),(dt)/(1−t)).

Moreover, if φ is nondecreasing, the inequality is true for 1 ≤ q < 2 as well.

PROOF. (a) For 2 ≤ q ≤ ∞, we can use Hardy’s inequality (see, e.g., [1],
Theorem 3.3.9): for −∞ < λ < 1 and 1 ≤ r < ∞, and a measurable ψ : (0,∞) →
[0,∞),(∫ ∞

0

[
t1−λ

∫ ∞
t

ψ(s)
ds

s

]r dt

t

)1/r

≤ 1

1 − λ

(∫ ∞
0

[
t1−λψ(t)

]r dt

t

)1/r

and the same with the supremum norm if r = ∞. With the notation r := q
2 , g(t) =

[φ(t)]2, and λ = θ , we compute, in the case 2 ≤ q < ∞,∥∥∥∥(1 − t)(1−θ)/2
(∫ t

0
φ(u)2 du

)1/2∥∥∥∥2

Lq([0,1),(dt)/(1−t))

=
(∫ 1

0

[
(1 − t)1−θ

∫ t

0
g(u)du

]r dt

1 − t

)1/r

=
(∫ ∞

0

[
s1−θ

∫ ∞
s

h(v) dv

]r ds

s

)1/r

,
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where h(v) = g(1−v)χ(0,1](v). Now we use Hardy’s inequality for ψ(v) = vh(v)

and continue with(∫ ∞
0

[
s1−θ

∫ ∞
s

ψ(v)
dv

v

]r ds

s

)1/r

≤ 1

1 − θ

(∫ ∞
0

[
s1−θψ(s)

]r ds

s

)1/r

= 1

1 − θ

(∫ ∞
0

[
s2−θh(s)

]r ds

s

)1/r

= 1

1 − θ

∥∥(1 − t)1−(θ/2)φ(t)
∥∥2
Lq([0,1),(dt)/(1−t))

and the proof is complete for 2 ≤ q < ∞. The case q = ∞ is analogous.
(b) For 1 ≤ q < 2, we use a different argument. First, we define r := 2

q
so that

1 < r ≤ 2. For 0 < T < 1, we compute∫ 1

0
(1 − t)(1−θ)/r

(∫ t

0
χ[T ,1)(u) du

)1/r dt

1 − t

=
∫ 1

0
(1 − t)(1−θ)/r (t − T )

1/r
+

dt

1 − t

≤ (1 − T )1/r
∫ 1

T
(1 − t)((1−θ)/r)−1 dt

= c

∫ 1

T
(1 − t)(2−θ)/rχ[T ,1)(t)

dt

1 − t

with c := 2−θ
1−θ

. This proves the desired inequality for ψ(T )(t) := χ[T ,1)(t). Next,
we define ψ := φq so that ψr = φ2. By assumption, φ is nondecreasing, and so
is ψ , too. Now, we can approximate ψ from below by a sum of functions like
ψ(T ): for each integer n ≥ 1, we find αn

k ≥ 0, k = 0, . . . ,2n − 1 and 0 = tn0 < tn1 <

· · · < tn2n−1 < tn2n = 1 such that

ψn(t) :=
2n−1∑
k=0

αn
kψ(tnk )(t) → ψ(t)

for almost all t ∈ [0,1) and ψn−1 ≤ ψn for all n ≥ 2. Then, since r ≥ 1,∫ 1

0
(1 − t)(1−θ)/r

(∫ t

0
ψn(u)r du

)1/r dt

1 − t

≤
∫ 1

0
(1 − t)(1−θ)/r

2n−1∑
k=0

αn
k

(∫ t

0
ψ(tnk )(u) du

)1/r dt

1 − t
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≤
2n−1∑
k=0

αn
k c

∫ 1

0
(1 − t)(2−θ)/rψ(tnk )(t)

dt

1 − t

= c

∫ 1

0
(1 − t)(2−θ)/rψn(t)

dt

1 − t

and the claim follows by monotone convergence. �

PROOF OF PROPOSITION A.4. (a) Our assumptions imply for all 1 ≤ q ≤ ∞
that∥∥(1 − t)(1−θ)/2 d1(t)

∥∥
Lq([0,1),(dt)/(1−t)) ≤ α

∥∥(1 − t)−θ/2 d0(t)
∥∥
Lq([0,1),(dt)/(1−t))

and∥∥(1 − t)(2−θ)/2 d2(t)
∥∥
Lq([0,1),(dt)/(1−t)) ≤ α

∥∥(1 − t)−θ/2 d0(t)
∥∥
Lq([0,1),(dt)/(1−t)).

(b) Next, we observe that∥∥(1 − t)−θ/2 d0(t)
∥∥
Lq([0,1),(dt)/(1−t))

≤ α

∥∥∥∥(1 − t)(1−θ)/2
(

1

1 − t

∫ 1

t

[
d1(s)

]2
ds

)1/2∥∥∥∥
Lq([0,1),(dt)/(1−t))

≤ αθ−max{1/2,1/q}∥∥(1 − t)(1−θ)/2 d1(t)
∥∥
Lq([0,1),(dt)/(1−t)),

where we used [14], formula (14) (the condition that ψ in [14] is continuous in the
case 1 ≤ q < 2 is not necessary).

(c) To prove the remaining inequality, we continue from (b) with Lemma A.5 to∥∥(1 − t)(1−θ)/2 d1(t)
∥∥
Lq([0,1),(dt)/(1−t))

≤
∥∥∥∥(1 − t)(1−θ)/2

[
A + α

(∫ t

0
d2(u) du

)1/2]∥∥∥∥
Lq([0,1),(dt)/(1−t))

≤ A
∥∥(1 − t)(1−θ)/2∥∥

Lq([0,1),(dt)/(1−t))

+ αc(A.5)

∥∥(1 − t)1−(θ/2) d2(t)
∥∥
Lq([0,1),(dt)/(1−t)). �
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