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The aim of this paper is to prove the following result. Consider the critical
Ising model on the rescaled grid aZ2, then the renormalized magnetization
field

�a := a15/8 ∑
x∈aZ2

σxδx,

seen as a random distribution (i.e., generalized function) on the plane, has
a unique scaling limit as the mesh size a ↘ 0. The limiting field is confor-
mally covariant.

1. Introduction.

1.1. Overview. The Ising model, introduced by Lenz in 1920 to describe fer-
romagnetism, is one the most studied models of statistical mechanics. Its two-
dimensional version has played a special role in the theory of critical phenomena
since Peierls famously proved, in 1936, that it undergoes a phase transition, and
Onsager presented, in 1944, his derivation of the free energy [44]. The phase tran-
sition of the two-dimensional Ising model has been extensively studied by both
physicists and mathematicians, becoming a prototypical example and a test case
for developing ideas and techniques and for checking hypotheses. Its analysis has
helped to test one of the fundamental beliefs of statistical mechanics that a physi-
cal system near the critical point of a continuous phase transition is characterized
by a single length scale, the correlation length, which provides the natural length
scale for the system, and that the correlation length diverges at the critical point.
Furthermore, close to criticality, this divergence is assumed to be solely responsi-
ble for singularities in the thermodynamic functions; it also implies that the critical
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system has no characteristic length and is therefore invariant under scale transfor-
mations. This in turn suggests that all thermodynamic functions at criticality are
homogeneous functions, and predicts the appearance of power laws. It also means
that it should be possible to rescale the critical system appropriately and obtain a
continuum model (the continuum scaling limit) which may have more symmetries
(and be therefore easier to study) than the original discrete model, defined on a
lattice. This idea is at the heart of the renormalization group philosophy.

Indeed, thanks to the work of Polyakov [46] and others [7, 8], it was under-
stood by physicists since the early seventies that, once an appropriate continuum
scaling limit is taken, critical statistical mechanical models should acquire confor-
mal invariance, as long as the discrete models have “enough” rotation invariance.
This property gives important information, enabling the determination of two- and
three-point correlation functions at criticality, when they are nonvanishing. Be-
cause the conformal group is in general a finite dimensional Lie group, the result-
ing constraints are limited in number; however, the situation becomes particularly
interesting in two dimensions, since there every analytic function f defines a con-
formal transformation, provided that f ′ is nonvanishing. As a consequence, the
conformal group in two dimensions is infinite-dimensional.

After this observation was made, a large number of critical problems in two
dimensions were analyzed using conformal methods, which were applied, among
others, to Ising and Potts models, Brownian motion, the self-avoiding walk, per-
colation and diffusion limited aggregation. The large body of knowledge and
techniques that resulted, starting with the work of Belavin, Polyakov and Zamolod-
chikov [7, 8] in the early eighties, goes under the name of Conformal Field Theory
(CFT). In two dimensions, one of the main goals of CFT and its most important
application to statistical mechanics is a complete classification of all universality
classes via irreducible representations of the infinite-dimensional Virasoro algebra
(see, e.g., [21]).

CFT has proved very powerful, but it also has limitations. First of all, the theory
deals primarily with correlation functions of local (or quasi-local) operators, and is
therefore not always the best tool to investigate global quantities. Secondly, given
some critical lattice model, there is no way, within the theory itself, of deciding
to which CFT it corresponds. A third limitation, at least from a mathematician’s
perspective, is its lack of mathematical rigor.

Quite remarkably, some of the most recent and significant developments in the
area of two-dimensional critical phenomena have emerged in the mathematics lit-
erature, using new mathematical tools that are free from at least some of the lim-
itations of CFT. These tools have permitted to rigorously establish the conformal
invariance of several models and prove various results/conjectures that had first
appeared in the physics literature, as well as novel results that have shed new light
on the theory of two-dimensional critical phenomena.

In 1999, Aizenman and Burchard [6], based on earlier work of Aizenman [4, 5],
proposed a framework for proving tightness, and thus the existence of subsequen-
tial scaling limits for the distribution of random paths in the scaling limit. Their
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results found applications in much of the subsequent work on scaling limits of
interfaces.

In 2000 and 2001, Kenyon [37, 38] proved conformal invariance of the two-
dimensional dimer lattice model (or domino tiling model) in the scaling limit, and
related the latter to the Gaussian free field.

A very significant breakthrough was the introduction by Schramm [48] of
the Stochastic (Schramm–)Loewner Evolution (SLE) and its subsequent analysis
and application to the scaling limit problem for several models, most notably by
Lawler, Schramm and Werner [39], and by Smirnov [53] (see also [14]). The sub-
sequent introduction of the Conformal Loop Ensembles (CLEs) [12, 13, 50, 51,
55], which are collections of SLE-type, closed curves, provided an additional tool
to analyze the scaling limit geometry of critical models.

Substantial progress in the rigorous analysis of the two-dimensional Ising model
at criticality was made by Smirnov [54] with the introduction and scaling limit
analysis of the “fermionic observables,” also known as “discrete holomorphic ob-
servables” or “holomorphic fermions.” (Similar objects had been considered by
Mercat [42] and had appeared in the physics literature—see [32, 47].) These have
proved extremely useful in studying the Ising model in finite geometries with
boundary conditions and in establishing the conformal invariance of the scaling
limit of various quantities, including the energy density [30, 31] and spin corre-
lation functions [18]. (An independent derivation of the critical Ising correlation
functions in the plane was obtained in [23].)

The result of Chelkak, Hongler and Izyurov [18] on the scaling limit of spin
correlation functions is the main ingredient in our second proof of the uniqueness
of the scaling limit of the Ising magnetization, presented in Section 3, and it is also
used in our first proof, presented in Section 2.

Our second proof essentially consists in showing the existence of the scaling
limit of the characteristic function of the discrete field. Our first derivation is very
different in spirit from the second; it is more geometric in nature and is based
on the RSW-type result for FK-Ising percolation of Duminil-Copin, Hongler and
Nolin [24], and on scaling limit results for FK-Ising percolation [17, 34–36]. This
is in fact a conditional proof of uniqueness since it relies on a scaling limit result
that, although very plausible, does not follow immediately from known results (see
Section 2.2.2 for a detailed explanation).

Earlier influential results on the scaling limit of the two-dimensional Ising
model that have been a source of inspiration for the present paper include those
of Abraham [1, 2], Abraham and Reed [3], De Coninck [19], De Coninck and
Newman [20] and Palmer [45].

1.2. Definitions and main results. Consider the Ising model on the rescaled
grid aZ2 at the critical temperature βc = βc(Z2), with zero external magnetic field.
(We refer, e.g., to [29] for a nice introduction to the Ising model.) We will be
interested in the following object.
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DEFINITION 1.1. The renormalized magnetization field �a , a random distri-
bution on the plane, is

�a := �a

∑
x∈aZ2

σxδx,

where �a is a well-chosen renormalization factor. (In fact, we will use a slightly
modified version; see Definition 1.10.)

In most of the rest of the paper, we will fix4 �a := a15/8.

In the scaling limit, the magnetization field is expected to converge to a Eu-
clidean random field corresponding to the simplest reflection-positive conformal
field theory [7, 8] (see also [52]). Our main theorem can be stated as follows.

THEOREM 1.2 (Scaling limit). The magnetization field �a converges in law
as the mesh size a ↘ 0 to a limiting random distribution �∞. The convergence
in law holds in the Sobolev space H−3 under the topology given by ‖ · ‖H−3 . (See
Appendix A.)

In fact, our result holds for any bounded simply connected domain � ⊂ C with
a smooth boundary.5 More precisely, consider a simply connected domain � in
the plane which contains the origin, and let �a denote its approximation by the
grid aZ2 of mesh size a, that is, �a := �∩ aZ2. (The approximation might not be
simply connected anymore, so in this case we keep only the connected component
of the origin.) Consider the Ising model in �a with + boundary conditions, at the
critical temperature βc (we will also analyze the case of free boundary conditions).
The above definition of (renormalized) magnetization field easily extends to this
setting:

�a
�

(= �a) := �a

∑
x∈�a

σxδx.

THEOREM 1.3. Let � be a bounded simply connected domain of the plane
with a smooth boundary. Consider the critical Ising model with + or free boundary
conditions in �a . Then the magnetization field �a

� = �a converges in law as the
mesh size a ↘ 0 to a limiting random distribution �∞

� = �∞. The convergence
in law holds in the Sobolev space H−3 = H−3(�) under the topology given by
‖ · ‖H−3 . (See Appendix A.)

4This particular choice assumes Wu’s result [41, 57]. Note that this choice may be debatable. For
example, the authors of [18] do not assume Wu’s result. Without such an assumption, our results
remain valid with �a defined more implicitly. See Remark 1.5 and Section 4.

5In principle, the results do not require the domain to be simply connected and have a smooth
boundary, but these assumptions allow us to directly use various results from the literature that so far
were proved only in the simply connected case with smooth boundary.
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We now explain how to choose the scaling factor �a . For any bounded do-
main �, the magnetization Ma := ∑

x∈�a
σx , where σx denotes the Ising spin

variable at x, has variance

Var
[
Ma]= ∑

x,y∈�2
a

E[σxσy].

It can be shown (see Proposition B.1 in Appendix B) that6 as a ↘ 0,

Var
[
Ma]	 a−4ECa

[σ0aσ(
√

2+√
2i)a

],

where Ca denotes the square grid aZ2 and 0a and (
√

2 + √
2i)a stand for lattice

approximations of the points 0,
√

2 + √
2i ∈ C.

Following the notation of [18], let us introduce the quantity

�(a) := ECa
[σ0aσ(

√
2+√

2i)a
].(1.1)

From the above discussion, it is thus natural to scale our magnetization field by
a scaling factor of order a2�(a)−1/2. In most of the rest of this paper (until Sec-
tion 4), we will assume the following celebrated result by Wu.

THEOREM 1.4 (Wu, see [41, 57]). There exists an explicit constant c > 0 such
that as a ↘ 0

�(a) ∼ ca1/4.(1.2)

Assuming this asymptotic result leads to the choice

�a := a15/8(1.3)

for the scaling factor of the magnetization field.

REMARK 1.5. We believe that it is reasonable to assume Wu’s result since it
is considered to be among the rigorous results obtained in the theoretical physics
literature (yet, according to some experts, although there is no theoretical gap,
some details need to be filled in). Nevertheless, this choice may be debatable.
In [18], for example, the authors decided to state their result without assuming
Wu’s result. In our case, if one avoids assuming Wu’s asymptotic, all our results
remain valid by replacing the above formula for �a by the more cumbersome
�a := a2�(a)−1/2; see Section 4.

6In this paper, f (a) 	 g(a) as a ↘ 0 means that f (a)/g(a) is bounded away from 0 and ∞ while
f (a) ∼ g(a) means that f (a)/g(a) → 1 as a ↘ 0.



ISING FIELD I: UNIQUE LIMIT 533

The following corollary on the renormalized magnetization random variable fol-
lows easily from Theorem 1.3 when taking �a := a15/8. We state it in a similar
way as one would state a central limit theorem. Indeed, dealing with a sum of ran-
dom variables, the result below has a classical flavor; its interest lies in the strong
dependence of the random variables being added which leads to a nondegenerate
non-Gaussian limit. (Note that the choices of the unit square as domain and of +
boundary conditions are made only for concreteness and are not essential.)

COROLLARY 1.6. Consider the critical Ising model in the N ×N square 	N

with + boundary conditions on ∂	N . Then the random variable

1

N15/8

∑
x∈	N

σx

converges in law as N → ∞.

The result in Corollary 1.6 can be expressed also in terms of the renormalized
magnetization, defined below. The magnetization is the order parameter of the
Ising phase transition, that is the extra parameter of the model that is needed, due
to the spontaneous breaking of the spin symmetry below the critical temperature, to
describe the thermodynamics of the low-temperature phase. A fundamental belief
of statistical mechanics is that, near the phase transition point, the order parameter
is the only important thermodynamic quantity.

DEFINITION 1.7 (Renormalized magnetization). For any simply connected
domain � with boundary condition ξ on ∂� (which in this paper will be either +
or free), let ma

� be the renormalized magnetization in the domain � defined by

ma
� := 〈

�a,1�

〉
= �a

∑
x∈�a

σx

= a15/8
∑

x∈�a

σx.

Exactly as in Corollary 1.6, ma
� converges in law to a limit m∞

� as a ↘ 0. (The
limiting law will depend on the boundary condition ξ .)

The limiting magnetization field is non-Gaussian: this can be seen from the
correlation functions computed by Chelkak, Hongler and Izyurov [18], which do
not satisfy Wick’s formula. We will list a number of other properties satisfied by
the limiting fields �∞

C , �∞
� , m∞

� in Section 5. Most of them will be proved in [10].
In particular, we will prove in [10] that the tail behavior of these limiting fields is
of the form exp(−cx16).

We conclude this section by stating the conformal covariance properties of the
scaling limit �∞ of the lattice magnetization field.
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THEOREM 1.8 (Conformal covariance of �∞). Let �,�̃ be two simply con-
nected domains of the plane (not equal to C) and let φ :� → �̃ be a conformal
map. Let ψ = φ−1 be the inverse conformal map from �̃ → �. Let �∞ and �̃∞
be the continuum magnetization fields, respectively, in �, �̃. Then the pushfor-
ward distribution φ ∗ �∞ of the random distribution �∞ has the same law as the
random distribution |ψ ′|15/8�̃∞, where the latter distribution is defined as〈∣∣ψ ′∣∣15/8

�̃∞, f̃
〉 := 〈

�̃∞,w �→ ∣∣ψ ′∣∣15/8
(w)f̃ (w)

〉
for any test function f̃ : �̃ →C.

In the particular case of the renormalized magnetization in squares of various
scales, the above conformal covariance property can be expressed as follows.

COROLLARY 1.9. Let m∞ be the scaling limit of the renormalized magne-
tization in the square (i.e., m∞ = 〈�∞,1[0,1]2〉). For any λ > 0, let m∞

λ be the
scaling limit of the renormalized magnetization in the square [0, λ]2. Then one has
the following identity in law:

m∞
λ

d= λ15/8m∞.(1.4)

1.3. Brief outline of the proofs. We will give two proofs of our main result,
Theorem 1.3, each proof having its own advantages. Let us briefly sketch in this
subsection our two strategies. They both start with the same tightness step.

1.3.1. Tightness. Tightness of the random variable ma
� := 〈�a,1�〉 was al-

ready proved in [15] (see also [9]). To prove tightness for the random distribu-
tion �a we choose to work on the Sobolev space H−3 and use the setup of [22].
With this setup the proof is relatively standard but somewhat technical, so we give
an outline here and present the details in Appendix A at the end of the paper. Be-
low and in the rest of the paper, except for Appendix A, we restrict our attention to
the magnetization in the unit square [0,1]2, in order to simplify the notation. The
extensions to other domains and to the full plane are discussed in Appendix A.

For any a > 0, we will consider our magnetization field �a as an element of
the Polish space H−3 with operator norm ‖ · ‖H−3 (see Appendix A for precise
definitions). Since Dirac point masses do not belong to H−α for α ≤ 1/2, it will be
convenient to change slightly the definition of the distribution �a to the following
definition.

DEFINITION 1.10. We let

�a := a15/8
∑

x∈[0,1]2∩aZ2

σx

a2 1Sa(x),

where Sa(x) denotes the square centered at x of side-length a.
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With this new definition, �a belongs to L2, and hence has a Fourier expansion.
Using the latter, it is not hard to show that

lim sup
a↘0

E
[∥∥�a

∥∥2
H−2

]
< ∞,

provided that the boundary condition on the square [0,1]2 consists of finitely many
arcs of +,− or free type. This is enough to prove that (�a)a>0 is tight in the space
H−3 thanks to the Rellich theorem, which implies that, for any R > 0, the ball

BH−2(0,R)

is compact in H−3. As a consequence, we have the following proposition.

COROLLARY 1.11. Consider the magnetization in the unit square [0,1]2 with
boundary condition consisting of finitely many arcs of +,− or free type. Then there
is a subsequential scaling limit �∗, that is, a random distribution �∗ ∈ H−3 such
that for a certain subsequence ak ↘ 0, �ak converges in law to �∗ for the topology
on H−3 induced by ‖ · ‖H−3 .

1.3.2. First proof. In the first proof (Section 2), we rely on the FK represen-
tation of the Ising model which allows us to decompose the distribution �a as a
sum over the FK clusters, where each cluster C carries an independent random
sign σC ∈ {−1,1}. Two important ingredients in this proof are the RSW-type re-
sult for FK-Ising percolation of Duminil-Copin, Hongler and Nolin [24] and the
k = 0 case of Theorem 1.3 of [18]. (We note that the use of the latter result could
probably be avoided by relying on an argument similar to the one used in [27] to
prove the rotational invariance of the percolation two-point function.) The draw-
back of this approach is that we need to rely on the uniqueness of the full scaling
limit of FK percolation (see Assumption 2.3). Note that the main argument, which
consists in constructing area measures on critical FK clusters, is somewhat close
to the construction of “pivotal measures” in [27].

1.3.3. Second proof. Our second proof (Section 3), as opposed to the first one,
does not rely on any assumption (besides assuming Wu’s result if one wants to keep
the scaling �a = a15/8). For any bounded domain �, the idea is to characterize the
limit of �a by showing that the quantities

φ�a(f ) = E
[
ei〈�a,f 〉],

converge as a ↘ 0 for any test function f ∈ H3. The main ingredients are the
breakthrough results by Chelkak, Hongler and Izyurov on the convergence of the
k-point correlation functions as well as our Propositions 3.5 and 3.9.
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1.3.4. Proof of the conformal covariance properties. We briefly discuss how
to prove Theorem 1.8.

1. If one wants to follow the setup of our first proof (Section 2), then the confor-
mal covariance property is proved exactly in the same fashion as Theorem 6.1
in [27] on the conformal covariance of the pivotal measures for critical per-
colation on the triangular lattice, except that here one would have conformal
covariance of the ensemble of FK area measures.

2. If one wants to follow the setup of our second proof (Section 3), then The-
orem 1.8 is even easier to obtain, since it follows easily from the conformal
covariance properties of the k-point functions established in the main result,
Theorem 1.3, of [18].

In the rest of the paper, in order to simplify the notation, we will stick to the
magnetization in the unit square [0,1]2. The extension to other domains as well as
to the full plane can be done using the methods presented in Appendix A.

2. First proof of the scaling limit of �a using area measures on FK clusters.

2.1. The general strategy. The FK representation of the Ising model with
zero external magnetic field is based on the q = 2 random-cluster measure Pp

(see [25, 29, 33] for more on the random-cluster model and its connection to the
Ising model). A spin configuration distributed according to the unique infinite-
volume Gibbs distribution with zero external magnetic field and inverse tempera-
ture β ≤ βc can be obtained in the following way. Take a random-cluster (FK) bond
configuration on aZ2 distributed according to Pp with p = p(β) = 1 − e−2β , and
let {Ca

i } denote the corresponding collection of FK clusters, where a cluster is a
maximal set of vertices of the square lattice connected via bonds of the FK config-
uration (see Figure 1). One may regard the index i as taking values in the natural
numbers, but it is better to think of it as a dummy countable index without any pre-
scribed ordering, like one has for a Poisson point process. Let {σi} be (±1)-valued,
i.i.d., symmetric random variables, and assign σx = σi for all x ∈ Ca

i ; then the col-
lection {σx}x∈aZ2 of spin variables is distributed according to the unique infinite
volume Gibbs distribution with zero external magnetic field and inverse tempera-
ture β .

Using the FK representation, we can write the renormalized magnetization
field �a from Definition 1.1 as follows:

�a dist.= ∑
i

σiμCa
i
,(2.1)

where μCa
i

:= �a

∑
x∈Ca

i
δx and the σi ’s, as before, are (±1)-valued, symmet-

ric random variables independent of each other and everything else. We call the
rescaled counting measure μCa

i
the area measure of the cluster Ca

i .
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FIG. 1. Example of an FK bond configuration in a rectangular region. Black dots represent vertices
of aZ2, black horizontal and vertical edges represent FK bonds. The FK clusters are highlighted by
lighter (green) loops on the medial lattice.

Roughly speaking, our first proof of uniqueness consists in showing that area
measures have a scaling limit which is measurable with respect to the scaling limit
of the collection of all macroscopic crossing events. (By crossing event we mean
the occurrence of a path of FK bonds crossing a certain domain between two dis-
joint arcs on its boundary.)

To understand why this should be sufficient, let us associate in a unique way
to each area measure μCa

i
the interface γ a

i in the medial lattice between the cor-
responding (rescaled) FK cluster Ca

i and the surrounding FK clusters. Such inter-
faces form closed curves, or loops, which separate the corresponding clusters Ca

i

from infinity (see Figure 1). Announced results for FK percolation [36] identify
the scaling limit of those loops with CLE16/3, a random collection of nested loops
which are locally distributed like SLE16/3 curves. The uniqueness of the collec-
tion of all macroscopic crossing events should then be a consequence of the results
announced in [36] (see Assumption 2.3 below and the discussion following it for
more information).

The area measure of a cluster counts the number of vertices in that cluster. In
particular, the sum of the area measures of clusters of diameter larger than some ε

counts the number of vertices from which a path of FK bonds of diameter larger
than ε originates. We call the occurrence of a path of FK bonds of diameter larger
than ε in the scaling limit a macroscopic one-arm event (see Section 2.2.3 for a
precise definition of arm events), and we will sometimes call a one-arm vertex a
vertex from which such a path originates. Since the area measures of macroscopic
clusters count one-arm vertices, it is reasonable to expect that they be measurable
with respect to the collection of all macroscopic crossing events. Indeed, the anal-
ogous result for Bernoulli percolation was proved in [27]. Moreover, it is shown
in [15] that, in the scaling limit, only area measures corresponding to macroscopic
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clusters contribute to the magnetization, therefore the latter should also be measur-
able with respect to the collection of all macroscopic crossing events.

We end this section by briefly explaining the idea behind the proof that area
measures are measurable with respect to the collection of macroscopic crossing
events. Our proof of this fact will follow closely the proof of [27] for Bernoulli
percolation. This can be done because the main tools used in [27], such as FKG,
RSW and certain bounds on the probability of arm events, are also available for
Ising-FK percolation.

Although the proof is rather technical, the underlying idea is simple. Suppose
we are interested in the Ising model on aZ2 ∩ [0,1]2. We superimpose on [0,1]2

a square grid with mesh ε, with ε much smaller than 1 but much larger than a. We
will show that the sum of the area measures of macroscopic FK clusters is well ap-
proximated by the number of squares of the ε-grid that intersect a macroscopic FK
cluster, times the “mean” number of one-arm vertices inside a square of the ε-grid
(we ignore all boundary issues in this discussion). This means that the number of
one-arm vertices can be estimated by looking only at the macroscopic features of
the FK configuration (i.e., at the collection of macroscopic crossing events).

REMARK 2.1. There are several advantages to the approach presented in this
section. First, it shows that �∞ is measurable with respect to the full scaling limit
of FK-Ising percolation (plus a collection of random signs). Furthermore, it gives
us a good way to visualize the magnetization in terms of area measures, as in (2.1).

Such a geometric representation as (2.1) would also be possible directly for the
limiting magnetization field �∞ if one could obtain the scaling limit of the col-
lection of all individual, macroscopic area measures. This should be possible with
methods similar to those used in this paper and in [27], and the resulting scaling
limit should be expressible as a collection of orthogonal measures supported on
“continuum FK clusters.”

We do not pursue this here since looking at the total number of + and − macro-
scopic one-arm vertices in a given domain is sufficient to prove the uniqueness of
the limiting magnetization field, but we point out that approximating �∞ using an
a.s. finite number of signed measures could be useful if one wanted to determine
the smallest ε > 0 such that �∞ is in the Sobolev space H−ε . The latter problem
is briefly discussed in Remark A.4.

2.2. Setup for the proof of convergence.

2.2.1. Notation, space of percolation configurations, compactness. We will
work with the following setup: denote by σa an Ising configuration on aZ2 ∩
[0,1]2. As explained in Section 2.1, σa can be obtained from an FK configura-
tion ωa on aZ2 ∩ [0,1]2 by flipping an independent {±} fair coin for each cluster
of ωa . Let ω+

a (resp., ω−
a ) be the configuration consisting of the clusters of ωa
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which have been chosen to be plus (resp., minus). Let us denote by ω̄a the coupled
pair (ω+

a ,ω−
a ). Note that one has ωa = ω+

a ∪ ω−
a .

It will be very convenient to consider these FK configurations ωa as (random)
variables in a compact metrizable space (H ,T ) = (H[0,1]2,T ) which encodes
all macroscopic crossing events. We say that an FK configuration ωa contains a
crossing of a domain D between two disjoint arcs, I1 and I2, of its boundary ∂D

if there is a collection of edges from ωa such that the edges form a connected set
contained in D except for two edges which intersect I1 and I2, respectively.

The compact space (H ,T ) is not specific to our study of FK percolation and
one can in fact rely here on the setup which was introduced by Schramm and
Smirnov in [49] in the case of independent percolation (q = 1). Very briefly, it
works as follows: the space of percolation configurations built in [49] is the space
of closed hereditary subsets of the space of quads (Q, dQ). Roughly speaking, this
means that a point ω ∈ H corresponds to a family of quads Q ∈ Q which is closed
in (Q, dQ) and which satisfies the following constraint: if Q ∈ ω and Q′ is “easier”
to be traversed, then Q′ is in ω as well. In [49], it is proved that this space H can
be endowed with a topology T so that the topological space (H ,T ) is compact,
Hausdorff and metrizable. For convenience, we will choose a (nonexplicit) metric
dH on H which induces the topology T . See [49] for a clear exposition of the
topological space (H ,T ). See also [26, 27].

Since we will need the crossing properties of the + versus the − clusters, we
will in fact consider ω̄a = (ω+

a ,ω−
a ) as a random variable in the compact metriz-

able space H × H endowed with the product topology.
What is known about the limit as a → 0 of the coupling ω̄a = (ω+

a ,ω−
a ) ∈

H × H ? First of all, the tightness for (ω̄a)a>0 follows immediately from the
compactness of (H × H ,T ⊗ T ).

FACT 2.2. The random variable ω̄a = (ω+
a ,ω−

a ) is in H ×H (with the prod-
uct topology). Since H × H is compact for the product topology T ⊗ T , there
are subsequential scaling limits for (ω̄a)a>0 as a → 0.

Our goal will be to show that the scaling limit �∞ of the magnetization field �a

is measurable with respect to the scaling limit of ω̄a . This is the content of the main
result of this section, Theorem 2.5. That theorem, together with Assumption 2.3
below, immediately implies the uniqueness of �∞.

2.2.2. Scaling limit for (ω̄a)a>0. It is known since the breakthrough paper [54]
that certain discrete “observables” for critical FK-percolation are asymptotically
conformally invariant. These observables can then be used [17] to prove that inter-
faces have a scaling limit described by SLE16/3 curves. In our case, we need a full
scaling limit result. Indeed, our later results in this section of the paper are based
on the following hypothesis.
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ASSUMPTION 2.3. The coupled configurations ω̄a = (ω+
a ,ω−

a ) considered as
random points in (H × H ,T ⊗ T ) have a (unique) scaling limit as a ↘ 0; they
converge in law to a continuum FK ω̄∞ = (ω+∞,ω−∞).

This assumption is very reasonable, based on the convergence of discrete inter-
faces to SLE16/3 curves [17]. An even clearer evidence is provided by the work in
progress [36], where it is shown that the branching exploration tree converges to
the branching SLE16/3 tree. However, as explained in [49], it is not always easy
to go from one notion of scaling limit to another. In the case of Bernoulli percola-
tion (i.e., the random-cluster model with q = 1), the first and third author proved
[13] the existence and several properties of the full scaling limit as the collec-
tion of all cluster boundaries, building the limit object from SLE6 loops, and, as
explained in [27], Section 2.3, their results imply convergence also in the “quad
topology” (H ,T ).

In our present case, the FK percolation analog of the result contained in [13],
that is, the convergence of ωa to CLE16/3, was announced in [36]. From this con-
vergence result, following [27], Section 2.3, and using Corollary 5.9 of [16] instead
of the analogous result for Bernoulli percolation, one should be able to obtain the
convergence of ωa to ω∞ in the topological space (H ,T ), exactly as in the case
of Bernoulli percolation.

This step would justify the convergence of ωa to ω∞ in (H ,T ), but we need
slightly more, that is, the convergence of ω̄a to ω̄∞. However, note that the config-
urations ω+

a and ω−
a can be obtained from ωa by tossing a fair coin for each cluster

in ωa to decide its sign. This suggests that the convergence of the configurations
ω+

a and ω−
a should follow from the same arguments giving the convergence of ωa .

While the preceding discussion is clearly not a complete proof, it explains why
Assumption 2.3 is very reasonable in the light of the announced results on the full
scaling limit of FK percolation.

2.2.3. Measurable events in H × H . In this subsection, we follow very
closely Section 2.4. in [27]. We refer to that paper for more details and will only
highlight briefly how to adapt the definitions to our present case.

Let A = (∂1A,∂2A) ⊂ [0,1]2 be a fixed topological annulus whose boundary,
∂1 ∪ ∂2 is composed of piecewise smooth cirves. We will often rely on the one-arm
events A± = A±

1 which are in the Borel sigma field of (H × H ,T ⊗ T ) and
which are defined as follows:

A+
1 := {

ω̄ ∈ H × H ,∃Q ∈ Q s.t. Q ∈ ω+
(2.2)

and Q connects ∂1A with ∂2A
}
.

The event A−
1 is defined in the obvious related manner. We may also define the

one-arm event A1 on the “uncolored” space H . We will need the following ex-
tension of Lemma 2.4 in [27] whose proof applies easily to our present case. The
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proof is analogous to that of Lemma 2.4 in [27], with the difference that Theo-
rem 5.8 and Corollary 5.9 of [16] replace the corresponding results for Bernoulli
percolation used in [27].

LEMMA 2.4 (See Lemma 2.4 in [27]). Let A be a piecewise smooth annulus
in [0,1]2. Then

P
[
ω̄a ∈ A±

1

]−→ P
[
ω̄∞ ∈ A±

1

]
as the mesh size a → 0. Furthermore, in any coupling of the measures Pa and P∞
on the space (H ×H ,T ⊗T ), in which ω̄a → ω̄∞ a.s. we have that 1A±

1
(ω̄a) →

1A±
1
(ω̄∞) almost surely.

If A is the annulus [−c1, c1]2 \ [−c2/2, c2/2]2, we define αFK
1 (c2, c1) =

P[ω+∞ ∈A1].
2.2.4. General setup of convergence: The space H × H ×H−3. Let us con-

sider the coupling (ω̄a,�
a(ω̄a)) = (ω+

a ,ω−
a ,�a) ∈ H × H × H−3. In order to

prove our main Theorem 1.2, will prove the following stronger result.

THEOREM 2.5 (Under Assumption 2.3). The random variables (ω̄a,�
a) ∈

H × H × H−3 converge in law as the mesh size a → 0 to (ω̄∞,�∞) for the
topology induced by the metric7 dH ⊕ dH ⊕ ‖ · ‖H−3 .

Furthermore, the limiting random variable �∞ ∈ H−3 is measurable with re-
spect to ω̄∞, that is, we have

�∞ = �∞(ω̄∞).

From Proposition A.2, we already know that (ω̄a,�
a(ω̄)) is tight in the space

H × H × H−3 endowed with the metric dH ⊕ dH ⊕ ‖ · ‖H−3 . As in Corol-
lary 1.11, one thus has subsequential scaling limits: that is, one can find a subse-
quence ak → 0 such that (ω̄ak

,�ak ) converges in law to (ω̄∞,�∗) (here we use
Assumption 2.3 which says that there is a unique possible subsequential scaling
limit for ω̄a). Since the space (H × H × H−3, dH ⊕ dH ⊕ ‖ · ‖H−3) is a com-
plete separable metric space, one can apply Skorohod’s theorem. This gives us a
joint coupling of the above processes such that(

ω̄ak
,�ak

) a.s.−→ (
ω̄∞,�∗).(2.3)

Proving Theorem 2.5 boils down to proving that �∗ is in fact measurable with
respect to ω̄∞. Achieving this would indeed conclude the proof of Theorem 2.5
(and thus Theorem 1.2) since it would uniquely characterize the subsequential
scaling limits of (ω̄a,�

a).
The purpose of the next subsection is to reduce the proof of Theorem 2.5 to the

study of the renormalized magnetization in a square box.

7Recall from Section 2.2.1 that we have chosen a metric dH on H which induces the topology T .
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2.2.5. Reduction to the renormalized magnetization in a dyadic box. We wish
to prove Theorem 2.5, that is, to show that if (ω̄ak

,�ak )
a.s.−→ (ω̄∞,�∗), then �∗

can be expressed as a measurable function of ω̄∞. Since �∗ ∈ H−3, it can be
decomposed in the orthonormal basis {ej,k}j,k≥1, introduced in Appendix A,
of the space C∞

0 ([0,1]2) endowed with the L2 norm: if f = ∑
j,k≥1 aj,kej,k ∈

C∞
0 ([0,1]2), then 〈

�∗, f
〉= ∑

j,k≥1

〈
�∗, ej,k

〉
aj,k,

which we write as

�∗ = ∑
j,k≥1

〈
�∗, ej,k

〉
ej,k.(2.4)

From the a.s. convergence (2.3), we have that for any fixed j, k ≥ 1:(
ω̄ak

,
〈
�ak , ej,k

〉) a.s.−→ (
ω̄∞,

〈
�∗, ej,k

〉)
,

where the convergence holds for the metric dH ⊕ dH ⊕ ‖ · ‖R. In order to prove
Theorem 2.5, thanks to the decomposition (2.4), we only need to prove that for
each fixed j, k ≥ 1, the limiting quantity 〈�∗, ej,k〉 is itself measurable w.r.t. ω̄∞.

It turns out that one can further reduce the difficulty of this task by approxi-
mating the functions {ej,k}j,k≥1 using step functions as follows. Let us fix some
j, k ≥ 1. For any small β > 0, one can find dyadic squares Bi and real numbers bi

so that if gβ :=∑
i bi1Bi

, then

‖ej,k − gβ‖L∞([0,1]2) < β.

Now, exactly as in the proof of Lemma A.3, it is not hard to check that

E
[(〈

�a, ej,k

〉− 〈
�a,gβ

〉)2]≤ Cβ2,

uniformly in a > 0 (for some universal constant C > 0). If one can show that, as
ak ↘ 0, 〈�ak , gβ〉 converges a.s. to a measurable function Gβ(ω̄∞), then using the
uniform L2 bounds from Appendix A together with the triangle inequality in L2,
it follows that Gβ(ω̄∞) converges as β → 0 in L2 to 〈�∗, ej,k〉. Since L2 is com-
plete, Gβ(ω̄∞) has an L2-limit G0 as β → 0 which is itself measurable w.r.t. ω̄∞
and one has necessarily that 〈�∗, ej,k〉 a.s.= G0(ω̄∞). Since Gβ is a linear combina-
tion of magnetizations in dyadic squares, it follows from the above discussion that
Theorem 2.5 is a corollary of the following theorem.

THEOREM 2.6. Let B be any dyadic square in [0,1]2 and let the renormalized
magnetization in B be the random variable

ma
B = ma := a15/8

∑
x∈aZ2∩B

σx.
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Then the coupled random variable (ω̄a,m
a) ∈ H × H × L2 converges in law

as the mesh size a → 0 to (ω̄∞,m) for the topology induced by the metric dH ×
dH × ‖ · ‖L2 . Furthermore, the limiting random variable m ∈ L2 is measurable
with respect to ω̄∞, that is, we have

m = m(ω̄∞).

We now turn to the proof of this theorem. Without loss of generality and for the
sake of simplicity, we may assume that our dyadic square B is just [0,1]2.

2.3. Scaling limit for the magnetization random variable (proof of Theo-
rem 2.6).

2.3.1. Structure of the proof of Theorem 2.6. The setup for the scaling limit
of ma is similar to the setup we explained above (in Section 2.2.4) for the scaling
limit of �a . Namely, we consider the coupling (ω̄a,m

a) embedded in the metric
space (H 2 × L2, dH ⊕ dH ⊕ ‖ · ‖L2). The tightness of (ω̄a,m

a) easily follows
from the stronger tightness of Proposition A.2 (see also [15] and [9]). In particular,
there exist subsequential scaling limits(

ω̄ak
,mak

) d−→ (
ω̄∗∞,m∗).

By Assumption 2.3, there is a unique possible law for ω̄∗∞, which we denoted
by ω̄∞. In order to prove Theorem 2.6, it remains to show that the second coordi-
nate m∗ ∈ L2 is measurable with respect to the first one.

As previously, let us couple all these random variables using Skorohod’s theo-
rem so that (

ω̄ak
,mak

) a.s.−→ (
ω̄∞,m∗)(2.5)

for the metric dH ⊕ dH ⊕ ‖ · ‖L2 .
The main idea will be to approximate the quantity ma by relying only on

“macroscopic information” from the coupled configuration ω̄a . The “macroscopic
quantities” we are allowed to use are the quantities which are preserved in the
scaling limit ω̄a → ω̄∞ (i.e., crossing events and so on, see Section 2.2.3).

We will approximate the magnetization ma by a two step procedure. Roughly
speaking, we first approximate the magnetization as a rescaled sum of spin vari-
ables σx such that x is the starting point of a “macroscopic” FK path, and then
approximate the latter sum by means of “macroscopic” quantities following [27],
as explained below.

For the first step, we fix some small dyadic scale ρ ∈ {2−k, k ∈ N} and divide
the square [0,1]2 along the grid ρZ2. Let Sρ be the set of ρ-squares thus obtained.
For each ρ-square Q ∈ Sρ , consider the annulus AQ := 3Q \ Q where we denote
by 3Q the square of side-length 3ρ centered on Q. We will divide the clusters
in the FK-configuration ωa in two groups: the clusters which cross at least one
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annulus AQ,Q ∈ Sρ and the clusters which do not cross any annulus. We may
rewrite the magnetization ma as follows:

ma = ∑
x∈[0,1]2∩aZ2

a15/8σx(2.6)

= ∑
Q∈Sρ

( ∑
x∈Q : x↔∂(3Q)

a15/8σx + ∑
x∈Q : x�∂(3Q)

a15/8σx

)
.(2.7)

Following [15] (with a slightly different setup here), let us show that the contri-
bution of the second inside sum is negligible in L2. Indeed,∥∥∥∥ ∑

Q∈Sρ

∑
x∈Q : x�∂(3Q)

a15/8σx

∥∥∥∥2

2

= ∑
Q,Q′

∑
x,y

a15/4E[σxσy1x∈Q : x�∂(3Q)1y∈Q′ : y�∂(3Q′)]

= ∑
Q,Q′

∑
x,y

a15/4E[1x↔y1x∈Q : x�∂(3Q)1y∈Q′ : y�∂(3Q′)](2.8)

≤ ∑
x,y : |x−y|≤8ρ

a15/4E[1x↔y](2.9)

= a15/4O

(
a−2

(
8ρ

a

)2

(ρ/a)−1/4
)

(2.10)

= O
(
ρ7/4).(2.11)

Since we are looking for a limiting law for ma in L2, it is thus enough [up to
a small error of O(ρ7/4)] to focus on the first summand

ma
ρ := ∑

Q∈Sρ

∑
x∈Q : x↔∂(3Q)

a15/8σx.

Since ρ > 0 is fixed and the mesh size a → 0, we are getting closer to an ap-
proximation by “macroscopic quantities.” We still need to approximate in a suit-
able macroscopic manner the quantity

La
Q = La

Q(ω̄a) := ∑
x∈Q : x↔∂(3Q)

a15/8σx

for each ρ-square Q ∈ Sρ . This is the second step of our approximation procedure
and for this we will follow very closely the proof in [27] of the scaling limit of
counting measures on pivotal points (called pivotal measures). In the rest of the
proof, let us fix the value of ρ and fix some ρ-square Q ∈ Sρ .

Let ε > 0 be some small fixed threshold (such that a � ε � ρ). Divide the
square Q ∩ aZ2 into equal disjoint squares of side-length εa := a�ε/a�. There are
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N = �(ε−2) such squares inside Q (we do not need to keep the dependence in
ρ in what follows) plus O(ε−1) squares which intersect the boundary of Q. Let
(Bi)i∈{1,...,N} denote the set of such εa-squares inside Q.

For each i ∈ [N ] := {1, . . . ,N}, let

Xε
i = Xi := ∑

x∈Bi : x↔∂(3Q)

a15/8σx.(2.12)

Furthermore, let B := ∪Bi ⊂ Q. We thus have

La
Q = ∑

i∈[N]
Xε

i + ∑
x∈Q\B : x↔∂(3Q)

a15/8σx.(2.13)

The second term (which arises when ρ is not a multiple of εa) turns out to be
negligible in L2 as well. Indeed,∥∥∥∥ ∑

x∈Q\B : x↔∂(3Q)

a15/8σx

∥∥∥∥2

2
≤ ∑

x,y∈Q\B
a15/4P[x ↔ y](2.14)

≤ O(1)a15/4 ρ

ε

ρ/ε∑
k=1

(
ε

a

)4( a

kε

)1/4

(2.15)

≤ O(1)
ρ

ε
(ρ/ε)3/4ε4ε−1/4(2.16)

≤ O(1)ρ7/4ε2.(2.17)

Therefore, as ε goes to zero, and uniformly in the mesh size a ≤ ε, the boundary
term is negligible in L2. It thus remains to control the term

∑
i∈[N] Xε

i .
For this, let us introduce for each i ∈ [N ], the variables

Y ε
i = Y ε

i (ω̄a) := 1
{Bi

ω
+
a←→∂(3Q)}

− 1
{Bi

ω
−
a←→∂(3Q)}

.(2.18)

We will prove in the next subsection the following proposition.

PROPOSITION 2.7. There exists a universal constant c > 0 such that for any
square Q of side-length ρ as above, we have∥∥∥∥ ∑

i∈[N]
Xε

i − cβ(ε)
∑

i∈[N]
Y ε

i

∥∥∥∥
2
−→ 0(2.19)

as ε → 0 uniformly in a ≤ ε and where β(ε) := ε2αFK
1 (ε,1)−1 and αFK

1 (ε,1) is the
probability of the one-arm event in the annulus [−1,1]2 \ [−ε/2, ε/2]2 for ω+∞.

Before proving the proposition, let us explain why it indeed implies Theo-
rem 2.6. From Section 2.2.3, it follows that the functions Y ε

i defined in (2.18)
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can be seen as measurable functions of ω̄∞ and that, for each i ∈ [N ], along the
above subsequence (ak), one has [see equation (2.5)]:

Y ε
i (ω̄ak

)
a.s.−→ Y ε

i (ω̄∞).

Furthermore, one can see from Proposition 2.7 that ‖β(ε)
∑

Y ε
i (ω̄a)‖2 is

bounded uniformly in 0 < a ≤ ε. This implies, modulo some triangle inequalities,
that ∥∥∥La

Q(ω̄ak
) − cβ(ε)

∑
Y ε

i (ω̄∞)
∥∥∥

2
−→ 0,

uniformly in 0 < ak < ε. This in turn implies that the sequence
(cβ(ε)

∑
Y ε

i (ω̄∞))ε>0 is a Cauchy-sequence in L2. In particular, it has an L2-limit
that we may denote by LQ(ω̄∞) and this L2-limit is such that∥∥Lak

Q(ω̄ak
) − LQ(ω̄∞)

∥∥
2 −→ 0

as the mesh size ak → 0.
Using the above estimates, we have that∥∥∥∥mak −∑

Q

LQ(ω̄∞)

∥∥∥∥2

2
−→ 0,

uniformly in 0 < ak < ρ. Exactly as above with the second order approximation
in ε, the above displayed equation (plus the L2 bounds we already have) implies
that the Cauchy sequence (

∑
Q LQ(ω̄∞))ρ>0 has an L2-limit denoted by m(ω̄∞)

as ρ → 0. Finally, thanks to the a.s. convergence in equation (2.5), this L2-limit
must be such that

m∗ a.s.= m(ω̄∞),(2.20)

which completes the proof of Theorem 2.6, modulo proving Proposition 2.7.

2.3.2. Proof of Proposition 2.7. We want to show that for any δ > 0, one can
take ε > 0 sufficiently small so that for any 0 < a < ε < ρ,

E
[(∑

Xε
i − cβ(ε)

∑
Y ε

i

)2]≤ δ.

Let us decompose this quantity as follows.

E
[(∑

Xε
i − cβ(ε)

∑
Y ε

i

)2]
=∑

i,j

E
[(

Xε
i − cβ(ε)Y ε

i

)(
Xε

j − cβ(ε)Y ε
j

)]
(2.21)

≤ ∑
i,j : d(Bi,Bj )≤r

(
E
[
Xε

i X
ε
j

]+ c2β(ε)2E
[
Y ε

i Y ε
j

])
+ ∑

i,j : d(Bi,Bj )>r

E
[(

Xε
i − cβ(ε)Y ε

i

)(
Xε

j − cβ(ε)Y ε
j

)]
,
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where r is a mesoscopic scale ε � r � ρ which will be chosen later. To go from
the first to the second line, we used that fact that the cross product terms are nec-
essarily negative as can be seen by first conditioning on the noncolored FK config-
uration ωa .

The first term of the RHS of the above displayed inequality is easy to bound.
Indeed, ∑

i,j : d(Bi,Bj )≤r

E
[
Xε

i X
ε
j

]≤ ∑
x,y∈aZ2∩Q s.t. d(x,y)≤2r

a15/4E[σxσy] ≤ O
(
r7/4)

and similarly for
∑

i,j : d(Bi,Bj )≤r c2β(ε)2E[Y ε
i Y ε

j ]. One can thus fix r > 0 small
enough so that, uniformly in a < ε < r , the first term in the RHS of (2.21) is < δ/2.

For the second term, we proceed as in [27] using a coupling argument. Proposi-
tion 2.7 will follow from the next lemma.

LEMMA 2.8. For any fixed r < ρ < 1 and any δ̃ > 0, one can choose
ε = ε(r, ρ, δ̃) > 0 small enough such that for any pair of squares Bi,Bj with
d(Bi,Bj ) > r , one has

E
[(

Xε
i − cβ(ε)Y ε

i

)(
Xε

j − cβ(ε)Y ε
j

)]≤ δ̃

2
E
[
Xε

i X
ε
j

]
.

Let us explain why this lemma is enough to conclude the proof. Summing the
estimate provided by the lemma over all Bi,Bj with d(Bi,Bj ) > r , one gets

∑
i,j : d(Bi,Bj )>r

E
[(

Xε
i − cβ(ε)Y ε

i

)(
Xε

j − cβ(ε)Y ε
j

)]≤ δ̃

2
E
[(

La
Q(ω̄a)

)2]
.

Now, it is straightforward to check that the second moment E[(La
Q(ω̄a))

2] is

bounded by Cρ15/4 uniformly in a < ε < ρ where C is some universal constant.
By choosing δ̃ = δ/C, we conclude the proof.

PROOF OF LEMMA 2.8. Let us fix two squares Bi and Bj at distance at least r

from each other. Conditioned on the event that both Bi and Bj are connected
to ∂(3Q), our strategy is to compare how things look within the ε-square Bi with
the following “test case.” Consider the ε-square B0 centered at the origin and let
Q0 be the square [−ρ,ρ]2 also centered at the origin. Let us define

X0 := a15/8
∑

x∈aZ2∩B0

σx1{x↔∂Q0 in ω̄a}.(2.22)

Recall the events A±
1 defined in Section 2.2.3 and applied here to the annulus

A = Q0 \ B0. We first wish to show that there is a constant c > 0 such that{
E
[
X0|A+

1

]∼ cβ(ε),

E
[
X0|A−

1

]∼ −cβ(ε)
(2.23)
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uniformly as 0 < a < ε go to 0. To see why this holds we note that, as in Section 4.5
in [27], one has that

E
[
X0|A+

1

]∼ (ε/a)2a15/8 αFK
1 (a,1)

αFK
1 (ε,1)

.

To adapt the proof from [27], it is enough to have bounds on the half-plane expo-
nents of critical FK percolation “in the bulk.” Such bounds follow from standard
percolation arguments, using the RSW theorem of [24].

Now, using Theorem 1.3 (with k = 0) in [18] together with Wu’s result, The-
orem 1.4, we have that αFK

1 (a,1) ∼ ca1/8 as a → 0, which explains the desired
asymptotic.

In what follows, for any u ≥ ε, we will denote by Du (D̃u) the square cen-
tered around Bi (Bj ) of side-length u. Let us fix yet another mesoscopic scale γ

so that ε � γ � r (e.g., γ := r2). Let m := d(Bi,Bj )/2 and let z be the mid-

point between the centers of Bi and Bj . Let R+ be the event that {∂Dγ
ω+←→

∂Dm}∩{there is a circuit of ω+ inside Dr \Dγ that surrounds Dγ } (see Figure 2).
The event R− is defined similarly. Notice that R+ ∩ R− = ∅. On the event R±,
let C = C(ω̄) be the outermost such open circuit for the FK configuration ω ∈ H
(the outermost open circuit necessarily has the appropriate color).

Let us analyze in the term E[(Xi − cβ(ε)Y ε
i )(Xj − cβ(ε)Y ε

j )] the contribution
coming from the event (R+ ∪ R−)c, namely,

E
[(

Xi − cβ(ε)Y ε
i

)(
Xj − cβ(ε)Y ε

j

); (R+ ∪ R−)c]
≤ E

[
XiXj + c2β(ε)2YiYj ; (R+ ∪ R−)c].

See the explanation after (2.21) as to why the cross product terms are negative.
Following [27],

E
[
XiXj ; (R+ ∪ R−)c]

= E
[
XiXj ; ∂Dε

ω←→ ∂Dm;
∂D̃ε

ω←→ ∂D̃m; ∂B(z,2m)
ω←→ ∂(3Q); (R+ ∪ R−)c]

≤ O(1)Ewired[X̃i]Ewired[X̃j ]αwired
1 (ε, ρ)αwired

1 (ε, γ )

× P
[
∂Dγ

ω←→ ∂Dm; (R+ ∪ R−)c],
where we have just used FKG and where we dominated Xi by X̃i , the num-
ber of points in Bi connected to ∂Bi (we also used some straightforward quasi-
multiplicativity for the one-arm FK event which follows easily from the RSW
theorem in [24]; see, e.g., [56] for an explanation of quasi-multiplicativity in the
case of standard percolation and see [16] for quasi-multiplicativity results in the
case of FK percolation). Now, using FKG with RSW from [24], we get that there
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FIG. 2. The event R+.

exists an exponent ξ > 0 such that P[R+ ∪ R−|∂Dγ
ω←→ ∂Dm] ≥ 1 − (γ /m)ξ ,

which implies that

P
[
∂Dγ

ω←→ ∂Dm; (R+ ∪ R−)c]≤ αFK
1 (γ,m)(γ /m)ξ .

Altogether, we obtain that

E
[
XiXj ; (R+ ∪ R−)c]≤ O(1)E[XiXj ](γ /m)ξ .

The term E[c2β(ε)2YiYj ; (R+ ∪ R−)c] can be treated similarly. We may thus fo-
cus our analysis on what is happening on the event R+ ∪ R−. Let FC be the filtra-
tion induced by the configuration outside the contour C. One can write∣∣E[(Xi − cβ(ε)Y ε

i

)(
Xj − cβ(ε)Y ε

j

);R+ ∪ R−]∣∣
= E

[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC

];R+ ∪ R−],
since on the event R+ ∪ R−, the variable |Xj − cβ(ε)Yj | is measurable w.r.t. FC .
Now,

E
[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC

];R+ ∪ R−]
= P

[
R+]E[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC

]|R+]
+ P

[
R−]E[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC

]|R−].
Let us analyze the first term, it gives

P
[
R+]E[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC,R+]|R+]
= P

[
R+]E[∣∣Xj − cβ(ε)Yj

∣∣1C↔∂(3Q)E
[∣∣Xi − cβ(ε)Yi

∣∣|C,R+]|R+]
= P

[
R+]E[∣∣Xj − cβ(ε)Yj

∣∣1C↔∂(3Q)P
[
∂Bi ↔ C|C,R+]

×E
[∣∣Xi − cβ(ε)Yi

∣∣|C,∂Bi ↔ C
]|R+].

We will prove below the following lemma.
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LEMMA 2.9 (Coupling lemma). For any contour C, we have the following
control on the conditional expectation:

E
[∣∣Xi − cβ(ε)Yi

∣∣|C,∂Bi ↔ C
]≤ K(ε/γ )αβ(ε)

for some exponent α > 0 and some constant K ∈ (0,∞).

Plugging this lemma into the last displayed equation leads to

P
[
R+]E[∣∣Xj − cβ(ε)Yj

∣∣E[∣∣Xi − cβ(ε)Yi

∣∣|FC,R+]|R+]
≤ C(ε/γ )αβ(ε)P

[
R+]

×E
[∣∣Xj − cβ(ε)Yj

∣∣1C↔∂3QP
[
∂Bi ↔ C|C,R+]|R+](2.24)

≤ O(1)(ε/γ )αβ(ε)αFK
1 (γ,m)

×E
[∣∣Xj − cβ(ε)Yj

∣∣1C↔∂(3Q)P
[
∂Bi ↔ C|C,R+]|R+].

Now, similarly to the above analysis of what happens on the event (R+ ∪R−)c,
it is not hard to check by cutting into different scales and dominating by wired
boundary conditions that

E
[∣∣Xj − cβ(ε)Yj

∣∣1C↔∂(3Q)P
[
∂Bi ↔ C|C,R+]|R+]

≤ O(1)β(ε)αFK
1 (ε, ρ)αFK

1 (ε, γ ),

which together with (2.24) and quasi-multiplicativity gives us (since one has also
the same estimate on the event R−),∣∣E[(Xi − cβ(ε)Y ε

i

)(
Xj − cβ(ε)Y ε

j

);R+ ∪ R−]∣∣
≤ O(1)(ε/γ )αβ(ε)2 αFK

1 (ε, ρ)2

αFK
1 (m,ρ)

≤ O(1)(ε/γ )αE[XiXj ],
which (modulo proving Lemma 2.9) completes our proof of Lemma 2.8. �

2.3.3. Proof of Lemma 2.9. Let νC be the wired FK probability measure con-
ditioned on ∂Bi ↔ C and let ν0 be the FK probability measure in Q0 conditioned
on the event A1 = A1(x̃ +Q0 \B0), where we translated the annulus A = Q0 \B0
so that it surrounds Bi . Clearly, in the domain DC (inside the circuit C), the mea-
sure νC dominates ν0. Using RSW from [24], there is an open circuit in DC \ Bi

for ω0
a ∼ ν0 with ν0-probability at least 1 − c(ε/γ )ξ . Let us call this event W .

On the event W , let C̃ be the outermost circuit inside DC for ω0
a . Since νC dom-

inates ν0, one can couple ωC
a ∼ νC with ω0

a so that on the event W , they share
the same open circuit C̃ and are conditioned inside DC̃ only on the constraint
{∂Bi ↔ C̃}; in particular, on the event W , in this coupling one has Xi = X0. In
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order to prove Lemma 2.9, it is enough to show that E[Xi;Wc|C,∂Bi ↔ C] and
E[X0;Wc|C,∂Bi ↔ C] are negligible w.r.t. β(ε), which is straightforward using
the quantity E[X̃i] × P[Wc] as we did previously while analyzing what happened
on the event (R+ ∪ R−)c.

3. Second proof of the scaling limit of �a using the n-point functions of
Chelkak, Hongler and Izyurov. In this part, we will give a different proof
of Theorem 1.2, using the recent breakthrough results of Chelkak, Hongler and
Izyurov in [18]. From our tightness result obtained in Appendix A, recall that there
exist subsequential scaling limits �� = lim�an for the convergence in law in the
space H−3. We wish to prove that there is a unique such subsequential scaling
limit. For this, we will use the following classical fact (see, e.g., [40]).

PROPOSITION 3.1. If h is a random distribution in H−3 (for the sigma-field
generated by the topology of ‖ · ‖H−3 ), then the law of h is uniquely character-
ized by

φh(f ) := E
[
ei〈h,f 〉]

as a function of f ∈ H3.

Using the tightness property proved in Appendix A, Theorem 1.2 will thus fol-
low from the next result.

PROPOSITION 3.2. For any f ∈ H3, the quantity

φ�a(f ) = E
[
ei〈�a,f 〉]

converges as the mesh size a ↘ 0.

The proof of this proposition will be divided into two main steps as follows:

1. First, we will show that �a has “uniform exponential moments” which will
allow us to express its characteristic function using

φ�a(f ) = E
[
ei〈�a,f 〉]= 1 +∑

k≥1

ikE[〈�a,f 〉k]
k! .

2. Then it remains to compute each kth moment E[〈�a,f 〉k], that is, to show
uniqueness as a → 0. For this, one uses the scaling limit results from [18]
together with Proposition 3.9 below which takes care of k-tuples of points in
the plane where at least two points are close to each other.

Let us now state the main result we will use from [18].
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THEOREM 3.3 ([18], Theorem 1.3). Let � be a bounded simply connected
domain, and �a be discretizations of � (built from � ∩ aZ2). We denote by ξ the
boundary conditions chosen on �, and we assume ξ to be either + or free here.
Then, for any k ≥ 1, there exist k-point functions

z1, . . . , zk ∈ �k �→ 〈σz1, . . . , σzk
〉ξ�,

so that for any ε > 0, as the mesh size a → 0 and uniformly over all z1, . . . , zk ∈ �

at distance at least ε from ∂� and from each other, one has

�(a)−k/2 ·Eξ
�a

[σz1, . . . , σzk
] −→ 〈σz1, . . . , σzk

〉ξ�.(3.1)

[Recall that �(a) is the renormalization factor defined in (1.1).]
Furthermore, the functions 〈σz1, . . . , σzk

〉ξ� are conformally covariant in the fol-
lowing sense: if φ :� → �′ is a conformal map, then

〈σz1, . . . , σzk
〉ξ� = 〈σφ(z1), . . . , σφ(zk)〉ξ�′

∏∣∣φ′(zi)
∣∣1/8

.

REMARK 3.4.

• It is noted in [18] that although their Theorem 1.3 is stated only for plus bound-
ary conditions, the conclusions are valid for free and other boundary conditions
as well.

• In [18], the discretization is slightly different, which means that our k-point
function 〈σz1, . . . , σzk

〉ξ� is equal to the one of [18] only up to a constant factor.
• In most of this paper, we assume Wu’s result, Theorem 1.4. In particular, one

can then use the above theorem with ak/8 instead of �(a)k/2 (and with yet a
further change of the k point function by another scalar). See Section 4 for the
analysis when one does not wish to assume Wu’s result.

3.1. Exponential moments for the magnetization random variable. In this
section, we shall show that if ma denotes the magnetization random variable
〈�a,1[0,1]2〉 (for wired or free boundary conditions on the square [0,1]2), then
ma has exponential moments. More precisely, we will prove the following.

PROPOSITION 3.5. For any t ∈ R, and for any boundary condition ξ

on [0,1]2, one has

lim sup
a↘0

Eξ [etma ]
< ∞.

There are a number of ways to prove this proposition. We present one based on
the Griffiths–Hurst–Sherman inequality from [28]. Let us state it here.
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THEOREM 3.6 (GHS inequality, [28]). Let G = (V ,E) be a finite graph. Con-
sider a pair ferromagnetic Ising model on this graph (i.e., the interactions Jij

between vertices i ∼ j are nonnegative) and assume furthermore that the external
field h = (hv)v∈V (which may vary from one vertex to another) is also nonnegative.
Under these general assumptions, one has for any vertices i, j, k ∈ V ,

〈σiσjσk〉 − (〈σi〉〈σjσk〉 + 〈σj 〉〈σiσk〉 + 〈σk〉〈σiσj 〉)+ 2〈σi〉〈σj 〉〈σk〉 ≤ 0.

This inequality has the following useful corollary (see, e.g., [11]).

COROLLARY 3.7. Let G = (V ,E) be a finite graph and let K ⊂ V be a
nonempty subset of the vertices. Let us consider a ferromagnetic Ising model on
G with the spins in K prescribed to be + spins and with a constant magnetic field
h ≥ 0 on V \ K . Then the partition function of this model, that is,

Zβ,h := ∑
σ∈{−,+}V \K

exp
(
−βE(σ) + h

∑
i∈V \K

σi

)
,

where E(σ) =∑
i∼j∈V Jijσiσj , satisfies

∂3
h log(Zβ,h) ≤ 0.

PROOF OF PROPOSITION 3.5. If t < 0, using the symmetry of the Ising
model, by changing the boundary condition ξ into −ξ , we can assume t > 0.
Hence, one may assume that t ≥ 0. This makes the function x �→ etx increasing,
and one can thus use the FKG inequality which implies that for any t ≥ 0 and any
boundary condition ξ , one has

Eξ [etma ]≤ E+[etma ]
.

With + boundary condition on [0,1]2 ∩ aZ2, one can now rely on the above corol-
lary of the GHS inequality which yields

∂3
h

[
log
(∑

eβE(σ)+h
∑

σi

)]
= ∂3

h

[
log
(∑

eβE(σ)+h
∑

σi∑
eβE(σ)

)]
= ∂3

h

[
logEβ

[
eh
∑

σi
]]

≤ 0.

With β = βc and h := ta15/8, one obtains that for any t ≥ 0 and any mesh size
a > 0:

∂3
t logE+[etma ]≤ 0.(3.2)

Now let φ(t) := E+[etma ]. It is easy to check that{
φ′(0) = E+[ma

]
,

φ′′(0) = E+[(ma − 〈ma
〉)2]

.



554 F. CAMIA, C. GARBAN AND C. M. NEWMAN

This, together with (3.2), implies that for any t ≥ 0, a > 0:

logE+[etma ]≤ tE+[ma]+ t2

2
E+[(ma − 〈ma 〉)2].

By our choice of rescaling, ma := a15/8∑
x∈[0,1]2∩aZ2 σx , we know from Propo-

sition B.1 in Appendix B that supa>0 tE+[ma] + t2

2 E
+[(ma − 〈ma〉)2] = O(t +

t2) < ∞, which completes the proof of Proposition 3.5. �

We have the following easy corollary of Proposition 3.5; it applies, for example,
to � = [0,1]2 with ξ plus or free, where there is a unique limit, and also to quite
general � and ξ where there may only be limits along subsequences of a → 0.

COROLLARY 3.8. If m = mξ is the limit in law of ma for some � and ξ , then:

(i) E[etm] < ∞;
(ii) furthermore, as a → 0, E[etma ] → E[etm].
The proof is straightforward. Note that for any t ∈ R, by Fatou’s lemma one has

that

E
[
etm]≤ lim inf

a→0
E
[
etma ]

,(3.3)

which implies (i). Now (ii) follows easily from (i) (used with some t̃ > |t | and with
ξ = +), FKG, and the weak convergence of ma to m.

3.2. Computing the characteristic function. Let us prove Proposition 3.2 as-
suming Proposition 3.9 below. Let f ∈ H3 be fixed once and for all. For any k ≥ 1,
note that∣∣E[〈�a,f

〉k]∣∣= ∣∣∣∣E[( ∑
x∈[0,1]2∩aZ2

a15/8f (x)σx

)k]∣∣∣∣
=
∣∣∣∣a15k/8

∑
z1,...,zk∈([0,1]2∩aZ2)k

f (z1) · · ·f (zk)E[σz1 · · ·σzk
]
∣∣∣∣

≤ ‖f ‖k∞a15k/8
∑

z1,...,zk∈([0,1]2∩aZ2)k

E[σz1 · · ·σzk
]

≤ ‖f ‖k∞E
[(

ma)k].
Since, by Proposition 3.5, ma has uniform exponential moments, we deduce

that the series

φ�a(f ) = E
[
ei〈�a,f 〉]= 1 +∑

k≥1

ikE[〈�a,f 〉k]
k!
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is indeed summable. Now, for each k ≥ 1, let us prove that the kth moment
E[〈�a,f 〉k] has a limit as a → 0. Let us fix some cut-off ε > 0 and let us divide
the kth moment as follows:

E
[〈
�a,f

〉k]= ∑
z1,...,zk∈([0,1]2∩aZ2)k

a15k/8f (z1) · · ·f (zk)E[σz1 · · ·σzk
]

= ∑
z1,...,zk

|zi−zj |≥ε ∀i �=j

a2kf (z1) · · ·f (zk)a
−k/8E[σz1 · · ·σzk

](3.4)

+ ∑
z1,...,zk

infi �=j |zi−zj |<ε

a15k/8f (z1) · · ·f (zk)E[σz1 · · ·σzk
].

Using Theorem 3.3 and assuming Wu’s result, we have that in the domain
[0,1]2, there exists a function z1, . . . , zk �→ 〈z1, . . . , zk〉[0,1]2 such that

a−k/8E[0,1]2
a
[σz1 · · ·σzk

] −→ 〈z1, . . . , zk〉[0,1]2,(3.5)

uniformly in infi �=j |zi − zj | ≥ ε [again, up to a change by a deterministic scalar in
the definition of these functions which arises from normalizing by either �(a)k/2

or ak/8]. The fact that the convergence is uniform implies that the first term in
equation (3.4) converges as the mesh size a → 0 to∫ ∫

z1,...,zk∈([0,1]2)k

|zi−zj |≥ε ∀i �=j

f (z1) · · ·f (zk)〈z1, . . . , zk〉[0,1]2 dz1 · · · dzk.

To conclude the proof, it remains to prove that the second term in equation (3.4)
is small uniformly in 0 < a < ε, when the cut-off ε is small. This is the content of
the next section.

3.3. Handling the “local” k-tuples.

PROPOSITION 3.9. Let � be a domain with + boundary conditions. For any
k ≥ 1, there exist constants Ck = Ck(�) < ∞ such that, for all 0 < a < ε,

∑
(x1,...,xk) : infi �=j {|xi−xj |}<ε

a15k/8E

[
k∏
1

σxi

]
≤ Ckε

7/4.

PROOF. Our proof is based on the FK representation; we remark that a some-
what different proof can be obtained by using the Gaussian correlation inequalities
of [43]. One implements the + boundary condition via a ghost vertex correspond-
ing to the boundary and then reduces estimates of kth moments essentially to one
and two point correlations. Those are handled by arguments like in the Appendix B
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below; see especially equation (B.3). We now proceed with more details using the
FK representation approach.

One can write E[∏k
1 σxi

] using FK as follows: let �k be the set of graphs �

defined on the set of vertices Vk := {1, . . . , k} ∪ {+}, and which are such that the
clusters of � which do not contain the point + are all of even size. (Of course, the
number |�k| of such graph structures is finite.)

Now, similarly to Wick’s theorem, one has the identity

E

[
k∏
1

σxi

]
= ∑

�∈�k

P
[
Ax1,...,xk

(�)
]
,

where Ax1,...,xk
(�) is the event that the graph structure induced by the FK config-

uration ω on the set {x1, . . . , xk} ∪ {∂�} is given by the graph � ∈ �k .
Note that if � is not connected, there is some negative information inherent to

the event Ax1,...,xk
(�). To overcome this, let �Ax1,...,xk

(�) be the event that the graph
induced by the FK configuration ω on {x1, . . . , xk} ∪ {∂�} includes the graph �.
Defined this way, �Ax1,...,xk

(�) is an increasing event (which will allow us to use
FKG) and one has for any � ∈ �k :

P
[
Ax1,...,xk

(�)
]≤ P

[�Ax1,...,xk
(�)

]
.

Therefore, it is enough for us to prove the following upper bound:∑
(x1,...,xk) : infi �=j {|xi−xj |}<ε

∑
�∈�k

P
[�Ax1,...,xk

(�)
]≤ Cε7/4a−(15k)/8.

This is the subject of the next lemma, which concludes the proof of the propo-
sition. �

LEMMA 3.10. For any domain � and any k ≥ 1, there exists a constant Ck =
Ck(�) < ∞ such that, for all 0 < a < ε, one has

(i)
∑

x1,...,xk∈�a

∑
�∈�k

P
[�Ax1,...,xk

(�)
]≤ Cka

−(15k)/8,

(ii)
∑

(x1,...,xk) : infi �=j {|xi−xj |}<ε

∑
�∈�k

P
[�Ax1,...,xk

(�)
]≤ Ckε

7/4a−(15k)/8.

PROOF (SKETCH). The proof of this lemma proceeds by induction. For
k = 1, the bounds follow easily from Proposition B.1 in the Appendix B. For
k = 2, using again Proposition B.1 and summing P[x1 ↔ x2] over all x1, x2
which are such that |x1 − x2| ∈ (2−b−1,2−b], one gets a bound of the form
O(1)a−42−2b(2−b/a)−1/4 = O(1)2−7b/4a−15/4, where a−42−2b = a−2(2−b/a)2

comes from the number of ways one can choose x1 and x2. Summing over all
possible values of b smaller than log2(a

−1) gives the first bound, while summing
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over values of b such that log2(ε
−1) ≤ b ≤ log2(a

−1) gives the second bound. (We
neglect boundary issues that can easily be dealt with.)

Let now k ≥ 3 and assume that property (i) holds for all k′ < k. We will first
prove that it implies property (ii) from which (i) easily follows [in fact formally (i)
readily follows from (ii) by taking ε large enough but due to boundary issues, it is
better to divide the study into these two sums].

The outer sum in (ii) is over the ordered k-tuples (x1, . . . , xk) which are such
that l := infi �=j |xi − xj | < ε. For any such k-tuple (x1, . . . , xk), let us choose one
point among all points which are at distance infi �=j |xi − xj | from at least one of
the others (there are at most k ways to pick one) and let us reorder the points into
a k-tuple (x̂1, . . . , x̂k) so that the point we have chosen is x̂1.

This way, we obtain∑
x1,...,xk∈�a

infi �=j |xi−xj |<ε

∑
�∈�k

P
[�Ax1,...,xk

(�)
]

≤ k
∑

x̂1,...,x̂k

infi �=j |x̂i−x̂j |=infi �=1 |x̂1−x̂i |<ε

∑
�∈�k

P
[�Ax̂1,...,x̂k

(�)
]
.

Now, for any such (x̂1, . . . , x̂k), we split the sum over � ∈ �k in two parts.

(1) Consider first the sum over graphs � such that the cluster of x̂1 in � contains
a point x̂m at distance < 2ε from x̂1. Again by reordering (and possibly losing a
factor of k), one can assume that x̂m = x̂2. Now let Ax̂1,x̂2 be an annulus which
surrounds x̂1 and x̂2 and which is such that, by RSW, there is probability c > 0 of
the event S = S(Ax̂1,x̂2) that there is an open path in Ax̂1,x̂2 surrounding x̂1 and x̂2.

Let �̂ be a graph on {x̂3, . . . , x̂k} obtained from � in the following way. If the
cluster of x̂1 and x̂2 in � does not contain other points, let �̂ = � \ {x̂1, x̂2}. Other-
wise, first add some connection, if necessary, to make the cluster of x̂1 and x̂2 in �

connected without using x̂1 and x̂2 (i.e., all other vertices are connected by paths
that do not pass through x̂1 and x̂2), and then remove x̂1 and x̂2 from the cluster.
Note that, in both cases, �̂ ∈ �k−2. Using FKG, one can easily check that

P
[�Ax̂1,...,x̂k

(�)
]≤ (1/c)P

[�Ax̂1,...,x̂k
(�) and S

]
≤ (1/c)P

[
x̂1 ↔ x̂2 and �Ax̂3,...,x̂k

(�̂) and S
]

≤ (1/c)P+[x̂1 ↔ x̂2]P[�Ax̂3,...,x̂k
(�̂)

]
≤ O(1) d−1/4a1/4P

[�Ax̂3,...,x̂k
(�̂)

]
,

where d denotes the distance between x̂1 and x̂2 and by + we mean wired b.c. on
the inner boundary of Ax̂1,x̂2 .

Summing over all x̂1, . . . , x̂k which are such that d = |x̂1 − x̂2| ∈ (2−b−1,2−b],
and considering that there are at most k2 ways of choosing x̂1 and x̂2 from



558 F. CAMIA, C. GARBAN AND C. M. NEWMAN

{x1, . . . , xk}, this case gives a contribution which is bounded by

O(1)k2a−42−2b2b/4a1/4Ck−2a
−(15(k−2))/8,

where a−2(2−b/a)2 = a−42−2b is an upper bound on the number of ways to
choose x̂1 and x̂2 from �a . Hence, we get the following upper bound:

O(1)k22−7b/4Ck−2a
−(15k)/8.

It remains to sum over the possible values of b, that is, log2(ε
−1) ≤ b ≤ log2(a

−1),
which gives a bound of the desired form.

Note that we neglected boundary issues here (they can be handled easily at least
if ∂� is smooth enough).

(2) Consider now the remaining sum over graphs � such that the cluster of x̂1
in � does not contain any point at distance < 2ε from x̂1. In this case, there is at
least one point, say x̂2, which is at distance l from x̂1. If the cluster of x̂2 in �

contains a point at distance < 2ε from x̂2, then we can take x̂2 to play the role
of x̂1 and we are back in situation 1. We can therefore assume that the cluster of
x̂2 in � does not contain any point at distance < 2ε from x̂2. We can then pick
an annulus Ax̂1,x̂2 that surrounds x̂1 and x̂2 and does not contain any other point
belonging to the clusters of x̂1 and x̂2 in �, and which, by RSW, contains an open
path surrounding x̂1 and x̂2 with probability c > 0. We call S = S(Ax̂1,x̂2) the latter
event. If S occurs, x̂1 and x̂2 belong to the same FK cluster. If we denote by �̂ a
graph on {x̂3, . . . , x̂k} obtained from � by connecting the clusters of x̂1 and x̂2 in �

outside of x̂1 and x̂2, and then removing x̂1 and x̂2 from �, we have that �̂ ∈ �k−2.
Using FKG, one can easily check that

P
[�Ax̂1,...,x̂k

(�)
]≤ (1/c)P

[�Ax̂1,...,x̂k
(�) and S

]
≤ (1/c)P

[
x̂1 ↔ x̂2 and �Ax̂3,...,x̂k

(�̂) and S
]

≤ (1/c)P+[x̂1 ↔ x̂2]P[�Ax̂3,...,x̂k
(�̂)

]
≤ O(1)l−1/4a1/4P

[�Ax̂3,...,x̂k
(�̂)

]
,

where by + we mean wired on the inner boundary of Ax̂1,x̂2 .
Summing over all x1, . . . , xk which are such that l = |x̂1 − x̂2| = infi �=j |xi −

xj | ∈ (2−b−1,2−b], this case gives a contribution which is bounded by

O(1)k2a−42−2b2b/4a1/4Ck−2a
−(15(k−2))/8,

where k2 comes from the ways of choosing x̂1 and x̂2 from {x1, . . . , xk} and
a−2(2−b/a)2 = a−42−2b is an upper bound on the number of ways to choose x̂1
and x̂2 from �a . Hence, we get the following upper bound:

O(1)k22−7b/4Ck−2a
−(15k)/8.

It remains to sum over the possible values of b, that is, log2(ε
−1) ≤ b ≤ log2(a

−1),
which gives the desired result.

Modulo boundary issues that are easily dealt with, this concludes the proof of
the lemma, which in turn implies the proposition. �
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3.4. Consequences of this approach. This proof of Theorem 1.2 through the
study of the moments of ma sheds some light on �∞. For example, it enables in
some cases to explicitly compute the variance of m∞. Indeed, in the full plane C,
if one looks at 〈�,1A〉, then from the work of [18] or [23], we get that

E
[〈�C,1A〉2]= C

∫ ∫
A

1

|x − y|1/4 dx dy.(3.6)

Here, C is a constant which can be computed explicitly thanks to the formula (see
Theorem 1.4) by Wu ([41]). Therefore, the second moment of 〈�C,1A〉 can be
computed numerically or exactly depending on the set A.

4. Without assuming Wu’s result. The purpose of this section is to briefly
explain how to adapt our proofs if one does not want to rely on Wu’s result, The-
orem 1.4. In this case, as explained in Section 1.2, one would need to renormalize
our fields by

�a := a2�(a)−1/2,(4.1)

instead of �a = a15/8.

4.1. Adapting the first proof (Section 2). Let us point out here that it is not a
priori needed to have an exact rescaling of the form a15/8 if one wants to obtain our
main result, Theorem 1.2. For example, this situation arises in [27], where the four-
arm event is only known up to possible logarithmic corrections. Therefore, in order
to build the pivotal measures there, it is not possible to assume a renormalization
of the discrete counting measure by η3/4; instead, a more cumbersome renormal-
ization of η2α4(η,1)−1 is needed—see [27] for more details. In the present work,
the same technology as in [27] would enable us to prove Theorem 1.2 without
relying on Wu’s result.

Yet, some of the present proofs would need to be slightly modified and some
quantitative lemmas (such as Lemma A.5, e.g.) would need to be changed. Let us
point out that we would have at our disposal the following useful bound on the
one-arm event:

Cn−1/2 ≤ αFK
1 (n) ≤ n−α(4.2)

for some exponent α > 0. The lower bound follows from Smirnov’s observable
(see [24]) while the upper bound follows from the RSW theorem in [24]. Such
bounds are enough to carry the proof from [27] through (except for the conformal
covariance property, Theorem 1.8, which needs at least an SLE16/3,16/3−6 compu-
tation for the one-arm event).
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4.2. Adapting the second proof (Section 3). The second proof is easier to
adapt, since the results in [18] are stated precisely with the renormalization fac-
tor �a = a2�(a)−1/2. The proof of Proposition 3.5 works as before. Of course,
Proposition 3.9 would be stated in a less quantitative manner, but using, for exam-
ple, the above estimate (4.2), one could still handle the local k-tuples, which would
give us the desired result.

5. Properties of the limiting magnetization field �∞. In this last section,
we wish to list some interesting properties satisfied by the magnetization field �∞
which will be proved in [10] as well as some results on the near-critical behavior
of the Ising model along the h-direction which appear or will appear in [10, 11].

1. If m∞
� denotes the scaling limit of the renormalized magnetization in a bounded

domain �, then there exists a constant c = c� > 0 such that

logP
[
m∞

� > x
] ∼
x→∞−cx16.(5.1)

Furthermore, one can show that the constant c = c� depends on the domain
but does not depend on the boundary conditions. We point out that (5.1) clearly
shows the non-Gaussianity of the magnetization field; the latter already follows
from the fact that the correlation functions computed by Chelkak, Hongler and
Izyurov in [18] do not satisfy Wick’s formula.

2. The probability density function of m∞
� is smooth as a consequence of the

following quantitative bound on its Fourier transform: ∀t ∈ R,∣∣E�

[
eitm∞]∣∣≤ e−C|t |16/15

(5.2)

for some constant C > 0.
3. In [10], it will be shown that the Ising model on the rescaled lattice aZ2 with

renormalized external magnetic field ha := ha15/8 has a near-critical (or off-
critical) scaling limit as a ↘ 0. This near-critical limit is no longer scale-
invariant but is conformally covariant instead and has exponential decay of its
correlations.

4. Finally, in [11] we prove that the average magnetization 〈σ0〉 of the Ising model
on Z2 at β = βc and with external magnetic field h > 0 is such that

〈σ0〉βc,h 	 h1/15.(5.3)

APPENDIX A: TIGHTNESS OF THE MAGNETIZATION FIELD

We first introduce the setup for proving tightness when the field �a is defined
on the compact square [0,1]2. The extension to general domains as well as to the
full plane will be given in Section A.2.
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A.1. Tightness for �a in a well-chosen Sobolev space (case of the square).
In this subsection, we follow (almost word for word) the functional approach
which was used by Julien Dubédat in [22] for another well-known field: the Gaus-
sian Free Field.

Let H1
0 = H1

0([0,1]2) be the classical Sobolev Hilbert space, that is, the closure
of C∞

0 ([0,1]2) for the norm

‖f ‖2
H1 :=

∫
[0,1]2

‖∇f ‖2 dA.

Let H−1 be the dual space of H1
0. It is a space of distributions (i.e., H−1 ⊂ D′)

and it is also a Hilbert space equipped with the norm (the operator norm on H−1)

‖h‖H−1 := sup
g∈C∞

0 ([0,1]2) : ‖g‖H1≤1
〈h,g〉.

(Here, 〈h,g〉 stands for the evaluation of the distribution h against the test func-
tion g.)

It will be useful to work with the following basis of the space C∞
0 ([0,1]2) en-

dowed with the L2 norm: for any j, k ∈ N+, let

ej,k(x, y) := 2 sin(jπx) sin(kπy).(A.1)

It is straightforward to check that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ej,k)j,k>0 is a joint orthogonal basis for H−1 and H1

0,

‖ej,k‖2
H1 = j2 + k2,

‖ej,k‖2
H−1 = 1

j2 + k2 .

(A.2)

In particular, if h =∑
j,k aj,kej,k , then ‖h‖2

H−1 =∑
j,k

a2
j,k

j2+k2 .
More generally, for any α > 0, one can define the Hilbert space Hα

0 as the clo-
sure of C∞

0 ([0,1]2) for the norm

‖f ‖2
Hα := ∑

j,k>0

a2
j,k

(
j2 + k2)α,

where f ∈ C∞
0 is decomposed as f =∑

j,k>0 aj,kej,k . Let H−α be its dual space.
It is a Hilbert space with norm

‖h‖H−α := sup
g∈C∞

0 ([0,1]2) : ‖g‖Hα ≤1
〈h,g〉.

Furthermore, if h ∈ L2 ⊂ H−α , then h has a Fourier expansion and its ‖ · ‖H−α

norm can be expressed as

‖h‖2
H−α =∑

j,k

a2
j,k

1

(j2 + k2)α
.(A.3)

We will also make use of the following classical result.
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PROPOSITION A.1 (Rellich theorem). For any α1 < α2, H−α1 is compactly
embedded in H−α2 (H−α1 ⊂⊂ H−α2 ). In particular, for any R > 0, the ball

BH−2(0,R)

is compact in H−3.

Thanks to this property, in order to prove tightness, it is enough for us to prove
the following result.

PROPOSITION A.2. Let us fix some boundary condition ξ on the square
[0,1]2. Assume that the boundary condition ξ is made of finitely many arcs of +,−
or free type. By �a , we denote the magnetization field within [0,1]2 ∩ aZ2 subject
to the boundary condition ξ .Then as a ↘ 0, one has

lim sup
a↘0

E
[∥∥�a

∥∥2
H−2

]
< ∞,

uniformly in the boundary conditions ξ , and thus (�a)a>0 is tight in the
space H−3.

PROOF. We wish to bound from above the quantity

E
[∥∥�a

∥∥2
H−2

]= E
[ ∑
j,k>0

〈
�a, ej,k

〉2 1

(j2 + k2)2

]

= ∑
j,k>0

1

(j2 + k2)2E
[〈
�a, ej,k

〉2]
.

This is clone using the following lemma. �

LEMMA A.3. There is a constant C > 0 such that for all j, k > 0

lim sup
a→0

sup
j,k

E
[〈
�a, ej,k

〉2]
< C.

PROOF.

E
[〈
�a, ej,k

〉2]
≤ a15/4

∑
x �=y∈[0,1]2∩aZ2

∣∣∣∣∫ ∫
Sa(x)×Sa(y)

E[σxσy]
a4 ej,k(x̄)ej,k(ȳ) dA(x̄) dA(ȳ)

∣∣∣∣
+ a15/4

∑
x∈[0,1]2∩aZ2

(∫
Sa(x)

1

a2 ej,k(x) dA(x̄)

)2

.

≤ a15/4‖ej,k‖2∞
∑

x �=y∈[0,1]2∩aZ2

∣∣E[σxσy]
∣∣+ a15/4‖ej,k‖2∞

∑
x∈[0,1]2∩aZ2

1

≤ O(1),
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uniformly in j, k and the boundary condition ξ (indeed, by FKG for the FK rep-
resentation, it is enough to dominate E[σxσy] by the extreme boundary conditions
ξ = + or ξ = −). �

REMARK A.4. Using Lemma A.3 as is, it is straightforward to strengthen the
above proposition by showing that for any ε > 0, (�a)a>0 is in fact tight in the
space H−1−ε . It is thus natural to wonder for which values of α > 0, (�a)a>0
remains tight in H−α . It is clear that there is a lot of room if one wishes to obtain
better estimates than the one provided by Lemma A.3. Yet it appears that there is
some ᾱ > 0 such that (�a)a>0 is not tight in H−α when α < ᾱ. In particular, it
appears that �∞ = lima→0 �a is less regular than the planar Gaussian free field.

A.2. Extension to other domains and to the full plane. The next subsection
is concerned with the case of bounded domains; later we will tackle the case of the
infinite plane.

A.2.1. Case where � �C is a bounded simply connected domain of the plane,
with prescribed boundary condition ξ on ∂�. Let (Qi)i∈N be a Whitney decom-
position of � into disjoint squares. For any a > 0, let �a

� be the magnetization
field on � ∩ aZ2 induced by the boundary condition ξ . One can write �a as

�a =∑
i∈N

�a|Qi
.

By the triangle inequality, one has that∥∥�a
∥∥
H−2 ≤∑

i∈N

∥∥�a|Qi

∥∥
H−2 .

Now the key step is to notice that the proof of Proposition A.2 immediately
gives the following.

LEMMA A.5. There exists a uniform constant C > 0 such that for any do-
main � and any boundary condition ξ on ∂�, if Qi is a square inside � [with
area λ(Qi)], then for any a > 0:

E
[∥∥�a|Qi

∥∥2
H−2

]≤ Cλ(Qi)
15/8.(A.4)

PROOF (SKETCH). To see why this holds, take a square Qi inside �. Let q

be its side-length so that q2 = λ(Qi). By renormalizing the scale by a factor 1/q ,
one can see that our field �a|Qi

has the same H−2 norm as

q15/8 × �
a/q
|(1/q)Qi

.

But now, 1
q
Qi is a square of side-length 1, therefore by Proposition A.2 (which

was uniform in the outer boundary condition)

E
[∥∥�a/q

|(1/q)Qi

∥∥2
H−2

]≤ C.
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This gives

E
[∥∥�a|Qi

∥∥2
H−2

]≤ q15/4C = Cλ(Qi)
15/8. �

By Cauchy–Schwarz, this implies that

E
[∥∥�a|Qi

∥∥
H−2

]≤ C1/2λ(Qi)
15/16.(A.5)

From this formula, one can see that one cannot hope to prove a tightness re-
sult for �a on the full domain �. Indeed there are bounded domains for which∑

i λ(Qi)
15/16 diverges. Yet, for our purposes, it will be sufficient to prove the

following weaker result.

PROPOSITION A.6. Let � be a bounded simply connected domain of the
plane. For any open set U whose closure �U is contained inside �, there is a con-
stant C = CU > 0 such that for any boundary condition ξ on ∂�, one has

E
[∥∥�a|U

∥∥
H−2

]
< CU.

Hence, the restriction of (�a)a>0 to the open subset U is a tight sequence in H−3.

PROOF. Observe that

E
[∥∥�a|U

∥∥
H−2

]≤ C1/2
∑

i,Qi∩U �=∅

λ(Qi)
15/16.

By the properties of Whitney decompositions, only finitely many Qi intersect the
subset U , hence the above sum is finite and is bounded from above by some con-
stant C = C(U) > 0. �

A.2.2. Case of the infinite plane. (The case of nonbounded simply connected
domains is treated similarly.)

Our magnetization field �a := ∑
x∈aZ2 a15/8σxδx is well defined as a distri-

bution on the full plane R2. One natural way to proceed in order to keep some
tightness is to view our field as a nested sequence of restricted fields: (�a|Bk

)k≥1

where Bk is the square [−2k,2k]2. This sequence of nested distributions lives in
the product of Hilbert spaces

H−3∞ := ∏
k≥1

H−3
Bk

,

where for each k ≥ 1, H−3
Bk

denotes the dual of H3
0(Bk).

Since for any k ≥ 1, (E[‖�a|Bk
‖H−2

Bk

])a>0 is a bounded sequence [by O(215k/8)],

the sequence of random variables (�a|Bk
)a>0 is tight in the space H−3

Bk
. In particular,
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there is a subsequential scaling limit, that is, there is a random field �k ∈ H−3
Bk

and

a sequence (ak
m)m≥1 with ak

m ↘ 0 such that

�
ak
m|Bk

d−→
m→∞�k,

in law (for the topology on H−3
Bk

induced by ‖ · ‖H−3 ). Furthermore, from k to

k +1, one can choose the subsequential scaling limit (ak+1
m )m≥1 so that {ak+1

m }m ⊂
{ak

m}m. This allows us to define a “joint” subsequential scaling limit along the
sequence

ām := am
m.

Doing so, the sequence (�
ām|Bk

)k≥1 converges in law (for the product topology) to

(�k)k≥1 ∈ H−3∞ .

It is obvious (going back to the discrete mesh fields �a|Bk
) that a.s. for any k ≥ 1,

one has

�k+11Bk
≡ �k.

APPENDIX B: FIRST AND SECOND MOMENTS
FOR THE MAGNETIZATION

The main purpose of this appendix is to prove the following proposition on the
first and second moments of the magnetization in a bounded smooth domain �.
(In fact, to simplify the notation, we will only prove it in the case where � is
a square domain; see Proposition B.2.) Along the way, we will also prove some
useful bounds on the one-arm event in critical FK percolation (Lemma B.3). Let
us point out that in this appendix, we do not need to assume Theorem 1.4.

PROPOSITION B.1. Let � be a bounded smooth domain of the plane. Let
Ma

� = Ma be the (nonrenormalized) magnetization

Ma = ∑
x∈�a

σx.

There is a constant C > 0 such that for each mesh size a > 0, one has

(i) E+[Ma] ≤ Ca−2√�(a) and
(ii) E+[(Ma)

2] ≤ Ca−4�(a).

[Obviously here (i) follows from (ii) using Cauchy–Schwarz.] For simplicity
of presentation, we will prove this result only in the particular case where � is a
square domain. Furthermore, in order to simplify the notation in the proof, we will
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work with a nonrenormalized lattice. Before restating the above proposition in this
setting, let us introduce the following notation: for any N ≥ 1, let

ρ(N) := EZ2[σ(0,0)σ(N,N)].(B.1)

As such, ρ(N) is related to �(a = √
2(N)−1), where �(a) was defined in (1.1).

We will show the following proposition.

PROPOSITION B.2. For any N ≥ 1, let 	N be the square [−N,N]2 and let
MN be the magnetization in 	N , that is,

MN := ∑
x∈	N

σx.

Then there is a constant C > 0 such that for all N ≥ 1,

(i) E+[MN ] ≤ CN2ρ(N)1/2 and
(ii) E+[M2

N ] ≤ CN4ρ(N).

The proof of the proposition relies on the following lemma, which already ap-
peared in [15]. To be self-contained, we include a proof here. (Also, the lemma
below includes more than what is actually needed for Proposition B.2 but it will
be useful for future reference.) We denote by Pfree

pc
[·] (resp., P+

pc
[·]) the critical FK

percolation measure with free (resp., wired) boundary conditions.

LEMMA B.3. There exists a constant C < ∞ such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

C

√
ρ(N) ≤ P+

pc
[0 ↔ ∂	N ] ≤ C

√
ρ(N),

1

C

√
ρ(N) ≤ Pfree

pc
[0 ↔ ∂	N ] ≤ C

√
ρ(N),

ρ(N) ≤ Cρ(2N).

PROOF. To derive the first two parts of the lemma, it is clearly enough to prove
the following inequality for some constant C < ∞:

1

C

√
ρ(N) ≤ Pfree

pc
[0 ↔ ∂	N ] ≤ P+

pc
[0 ↔ ∂	N ] ≤ C

√
ρ(N).

Let us first handle the LHS: clearly, using FKG, one has

ρ(N) ≤ P+
pc

[0 ↔ ∂	N/2]2
.

Now we wish to show that

P+
pc

[0 ↔ ∂	N/2] ≤ cPfree
pc

[0 ↔ ∂	N ](B.2)
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for some constant c < ∞. This can be seen as follows: let RN be the event that
there is open circuit in the annulus 	N/2 \ 	N/4, then

Pfree
pc

[0 ↔ ∂	N ] ≥ Pfree
pc

[0 ↔ ∂	N ;RN ]
≥ Pfree

pc
[0 ↔ ∂	N |RN ]

≥ P+
pc

[0 ↔ ∂	N/2]P+
pc

[∂	N/4 ↔ ∂	N ],
which concludes the proof of (B.2) by using RSW from [24]. Altogether this
proves the LHS inequalities in the first two parts of Lemma B.3. The RHS is proved
along the same lines. Namely, one clearly has by FKG that

ρ(N) ≥ Pfree
pc

[0 ↔ ∂	N/2]2
.

Now obviously, Pfree
pc

[0 ↔ ∂	N/2] ≥ Pfree
pc

[0 ↔ ∂	2N ] and thus, using again (B.2),
this concludes the proof of the first two parts of Lemma B.3. It is easy to see from
the above computation that, possibly by changing the value of C, one can get the
last part of Lemma B.3. �

PROOF OF PROPOSITION B.2. Even though, as pointed out above, property (i)
follows from property (ii) by Cauchy–Schwarz, we will give a detailed proof of (i)
and only briefly highlight how to deal with (ii).

We divide the domain 	N into n 	 log2 N disjoint annuli A0, . . . ,An such that
for each i ∈ [0, n], the vertices in Ai are at distance 2i (up to a factor of 2) from
the boundary ∂	N . This decomposition gives us

E+[MN ] = ∑
0≤i≤n

∑
x∈Ai

P+[x ↔ ∂	N ]

≤ O(1)
∑

0≤i≤n

#{Ai}P+[0 ↔ ∂	2i ]

≤ O(1)
∑

0≤i≤n

N2iP+[0 ↔ ∂	2i ].

Now, one has that for any i ≤ n,

P+[0 ↔ ∂	N ] ≥ Pfree[0 ↔ ∂	2i ]Pfree[∂	2i ↔ ∂	N ]
≥ 1/C2P+[0 ↔ ∂	2i ]Pfree[∂	2i ↔ ∂	N ]

from Lemma B.3. Continuing the above computation, one obtains

E+[MN ] ≤ O(N)
∑

0≤i≤n

C32i

√
ρ(N)

Pfree[∂	2i ↔ ∂	N ] .
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It is known from [24], Proposition 24, that Pfree[∂	2i ↔ ∂	N ] ≥ c(2i/N)1/2 for
some constant c > 0. This gives

E+[MN ] ≤ O(1)N
∑

0≤i≤n

2i/2N1/2
√

ρ(N)

≤ O(1)N2
√

ρ(N),

which completes the proof of condition (i).
The proof for the second moment (ii) follows exactly the same lines except that

the combinatorics is slightly more tedious. As an indication, let us give two upper
bounds which are useful to carry out the computation properly: if x, y ∈ 	N are
such that l := |x − y| ≤ min(d(x, ∂	N), d(y, ∂	N)), then one has

E+[σxσy] ≤ O(1)P+[0 ↔ ∂	l]2P+[∂(z + 	2l) ↔ ∂	N

]
,(B.3)

where z is the midpoint between x and y. If, on the other hand, one of the points
is close to the boundary, in the sense that |x − y| > min(d(x, ∂	N), d(y, ∂	N)),
then one can dominate E+[σxσy] by O(1)P+[x ↔ ∂	N ]P+[y ↔ ∂	N ]. �
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