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LOSS OF REGULARITY FOR KOLMOGOROV EQUATIONS
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and ETH Zurich and Princeton University

The celebrated Hörmander condition is a sufficient (and nearly nec-
essary) condition for a second-order linear Kolmogorov partial differential
equation (PDE) with smooth coefficients to be hypoelliptic. As a conse-
quence, the solutions of Kolmogorov PDEs are smooth at all positive times
if the coefficients of the PDE are smooth and satisfy Hörmander’s condition
even if the initial function is only continuous but not differentiable. First-
order linear Kolmogorov PDEs with smooth coefficients do not have this
smoothing effect but at least preserve regularity in the sense that solutions
are smooth if their initial functions are smooth. In this article, we consider
the intermediate regime of nonhypoelliptic second-order Kolmogorov PDEs
with smooth coefficients. The main observation of this article is that there
exist counterexamples to regularity preservation in that case. More precisely,
we give an example of a second-order linear Kolmogorov PDE with globally
bounded and smooth coefficients and a smooth initial function with com-
pact support such that the unique globally bounded viscosity solution of the
PDE is not even locally Hölder continuous. From the perspective of prob-
ability theory, the existence of this example PDE has the consequence that
there exists a stochastic differential equation (SDE) with globally bounded
and smooth coefficients and a smooth function with compact support which
is mapped by the corresponding transition semigroup to a function which is
not locally Hölder continuous. In other words, degenerate noise can have a
roughening effect. A further implication of this loss of regularity phenomenon
is that numerical approximations may converge without any arbitrarily small
polynomial rate of convergence to the true solution of the SDE. More pre-
cisely, we prove for an example SDE with globally bounded and smooth co-
efficients that the standard Euler approximations converge to the exact solu-
tion of the SDE in the strong and numerically weak sense, but at a rate that is
slower then any power law.
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1. Introduction and main results. The key observation of this article is to re-
veal the phenomenon of loss of regularity in Kolmogorov partial differential equa-
tions (PDEs). This observation has a direct consequence on the literature on regu-
larity analysis of linear PDEs, on the literature on regularity analysis of stochastic
differential equations (SDEs) and on the literature on numerical approximations
of SDEs. We will illustrate the implications for each field separately.

Regularity analysis of linear partial differential equations. For some d,m ∈ N,
let μ :Rd → Rd and σ :Rd → Rd×m be smooth functions such that there exists
a real number ρ > 0 such that 〈x,μ(x)〉 ≤ ρ(1 + ‖x‖2) and ‖σ(x)‖2

L(Rm,Rd )
≤

ρ(1 + ‖x‖2) for all x ∈ Rd . (Here and below, we write 〈·, ·〉 and ‖ · ‖ for the Eu-
clidean scalar product and norm on Rn.) Let furthermore ϕ :Rd →R be a globally
bounded and continuous function and consider the second-order PDE

∂

∂t
u(t, x) = 1

2

d∑
i,j=1

m∑
k=1

σi,k(x) · σj,k(x) · ∂2

∂xi ∂xj

u(t, x)

(1.1)

+
d∑

i=1

μi(x) · ∂

∂xi

u(t, x), u(0, x) = ϕ(x)

for (t, x) ∈ (0,∞) ×Rd . The PDE (1.1) is referred to as Kolmogorov equation in
the literature (see, e.g., Cerrai [5], Da Prato [11], Röckner [64] and Röckner and
Sobol [65]; it is also referred to as Kolmogorov backward equation or Kolmogorov
PDE, see, e.g., Da Prato and Zabczyk [12], Øksendal [59]). It has a strong link to
probability theory and appeared first (in a slightly different form; see display (125)
in [44]) in Kolmogorov’s celebrated paper [44]. Corollary 4.17 in Section 4 below
implies that the PDE (1.1) admits a unique globally bounded viscosity solution.
More precisely, Corollary 4.17 proves that there exists a unique globally bounded
continuous function u : [0,∞) × Rd → R such that u|(0,∞)×Rd is a viscosity so-
lution of (1.1) and such that u(0, x) = ϕ(x) for all x ∈ Rd . In this article, we are
interested to know whether solutions u of the PDE (1.1) preserve regularity in the
sense that u|(0,∞)×Rd is smooth if the initial function u(0, ·) = ϕ(·) is smooth. In
particular, we will answer the question whether smoothness and global bounded-
ness of the initial function ϕ :Rd →R implies the existence of a classical solution
of the PDE (1.1).

In the case of first-order Kolmogorov PDEs with smooth coefficients, that is,
σ ≡ 0 in (1.1), regularity preservation of solutions of (1.1) is well known. More
precisely, if σ(x) = 0 for all x ∈ Rd and if the initial function ϕ :Rd →Rd in (1.1)
is smooth, then it is well known that there exists a unique smooth classical so-
lution of (1.1). In this sense, the PDE (1.1) is regularity preserving in the purely
first-order case σ ≡ 0. In the second-order case σ 
≡ 0, the situation may be even
better in the sense that the PDE (1.1) often has a smoothing effect. More precisely,
if the PDE (1.1) is hypoelliptic, then by definition solutions u of the PDE (1.1) are
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smooth in the sense that u|(0,∞)×Rd is infinitely often differentiable even if the ini-
tial function u(0, ·) = ϕ(·) is only continuous but not differentiable. In the seminal
paper [31], Hörmander gave a sufficient (and also nearly necessary; see the discus-
sion before Theorem 1.1 in [31] and Section 2 in Hairer [26]) condition for (1.1) to
be hypoelliptic; see Theorem 1.1 in [31]. To formulate Hörmander’s condition, set
σ0(x) = μ(x)− 1

2
∑m

k=1 σ ′
k(x)σk(x) for all x ∈ Rd . Then the Hörmander condition

is fulfilled if

span
{
σi0(x), [σi0, σi1](x),

[[σi0, σi1], σi2

]
(x), . . . ∈ Rd :

(1.2)
i0, i1, i2, . . . ∈ {0,1, . . . ,m}, i0 
= 0

}= Rd

for all x ∈ Rd where [f,g] denotes the Lie bracket of two smooth vector fields
f,g :Rd → Rd . Consequently, if Hörmander’s condition (1.2) is satisfied, then
the PDE (1.1) admits a unique globally bounded smooth classical solution even if
the initial function ϕ :Rd → R is assumed to be continuous and globally bounded
only. Clearly, there are many cases where the Hörmander condition (1.2) fails to be
fulfilled and where (1.1) is not hypoelliptic, for example, if σ ≡ 0. Next, we point
out that if all derivatives of the drift coefficient μ, of the diffusion coefficient σ

and of the initial function ϕ are globally bounded (μ and σ are then, in particular,
globally Lipschitz continuous), then smoothness of the solution of the PDE (1.1)
is known even in the nonhypoelliptic case (see, e.g., Theorem 4.32 in Krylov [47]
for twice differentiability of the solution; infinitely often differentiability of the
solution follows analogously as in the proof of Theorem 4.32 in Krylov [47]).
Obviously, there are many cases where μ and σ are not both globally Lipschitz
continuous, for example, when μ is a polynomial with a degree greater or equal 2
(see, e.g., Section 4 in [34] for a list of examples). To the best of our knowledge,
regularity of solutions of the PDE (1.1) is in general unknown in the nonhypoel-
liptic case if σ 
≡ 0 and if μ and σ are not both globally Lipschitz continuous.

In this article, we address the question whether second-order linear PDEs with
smooth coefficients of the form (1.1) at least preserve regularity in the nonhypoel-
liptic case. The following Theorem 1.1 answers this question to the negative. More
precisely, the key observation of this article is to reveal the phenomenon of loss of
regularity in the sense that the solution u of the PDE (1.1) starting with a smooth
compactly supported function u(0, ·) ∈ C∞

cpt(R
d,R) may turn into a nondifferen-

tiable function u(t, ·) /∈ C1(Rd,R) for every positive time t ∈ (0,∞). In analogy
to the well-known “smoothing effect” in the hypoelliptic case, we will say in the
case of loss of regularity that the PDE (1.1) has a roughening effect. Here is a
simple two-dimensional example with polynomial μ and linear σ which has this
roughening effect. In the special case d = 2,m = 1 and μ(x) = (x1 · x2,−x2

1) and
σ(x) = (0, x2) for all x = (x1, x2) ∈R2, the PDE (1.1) reads as

∂

∂t
u(t, x) = x2

2

2

∂2

∂x2
2

u(t, x) + x1x2
∂

∂x1
u(t, x) − x2

1
∂

∂x2
u(t, x)(1.3)
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for (t, x) ∈ (0,∞) × R2. Theorem 2.1 and Corollary 4.17 below imply that there
exists an infinitely often differentiable function ϕ ∈ C∞

cpt(R
d,R) with compact sup-

port such that the unique globally bounded viscosity solution u : [0,∞)×R2 →R
to (1.3) with u(0, ·) = ϕ(·) has the property that u|(0,∞)×Rd is not differentiable
and not locally Lipschitz continuous. In particular, we thereby disprove the exis-
tence of a globally bounded classical solution of the PDE (1.3) with u(0, ·) = ϕ(·).
Note that the drift coefficient μ of the PDE (1.3) grows superlinearly. One could
wonder whether the roughening effect of example (1.3) is due to this superlinear
growth of μ. To exclude this possibility, we prove for an example PDE with glob-
ally bounded and smooth coefficients that there exists a smooth initial function
with compact support such that the solution u is not even locally Hölder contin-
uous; see Theorem 1.1 below. In particular, Theorem 1.1 implies that, in general,
the PDE (1.1) does not have a classical solution even if the coefficients and the
initial function are globally bounded and infinitely often differentiable.

THEOREM 1.1 (Disprove of the existence of classical solutions of the Kol-
mogorov PDE with smooth and globally bounded coefficients and initial func-
tion). There exists a natural number d ∈ N, a globally bounded and in-
finitely often differentiable function μ :Rd → Rd , a symmetric nonnegative ma-
trix A = (Ai,j )i,j∈{1,2,...,d} ∈ Rd×d and an infinitely often differentiable function
ϕ ∈ C∞

cpt(R
d,R) with compact support such that there exists no globally bounded

classical solution of the PDE

∂

∂t
u(t, x) =

d∑
i,j=1

Ai,j · ∂2

∂xi ∂xj

u(t, x) +
d∑

i=1

μi(x) · ∂

∂xi

u(t, x),

(1.4)
u(0, x) = ϕ(x)

for (t, x) ∈ (0,∞) × Rd . In addition, there exists a unique globally bounded vis-
cosity solution u : [0,∞) × Rd → R of (1.4) and this function fails to be locally
Hölder continuous.

Theorem 1.1 follows immediately from Corollary 4.17 in Section 4 and from
Theorem 3.1 in Section 3. More precisely, Corollary 4.17 and Theorem 3.1 imply
that there exists an infinitely differentiable function ϕ ∈ C∞

cpt(R
3,R) with compact

support such that the unique globally bounded viscosity solution u : [0,∞)×R3 →
R of the PDE

∂

∂t
u(t, x) = ∂2

∂x2
2

u(t, x) + cos
(
x3 exp

(
x3

2
)) · ∂

∂x1
u(t, x)(1.5)

with initial condition u(0, x) = ϕ(x) for (t, x) = (t, x1, x2, x3) ∈ (0,∞) × R3 is
not locally Hölder continuous. In particular, the PDE (1.5) with u(0, ·) = ϕ(·) has
no globally bounded classical solution. The PDE (1.5) has a globally bounded and
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highly oscillating drift coefficient and a constant diffusion coefficient and serves as
a counterexample to regularity preservation for Kolmogorov PDEs. An SDE with
a globally bounded and highly oscillating diffusion coefficient and a vanishing
drift coefficient has been presented in Li and Scheutzow [49] as a counterexam-
ple for strong completeness of SDEs. Another interesting observation is that the
PDE (1.5) without the second-order term on the right-hand side of (1.5) preserves
regularity and has a smooth classical solution and that the PDE (1.5) without the
first-order term on the right-hand side of (1.5) also preserves regularity and has a
smooth classical solution. Thus, the roughening effect of the PDE (1.5) is a conse-
quence of the interplay between the first-order and the second-order term in (1.5).
We add that Theorem 3.4 in Section 3 is a stronger version of Theorem 1.1 in
which the roughening effect appears on every arbitrarily small open subset of the
state space; see Section 3 and also Theorem 1.2 below for more details. Note that
in both counterexamples to regularity preservation [PDE (1.5) and PDE (1.3)] it
does not hold that all derivatives of μ and σ are globally bounded. Indeed, in
both counterexamples the drift coefficient μ is not globally Lipschitz continuous.
As observed above, regularity preservation is known if all derivatives of μ and σ

are globally bounded. Moreover, note that the coefficients in our counterexample
PDE (1.5) are analytic functions and that the initial function ϕ :Rd → R may be
chosen to be analytic (see Theorem 3.1 for details). We emphasize that this does
not contradict the classical Cauchy–Kovalevskaya theorem (e.g., Theorem 4.6.2
in Evans [18]) proving existence, uniqueness and analyticity of solutions of PDEs
with analytic coefficients as the Cauchy–Kovalevskaya theorem applies to (1.4) in
the case A = 0 only. Moreover, we would like to point out that Theorem 1.1 does
not contradict to Theorems 7.1.3, 7.1.4 and 7.1.7 in Evans [18], which show the
existence of a unique classical solution of (1.4) if A is strictly positive [note that A

in (1.5) is nonnegative but not strictly positive].
Theorem 1.1 shows that a general existence theorem for globally bounded clas-

sical solutions of the PDE (1.1) cannot be established. However, it is possible to
ensure the existence of a viscosity solution of the PDE (1.1) under rather general
assumptions on the coefficients. More precisely, one of our main results, Theo-
rem 4.16 below, establishes the existence of a within a certain class unique vis-
cosity solution for every second-order linear Kolmogorov PDE whose coefficients
are locally Lipschitz continuous and satisfy the Lyapunov-type inequality (4.74).
To the best of our knowledge, this is the first result in the literature proving ex-
istence and uniqueness of solutions of the Kolmogorov PDE (1.1) in the above
generality; see also the discussion after Theorem 4.16 for a short review of exis-
tence and uniqueness results for Kolmogorov PDEs. A crucial result on the route
to Theorem 4.16 is the uniqueness result of Corollary 4.14 for viscosity solutions
of degenerate parabolic second-order linear PDEs.

The roughening effect of the PDE (1.1) revealed in this first paragraph of this
Introduction has a direct consequence on the literature on regularity analysis of
SDEs. This is the subject of the next paragraph.
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Regularity analysis of stochastic differential equations. For the rest of this Intro-
duction, we use the following notation. Let (�,F,P) be an arbitrary probability
space with a normal filtration (Ft )t∈[0,∞) which supports a standard (Ft )t∈[0,∞)-
Brownian motion W : [0,∞) × � → Rm with continuous sample paths. It is a
classical result that the above assumptions on μ and σ ensure the existence of a
family Xx = (Xx

1 , . . . ,Xx
d ) : [0,∞) × � → Rd , x ∈ Rd , of up to indistinguisha-

bility unique solution processes (see, e.g., Theorem 3.1.1 in [63]) with continuous
sample paths of the SDE

dXx(t) = μ
(
Xx(t)

)
dt + σ

(
Xx(t)

)
dW(t)(1.6)

for t ∈ (0,∞) and x ∈ Rd and with Xx(0) = x for all x ∈ Rd (see, e.g., The-
orem 1 in Krylov [46]). Here, the function μ :Rd → Rd is the infinitesimal
mean and the function σ · σ ∗ :Rd → Rd×d is the infinitesimal covariance ma-
trix of the SDE (1.6). It is also well known that the coercivity assumption
on μ and the linear growth bound on σ additionally imply moment bounds
supx∈{y∈Rd : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p] < ∞ for all p ∈ [0,∞) for the solu-
tion processes of the SDE (1.6). The transition semigroup Pt : Cb(Rd,R) →
Cb(Rd,R), t ∈ [0,∞) of the SDE (1.6) is defined by (Ptϕ)(x) := E[ϕ(Xx(t))]
for all t ∈ [0,∞), x ∈ Rd and all ϕ ∈ Cb(Rd,R) where Cb(Rd,R) is as usual the
space of globally bounded and continuous functions from Rd to R. Note for every
ϕ ∈ Cb(Rd,R) that the function Rd 
 x �→ E[ϕ(Xx(t))] ∈ R is continuous (see,
e.g., Theorem 1.7 in Krylov [47]) and hence, the semigroup (Pt )t∈[0,∞) is well de-
fined. Observe also that the function Rd 
 x �→ E[ϕ(Xx(t))] ∈ R is continuous for
every ϕ ∈ Cb(Rd,R) although the SDE (1.6) is, in general, not strongly complete;
see Li and Scheutzow [49] and see, for example, also Elworthy [15], Kunita [48]
and Fang, Imkeller and Zhang [19] for further results on strong completeness of
SDEs.

Theorem 1.1 in Hörmander [31] and Proposition 4.18 below imply that if the
Hörmander condition (1.2) is fulfilled, then the semigroup is smoothing in the
sense that Pt(Cb(Rd,R)) ⊆ C∞

b (Rd,R) for all t ∈ (0,∞). To the best of our
knowledge, it remained an open question in the nonhypoelliptic case whether
SDEs with infinitely often differentiable coefficients such as (1.6) in general pre-
serve regularity in the sense that Pt(C∞

b (Rd,R)) ⊆ C∞
b (Rd,R) for all t ∈ (0,∞).

This article answers this question to the negative. More precisely, the following
theorem reveals that smooth functions with compact support may be mapped to
nonsmooth functions by the transition semigroup of the SDE (1.6). In analogy to
the well-known “smoothing effect” of many SDEs, we will say that the semigroup
has a roughening effect in that case. Here is a simple two-dimensional example
SDE with polynomial drift coefficient and linear diffusion coefficient which has
this roughening effect. In the special case d = 2, m = 1 and μ(x) = (x1 · x2,−x2

1)

and σ(x) = (0, x2) for all x = (x1, x2) ∈ R2, the SDE (1.6) reads as

dXx
1 (t) = Xx

1 (t) · Xx
2 (t) dt,

(1.7)
dXx

2 (t) = −Xx
1 (t)2 dt + Xx

2 (t) dW(t)
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for t ∈ (0,∞) and x ∈ R2. Observe that (1.3) is the Kolmogorov PDE of (1.7);
see Corollary 4.17 for details. Moreover, note that 〈x,μ(x)〉 = 0 for all x ∈ R2

in this example. Thus, the solution process of the associated ordinary differen-
tial equation stays on the circle centered at (0,0) ∈ R2 going through the start-
ing point. Theorem 2.1 in Section 2 shows for the SDE (1.7) that there exists
an infinitely often differentiable function ϕ ∈ C∞

cpt(R
d,R) with compact sup-

port such for every t ∈ (0,∞) the functions R2 
 x �→ E[ϕ(Xx(t))] ∈ R and
R2 
 x �→ E[Xx(t)] ∈ R2 are continuous but not differentiable and not locally
Lipschitz continuous. For every t ∈ (0,∞), we hence have the roughening effect
Pt(C∞

cpt(R
d,R)) � C1(Rd,R) in the case of the SDE (1.7). The drift coefficient

μ of the SDE (1.7) grows superlinearly. As above, the superlinear growth of μ is
not necessary for the transition semigroup of the SDE to be roughening. This is
subject of the next main result of this article.

THEOREM 1.2 (A counterexample to regularity preservation with degener-
ate additive noise). There exists a natural number d ∈ N, a globally bounded
and infinitely often differentiable function μ :Rd → Rd and a constant function
σ :Rd → Rd×d , that is σ(x) = σ(0) for all x ∈ Rd , with the following proper-
ties. For every t ∈ (0,∞) the function Rd 
 x �→ E[Xx(t)] ∈ Rd is continuous
but nowhere locally Hölder continuous and for every nonempty open set O ⊂ Rd

there exists an infinitely often differentiable function ϕ ∈ C∞
cpt(R

d,R) with com-
pact support such that the function O 
 x �→ E[ϕ(Xx(t))] ∈ R is continuous
but not locally Hölder continuous. In particular, for every t ∈ (0,∞) we have
Pt(C∞

cpt(R
d,R))�

⋃
α∈(0,∞) Cα(Rd,R).

Theorem 1.2 follows immediately from Theorem 3.4 in Section 3. The roughen-
ing effect of some SDEs with smooth coefficients revealed through example (1.7)
and Theorem 1.2 above, has a direct consequence on the literature on numerical
approximations of SDEs. This is the subject of the next paragraph.

Numerical approximations of stochastic differential equations. Starting with
Maruyama’s adaptation of Euler’s method to SDEs in 1955 (see [51]), an extensive
literature on the numerical approximation of solutions of SDEs has been published
in the last six decades; see, for example, the books and overview articles [3, 23,
38, 41–43, 52, 53, 57] for extensive lists of references. A key objective in this
field of research is to prove convergence of suitable numerical approximation pro-
cesses to the solution process of the SDE and to establish a rate of convergence
for the considered approximation scheme in the strong, in the almost sure or in the
numerically weak sense.

Almost sure convergence rates of many numerical schemes such as the stan-
dard Euler method or the higher-order Milstein method are well known for the
SDE (1.6) and even for a much larger class of nonlinear SDEs; see Gyöngy [22]
and Jentzen, Kloeden and Neuenkirch [39]. Many applications, however, require
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the numerical approximation of moments or other functionals of the solution pro-
cess, for instance, the expected pay-off of an option in computational finance; see,
for example, Glasserman [21] for details. For this reason, applications are particu-
larly interested in strong and numerically weak convergence rates. The vast major-
ity of research results establishing strong and numerically weak convergence rates
assume that the coefficients of the SDE are globally Lipschitz continuous or at least
that they satisfy the global monotonicity condition that there exists a real number
ρ ∈ R such that 〈x − y,μ(x) − μ(y)〉 + 1

2
∑m

k=1 ‖σk(x) − σk(y)‖2 ≤ ρ‖x − y‖2

for all x, y ∈ Rd (see, e.g., Theorem 2.4 in Hu [33], Theorem 5.3 in Higham, Mao
and Stuart [28], Schurz [67], Theorems 2 and 3 in Higham and Kloeden [27],
Theorem 6.3 in Mao and Szpruch [50], Theorem 1.1 in Hutzenthaler, Jentzen
and Kloeden [36], Theorem 3.2 in Wang and Gan [68]). Strong and numerically
weak convergence rates without assuming global monotonicity are established in
Gyöngy and Rásonyi [25] in the case of a class of scalar SDEs with globally
Hölder continuous coefficients, in Dörsek [14] in the case of the two-dimensional
stochastic Navier–Stokes equations and in Dereich, Neuenkirch and Szpruch [13],
Alfonsi [1], Neuenkirch and Szpruch [58] in the case of a class of scalar SDEs (in-
cluding, e.g., the Cox–Ingersoll–Ross process) that can be transformed in a suit-
able sense to SDEs that satisfy the global monotonicity assumption. The global
monotonicity assumption is a serious restriction on the coefficients of the SDE
and excludes many interesting SDEs in the literature (e.g., stochastic Lorenz equa-
tions, stochastic Duffing–van der Pol oscillators and the stochastic SIR model; see
Section 4 in [34] for details and further examples). It remains an open problem to
establish strong and numerically weak convergence rates in the general setting of
the SDE (1.6).

In this article, we establish in the setting (1.6) the existence of an SDE with
globally bounded and infinitely often differentiable coefficients for which the Euler
approximations converge in the strong and in the numerically weak sense without
any arbitrarily small polynomial rate of convergence. More precisely, our main
result for the literature on the numerical approximation of SDEs is the following
theorem.

THEOREM 1.3 (A counterexample to the rate of convergence in the numeri-
cal approximation of nonlinear SDEs with additive noise). Let T ∈ (0,∞) and
x0 ∈ R4 be arbitrary. Then there exists a globally bounded and infinitely often dif-
ferentiable function μ :R4 → R4 and a symmetric nonnegative matrix B ∈ R4×4

such that the stochastic process X : [0, T ]×� →R4 with continuous sample paths
satisfying X(t) = x0 + ∫ t

0 μ(X(s)) ds + BW(t) for all t ∈ [0, T ] and its Euler–
Maruyama approximations YN : {0, T

N
, 2T

N
, . . . , T } × � → R4, N ∈ N, satisfy-

ing YN(0) = x0 and YN((n+1)T
N

) = YN(nT
N

) + μ(YN(nT
N

)) T
N

+ B(W(n+1)T /N −
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WnT/N) for all n ∈ {0,1, . . . ,N − 1}, N ∈ N, fulfill that

lim
N→∞

(
Nα ·E[∥∥X(T ) − YN(T )

∥∥])
= lim

N→∞
(
Nα · ∥∥E[X(T )

]−E
[
YN(T )

]∥∥)(1.8)

=
{

0, α = 0,

∞, α > 0,

for all α ∈ [0,∞). In particular, for every α ∈ (0,∞) there exists no real number
cα ∈ (0,∞) such that ‖E[X(T )] −E[YN(T )]‖ ≤ cα · N−α for all N ∈ N.

Theorem 1.3 follows immediately from Theorem 5.1 in Section 5. In the deter-
ministic case σ ≡ 0, it is well known that the Euler approximations converge to
the solution process of (1.6) with the rate 1. In the stochastic case σ 
≡ 0, this rate
of convergence can often not be achieved. In particular, Clark and Cameron [6]
proved for an SDE in the setting of (1.6) that a class of Euler-type schemes can-
not, in general, converge strongly with a higher-order than 1

2 . Since then, there have
been many results on lower bounds of strong and numerically weak approximation
errors for numerical approximation schemes of SDEs; see, for example, [4, 10, 29,
30, 35, 45, 55–57, 66] and the references therein. Now the observation of Theo-
rem 1.3 is that there exist SDEs with smooth and globally bounded coefficients for
which the standard Euler approximations converge in the strong and numerically
weak sense without any arbitrarily small polynomial rate of convergence. To the
best of our knowledge, Theorem 1.3 is the first result in the literature in which it
has been established that Euler’s method converges to the solution of an SDE with
smooth coefficients in the strong and numerical weak sense without any arbitrarily
small polynomial rate of convergence. Clearly, this lack of a rate of convergence is
not a special property of the Euler scheme and holds for other schemes such as the
Milstein scheme, too. It is based on the fact that our counterexample SDE for The-
orem 1.3 [see (5.3)] suffers under the roughening effect revealed in Theorems 1.1
and 1.2 (see Corollary 5.2 and Theorem 5.1 in Section 5 for details).

Comparing Theorem 5.1 with Theorem 2.4 in Gyöngy [22] reveals the re-
markable difference that the Euler approximations for some SDEs have almost
sure convergence rate 1

2− but no strong and no numerically weak rate of conver-
gence. More formally, Theorem 2.4 in [22] shows in the setting of Theorem 1.3
that there exist finite random variables Cε :� → [0,∞), ε ∈ (0, 1

2), such that
‖X(T ) − YN(T )‖ ≤ Cε · N(ε−1/2), P-a.s. for all N ∈ N and all ε ∈ (0, 1

2). Tak-
ing expectation then results in E[‖X(T ) − YN(T )‖] ≤ E[Cε] · N(ε−1/2) for all
N ∈ N and all ε ∈ (0, 1

2) and from Theorem 1.3 we hence get that the error con-
stants have infinite expectations, that is, E[Cε] = ∞ for all ε ∈ (0, 1

2). In addition,
we refer to Theorem 2.3 in Milstein and Tretyakov [54] for a weak convergence
result restricted to certain subevents of the probability space. Finally, we empha-
size that Monte Carlo simulations confirm the slow strong and numerically weak
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convergence phenomenon of Euler’s method revealed in Theorem 1.3. For details,
the reader is referred to Figure 1 in Section 5 below.

2. Counterexamples to regularity preservation with linear multiplicative
noise. In this section, we establish the phenomenon of loss of regularity of the
simple example SDE (1.7) with polynomial drift coefficient and linear diffusion
coefficient. For this, we consider the following setting. Let (�,F,P) be a prob-
ability space with a normal filtration (Ft )t∈[0,∞), let W : [0,∞) × � → R be a
one-dimensional standard (Ft )t∈[0,∞)-Brownian motion with continuous sample
paths and let Xx = (Xx

1 ,Xx
2 ) : [0,∞) × � → R2, x ∈ R2, be the up to indistin-

guishability unique solution processes with continuous sample paths of the SDE

dXx
1 (t) = Xx

1 (t) · Xx
2 (t) dt,

(2.1)
dXx

2 (t) = −(Xx
1 (t)

)2
dt + Xx

2 (t) dW(t)

for t ∈ (0,∞) and x ∈ R2 satisfying Xx(0) = x for all x ∈ R2. Corollary 2.6 in
Gyöngy and Krylov [24] ensures that the processes Xx : [0,∞)×� →R2, x ∈ R2,
do indeed exist. The following Theorem 2.1 shows that the semigroup associated
with the SDE (2.1) loses regularity in the sense that there exists an infinitely often
differentiable function with compact support, which is mapped to a nonsmooth
function by the semigroup.

THEOREM 2.1 (A counterexample to regularity preservation with linear mul-
tiplicative noise). Let Xx : [0,∞) × � → R2, x ∈ R2, be solution processes of
the SDE (2.1) with continuous sample paths and with Xx(0) = x for all x ∈ R2.
Then supx∈{y∈R2 : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p] < ∞ for all p ∈ [0,∞) and there

exists an infinitely often differentiable function ϕ ∈ C∞
cpt(R

2,R) with compact sup-

port such that for every t, p ∈ (0,∞) the mappings R2 
 x �→ E[Xx(t)] ∈ R2,
R2 
 x �→ E[ϕ(Xx(t))] ∈ R and R2 
 x �→ Xx(t) ∈ Lp(�;R2) are continuous
but not locally Lipschitz continuous and not differentiable.

The proof of Theorem 2.1 is deferred to the end of this section. The proof of
Theorem 2.1 uses the following simple lemma.

LEMMA 2.2 (Restricted exponential integrals of a geometric Brownian mo-
tion). Let (�,F,P) be a probability space and let W : [0,∞) × � → R be a
one-dimensional standard Brownian motion with continuous sample paths. Then

E
[
1{a≤eW(t)≤b} exp

(
c ·
∫ t

0
eW(s) ds

)]
= ∞(2.2)

for all t, a, b, c ∈ (0,∞) with a < b.
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PROOF. Independence of W(t) from (W(s) − s
t
W(t))s∈[0,t] for all t ∈ (0,∞)

implies

E
[
1{a≤eW(t)≤b} exp

(
c ·
∫ t

0
eW(s) ds

)]

≥ E
[
1{a≤eW(t)≤b} exp

(
c ·
∫ t

0
e(W(s)−(s/t)W(t))as/t ds

)]

≥ P
[
a ≤ eW(t) ≤ b

] ·E[exp
(
tc · min(a,1) · 1

t

∫ t

0
e(W(s)−(s/t)W(t)) ds

)]
(2.3)

≥ P
[
a ≤ eW(t) ≤ b

]
×E

[
exp

(
tc · min(a,1) · exp

(
1

t

∫ t

0
W(s) − s

t
W(t) ds

))]

for all t, a, b, c ∈ (0,∞) with a < b where we used Jensen’s inequality and con-
vexity of the exponential function in the last step. The time integrated Brownian
bridge

∫ t
0 W(s) − s

t
W(t) ds on the right-hand side of (2.3) is normally distributed

with mean 0 and variance

E
[(∫ t

0
W(s) − s

t
W(t) ds

)2]

= E
[∫ t

0

∫ t

0

(
W(s) − s

t
W(t)

)(
W(r) − r

t
W(t)

)
dr ds

]

=
∫ t

0

∫ t

0
E
[
W(s)W(r) − r

t
W(s)W(t) − s

t
W(r)W(t) + sr

t2

(
W(t)

)2]
dr ds(2.4)

=
∫ t

0

∫ t

0

(
min(r, s) − rs

t
− sr

t
+ sr

t

)
dr ds

= 2
∫ t

0

∫ s

0

(
r − rs

t

)
dr ds =

∫ t

0

(
s2 − s3

t

)
ds = t3

12
∈ (0,∞)

for every t ∈ (0,∞). As the double exponential normal distribution has infinite
mean, we conclude that the right-hand side of (2.3) is infinite for all t, a, b, c ∈
(0,∞). This finishes the proof Lemma 2.2. �

The proof of the following Lemma 2.3 makes use of Lemma 2.2. Using
Lemma 2.3, the proof of Theorem 2.1 is then completed at the end of this sec-
tion.

LEMMA 2.3. Let Xx : [0,∞) × � →R2, x ∈ R2, be solution processes of the
SDE (2.1) with continuous sample paths and with Xx(0) = x for all x ∈ R2. Then
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supx∈{y∈R2 : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p] < ∞ for all p ∈ [0,∞) and

lim
0
=x1→0

(
1

x1
·E[X(x1,x2)

1 (t) − X
(0,x2)
1 (t)

])
(2.5)

= ∞ = lim
0
=x1→0

(
1

|x1| · ∥∥X(x1,x2)
1 (t) − X

(0,x2)
1 (t)

∥∥
Lp(�;R)

)
for all t, x2,p ∈ (0,∞) and there exists an infinitely often differentiable function
ϕ ∈ C∞

cpt(R
2,R) with compact support such that lim0
=x1→0(

1
x1

·E[ϕ(X(x1,x2)(t))−
ϕ(X(0,x2)(t))]) = ∞ for all t, x2 ∈ (0,∞).

PROOF. The global Lipschitz continuity of σ , the local Lipschitz continuity
of μ and 〈x,μ(x)〉 = 0 for all x ∈ R2 imply that

sup
x∈{y∈R2 : ‖y‖≤p}

E
[

sup
t∈[0,p]

∥∥Xx(t)
∥∥p
]
< ∞

for all p ∈ [0,∞). Next, we disprove local Lipschitz continuity of the mapping
R2 
 x �→ Xx

1 (t) ∈ Lp(�;R) for every t, p ∈ (0,∞). More precisely, aiming at a
contradiction, we assume that the second equality in (2.5) is false. Then there exist
positive real numbers t, x2,p ∈ (0,∞) and a sequence of real numbers hn ∈ R \
{0}, n ∈ N, such that limn→∞ hn = 0 and such that lim supn→∞ 1

|hn| ‖X(hn,x2)
1 (t) −

X
(0,x2)
1 (t)‖Lp(�;R) < ∞. Theorem 1.7 in Krylov [47] (see also Proposition 3.2.1

in Prévôt and Röckner [63]) yields that sups∈[0,t] ‖X(hn,x2)(s) − X(0,x2)(s)‖ → 0
in probability as n → ∞. Hence, there exists a strictly increasing sequence
nk ∈ N, k ∈ N, of natural numbers such that limk→∞ sups∈[0,t] ‖X(hnk

,x2)(s) −
X(0,x2)(s)‖ = 0, P-a.s.; see, for example, Corollary 6.13 in Klenke [40]. Apply-
ing this, Fatou’s lemma and Lemma 2.2 implies

∞ > lim sup
k→∞

(
1

|hnk
|
∥∥X(hnk

,x2)

1 (t) − X
(0,x2)
1 (t)

∥∥
Lp(�;R)

)

= lim sup
k→∞

(
1

|hnk
|
∥∥X(hnk

,x2)

1 (t)
∥∥
Lp(�;R)

)

= lim sup
k→∞

∥∥∥∥exp
(∫ t

0
X

(hnk
,x2)

2 (s) ds

)∥∥∥∥
Lp(�;R)

≥
∥∥∥∥lim inf

k→∞

{
exp

(∫ t

0
X

(hnk
,x2)

2 (s) ds

)}∥∥∥∥
Lp(�;R)

=
∥∥∥∥exp

(∫ t

0
X

(0,x2)
2 (s) ds

)∥∥∥∥
Lp(�;R)

=
∥∥∥∥exp

(∫ t

0
e(W(s)−s/2) ds · x2

)∥∥∥∥
Lp(�;R)

(2.6)
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≥
(
E
[
exp

(∫ t

0
eW(s) ds · px2

et/2

)
· 1{1≤eW(t)≤2}

])1/p

= ∞.

This contradiction implies that the second equality in (2.5) is true. The first equality

in (2.5) follows from the second equality in (2.5) as 1
x1

(X
(x1,x2)
1 (t) − X

(0,x2)
1 (t)) ∈

[0,∞) for all x1 ∈ R \ {0} and all x2 ∈ (0,∞). In the next step, let c ∈ (0,∞)

be an arbitrary fixed real number and let ψ1 :R → R and ψ2 :R → [0,∞) be
two infinitely often differentiable functions with x · ψ1(x) ≥ 0 for all x ∈ R, with
ψ1(x) = ψ2(x) = 0 for all x ∈ R \ [−c − 1, c + 1] and with ψ1(x) = x and
ψ2(x) = 1 for all x ∈ [−c, c]. Due to partition of unity, such functions indeed
exist. Next, let ϕ :R2 → R be given by ϕ(x1, x2) = ψ1(x1) · ψ2(x2) for all x =
(x1, x2) ∈ R2. Note that ϕ ∈ C∞

cpt(R
2,R) is an infinitely often differentiable func-

tion with compact support. We now show that lim0
=x1→0(
1
x1

· E[ϕ(X(x1,x2)(t)) −
ϕ(X(0,x2)(t))]) = ∞ for all t, x2 ∈ (0,∞). Aiming at a contradiction, assume that
there exist positive real numbers t, x2 ∈ (0,∞) and a sequence hn ∈ R\{0}, n ∈ N,
such that limn→∞ hn = 0 and such that

lim sup
n→∞

(
1

hn

·E[ϕ(X(hn,x2)
1 (t)

)− ϕ
(
X

(0,x2)
1 (t)

)])
< ∞.(2.7)

Theorem 1.7 in Krylov [47] yields that sups∈[0,t] ‖X(hn,x2)(s) − X(0,x2)(s)‖ → 0
in probability as n → ∞. Hence, there exists a strictly increasing sequence
nk ∈ N, k ∈ N, of natural numbers such that limk→∞ sups∈[0,t] ‖X(hnk

,x2)(s) −
X(0,x2)(s)‖ = 0, P-a.s.; see, for example, Corollary 6.13 in Klenke [40]. Apply-
ing this, the fact 1

x1
(ϕ(x1, x2) − ϕ(0, x2)) ∈ [0,∞) for all x1 ∈ R \ {0} and all

x2 ∈ (0,∞), Fatou’s lemma and Lemma 2.2 then results in

∞ > lim sup
k→∞

(
1

hnk

E
[
ϕ
(
X(hnk

,x2)(t)
)− ϕ

(
X(0,x2)(t)

)])

= lim sup
k→∞

E
[∣∣∣∣ϕ(X(hnk

,x2)(t)) − ϕ(X(0,x2)(t))

hnk

∣∣∣∣
]

≥ E
[
lim inf
k→∞

∣∣∣∣ϕ(X(hnk
,x2)(t)) − ϕ(X(0,x2)(t))

hnk

∣∣∣∣
]

= E
[
lim inf
k→∞

(
ϕ(X(hnk

,x2)(t)) − ϕ(X(0,x2)(t))

hnk

)]

= E
[
ψ2
(
X

(0,x2)
2 (t)

)(
lim inf
k→∞

X
(hnk

,x2)

1 (t)

hnk

)]

= E
[
ψ2
(
X

(0,x2)
2 (t)

) · exp
(∫ t

0
e(W(s)−s/2) ds · x2

)]
(2.8)
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≥ E
[
1{c/2≤x2·exp(W(t)−t/2)≤c} · exp

(∫ t

0
e(W(s)−s/2) ds · x2

)]
= ∞.

This contradiction implies that lim0
=x1→0(
1
x1

·E[ϕ(X(x1,x2)(t))−ϕ(X(0,x2)(t))]) =
∞ for all t, x2 ∈ (0,∞). The proof of Lemma 2.3 is thus completed. �

PROOF OF THEOREM 2.1. Theorem 1.7 in Krylov [47] (see also Proposi-
tion 3.2.1 in Prévôt and Röckner [63]), in particular, shows for every t ∈ [0,∞)

that the mapping

R2 
 x �→ Xx(t) ∈ L0(�;R2)(2.9)

is continuous. This implies for every ϕ ∈ C∞
cpt(R

2,R) and every t ∈ [0,∞) that the

mapping R2 
 x �→ E[ϕ(Xx(t))] ∈R is continuous. Moreover, Lemma 2.3 proves
that supx∈{y∈R2 : ‖y‖≤p} E[supt∈[0,p] ‖Xx(t)‖p] < ∞ for all p ∈ [0,∞). Combin-
ing this, (2.9), Corollary 6.21 in Klenke [40] and Theorem 6.25 in Klenke [40]
shows for every t, p ∈ [0,∞) that the mappings R2 
 x �→ Xx(t) ∈ Lp(�;R2)

and R2 
 x �→ E[Xx(t)] ∈ R2 are continuous. Furthermore, Lemma 2.3 im-
plies that there exists an infinitely often differentiable function ϕ ∈ C∞

cpt(R
2,R)

with compact support such that for every t, p ∈ (0,∞) the mappings R2 
 x �→
E[Xx(t)] ∈ R2, R2 
 x �→ E[ϕ(Xx(t))] ∈ R and R2 
 x �→ Xx(t) ∈ Lp(�;R2)

are not locally Lipschitz continuous and not differentiable. The proof of Theo-
rem 2.1 is thus completed. �

In the remainder of this section, we briefly consider slightly modified ver-
sions of the SDE (2.1). The generator of the SDE (2.1) is nowhere elliptic.
We remark that the phenomenon of loss of regularity may also appear for an
SDE whose generator is in many points of the state space elliptic. For exam-
ple, let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,∞), let
W = (W1,W2) : [0,∞) × � → R2 be a two-dimensional standard (Ft )t∈[0,∞)-
Brownian motion and let Xx = (Xx

1 ,Xx
2 ) : [0,∞) × � → R2, x ∈ R2, be the up

to indistinguishability unique solution processes with continuous sample paths of
the SDE

dXx
1 (t) = Xx

1 (t) · Xx
2 (t) dt + Xx

1 (t) dW1(t),
(2.10)

dXx
2 (t) = −(Xx

1 (t)
)2

dt + Xx
2 (t) dW2(t)

for t ∈ (0,∞) and x ∈ R2 satisfying Xx(0) = x for all x ∈ R2. The generator of
the SDE (2.10) is in every point x = (x1, x2) ∈ R2 with x1 ·x2 
= 0 elliptic but there
exists a function ϕ ∈ C∞

cpt(R
d,R) such that for every t ∈ (0,∞) the functions R2 


x �→ E[Xx(t)] ∈ R2 and R2 
 x �→ E[ϕ(Xx(t))] ∈ R are not locally Lipschitz
continuous. The proof of this statement is completely analogous as in the case
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of the SDE (2.1). Furthermore, the same statement holds if the two independent
standard Brownian motion in (2.10) are replaced by one and the same standard
Brownian motion. More precisely, if (�,F,P) is a probability space with a normal
filtration (Ft )t∈[0,∞) and if W : [0,∞) × � → R is a one-dimensional standard
(Ft )t∈[0,∞)-Brownian motion, then the up to indistinguishability unique solution
processes Xx = (Xx

1 ,Xx
2 ) : [0,∞) × � →R2, x ∈ R2, of the SDE

dXx(t) =
(

Xx
1 (t) · Xx

2 (t)

−(Xx
1 (t)

)2
)

dt + Xx(t) dW(t)(2.11)

for t ∈ (0,∞) and x ∈ R2 with continuous sample paths and with Xx(0) = x for
all x ∈ R2 fulfill that there exists a function ϕ ∈ C∞

cpt(R
2,R) such that for every

t ∈ (0,∞) the functions R2 
 x �→ E[Xx(t)] ∈ R2 and R2 
 x �→ E[ϕ(Xx(t))] ∈
R are not locally Lipschitz continuous.

3. Counterexamples to regularity preservation with degenerate additive
noise. In this section, we show the roughening effect for an example SDE with
globally bounded and infinitely often differentiable coefficients. For this, it suffices
to consider the following counterexample to regularity preservation. Let (�,F,P)

be a probability space, let W : [0,∞) × � → R be a one-dimensional standard
Brownian motion and let Xx = (Xx

1 ,Xx
2 ,Xx

3 ) : [0,∞) × � → R3, x ∈ R3, be the
up to indistinguishability unique solution processes with continuous sample paths
of the SDE

dXx
1 (t) = cos

(
Xx

3 (t) · exp
(
Xx

2 (t)3))dt,

dXx
2 (t) = √

2dW(t),(3.1)

dXx
3 (t) = 0dt

for t ∈ [0,∞) and x ∈ R3 satisfying Xx(0) = x for all x ∈ R3. Observe that

Xx
1 (t) = x1 +

∫ t

0
cos

(
x3 · exp

([
x2 + √

2W(s)
]3))

ds,(3.2)

P-a.s. for all t ∈ [0,∞) and all x = (x1, x2, x3) ∈ R3.

THEOREM 3.1 (A counterexample to regularity preservation with degenerate
additive noise). Let T ∈ (0,∞) and let Xx : [0,∞) × � → R3, x ∈ R3, be so-
lution processes of the SDE (3.1) satisfying Xx(0) = x for all x ∈ R3. Then there
exists an infinitely often differentiable function ϕ ∈ C∞

cpt(R
3,R) with compact sup-

port such that for every t ∈ (0, T ] the functions R3 
 x �→ E[Xx(t)] ∈ R3 and
R3 
 x �→ E[ϕ(Xx(t))] ∈ R are continuous but not locally Hölder continuous.

In the following, regularity properties of the solution processes Xx = (Xx
1 ,Xx

2 ,

Xx
3 ) : [0,∞)×� →R3, x ∈ R3, of the SDE (3.1) are investigated in order to prove
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Theorem 3.1. To do so, we first establish a few auxiliary results. We begin with a
simple lemma on trigonometric integrals.

LEMMA 3.2. Let a, b ∈R be real numbers with a < b, let ψ : [a, b] → [0,∞)

be a continuously differentiable function and let ϕ : [a, b] → R be a twice contin-
uously differentiable function with ei·ϕ(a) = i and with ϕ′(x) ≥ 0, ϕ′′(x) ≥ 0 and
ψ ′(x) ≤ 0 for all x ∈ [a, b]. Then

∫ b
a cos(ϕ(x))ψ(x) dx ≤ 0.

PROOF. First, assume w.l.o.g. that ϕ(b) ≥ ϕ(a) + π (otherwise we have
cos(ϕ(x)) ≤ 0 for all x ∈ [a, b], and hence

∫ b
a cos(ϕ(x))ψ(x) dx ≤ 0). More-

over, assume w.l.o.g. that ϕ′(x) > 0 for all x ∈ (a, b] (otherwise consider
ϕ|[ã,b] : [ã, b] → R where ã := inf({x ∈ [a, b] :ϕ′(x) > 0} ∪ {b}) and observe
that

∫ b
a cos(ϕ(x))ψ(x) dx = ∫ b

ã cos(ϕ(x))ψ(x) dx). In particular, ϕ : [a, b] → R
is strictly increasing and there exists a unique strictly increasing continuous func-
tion ϕ−1 : [ϕ(a),ϕ(b)] → [a, b] with ϕ−1(ϕ(x)) = x for all x ∈ [a, b] and with
ϕ(ϕ−1(x)) = x and (ϕ−1)′(x) = 1

ϕ′(ϕ−1(x))
> 0 for all x ∈ (ϕ(a), ϕ(b)). Integra-

tion by substitution and integration by parts therefore imply∫ b

a
cos

(
ϕ(x)

)
ψ(x)dx

=
∫ ϕ(b)

ϕ(a)
cos(x) · ψ(ϕ−1(x)

) · (ϕ−1)′(x) dx

=
∫ ϕ(b)

ϕ(a)

cos(x) · ψ(ϕ−1(x))

ϕ′(ϕ−1(x))
dx

(3.3)

= [sin(ϕ(b)) − 1]ψ(ϕ−1(ϕ(b)))

ϕ′(ϕ−1(ϕ(b)))

−
∫ ϕ(b)

ϕ(a)

[
sin(x) − 1

][ ψ ′(ϕ−1(x))

[ϕ′(ϕ−1(x))]2 − ψ(ϕ−1(x))ϕ′′(ϕ−1(x))

[ϕ′(ϕ−1(x))]3

]
dx

≤ 0.

This completes the proof of Lemma 3.2. �

The next lemma analyzes suitable regularity properties of the solution processes
Xx = (Xx

1 ,Xx
2 ,Xx

3 ) : [0,∞) × � → R3, x ∈ R3, of the SDE (3.1). Its proof is
based on Lemma 3.2.

LEMMA 3.3 (A lower bound). Let (�,F,P) be a probability space and let
W : [0,∞) × � →R be a one-dimensional standard Brownian motion. Then

1 −E
[
cos

(
h · exp

([
x + W(t)

]3))]≥ exp
(−8

t

[∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

+ x2
])

(3.4)
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for all h ∈ (0, π
2 exp(−|[√t + x] ∨ 0|3)], t ∈ (0,∞) and all x ∈ R and∫ t

0
E
[
1{W(t)∈A}

(
1 − cos

(
h · e[x+W(s)]3))]

ds

(3.5)

≥ t

3
·E[1{W(t)∈A}e−64|W(t)|2/t ] · exp

(−64

t

[∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3
+ x2

])

for all h ∈ (0, π
2 exp(−[√t + |x| + supa∈A |a|]3)], x ∈ R, t ∈ (0,∞) and all

bounded and Borel measurable sets A ⊂ R.

PROOF. First of all, define a family ϕt,x,h : [ [ln(π/(2h))]1/3−x√
t

,∞) → R,

(t, x, h) ∈ {(0,∞) ×R× (0,∞) :h ≤ π
2 exp(−|x ∨ 0|3)}, of functions by

ϕt,x,h(y) := h · exp
([x + √

ty]3)(3.6)

for all y ∈ [[ln(π/(2h))]1/3−x√
t

,∞), t ∈ (0,∞), h ∈ (0, π
2 exp(−|x ∨ 0|3)] and all

x ∈ R. Observe that

ϕ′
t,x,h(y) = 3

√
t[x + √

ty]2ϕt,x,h(y) ≥ 0(3.7)

and

ϕ′′
t,x,h(y) = 6t[x + √

ty]ϕt,x,h(y) + 9t[x + √
ty]4ϕt,x,h(y) ≥ 0(3.8)

for all y ∈ [[ln(π/(2h))]1/3−x√
t

,∞), t ∈ (0,∞), h ∈ (0, π
2 exp(−|x ∨ 0|3)] and all

x ∈ R. In addition, note that ϕt,x,h(
[ln(π/(2h))]1/3−x√

t
) = π

2 for all t ∈ (0,∞), h ∈
(0, π

2 exp(−|x ∨ 0|3)] and all x ∈ R. We can thus apply Lemma 3.2 to obtain that

1√
2π

∫ ∞
([ln(π/(2h))]1/3−x)/

√
t
cos

(
h · exp

([x + √
ty]3))e−y2/2 dy ≤ 0(3.9)

for all t ∈ (0,∞), h ∈ (0, π
2 exp(−|x ∨ 0|3)] and all x ∈ R. This implies

E
[
cos

(
h · exp

([
x + W(t)

]3))]
= 1√

2π

∫ ∞
−∞

cos
(
h · exp

([x + √
ty]3))e−y2/2 dy

≤ 1√
2π

∫ ([ln(π/(2h))]1/3−x)/
√

t

−∞
cos

(
h · exp

([x + √
ty]3))e−y2/2 dy(3.10)

≤ P
[
W1 ≤ [ln(π/(2h))]1/3 − x√

t

]

= 1 − P
[
W1 >

[ln(π/(2h))]1/3 − x√
t

]
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for all t ∈ (0,∞), h ∈ (0, π
2 exp(−|x ∨0|3)] and all x ∈ R. Moreover, Lemma 22.2

in Klenke [40] yields

P[W1 > y] ≥ e−y2/2

y
√

2π(1 + y−2)
≥ e−y2/2

y
√

8π
≥ e−4y2

(3.11)

for all y ∈ [1,∞). Combining this and inequality (3.10) then shows

1 −E
[
cos

(
h · exp

([
x + W(t)

]3))]≥ P
[
W1 >

[ln(π/(2h))]1/3 − x√
t

]
(3.12)

≥ exp
(−4|[ln(π/(2h))]1/3 − x|2

t

)

for all h ∈ (0, π
2 exp(−|[√t + x] ∨ 0|3)], t ∈ (0,∞) and all x ∈ R and the estimate

−|a + b|2 ≥ −2a2 − 2b2 for all a, b ∈ R therefore results in the first inequality
in (3.4). Next, the first inequality in (3.4) implies

E
[
1{W(t)∈A}

∣∣1 − cos
(
h · exp

([
x + W(s)

]3))∣∣]
= E

[
1{W(t)∈A}E

[
1 − cos

(
h · exp

([
x + s

t
W(t) + W(s)

(3.13)

− s

t
W(t)

]3))∣∣∣W(t)

]]

≥ E
[
1{W(t)∈A} exp

( −8t

s(t − s)

[∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

+
[
x + s

t
W(t)

]2])]

for all h ∈ (0, π
2 exp(−[√t + |x| + supa∈A |a|]3)], x ∈ R, s, t ∈ (0,∞) with s < t

and all bounded and Borel measurable sets A ⊂R. Hence, we get∫ t

0
E
[
1{W(t)∈A}

∣∣1 − cos
(
h · exp

([
x + W(s)

]3))∣∣]ds

≥
∫ 2t/3

t/3
E
[
1{W(t)∈A}

∣∣1 − cos
(
h · exp

([
x + W(s)

]3))∣∣]ds

(3.14)

≥
∫ 2t/3

t/3
E
[
1{W(t)∈A} exp

( −8t

s(t − s)

[∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

+
[
x + s

t
W(t)

]2])]
ds

≥ t

3
·E
[
1{W(t)∈A} exp

(−64

t

[∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

+ x2 + ∣∣W(t)
∣∣2])]

for all h ∈ (0, π
2 exp(−[√t + |x| + supa∈A |a|]3)], x ∈ R, t ∈ (0,∞) and all

bounded and Borel measurable sets A ⊂ R. This completes the proof of Lem-
ma 3.3. �
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We are now ready to prove Theorem 3.1 stated at the beginning of this section.
Its proof uses the lower bound established in Lemma 3.3 above.

PROOF OF THEOREM 3.1. First of all, note that (3.2) and Lemma 3.3 imply
that

lim
h↘0

(
E[X(0,0,0)

1 (t) − X
(0,0,h)
1 (t)]

hε

)

= lim
h↘0

(
E[∫ t

0 1 − cos(h · exp([√2W(s)]3)) ds]
hε

)

= lim
h↘0

(∫ t
0 1 −E[cos(h · exp([W(2s)]3))]ds

hε

)

= lim
h↘0

(∫ 2t
0 1 −E[cos(h · exp([W(s)]3))]ds

2hε

)
(3.15)

≥ lim
h↘0

(∫ 2t
t 1 −E[cos(h · exp([W(s)]3))]ds

2hε

)

≥ lim
h↘0

(∫ 2t
t exp((−8/t)| ln(π/(2h))|2/3) ds

2hε

)

= lim
h↘0

(
t

2
· exp

(−8

t

∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

+ ln
(
h−ε)))

= t

2
· lim
h↘0

(
exp

(−8

t

∣∣∣∣ln
(

π

2h

)∣∣∣∣2/3

− ε · ln(h)

))
= ∞

for all ε, t ∈ (0,∞). We hence get for every t ∈ (0,∞) that the function R3 
 x �→
E[Xx(t)] ∈ R3 is not locally Hölder continuous. Moreover, let ψ :R → [0,1] be
an infinitely often differentiable function with compact support and with ψ(x) = 1
for all x ∈ [−T ,T ] and let ϕ :R3 → R be a function given by ϕ(x1, x2, x3) =
x1ψ(x1)ψ(x2)ψ(x3) for all x1, x2, x3 ∈ R. Again (3.2) and Lemma 3.3 then show

lim
h↘0

(
h−ε ·E[ϕ(X(0,0,0)(t)

)− ϕ
(
X(0,0,h)(t)

)])
= lim

h↘0

(
h−ε ·E[(X(0,0,0)

1 (t) − X
(0,0,h)
1 (t)

)
ψ
(√

2W(t)
)])

≥ lim
h↘0

(
h−ε ·E[1{|√2W(t)|≤T }

(
X

(0,0,0)
1 (t) − X

(0,0,h)
1 (t)

)])
(3.16)

= lim
h↘0

(
h−ε ·E

[∫ t

0
1{|√2W(t)|≤T }

(
1 − cos

(
h · exp

([√
2W(s)

]3)))
ds

])

= lim
h↘0

(
1

2hε
·E
[∫ 2t

0
1{|W(2t)|≤T }

(
1 − cos

(
h · exp

([
W(s)

]3)))
ds

])
= ∞
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for all t ∈ (0, T ]. The proof of Theorem 3.1 is thus completed. �

In the remainder of this section, we briefly consider a slightly modified ver-
sion of the SDE (3.1). More formally, let (Zn)n∈N0 be a family of sets de-
fined by Z0 := Z := {. . . ,−2,−1,0,1,2, . . .} and by Zn := {z ∈ Z : z

2 /∈ Z} =
{. . . ,−3,−1,1,3, . . .} for all n ∈ N. Then let μ = (μ1,μ2,μ3) :R3 → R3 and
B ∈ R3 be given by

μ(x) =

⎛
⎜⎜⎜⎝

∞∑
n=0

∑
m∈Zn

1

4(n+|m|) cos
((

x3 − m

2n

)
exp

([x2]3))
0
0

⎞
⎟⎟⎟⎠ and

(3.17)

B =
⎛
⎝0

1
0

⎞
⎠

for all x = (x1, x2, x3) ∈ R3. Note that μ :R3 → R3 is infinitely often differen-
tiable and globally bounded by 2. Moreover, let (�,F,P) be a probability space,
let W : [0,∞) × � → R be a one-dimensional standard Brownian motion and let
Xx : [0,∞) × � → R3, x ∈ R3, be the up to indistinguishability unique solution
processes with continuous sample paths of the SDE

dXx(t) = μ
(
Xx(t)

)
dt + B dW(t)(3.18)

for t ∈ [0,∞) and x ∈ R3 satisfying Xx(0) = x for all x ∈ R3. The follow-
ing Theorem 3.4 establishes that the function [0,∞) × R3 → E[Xx(t)] ∈ R3 is
nowhere locally Hölder continuous. Its proof is a straightforward consequence of
Lemma 3.3 and, therefore, omitted.

THEOREM 3.4 (A further counterexample to regularity preservation with de-
generate additive noise). Let c, T ∈ (0,∞) and let Xx : [0,∞) × � → R3,
x ∈ R3, be solution processes of the SDE (3.18) with continuous sample paths
and with Xx(0) = x for all x ∈ R3. Then for every t ∈ (0,∞) and every nonempty
open set O ⊂ R3, the function O 
 x �→ E[Xx(t)] ∈ R3 is continuous but not lo-
cally Hölder continuous. Moreover, there exists an infinitely often differentiable
function ϕ ∈ C∞

cpt(R
3,R) with compact support such that for every t ∈ (0, T ] and

every nonempty open set O ⊂ (−c, c)3 the function O 
 x �→ E[ϕ(Xx(t))] ∈ R is
continuous but not locally Hölder continuous.

4. Solutions of Kolmogorov equations. If the transition semigroup associ-
ated with an SDE is smooth, then it satisfies the Kolmogorov equation (which
is a second-order linear PDE) corresponding to the SDE in the classical sense.
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The transition semigroups in our counterexamples are, however, not locally Lip-
schitz continuous and are therefore no classical solutions of the Kolmogorov
equations of the corresponding SDEs. The purpose of this section is to ver-
ify that the nonsmooth transition semigroup associated with such an SDE still
satisfies the Kolmogorov equation but in a certain weak sense. More precisely,
in Section 4.4, we show that the transition semigroups in our counterexam-
ples are viscosity solutions of the associated Kolmogorov equations. Moreover,
in Section 4.5, we show that the transition semigroups in our counterexam-
ples are solutions of the associated Kolmogorov equations in the distributional
sense. Throughout this section, the notation sup(∅) := −∞ and inf(∅) := ∞ is
used.

4.1. Definition and basic properties of viscosity solutions. Viscosity solutions
were first introduced in Crandall and Lions [9] (see also [8, 16, 17]). The name
viscosity solution is due to the method of vanishing viscosity; see the discus-
sion in Section 10.1 in Evans [18]. For a review of the theory and for more ref-
erences, we refer the reader to the well-known users’s guide Crandall, Ishii and
Lions [7].

For d ∈ N, we denote by Sd = {A ∈ Rd×d :A = A∗} the set of all symmetric d ×
d-matrices. Moreover, for d ∈N and A,B ∈ Sd we write A ≤ B in the following if
〈x,Ax〉 ≤ 〈x,Bx〉 for all x ∈ Rd . Furthermore, for d ∈ N and an open set O ⊂ Rd

we call a function F :O ×R×Rd ×Sd →R degenerate elliptic (see, e.g., (0.3) in
Crandall, Ishii and Lions [7]) if F(x, r,p,A) ≤ F(x, r,p,B) for all x ∈ O , r ∈ R,
p ∈ Rd and all A,B ∈ Sd with A ≥ B . For convenience of the reader, we recall
the definition of a viscosity solution (see, e.g., Section 2 in Crandall, Ishii and
Lions [7] and also Definition 1.2 in Appendix C in Peng [61]).

DEFINITION 4.1 (Viscosity solution). Let d ∈ N, let O ⊂ Rd be an open set
and let F :O × R × Rd × Sd → R be a degenerate elliptic function. A function
u :O → R is said to be a viscosity subsolution of F = 0 (or, equivalently, a vis-
cosity solution of F ≤ 0) if u is upper semicontinuous and if it holds for all x ∈ O

and all φ ∈ C2(O,R) with φ ≥ u and φ(x) = u(x) that

F
(
x,φ(x), (∇φ)(x), (Hessφ)(x)

)≤ 0.(4.1)

Similarly, a function u :O → R is said to be a viscosity supersolution of F = 0
(or, equivalently, a viscosity solution of F ≥ 0) if u is lower semicontinuous and
if it holds for all x ∈ O and all φ ∈ C2(O,R) with φ ≤ u and φ(x) = u(x) that

F
(
x,φ(x), (∇φ)(x), (Hessφ)(x)

)≥ 0.(4.2)
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Finally, a function u :O →R is said to be a viscosity solution of F = 0 if u is both
a viscosity subsolution and a viscosity supersolution of F = 0.

In the proof of Corollary 4.11 below, the following elementary lemma (Lem-
ma 4.2) is used. The proof of Lemma 4.2 is clear and, therefore, omitted.

LEMMA 4.2 (Sign changes of viscosity solutions). Let d ∈ N, let O ⊂ Rd

be an open set, let F :O × R × Rd × Sd → R be a degenerate elliptic func-
tion and let u :O → R be a viscosity solution of F ≥ 0. Then the function
F̃ :O × R × Rd × Sd → R defined by F̃ (x, r,p,A) := −F(x,−r,−p,−A) for
all (x, r,p,A) ∈ O × R × Rd × Sd is degenerate elliptic and the function O 

x �→ −u(x) ∈ R is a viscosity solution of F̃ ≤ 0. The corresponding statement
holds for viscosity solutions of F ≤ 0 and F = 0, respectively.

Above in Definition 4.1, the concept of viscosity solutions is presented via suit-
able test functions. An alternative instrument to characterize viscosity solutions
are so-called semijets (see, e.g., Definition 2.2 in Crandall, Ishii and Lions [7]).
They are recalled in the next definition.

DEFINITION 4.3 (Second-order semijets). Let d ∈ N, let O ⊂ Rd be an open
set and let u :O →R be a function. Then we define functions J 2+u :O → P(Rd ×
Sd), J 2−u :O → P(Rd ×Sd), Ĵ 2+u :O → P(Rd ×Sd) and Ĵ 2−u :O → P(Rd ×Sd)

by(
J 2+u

)
(x)

:=
{
(p,A) ∈Rd × Sd :

lim sup
O\{x}
y→x

(
u(y) − u(x) − 〈p,x − y〉 − (1/2)〈x − y,A(x − y)〉

‖x − y‖2

)
≤ 0

}
,

(
Ĵ 2+u

)
(x)

:=
{
(p,A) ∈Rd × Sd :

(∃(xn,pn,An)n∈N ⊂ O ×Rd × Sd :
(∀n ∈ N : (pn,An) ∈ (J 2+u

)
(xn)

)
and lim

n→∞
(
xn,u(xn),pn,An

)= (
x,u(x),p,A

) )}
,

(
J 2−u

)
(x)

:=
{
(p,A) ∈Rd × Sd :

lim inf
O\{x}
y→x

(
u(y) − u(x) − 〈p,x − y〉 − (1/2)〈x − y,A(x − y)〉

‖x − y‖2

)
≥ 0

}
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and(
Ĵ 2−u

)
(x)

:=
{
(p,A) ∈ Rd × Sd :

(∃(xn,pn,An)n∈N ⊂ O ×Rd × Sd :
(∀n ∈ N : (pn,An) ∈ (J 2−u

)
(xn)

)
and lim

n→∞
(
xn,u(xn),pn,An

)= (
x,u(x),p,A

) )}

for all x ∈ O .

The next lemma (Lemma 4.4), which is essentially one of the statements in
Remark 2.3 in Crandall, Ishii and Lions [7], illustrates the relationship between
semijets in the sense of Definition 4.3 and suitable test functions in the sense of
Definition 4.1.

LEMMA 4.4 (Properties of semijets). Let d ∈ N, let O ⊂ Rd be an open set
and let u :O →R be a function. Then(

J 2+u
)
(x) = {(

(∇φ)(x), (Hessφ)(x)
) ∈ Rd × Sd :(

φ ∈ C2(O,R) with u(x) = φ(x) and u ≤ φ
)}

(4.3)
= {(

(∇φ)(x), (Hessφ)(x)
) ∈ Rd × Sd :(

φ ∈ C2(O,R) and u − φ has a local maximum at x
)}

and (
J 2−u

)
(x) = {(

(∇φ)(x), (Hessφ)(x)
) ∈ Rd × Sd :(

φ ∈ C2(O,R) with u(x) = φ(x) and u ≥ φ
)}

(4.4)
= {(

(∇φ)(x), (Hessφ)(x)
) ∈ Rd × Sd :(

φ ∈ C2(O,R) and u − φ has a local minimum at x
)}

for all x ∈ O .

The next corollary, which is essentially one of the statements in Remark 2.3 in
Crandall, Ishii and Lions [7], is an immediate consequence of Lemma 4.4 above.

COROLLARY 4.5 (Characterizations of viscosity solutions). Let d ∈ N, let
O ⊂ Rd be an open set, let F :O × R × Rd × Sd → R be a degenerate elliptic
function and let u :O →R be an upper semicontinuous function. Then the follow-
ing three assertions are equivalent:

• u is a viscosity subsolution of F = 0 (u is a viscosity solution of F ≤ 0),
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• for every x ∈ O and every φ ∈ {ψ ∈ C2(O,R) :x is a local maximum of (u −
ψ) :O →R} it holds that F(x,u(x), (∇φ)(x), (Hessφ)(x)) ≤ 0,

• for every x ∈ O and every (p,A) ∈ (J 2+u)(x) it holds that F(x,u(x),p,A) ≤ 0.

The corresponding statement holds for viscosity supersolutions and viscosity solu-
tions.

The next corollary, which is Remark 2.4 in Crandall, Ishii and Lions [7], illus-
trates a further characterization of viscosity solutions under the assumption that F

is continuous. It follows immediately from Corollary 4.5 and from the semiconti-
nuity of F .

COROLLARY 4.6 (Characterizations of viscosity solutions for semicontinu-
ous left-hand sides). Let d ∈ N, let O ⊂ Rd be an open set, let F :O × R ×
Rd × Sd → R be a degenerate elliptic and lower semicontinuous function and let
u :O → R be an upper semicontinuous function. Then u is a viscosity solution of
F ≤ 0 if and only if it holds for every x ∈ O and every (p,A) ∈ (Ĵ 2+u)(x) that
F(x,u(x),p,A) ≤ 0. The corresponding statement holds for viscosity solutions of
F ≥ 0 and F = 0, respectively.

The next well-known remark (see, e.g., Section 2 in Crandall, Ishii and Li-
ons [7]) illustrates that classical solutions are viscosity solutions. We will use it
in the proof of Lemma 4.15 below.

REMARK 4.1 (Classical solutions are viscosity solutions). Let d ∈N, let O ⊂
Rd be an open set, let F :O ×R×Rd × Sd →R be a degenerate elliptic function
and let u ∈ C2(O,R) be a classical subsolution of F = 0, that is, suppose that

F
(
x,u(x), (∇u)(x), (Hessu)(x)

)≤ 0(4.5)

for all x ∈ O . Then u is also a viscosity subsolution of F = 0. Indeed, for every
x ∈ O and every φ ∈ {ψ ∈ C2(O,R) :x is a local maximum of (u − ψ) :O → R}
it holds that (∇(u − φ))(x) = 0 and (Hess(u − φ))(x) ≤ 0 and, therefore,

F
(
x,u(x), (∇φ)(x), (Hessφ)(x)

)= F
(
x,u(x), (∇u)(x), (Hessφ)(x)

)
≤ F

(
x,u(x), (∇u)(x), (Hessu)(x)

)
(4.6)

≤ 0

due to (4.5) and due to the degenerate ellipticity assumption on F . The correspond-
ing statement holds for classical supersolutions and classical solutions of F = 0.

For the convenience of the reader, we also state a special case of Theorem 3.2
in Crandall, Ishii and Lions [7] in the next lemma. It will be used in the proof of
Lemma 4.10 below.
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LEMMA 4.7 (Construction of suitable semijets). Let d, k ∈ N, ε ∈ (0,∞), let
O ⊂ Rd be an open set, let � ∈ C2(Ok,R), let ui :O → R, i ∈ {1, . . . , k}, be up-
per semicontinuous functions and let x̂ = (x̂1, . . . , x̂k) ∈ Ok be a local maximum
point of the function Ok 
 (x1, . . . , xk) �→ (

∑k
i=1 ui(xi)) − �(x1, . . . , xk) ∈ R.

Then there exist matrices A1 ∈ Sd, . . . ,Ak ∈ Sd such that for all i ∈ {1, . . . , k}
it holds that ((∇xi

�)(x̂),Ai) ∈ (Ĵ 2+ui)(x̂i) and such that

−
(

1

ε
+ ∥∥(Hess�)(x̂)

∥∥
L(Rkd )

)
I ≤

⎛
⎜⎝

A1 · · · 0
...

. . .
...

0 · · · Ak

⎞
⎟⎠

(4.7)
≤ (Hess�)(x̂) + ε

[
(Hess�)(x̂)

]2
.

4.2. An approximation result for viscosity solutions. The following approx-
imation result for viscosity solutions is essentially well known (see Proposi-
tion 1.2 in Ishii [37] which refers to the first-order case in Theorem A.2 in Barles
and Perthame [2]; see also Lemma 6.1 in Crandall, Ishii and Lions [7] and the
remarks thereafter). For completeness, we give the proof here following the line
of arguments for the first-order case in Theorem A.2 in Barles and Perthame [2].
In the remainder of this article, we use the notation dist(x,A) := inf({‖x − y‖ ∈
[0,∞) :y ∈ A} ∪ {∞}) ∈ [0,∞] for all x ∈ Rd , all A ⊂ Rd and all d ∈ N.

LEMMA 4.8. Let d ∈ N, let O ⊂ Rd be an open set, let un :O → R, n ∈ N0,
be functions and let Fn :O × R × Rd × Sd → R, n ∈ N0, be degenerate elliptic
functions such that F0 is continuous. Moreover, assume that

lim sup
n→∞

sup
(x,r,p,A)∈K

∣∣Fn(x, r,p,A) − F0(x, r,p,A)
∣∣

(4.8)
= 0 = lim sup

n→∞
sup
x∈K̄

∣∣un(x) − u0(x)
∣∣

for all nonempty compact sets K ⊂ O ×R×Rd × Sd and all nonempty compact
sets K̄ ⊂ O and assume for every n ∈ N that un is a viscosity solution of Fn = 0.
Then u0 is a viscosity solution of F0 = 0.

PROOF. The proof is divided into two steps.
Step 1: Let x0 ∈ O and let φ ∈ C2(O,R) be a function such that x0 is a strict

maximum of u0 − φ, that is,

u0(x) − φ(x) < u0(x0) − φ(x0)(4.9)

for all x ∈ O \ {x0}. Then we define r := min(1, 1
2 dist(x0,Rd \ O)) ∈ [0,1].

Since O ⊂ Rd is an open set, we obtain that r ∈ (0,1]. Furthermore, continu-
ity of the function φ and of the functions un, n ∈ N, together with compact-
ness of the set {y ∈ Rd :‖y − x0‖ ≤ r} ⊂ O proves that there exists a sequence
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xn ∈ {y ∈ Rd :‖y − x0‖ ≤ r} ⊂ O , n ∈ N, of vectors such that

un(x) − φ(x) ≤ un(xn) − φ(xn)(4.10)

for all x ∈ {y ∈ Rd :‖y − x0‖ ≤ r} and all n ∈ N. We now prove that the sequence
(xn)n∈N converges to x0. Aiming at a contraction, we assume that the sequence
(xn)n∈N does not converge to x0. Due to compactness of {y ∈ Rd :‖y − x0‖ ≤
r}, there exists a vector x̄0 ∈ {y ∈ Rd : 0 < ‖y − x0‖ ≤ r} ⊂ O and an increasing
sequence nk ∈ N, k ∈ N, such that limk→∞ xnk

= x̄0. In particular, we obtain that
the set {x̄0} ∪ (

⋃
k∈N{xnk

}) is compact. Assumption (4.8), inequality (4.10) and
inequality (4.9) hence imply that

u0(x0) − φ(x0) = lim
k→∞

(
unk

(x0) − φ(x0)
)≤ lim sup

k→∞
(
unk

(xnk
) − φ(xnk

)
)

= u0(x̄0) − φ(x̄0) < u0(x0) − φ(x0).

From this contradiction, we infer that limn→∞ xn = x0. Assumption (4.8) and con-
tinuity of ∇φ :O →Rd and of Hessφ :O → Sd hence imply that

lim
n→∞

(
xn,un(xn), (∇φ)(xn), (Hessφ)(xn)

)
(4.11)

= (
x0, u0(x0), (∇φ)(x0), (Hessφ)(x0)

)
.

In addition, limn→∞ xn = x0 and (4.10) show that there exists a natural number
n0 ∈ N such that we have for all n ∈ {n0, n0 + 1, . . .} that ‖xn − x0‖ < r and that
xn ∈ O is a local maximum of the function (un−φ) :O →R. Hence, Corollary 4.5
and the assumption that un is a viscosity solution of Fn = 0 show that

Fn

(
xn,un(xn), (∇φ)(xn), (Hessφ)(xn)

)≤ 0(4.12)

for all n ∈ {n0, n0 + 1, . . .}. Continuity of F0, equation (4.11), assumption (4.8),
inequality (4.12) and compactness of the set

⋃
n∈N0

{(xn, un(xn), (∇φ)(xn),

(Hessφ)(xn))} therefore yield that

F0
(
x0, u0(x0), (∇φ)(x0), (Hessφ)(x0)

)
= lim

n→∞F0
(
xn,un(xn), (∇φ)(xn), (Hessφ)(xn)

)
(4.13)

= lim
n→∞Fn

(
xn,un(xn), (∇φ)(xn), (Hessφ)(xn)

)≤ 0.

We thus have proved that F0(x, u0(x), (∇φ)(x), (Hessφ)(x)) ≤ 0 for all φ ∈ {ψ ∈
C2(O,R) :x is a strict maximum of (u0 − ψ) :O →R} and all x ∈ O .

Step 2: Let x0 ∈ O and let φ ∈ C2(O,R) be a function such that φ(x0) = u0(x0)

and φ ≥ u0. Next define functions φε :O → R, ε ∈ (0,1), by φε(x) = φ(x) +
ε‖x − x0‖2 for all x ∈ O and all ε ∈ (0,1). Note for every ε ∈ (0,1) that x0 is a
strict maximum of the function (u0 − φε) :O → R. Step 1 can thus be applied to
obtain

F0
(
x0, u0(x0), (∇φε)(x0), (Hessφε)(x0)

)≤ 0(4.14)
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for all ε ∈ (0,1). Moreover, observe that (∇φε)(x0) = (∇φ)(x0) and that
(Hessφε)(x0) = (Hessφ)(x0) + 2εId for all ε ∈ (0,1) where Id ∈ Sd is the d × d-
unit matrix. Consequently, we see that limε↘0(∇φε)(x0) = (∇φ)(x0) and that
limε↘0(Hessφε)(x0) = (Hessφ)(x0). Continuity of F0 and inequality (4.14) hence
yield

F0
(
x0, u0(x0), (∇φ)(x0), (Hessφ)(x0)

)
(4.15)

= lim
ε↘0

F0
(
x0, u0(x0), (∇φε)(x0), (Hessφε)(x0)

)≤ 0.

We thus have proved that F0(x, u0(x), (∇φ)(x), (Hessφ)(x)) ≤ 0 for all φ ∈
C2(O,R) with φ(x) = u0(x) and φ ≥ u0 and all x ∈ O . This shows that u0 is
a viscosity subsolution of F0 = 0. In the same way, it can be shown that u0 is
a viscosity supersolution of F0 = 0 and we thereby obtain that u0 is a viscosity
solution of F0 = 0. The proof of Lemma 4.8 is thus completed. �

4.3. Uniqueness of viscosity solutions of Kolmogorov equations. A key result
of this subsection (Corollary 4.14) establishes uniqueness of viscosity solutions of
a second-order linear PDE within a certain class of functions and is apparently new.
This uniqueness result is based on the well-known concept of superharmonic func-
tions or—in the PDE language—on the idea of dominating supersolutions. More
precisely, let d ∈ N and let (�,F,P) be a probability space with a normal filtration
(Ft )t∈[0,∞). For solution processes Xx : [0,∞)×� →Rd , x ∈ Rd , of many SDEs,
there exists a function V ∈ C2(Rd, (0,∞)) [often Rd 
 x �→ 1 + ‖x‖2 ∈ (0,∞)]
and a real number ρ ∈R such that the stochastic processes [0,∞)× � 
 (t,ω) →
e−ρt · V (Xx(t)(ω)) ∈ (0,∞), x ∈ Rd , are nonnegative supermartingales (so that
E[V (Xx(t))] ≤ eρt · V (x) for all (t, x) ∈ [0,∞) × Rd ); see, for example, the ex-
amples in Section 4 in [34]. For these stochastic processes to be supermartingales,
it suffices that the Lyapunov function V satisfies

LV (x) ≤ ρV (x)(4.16)

for all x ∈ Rd , where L is the generator of the SDE under consideration. In other
words, it suffices that the map (0,∞) × Rd 
 (t, x) → eρt · V (x) ∈ (0,∞) is a
classical supersolution of the Kolmogorov equation. For T ∈ (0,∞), d ∈ N and an
open set O ⊂ Rd , a function G : (0, T ) × O × R × Rd × Sd → R is here called
degenerate elliptic if G(t, x, r,p,A) ≤ G(t, x, r,p,B) for all t ∈ (0, T ), x ∈ O ,
r ∈ R, p ∈ Rd and all A,B ∈ Sd with A ≤ B (see, e.g., inequality (1.2) in Ap-
pendix C in Peng [61] and compare also with Section 4.1 above). To establish
Corollary 4.14, we first state a few auxiliary results. For the convenience of the
reader, we first state Proposition 3.7 from Crandall, Ishii and Lions [7] in the next
lemma.
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LEMMA 4.9. Let d ∈ N, let O ⊂ Rd be a set, let η :O →R be an upper semi-
continuous function, let φ :O → [0,∞) be a lower semicontinuous function satis-
fying limα→∞ supy∈O(η(y) − α · φ(y)) ∈ R and let x : (0,∞) → O be a function
satisfying

lim
α→∞

(
sup
y∈O

(
η(y) − α · φ(y)

)− (
η
(
x(α)

)− α · φ(x(α)
)))= 0.(4.17)

Then limα→∞ α · φ(x(α)) = 0 and for all αn ∈ (0,∞), n ∈ N, with limn→∞ αn =
∞ and limn→∞ x(αn) =: x0 ∈ O it holds that φ(x0) = 0 and η(x0) =
limα→∞ supy∈O(η(y) − α · φ(y)) = supy∈φ−1(0) η(y).

The next lemma essentially generalizes Theorem 2.2 in Appendix C in
Peng [61] (which assumes the functions G1, . . . ,Gk to be uniformly continuous in
the second argument uniformly in the last argument) and is a generalized analog
of Theorem 8.2 in Crandall, Ishii and Lions [7] for unbounded domains. Given an
open set O ⊂Rd , we define a sequence On ⊂ O , n ∈ N, of compact sets by

On :=
{
x ∈ O : dist

(
x,Rd \ O

)≥ 1

n
and ‖x‖ ≤ n

}
(4.18)

for all n ∈ N. We also write Oc
n := O \ On for the complement of On in O .

LEMMA 4.10 (A domination result for viscosity subsolutions). Let T ∈
(0,∞), d, k ∈ N, let O ⊂ Rd be an open set, let G1, . . . ,Gk : (0, T ) × O × R ×
Rd × Sd → R be degenerate elliptic and upper semicontinuous functions and let
u1, . . . , uk : [0, T ]×O →R be upper semicontinuous functions such that for every
i ∈ {1, . . . , k} it holds that ui |(0,T )×O is a viscosity subsolution of

∂

∂t
ui(t, x) − Gi

(
t, x, ui(t, x), (∇xui)(t, x), (Hessx ui)(t, x)

)= 0(4.19)

for (t, x) ∈ (0, T ) × O . Moreover, assume that

lim sup
n→∞

[
k∑

i=1

Gi

(
t
(n)
i , x

(n)
i , r

(n)
i ,

n
(
1[2,k](i) · [x(n)

i − x
(n)
i−1

]+ 1[1,k−1](i) · [x(n)
i − x

(n)
i+1

])
, nA

(n)
i

)]
(4.20)

≤ 0

for all (t
(n)
i , x

(n)
i , r

(n)
i ,A

(n)
i ) ∈ (0, T ) × O × R × Sd , n ∈ N, i ∈ {1, . . . , k}, satis-

fying that limn→∞(t
(n)
1 , x

(n)
1 ) ∈ (0, T )×O , that limn→∞(

√
n
∑k

i=2 ‖(t(n)
i , x

(n)
i )−

(t
(n)
i−1, x

(n)
i−1)‖) = 0, that limn→∞

∑k
i=1 r

(n)
i > 0, that supn∈N

∑k
i=1 |r(n)

i | < ∞ and
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that ∀n ∈ N :∀z1, . . . , zk ∈ Rd :−5
∑k

i=1 ‖zi‖2 ≤∑k
i=1〈zi,A

(n)
i zi〉 ≤ 5

∑k
i=2 ‖zi −

zi−1‖2. Furthermore, assume that
∑k

i=1 ui(0, x) ≤ 0 for all x ∈ O and that

lim
n→∞ sup

(t,x)∈(0,T )×Oc
n

k∑
i=1

ui(t, x) ≤ 0.(4.21)

Then
∑k

i=1 ui(t, x) ≤ 0 for all (t, x) ∈ [0, T ) × O .

PROOF. If O = ∅, then the assertion is trivial. So for the rest of the proof,
we assume that O 
= ∅. We will show that

∑k
i=1 ui(t, x) ≤ kδ

(T −t)
for all (t, x) ∈

[0, T ) × O and all δ ∈ (0,1]. Letting δ → 0 will then yield that
∑k

i=1 ui(t, x) ≤ 0
for all (t, x) ∈ [0, T ) × O . In the following, we thus fix δ ∈ (0,1]. In a first
step of this proof, we modify the problem. More precisely, define functions
ũ1, . . . , ũk : [0, T ) × O → [−∞,∞) by ũi(t, x) := ui(t, x) − δ

(T −t)
and functions

G̃1, . . . , G̃k : (0, T ) × O ×R×Rd × Sd →R by

G̃i(t, x, r,p,A) := Gi

(
t, x, r + δ

(T − t)
,p,A

)
− ∂

∂t

(
δ

(T − t)

)
(4.22)

= Gi

(
t, x, r + δ

(T − t)
,p,A

)
− δ

(T − t)2 .

Then it holds for every i ∈ {1, . . . , k} that ũi |(0,T )×O is a viscosity subsolution of

∂

∂t
ũi(t, x) − G̃i

(
t, x, ũi(t, x), (∇xũi)(t, x), (Hessx ũi)(t, x)

)= 0(4.23)

for (t, x) ∈ (0, T ) × O . It remains to prove that
∑k

i=1 ũi(z) ≤ 0 for all z ∈
[0, T ) × O . Aiming at a contradiction, we assume that the extended real num-
ber S0 := supz∈[0,T )×O

∑k
i=1 ũi(z) ∈ (−∞,∞] satisfies that S0 ∈ (0,∞]. As-

sumption (4.21) then implies that there exists a natural number n0 ∈ N such that
K := On0 is nonempty and such that

∑k
i=1 ũi(z) ≤ ∑k

i=1 ui(z) ≤ min(1,
S0
2 ) for

all z ∈ (0, T ) × Kc. This, together with
∑k

i=1 ũi(0, x) ≤ ∑k
i=1 ui(0, x) ≤ 0 and∑k

i=1 ũi(T , x) = −∞ for all x ∈ O implies that

sup
z∈[0,T ]×Kc

k∑
i=1

ũi(z) ≤ min
(

1,
S0

2

)
≤ S0

2
.(4.24)

Moreover, the function
∑k

i=1 ũi : [0, T ] × O → [−∞,∞) is upper semicontinu-
ous and is hence bounded from above on the compact set [0, T ] × K . Combining
this with (4.24) proves that S0 < ∞ and we thus get S0 ∈ (0,∞). In the next step,
we define a function φ : ([0, T ] × O)k → [0,∞) by φ(z1, . . . , zk) = 1

2
∑k

i=2 ‖zi −
zi−1‖2 for all z1, . . . , zk ∈ [0, T ]×O . For several n ∈ N, we will apply Lemma 4.7
with O = (0, T ) × O , ε = 1

n
and with � = n · φ|((0,T )×O)k below. For this, we
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now check the assumptions of Lemma 4.7. Define a function η : ([0, T ] × K)k →
[−∞,∞) by η(z1, . . . , zk) = ∑k

i=1 ũi(zi) for all z1, . . . , zk ∈ [0, T ] × K . Note
for every α ∈ (0,∞) that the function ([0, T ] × K)k 
 z �→ η(z) − α · φ(z) ∈
[−∞,∞) is upper semicontinuous with a compact domain of definition and there-
fore, attains its maximum Sα := supz∈([0,T ]×K)k (η(z) − α · φ(z)) < ∞ in a point

z(α) = ((t
(α)
1 , x

(α)
1 ), . . . , (t

(α)
k , x

(α)
k )) ∈ ([0, T ] × K)k . Next observe that

∞ > Sα ≥ sup
z∈[0,T )×K

η(z, z, . . . , z) = sup
z∈[0,T )×K

k∑
i=1

ũi(z) = S0 > 0(4.25)

for all α ∈ (0,∞). This together with monotonicity of the function (0,∞) 

α �→ Sα ∈ (0,∞) implies that the limit limα→∞ Sα exists in (0,∞), that is, it
holds that limα→∞ Sα ∈ (0,∞). The set {z(n) :n ∈ N} ⊂ ([0, T ] × K)k is rela-
tively compact and, therefore, there exists a limit point ẑ = ((t̂1, x̂1), . . . , (t̂k, x̂k)) ∈
([0, T ] × K)k of this set. Let nj ∈N, j ∈ N, be a strictly increasing sequence such
that limj→∞ z(nj ) = ẑ. Clearly, ũi(T , x) = −∞ for all x ∈ K and all i ∈ {1, . . . , k}
implies that t

(α)
1 , . . . , t

(α)
k ∈ [0, T ) for all α ∈ (0,∞). In addition, observe that if

(t̂1, . . . , t̂k) ∈ [0, T ]k \ [0, T )k , then (4.25) implies that

0 < lim
j→∞Snj

= lim
j→∞

(
η
(
z(nj ))− nj · φ(z(nj )))≤ lim

j→∞η
(
z(nj ))

(4.26)

≤
(

k∑
i=1

[
sup

z∈[0,T ]×K

ui(z)
])

− ∞ = −∞

and this contradiction shows that (t̂1, . . . , t̂k) ∈ [0, T )k . Next observe that

lim
α→∞

[
sup

z∈([0,T )×K)k

(
η(z) − α · φ(z)

)− (
η
(
z(α))− α · φ(z(α)))]

(4.27)
= lim

α→∞[Sα − Sα] = 0.

Hence, Lemma 4.9 applied to η|([0,T )×K)k and to φ|([0,T )×K)k yields that

0 = lim
α→∞

[
α · φ(z(α))]= lim

α→∞

[
α

2

k∑
i=2

∥∥(t (α)
i , x

(α)
i

)− (
t
(α)
i−1, x

(α)
i−1

)∥∥2
]

(4.28)

and that φ(ẑ) = 0. The definition of φ therefore ensures that (t̂i , x̂i) = (t̂j , x̂j ) for
all i, j ∈ {1, . . . , k}. Furthermore, observe that if t̂1 = 0, then (4.25) and the upper
semicontinuity of η show that

0 < S0 ≤ lim
j→∞Snj

≤ lim sup
j→∞

η
(
z(nj ))≤ η(ẑ) =

k∑
i=1

ũi(t̂1, x̂1)

(4.29)

=
k∑

i=1

ui(0, x̂1) − kδ

T
≤ 0



498 M. HAIRER, M. HUTZENTHALER AND A. JENTZEN

and this contradiction implies that t̂1 = t̂2 = · · · = t̂k ∈ (0, T ). Consequently, there
exists a natural number j0 ∈ N such that for every j ∈ {j0, j0 + 1, . . .} it holds

that t
(nj )

1 , . . . , t
(nj )

k ∈ (0, T ). Next, for every n ∈ N := {m ∈ N : t (m)
1 , . . . , t

(m)
k ∈

(0, T )}, we apply Lemma 4.7 with O = (0, T )×O , with ε = 1
n

, with the functions
ũ1|(0,T )×O, . . . , ũk|(0,T )×O and � = n · φ|((0,T )×O)k and with the local maximum

point z(n) ∈ ((0, T ) × O)k to obtain the existence of matrices (A
(n)
1 , . . . ,A

(n)
k ) =

((a
n,1
i,j )i,j∈{1,...,d+1}, . . . , (an,k

i,j )i,j∈{1,...,d+1}) ∈ (Sd+1)
k , n ∈ N , such that for every

n ∈ N and every i ∈ {1, . . . , k} it holds that(
n(∇(ti ,xi )φ)

((
t
(n)
1 , x

(n)
1

)
, . . . ,

(
t
(n)
k , x

(n)
k

))
, nA

(n)
i

) ∈ (Ĵ 2+ũi

)(
t
(n)
i , x

(n)
i

)
(4.30)

and

−[n + n
∥∥(Hessφ)

(
z(n))∥∥

L(R(d+1)k)

]
I ≤

⎛
⎜⎜⎝

nA
(n)
1 · · · 0
...

. . .
...

0 · · · nA
(n)
k

⎞
⎟⎟⎠

≤ n(Hessφ)
(
z(n))+ 1

n

[
n(Hessφ)

(
z(n))]2.

Combining this with the identity (Hessφ)(z) = (Hessφ)(0) for all z ∈ ((0, T ) ×
O)k then implies that

−[1 + ∥∥(Hessφ)(0)
∥∥
L(R(d+1)k)

]
I ≤

⎛
⎜⎜⎝

A
(n)
1 · · · 0
...

. . .
...

0 · · · A
(n)
k

⎞
⎟⎟⎠

(4.31)
≤ (Hessφ)(0) + [

(Hessφ)(0)
]2

for all n ∈ N . To simplify the notation we define matrices B
(n)
l ∈ Sd , l ∈ {1, . . . , k},

n ∈ N , by B
(n)
l := (a

n,l
i+1,j+1)i,j∈{1,...,d} for all l ∈ {1, . . . , k} and all n ∈ N . Corol-

lary 4.6 together with (4.30) and the fact that it holds for every i ∈ {1, . . . , k} that
ũi |(0,T )×O is a viscosity subsolution (4.23) then proves that

n

(
∂

∂ti
φ

)(
z(n))− G̃i

(
t
(n)
i , x

(n)
i , ũi

(
t
(n)
i , x

(n)
i

)
, n(∇xi

φ)
(
z(n)), nB

(n)
i

)≤ 0(4.32)

for all i ∈ {1, . . . , k} and all n ∈ N . Summing over i ∈ {1, . . . , k} hence results in

n

k∑
i=1

(
∂

∂ti
φ

)(
z(n))

(4.33)

≤
k∑

i=1

G̃i

(
t
(n)
i , x

(n)
i , ũi

(
t
(n)
i , x

(n)
i

)
, n(∇xi

φ)
(
z(n)), nB

(n)
i

)
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for all n ∈ N . Next note that the definition of φ ensures in the case k ≥ 2 that

(
∂

∂ti
φ

)(
(t1, x1), . . . , (tk, xk)

)= 1

2

k∑
j=2

∂

∂ti
(tj − tj−1)

2

(4.34)

=
⎧⎪⎨
⎪⎩

t1 − t2, i = 1,

2ti − ti−1 − ti+1, 1 < i < k,

tk − tk−1, i = k,

for all i ∈ {1, . . . , k} and all (t1, x1), . . . , (tk, xk) ∈ (0, T ) × O and, therefore, we
obtain that in the case k ≥ 2 it holds that

k∑
i=1

(
∂

∂ti
φ

)(
(t1, x1), . . . , (tk, xk)

)

= t1 − t2 + tk − tk−1 +
k−1∑
i=2

(2ti − ti−1 − ti+1)

= t1 − t2 + tk − tk−1 +
(

k−1∑
i=2

ti − ti−1

)
+
(

k−1∑
i=2

ti − ti+1

)
(4.35)

=
(
t1 − tk−1 +

k−1∑
i=2

ti − ti−1

)
+
(
tk − t2 +

k−1∑
i=2

ti − ti+1

)

= 0

for all (t1, x1), . . . , (tk, xk) ∈ (0, T ) × O . Combining this with (4.33) results in

0 ≤
k∑

i=1

G̃i

(
t
(n)
i , x

(n)
i , ũi

(
t
(n)
i , x

(n)
i

)
, n(∇xi

φ)
(
z(n)), nB

(n)
i

)
(4.36)

for all n ∈ N . Therefore, we obtain from (4.22) and from t̂1 = · · · = t̂k ∈ (0, T )

and t
(nj )

1 , . . . , t
(nj )

k ∈ (0, T ) for all j ∈ {j0, j0 + 1, . . .} that

k∑
i=1

δ

(T − t
(nj )

i )2

≤
k∑

i=1

Gi

(
t
(nj )

i , x
(nj )

i , ũi

(
t
(nj )

i , x
(nj )

i

)
(4.37)

+ δ

(T − t
(nj )

i )
, nj (∇xi

φ)
(
z(nj )), njB

(nj )

i

)
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for all j ∈ {j0, j0, . . .}. In the next step, we define (t(n)
i ,x(n)

i , r(n)
i ,A(n)

i ) ∈ (0, T ) ×
O ×R× Sd , i ∈ {1, . . . , k}, n ∈N, by(

t(n)
i ,x(n)

i , r(n)
i ,A(n)

i

)
(4.38)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
t
(n)
i , x

(n)
i , ũi

(
t
(n)
i , x

(n)
i

)+ δ

(T − t
(n)
i )

,B
(n)
i

)
,

n ∈ {nj ∈ N : j ∈ {j0, j0 + 1, . . .}},(
t̂1, x̂1,

limα→∞ Sα

k
+ δ

(T − t̂1)
,0
)
,

else,

for all i ∈ {1, . . . , k} and all n ∈ N. Moreover, observe that in the case k ≥ 2 it
holds that

(∇xi
φ)
(
(t1, x1), . . . , (tk, xk)

)= 1

2

k∑
j=2

∇xi

(‖xj − xj−1‖2)
(4.39)

=
⎧⎪⎨
⎪⎩

x1 − x2, i = 1,

2xi − xi−1 − xi+1, 1 < i < k,

xk − xk−1, i = k

for all i ∈ {1, . . . , k} and all (t1, x1), . . . , (tk, xk) ∈ (0, T )×O . Then (4.37) ensures
that

kδ

(T − t̂1)2
≤ lim sup

n→∞

[
k∑

i=1

Gi

(
t(n)
i ,x(n)

i , r(n)
i ,

n
(
1[2,k](i) · [x(n)

i − x(n)
i−1

]
(4.40)

+ 1[1,k−1](i) · [x(n)
i − x(n)

i+1

])
, nA(n)

i

)]
.

Next, we observe that the Taylor expansion φ(z) = φ(0) + 〈(∇φ)(0), z〉 +
1
2〈z, (Hessφ)(0)z〉 = 1

2〈z, (Hessφ)(0)z〉 for all z ∈R(d+1)k implies that (∇φ)(z) =
(Hessφ)(0)z for all z ∈ R(d+1)k . This together with (4.34), (4.39) and the estimate
(a + b)2 ≤ 2a2 + 2b2 for all a, b ∈ R results in〈
z,
(
(Hessφ)(0)

)2
z
〉= 〈

(Hessφ)(0)z, (Hessφ)(0)z
〉= ∥∥(Hessφ)(0)z

∥∥2

= ∥∥(∇φ)(z)
∥∥2

= ‖z1 − z2‖2 +
[

k−1∑
i=2

‖2zi − zi−1 − zi+1‖2

]
+ ‖zk − zk−1‖2(4.41)
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≤ 2‖z1 − z2‖2 +
[

k−1∑
i=2

2
(‖zi − zi−1‖2 + ‖zi − zi+1‖2)]

+ 2‖zk − zk−1‖2

= 4

[
k∑

i=2

‖zi − zi−1‖2

]
≤ 8

[
k∑

i=2

‖zi‖2

]
+ 8

[
k∑

i=2

‖zi−1‖2

]

≤ 16‖z‖2

for all z = (z1, . . . , zk) ∈ R(d+1)k . Inequality (4.41) implies that
‖(Hessφ)(0)‖L(R(d+1)×k) ≤ 4. Consequently, (4.31), (4.41) and 〈z, (Hessφ)(0)z〉 =
2φ(z) for all z ∈ R(d+1)k yield that

−5‖z‖2 ≤
k∑

i=1

〈
zi,A

(n)
i zi

〉≤ 2φ(z) + 〈
z,
(
(Hessφ)(0)

)2
z
〉

(4.42)

≤ 5
k∑

i=2

‖zi − zi−1‖2

for all z = (z1, . . . , zk) ∈ R(d+1)k and all n ∈ N . Inequality (4.42), in particular,
implies −5‖z‖2 ≤∑k

i=1〈zi , B
(n)
i zi〉 =∑k

i=1〈zi,A(n)
i zi〉 ≤ 5

∑k
i=2 ‖zi −zi−1‖2 for

all z = (z1, . . . , zk) ∈ Rdk and all n ∈ N. Combining this, the identities

lim
j→∞

[
k∑

i=1

(
ũi

(
t
(nj )

i , x
(nj )

i

)+ δ

(T − t
(nj )

i )

)]
=
(

lim
j→∞Snj

)
+ kδ

(T − t̂1)

(4.43)

= lim
n→∞

[
k∑

i=1

r(n)
i

]
> 0,

limn→∞ n
∑k

i=2 ‖(t(n)
i ,x(n)

i ) − (t(n)
i−1,x(n)

i−1)‖2 = 0 [see (4.28)] and the estimate

supn∈N maxi∈{1,...,k} |r(n)
i | < ∞ with assumption (4.20) and with (4.40) shows that

0 <
kδ

(T − t̂1)2

≤ lim sup
n→∞

[
k∑

i=1

Gi

(
t(n)
i ,x(n)

i , r(n)
i , n

(
1[2,∞)(i) · [x(n)

i − x(n)
i−1

]

+ 1[0,k−1](i) · [x(n)
i − x(n)

i+1

])
, nA(n)

i

)]

≤ 0.
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This contradiction implies that S0 ≤ 0. As δ ∈ (0,1] was arbitrary, we conclude
that

∑k
i=1 ui(t, x) ≤ 0 for all (t, x) ∈ [0, T ) × O . This finishes the proof of

Lemma 4.10. �

The next result, Corollary 4.11, establishes a comparison result for certain vis-
cosity subsolutions and certain viscosity supersolutions of a PDE. It is a direct con-
sequence of Lemma 4.10 above in the case k = 2. Corollary 4.11 essentially gen-
eralizes Theorem 2.4 in Appendix C in Peng [61] (which assumes the function G

to be globally Lipschitz continuous in the third and last argument uniformly in the
remaining arguments) and essentially generalizes Theorem 8.2 in Crandall, Ishii
and Lions [7] (which assumes a bounded domain and a globally uniform estimate
on the function G). Corollary 4.11 is an immediate consequence of Lemma 4.2
and Lemma 4.10 with k = 2. Its proof is therefore omitted.

COROLLARY 4.11 (A comparison result for viscosity subsolutions and vis-
cosity supersolutions). Let T ∈ (0,∞), d ∈ N, let O ⊂ Rd be an open set, let
u1, u2 ∈ C([0, T ] × O,R), let G : (0, T ) × O × R × Rd × Sd → R be a degen-
erate elliptic and continuous function and assume that u1|(0,T )×O is a viscosity
subsolution of

∂

∂t
u(t, x) − G

(
t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)

)= 0(4.44)

for (t, x) ∈ (0, T ) × O and that u2|(0,T )×O is a viscosity supersolution of (4.44).
Moreover, assume that

lim sup
n→∞

[
G
(
tn, xn, rn, n(xn − x̂n), nAn

)
(4.45)

− G
(
t̂n, x̂n, r̂n, n(xn − x̂n), nÂn

)]≤ 0

for all (tn, xn, rn,An), (t̂n, x̂n, r̂n, Ân) ∈ (0, T ) × O × R × Sd , n ∈ N, satisfying
that limn→∞(tn, xn) ∈ (0, T ) × O , that limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) = 0,

that 0 < limn→∞(rn − r̂n) ≤ supn∈N(|rn| + |r̂n|) < ∞ and that ∀n ∈ N, z, ẑ ∈
Rd : 〈z,Anz〉 − 〈ẑ, Ânẑ〉 ≤ 5‖z − ẑ‖2. Furthermore, assume that u1(0, x) ≤
u2(0, x) for all x ∈ O and that

lim
n→∞

[
sup

(t,x)∈(0,T )×Oc
n

(
u1(t, x) − u2(t, x)

)]≤ 0.(4.46)

Then u1 ≤ u2, that is, it holds that u1(t, x) ≤ u2(t, x) for all (t, x) ∈ [0, T ] × O .

Assumption (4.46) in Corollary 4.11 is in several cases difficult to verify.
Lemma 4.13 below gives an extension of Corollary 4.11 which postulates a
less restrictive condition than (4.46) by using a suitable Lyapunov type func-
tion [cf. (4.53) in Lemma 4.13 and (4.46) in Corollary 4.11]. In the proof of
Lemma 4.13, the following elementary lemma is used.
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LEMMA 4.12 (Scaling of viscosity subsolutions and viscosity supersolutions).
Let T ∈ (0,∞), d ∈ N, let O ⊂ Rd be an open set, let V ∈ C2((0, T )×O, (0,∞)),
let G : (0, T ) × O × R × Rd × Sd → R be a degenerate elliptic function, let
u : (0, T ) × O → R be a viscosity subsolution (supersolution) of (4.44) and let
G̃ : (0, T ) × O ×R×Rd × Sd →R be a function defined by

G̃(t, x, r,p,A)

:= 1

V (t, x)
G
(
t, x, rV (t, x),pV (t, x) + r(∇xV )(t, x),AV (t, x)

+ p
[
(∇xV )(t, x)

]∗ + (∇xV )(t, x)p∗(4.47)

+ r(Hessx V )(t, x)
)

− r
(∂/∂t)V (t, x)

V (t, x)

for all (t, x, r,p,A) ∈ (0, T ) × O × R × Rd × Sd . Then G̃ is degenerate elliptic
and the function ũ : (0, T ) × O → R defined by ũ(t, x) = u(t,x)

V (t,x)
for all (t, x) ∈

(0, T ) × O is a viscosity subsolution (supersolution) of

∂

∂t
ũ(t, x) − G̃

(
t, x, ũ(t, x), (∇xũ)(t, x), (Hessx ũ)(t, x)

)= 0(4.48)

for (t, x) ∈ (0, T ) × O .

PROOF. We proof Lemma 4.12 in the case where u is a viscosity subsolution
of (4.44). The case where u is a viscosity supersolution of (4.44) follows analo-
gously. We thus assume in the following that u is a viscosity subsolution of (4.44).
First, observe that ũ is upper semicontinuous and that G̃ is degenerate elliptic. In
the next step assume that there exist a vector (t, x) ∈ (0, T ) × O and a function
φ ∈ C2((0, T ) × O,R) satisfying φ(t, x) = ũ(t, x) and φ ≥ ũ. Then the function
(0, T ) × O 
 (s, y) �→ φ(s, y)V (s, y) ∈ R is in C2((0, T ) × O,R) and satisfies
φ(t, x)V (t, x) = ũ(t, x)V (t, x) = u(t, x) and φ · V ≥ ũ · V = u. As u is a viscos-
ity subsolution of (4.44), we get

V (t, x) · ∂

∂t
φ(t, x) + φ(t, x) · ∂

∂t
V (t, x)

(4.49)
≤ G

(
t, x,φ(t, x)V (t, x),

(∇x(φV )
)
(t, x),

(
Hessx(φV )

)
(t, x)

)
.

Rearranging this inequality results in

∂

∂t
φ(t, x) ≤ 1

V (t, x)
G
(
t, x,φ(t, x)V (t, x),

(∇x(φV )
)
(t, x),

(
Hessx(φV )

)
(t, x)

)
− φ(t, x)

(∂/∂t)V (t, x)

V (t, x)
(4.50)
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= 1

V (t, x)
G
(
t, x,φ(t, x)V (t, x), (∇xφ)(t, x)V (t, x)

+ φ(t, x)(∇xV )(t, x), (Hessx φ)(t, x)V (t, x)

+ (∇xφ)(t, x)
[
(∇xV )(t, x)

]∗
+ (∇xV )(t, x)

[
(∇xφ)(t, x)

]∗
+ φ(t, x)(Hessx V )(t, x)

)
− φ(t, x)

(∂/∂t)V (t, x)

V (t, x)

= G̃
(
t, x,φ(t, x), (∇xφ)(t, x), (Hessx φ)(t, x)

)
.

This proves inequality (4.50) for all φ ∈ {ψ ∈ C2((0, T ) × O,R) :ψ(t, x) =
ũ(t, x) and ψ ≥ ũ} and all (t, x) ∈ (0, T ) × O . Therefore, ũ is a viscosity sub-
solution of (4.48) and the proof of Lemma 4.12 is completed. �

LEMMA 4.13 (A further comparison result for viscosity subsolutions and vis-
cosity supersolutions). Let T ∈ (0,∞), d ∈ N, let O ⊂ Rd be an open set, let
u1, u2 ∈ C([0, T ] × O,R), V ∈ C([0, T ] × O, (0,∞)), let G : (0, T ) × O ×R×
Rd × Sd → R be a degenerate elliptic and continuous function and assume that
u1|(0,T )×O is a viscosity subsolution of

∂

∂t
u(t, x) − G

(
t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)

)= 0(4.51)

for (t, x) ∈ (0, T ) × O , that u2|(0,T )×O is a viscosity supersolution of (4.51) and
that for every r ∈ (0,∞) it holds that rV |(0,T )×O ∈ C2((0, T ) × O, (0,∞)) is a
classical supersolution of (4.51). Moreover, assume that

lim sup
n→∞

(
G(tn, xn, rn,pn,An + nBnV (tn, xn))

V (tn, xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

V (t̂n, x̂n)

)
(4.52)

≤ G(t0, x0, r0,p0,A0)

V (t0, x0)

for all (tn, xn, rn,pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T ) × O × R × Rd ×
Sd × Sd , n ∈ N0, satisfying that limn→∞(tn, xn) = (t0, x0), that
limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) = 0, that 0 < r0 = limn→∞(rn − r̂n) ≤

supn∈N(|rn| + |r̂n|) < ∞, that limn→∞(pn − p̂n) = p0, that limn→∞(An −
Ân) = A0, that limn→∞(n−1/2[‖p̂n‖ + ‖Ân‖L(Rd )]) = 0 and that ∀n ∈ N, z, ẑ ∈
Rd : 〈z,Bnz〉 − 〈ẑ, B̂nẑ〉 ≤ 5‖z − ẑ‖2. Furthermore, assume that u1(0, x) ≤



LOSS OF REGULARITY FOR KOLMOGOROV EQUATIONS 505

u2(0, x) for all x ∈ O and that

lim
n→∞

[
sup
x∈Oc

n

sup
t∈(0,T )

(u1(t, x) − u2(t, x))

V (t, x)

]
≤ 0.(4.53)

Then u1 ≤ u2, that is, it holds that u1(t, x) ≤ u2(t, x) for all (t, x) ∈ [0, T ] × O .

PROOF. Define functions ũ1, ũ2 : [0, T ] × O → R and G̃ : (0, T ) × O × R ×
Rd ×Sd →R by ũ1(t, x) = u1(t,x)

V (t,x)
and ũ2(t, x) = u2(t,x)

V (t,x)
for all (t, x) ∈ [0, T ]×O

and by

G̃(t, x, r,p,A)

:= 1

V (t, x)
G
(
t, x, rV (t, x),pV (t, x) + r(∇xV )(t, x),AV (t, x)

+ p
[
(∇xV )(t, x)

]∗ + (∇xV )(t, x)p∗(4.54)

+ r(Hessx V )(t, x)
)

− r
(∂/∂t)V (t, x)

V (t, x)

for all (t, x, r,p,A) ∈ (0, T ) × O ×R×Rd × Sd . Lemma 4.12 then ensures that
G̃ is degenerate elliptic, that ũ1|(0,T )×O is a viscosity subsolution of

∂

∂t
u(t, x) − G̃

(
t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)

)= 0(4.55)

for (t, x) ∈ (0, T ) × O and that ũ2|(0,T )×O is viscosity supersolution of (4.55).
Below we will finish this proof by an application of Corollary 4.11 with
ũ1, ũ2 and G̃. For this, we now check the assumptions of Corollary 4.11.
First, observe that assumption (4.53) ensures that (4.46) is fulfilled. In addi-
tion, observe that the assumption u1(0, x) ≤ u2(0, x) for all x ∈ O ensures
that ũ1(0, x) ≤ ũ2(0, x) for all x ∈ O . In the next step, we verify (4.45). For
this, let (tn, xn, rn,An), (t̂n, x̂n, r̂n, Ân) ∈ (0, T ) × O × R × Sd , n ∈ N0, be se-
quences satisfying that limn→∞(tn, xn) = (t0, x0) = (t̂0, x̂0) ∈ (0, T ) × O , that
limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) = 0, that 0 < r0 = r̂0 = limn→∞(rn − r̂n) ≤

supn∈N(|rn| + |r̂n|) < ∞ and that ∀n ∈ N, z, ẑ ∈ Rd : 〈z,Anz〉 − 〈ẑ, Ânẑ〉 ≤
5‖z − ẑ‖2. To verify (4.45), we will apply assumption (4.52). For this, we define
Ṽ : [0, T ] × O → (0,∞) and (tn,xn, rn,pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈
(0, T )×O ×R×Rd ×Sd , n ∈ N0, by Ṽ (t, x) = r0 ·V (t, x) for all (t, x) ∈ [0, T ]×
O and by (tn,xn, rn) := (tn, xn, rnV (tn, xn)), (t̂n, x̂n, r̂n) := (t̂n, x̂n, r̂nV (t̂n, x̂n)),
Bn := An, B̂n := Ân,

pn := n(xn − x̂n)V (tn, xn) + rn(∇xV )(tn, xn),(4.56)

p̂n := n(xn − x̂n)V (t̂n, x̂n) + r̂n(∇xV )(t̂n, x̂n),(4.57)
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An := n(xn − x̂n)
[
(∇xV )(tn, xn)

]∗ + (∇xV )(tn, xn)n(xn − x̂n)
∗

(4.58)
+ rn(Hessx V )(tn, xn),

Ân := n(xn − x̂n)
[
(∇xV )(t̂n, x̂n)

]∗ + (∇xV )(t̂n, x̂n)n(xn − x̂n)
∗

(4.59)
+ r̂n(Hessx V )(t̂n, x̂n)

for all n ∈ N0. Continuity of V and 0 < r0 = limn→∞(rn − r̂n) ≤ supn∈N(|rn| +
|r̂n|) < ∞ then imply that

0 < r0 = r0V (t0, x0) = lim
n→∞

(
rnV (tn, xn) − r̂nV (t̂n, x̂n)

)
= lim

n→∞(rn − r̂n)(4.60)

≤ sup
n∈N

(|rn| + |r̂n|)< ∞.

Moreover, note that the local Lipschitz continuity of V and ∇xV and the continu-
ity of Hessx V together with the assumptions limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) =

limn→∞(
√

n‖xn − x̂n‖) = 0, limn→∞(rn − r̂n) = r0 and supn∈N |r̂n| < ∞ imply
that

lim
n→∞(pn − p̂n) = lim

n→∞
[
n(xn − x̂n)

(
V (tn, xn) − V (t̂n, x̂n)

)]
+ lim

n→∞
[
(rn − r̂n)(∇xV )(tn, xn)

]
(4.61)

+ lim
n→∞

[
r̂n
(
(∇xV )(tn, xn) − (∇xV )(t̂n, x̂n)

)]
= r0(∇xV )(t0, x0) = p0,

lim
n→∞(An − Ân) = lim

n→∞
(
n(xn − x̂n)

([
(∇xV )(tn, xn)

]∗ − [
(∇xV )(t̂n, x̂n)

]∗))
+ lim

n→∞
([

(∇xV )(tn, xn) − (∇xV )(t̂n, x̂n)
]
n(xn − x̂n)

∗)
+ lim

n→∞
([rn − r̂n](Hessx V )(tn, xn)

)
(4.62)

+ lim
n→∞

(
r̂n
[
(Hessx V )(tn, xn) − (Hessx V )(t̂n, x̂n)

])
= r0(Hessx v)(t0, x0) = A0

and limn→∞(n−1/2[‖p̂n‖ + ‖Ân‖L(Rd )]) = 0. Combining this and (4.60) with as-
sumption (4.52) shows that

lim sup
n→∞

(
G(tn,xn, rn,pn,An + nBnV (tn,xn))

V (tn,xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

V (t̂n, x̂n)

)
(4.63)

≤ G(t0,x0, r0,p0,A0)

V (t0,x0)
.
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The definition of G̃ hence implies that

lim sup
n→∞

(
G̃
(
tn, xn, rn, n(xn − x̂n), nAn

)− G̃
(
t̂n, x̂n, r̂n, n(xn − x̂n), nÂn

))
= lim sup

n→∞

(
G(tn, xn, rn,pn,An + nBnV (tn, xn)) − rn(∂/∂t)V (tn, xn)

V (tn, xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n)) − r̂n(∂/∂t)V (t̂n, x̂n)

V (t̂n, x̂n)

)

≤ G(t0, x0, r0,p0,A0)

V (t0, x0)
− r0(∂/∂t)V (t0, x0)

V (t0, x0)
(4.64)

= (−[(∂/∂t)Ṽ (t0, x0)

− G
(
t0, x0, Ṽ (t0, x0), (∇xṼ )(t0, x0), (Hessx Ṽ )(t0, x0)

)])
/
(
V (t0, x0)

)
≤ 0

as Ṽ is by assumption a classical supersolution of (4.51). We can thus ap-
ply Corollary 4.11 to obtain that ũ1(t, x) = u1(t,x)

V (t,x)
≤ u2(t,x)

V (t,x)
= ũ2(t, x) for all

(t, x) ∈ [0, T ] × O . This finishes the proof of Lemma 4.13. �

The next result, Corollary 4.14, asserts uniqueness of the solution of a linear
second-order PDE. We assume that the Lyapunov-type function V : [0, T ] × O →
(0,∞) in Lemma 4.13 is of the form V (t, x) = eρt · Ṽ (x) for all (t, x) ∈ [0, T ]×O

where ρ ∈ R is a real number and where Ṽ :O → (0,∞) is a twice continuously
differentiable function.

COROLLARY 4.14 (Uniqueness of viscosity solutions of Kolmogorov type
equations). Let T ∈ (0,∞), d,m ∈ N, ρ ∈ R, let O ⊂ Rd be an open set, let
ϕ ∈ C(O,R), v ∈ C((0, T ) × O,R), let μ : (0, T ) × O → Rd and σ : (0, T ) ×
O → Rd×m be locally Lipschitz continuous functions and let V ∈ C2(O, (0,∞))

satisfy

v(t, x)V (x) + 〈
μ(t, x), (∇V )(x)

〉+ tr
(
σ(t, x)

[
σ(t, x)

]∗
(HessV )(x)

)
(4.65)

≤ ρ · V (x)

for all (t, x) ∈ (0, T ) × O . Then there exists at most one continuous function
u : [0, T ] × O → R which fulfills u(0, x) = ϕ(x) for all x ∈ O , which fulfills
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limn→∞ sup(t,x)∈(0,T )×Oc
n

|u(t,x)|
V (x)

= 0 and which fulfills that u|(0,T )×O is a viscos-
ity solution of

∂

∂t
u(t, x) − v(t, x)u(t, x) − 〈

μ(t, x), (∇xu)(t, x)
〉

− tr
(
σ(t, x)

[
σ(t, x)

]∗
(Hessx u)(t, x)

)
(4.66)

= 0

for (t, x) ∈ (0, T ) × O .

PROOF. Let u1, u2 : [0, T ] × O → R be two continuous functions such that
u1(0, x) = ϕ(x) = u2(0, x) for all x ∈ O , such that

lim
n→∞ sup

(t,x)∈(0,T )×Oc
n

|u1(t, x)| + |u2(t, x)|
V (x)

= 0

and such that u1|(0,T )×O and u2|(0,T )×O are viscosity solutions of (4.66). Then
define a function G : (0, T ) × O × R × Rd × Sd → R by G(t, x, r,p,A) =
v(t, x)r + 〈μ(t, x),p〉 + tr(σ (t, x)[σ(t, x)]∗A). We show Corollary 4.14 by ap-
plying Lemma 4.13. To this end we now verify (4.52). For this, let (tn, xn, rn,pn,

An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T )×O ×R×Rd ×Sd ×Sd , n ∈ N0, satisfy
that limn→∞(tn, xn) = (t0, x0), that limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) = 0, that

0 < r0 = limn→∞(rn − r̂n) ≤ supn∈N(|rn| + |r̂n|) < ∞, that limn→∞(pn − p̂n) =
p0, that limn→∞(An − Ân) = A0, that limn→∞(n−1/2[‖p̂n‖ + ‖Ân‖L(Rd )]) = 0

and that ∀n ∈ N, z, ẑ ∈ Rd : 〈z,Bnz〉 − 〈ẑ, B̂nẑ〉 ≤ 5‖z − ẑ‖2. Then it holds that

lim sup
n→∞

(
1

V (tn, xn)
G
(
tn, xn, rn,pn,An + nBnV (tn, xn)

)

− 1

V (t̂n, x̂n)
G
(
t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n)

))

≤ lim sup
n→∞

(
v(tn, xn)rn

V (tn, xn)
− v(t̂n, x̂n)r̂n

V (t̂n, x̂n)

)

+ lim sup
n→∞

(〈μ(tn, xn),pn〉
V (tn, xn)

− 〈μ(t̂n, x̂n), p̂n〉
V (t̂n, x̂n)

)

+ lim sup
n→∞

(
tr(σ (tn, xn)[σ(tn, xn)]∗An)

V (tn, xn)

− tr(σ (t̂n, x̂n)[σ(t̂n, x̂n)]∗Ân)

V (t̂n, x̂n)

)

+ lim sup
n→∞

(
n
[
tr
([

σ(tn, xn)
]∗

Bnσ(tn, xn)
)

− tr
([

σ(t̂n, x̂n)
]∗

B̂nσ (t̂n, x̂n)
)])

(4.67)
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≤ lim sup
n→∞

(
v(tn, xn)(rn − r̂n)

V (tn, xn)

)

+ lim sup
n→∞

([
v(tn, xn)

V (tn, xn)
− v(t̂n, x̂n)

V (t̂n, x̂n)

]
r̂n

)

+ lim sup
n→∞

( 〈μ(tn, xn),pn − p̂n〉
V (tn, xn)

)

+ lim sup
n→∞

(〈√
n

[
μ(tn, xn)

V (tn, xn)
− μ(t̂n, x̂n)

V (t̂n, x̂n)

]
,

p̂n√
n

〉)

+ lim sup
n→∞

(
tr
(

σ(tn, xn)[σ(tn, xn)]∗
V (tn, xn)

(An − Ân)

))

+ lim sup
n→∞

(
tr
(√

n

[
σ(tn, xn)[σ(tn, xn)]∗

V (tn, xn)
− σ(t̂n, x̂n)[σ(t̂n, x̂n)]∗

V (t̂n, x̂n)

]
Ân√

n

))

+ lim sup
n→∞

(
n

m∑
i=1

[〈
σ(tn, xn)e

(m)
i ,Bnσ(tn, xn)e

(m)
i

〉

− 〈
σ(t̂n, x̂n)e

(m)
i , B̂nσ (t̂n, x̂n)e

(m)
i

〉])
.

Hence, the local Lipschitz continuity of the functions μ
V

and A
V

together with the

properties of (tn, xn, rn,pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T ) × O × R ×
Rd × Sd × Sd , n ∈N0, implies that

lim sup
n→∞

(
1

V (tn, xn)
G
(
tn, xn, rn,pn,An + nBnV (tn, xn)

)

− 1

V (t̂n, x̂n)
G
(
t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n)

))

≤ v(t0, x0)r0

V (t0, x0)
+ 〈μ(t0, x0),p0〉

V (t0, x0)
+ tr

(
σ(t0, x0)[σ(t0, x0)]∗

V (t0, x0)
A0

)

+ lim sup
n→∞

(
d

[√
n

∥∥∥∥σ(tn, xn)[σ(tn, xn)]∗
V (tn, xn)

− σ(t̂n, x̂n)[σ(t̂n, x̂n)]∗
V (t̂n, x̂n)

∥∥∥∥
L(Rd )

]‖Ân‖L(Rd )√
n

)

+ lim sup
n→∞

(
n

m∑
i=1

5
∥∥σ(tn, xn)e

(m)
i − σ(t̂n, x̂n)e

(m)
i

∥∥2
)

= G(t0, x0, r0,p0,A0)

V (t0, x0)
(4.68)
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+ 5 lim sup
n→∞

(
n
∥∥σ(tn, xn) − σ(t̂n, x̂n)

∥∥2
HS(Rm,Rd )

)
= G(t0, x0, r0,p0,A0)

V (t0, x0)
.

This shows assumption (4.52). Moreover, by assumption, u1|(0,T )×O is a viscos-
ity subsolution of (4.66) and u2|(0,T )×O is a viscosity supersolution of (4.66).
Furthermore, (4.65) shows for every r ∈ (0,∞) that the function (0, T ) × O 

(t, x) �→ r · eρt · V (x) ∈ (0,∞) is a classical supersolution of (4.66). In addition,
observe that (4.53) follows from limn→∞ sup(t,x)∈(0,T )×Oc

n

|u1(t,x)|+|u2(t,x)|
V (x)

= 0.
Consequently, Lemma 4.13 implies that u1 ≤ u2. Repeating these arguments with
u1 and u2 interchanged finally shows that u2 ≤ u1 so that u1 = u2. This proves
uniqueness and finishes the proof of Corollary 4.14. �

4.4. Viscosity solutions of Kolmogorov equations. The main result of this sub-
section, Theorem 4.16 below, establishes that the transition semigroup associated
with a suitable SDE with locally Lipschitz continuous coefficients is within a cer-
tain class of functions the unique viscosity solution of the Kolmogorov equation
of the SDE. To establish this result, we first prove an auxiliary result.

LEMMA 4.15 (Existence of viscosity solutions of Kolmogorov equations with
globally Lipschitz continuous coefficients with compact support). Let d,m ∈ N,
let (�,F,P) be a probability space with a normal filtration (Ft )t∈[0,∞), let
W : [0,∞) × � → Rm be a standard (Ft )t∈[0,∞)-Brownian motion, let O ⊂ Rd

be an open set, let ϕ :O → R be a continuous function and let μ :O → Rd and
σ :O → Rd×m be locally Lipschitz continuous functions with compact support.
Then there exists a family Xx : [0,∞) × � → O , x ∈ O , of up to indistinguisha-
bility unique adapted stochastic processes with continuous sample paths satisfying

Xx(t) = x +
∫ t

0
μ
(
Xx(s)

)
ds +

∫ t

0
σ
(
Xx(s)

)
dW(s)(4.69)

for all t ∈ [0,∞), P-a.s. and all x ∈ O and the function u : (0,∞)×O →R given
by u(t, x) = E[ϕ(Xx(t))] is a viscosity solution of

∂

∂t
u(t, x) − 〈

(∇xu)(t, x),μ(x)
〉− 1

2
tr
(
σ(x)

[
σ(x)

]∗
(Hessx u)(t, x)

)
(4.70)

= 0

for (t, x) ∈ (0,∞) × O .

PROOF. First of all, observe that since μ and σ have compact supports, they
are globally Lipschitz continuous, so that (4.69) has unique solutions. It thus re-
mains to show that the function u : (0,∞) × O → R introduced above is a vis-
cosity solution of (4.70). Let U ⊂ O be a relatively compact open set in O with
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the property that supp(μ) ∪ supp(σ ) ⊂ U . By assumption supp(μ) and supp(σ )

are compact sets, and hence such a set U does indeed exist. Next, let μ(n) ∈
C∞

cpt(O,Rd), n ∈ N, and σ (n) ∈ C∞
cpt(O,R), n ∈ N, be sequences of smooth func-

tions satisfying limn→∞ supx∈U ‖μ(x) − μ(n)(x)‖ = limn→∞ supx∈U ‖σ(x) −
σ (n)(x)‖L(Rm,Rd ) = 0 and supp(μ(n)) ∪ supp(σ (n)) ⊂ U for all n ∈ N and de-
note by Xx,n : [0,∞) × � → O , x ∈ O , n ∈ N, the solutions to the corresponding
SDEs. Moreover, let ϕk ∈ C∞(O,R), k ∈ N, be a sequence of smooth functions
satisfying supx∈Ok

|ϕ(x) − ϕk(x)| < 1
k

for each k ∈ N. Now we define functions
un,k : (0,∞) × O → R, n, k ∈ N, and u(k) : (0,∞) × O → R, by un,k(t, x) :=
E[ϕk(X

x,n(t))] and u(k)(t, x) := E[ϕk(X
x(t))]. For any fixed n and k, the func-

tion un,k : (0,∞) × O → R, is smooth and globally Lipschitz continuous (see,
e.g., Corollary 2.8.1 and Theorem 2.8.1 in [20]). Theorem 4.3 in [60] then shows
that (

∂

∂t
un,k

)
(t, x) − 〈(∇xu

n,k)(t, x),μ(n)(x)
〉

− 1

2
tr
(
σ (n)(x)

[
σ (n)(x)

]∗(Hessx un,k)(t, x)
)

(4.71)

= 0

for all (t, x) ∈ (0,∞) × O , n, k ∈ N. Remark 4.1 hence shows that the functions
un,k , n, k ∈ N, are also viscosity solutions to these equations. Furthermore, ob-
serve that the smoothness of the functions ϕk ∈ C∞(O,R), k ∈ N, and the global
Lipschitz continuity of the functions (μ(n))n∈N, (σ (n))n∈N, μ and σ imply that

lim
n→∞ sup

t∈(0,T ]
sup
x∈O

∣∣u(k)(t, x) − un,k(t, x)
∣∣

= lim
n→∞ sup

t∈(0,T ]
sup
x∈Ū

∣∣E[ϕk

(
Xx,n(t)

)]−E
[
ϕk

(
Xx(t)

)]∣∣
(4.72)

≤ lim
n→∞ sup

t∈(0,T ]
sup
x∈Ū

E
[∣∣ϕk

(
Xx,n(t)

)− ϕk

(
Xx(t)

)∣∣]
≤
(

sup
x∈Ū

∥∥ϕ′
k(x)

∥∥
L(Rd ,R)

)
·
(

lim
n→∞ sup

t∈(0,T ]
sup
x∈Ū

E
[∣∣Xx,n(t) − Xx(t)

∣∣])= 0

for all T ∈ (0,∞) and all k ∈ N. Combining this with Lemma 4.8 shows that for
every k ∈N it holds that u(k) is a viscosity solution of (4.70) with initial condition
ϕk . In addition, note that

lim
k→∞ sup

(t,x)∈(0,∞)×K

∣∣u(t, x) − u(k)(t, x)
∣∣

≤ lim
k→∞ sup

(t,x)∈(0,∞)×K

E
[∣∣ϕ(Xx(t)

)− ϕk

(
Xx(t)

)∣∣](4.73)

≤ lim
k→∞ sup

y∈U∪K

∣∣ϕ(y) − ϕk(y)
∣∣= 0
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for all compact sets K ⊂ O . Combining this with Lemma 4.8 eventually shows
that u is indeed a viscosity solution of (4.70) as claimed. �

The next result is a generalization and a consequence of Lemma 4.15 above and
constitutes the main result of this section.

THEOREM 4.16 (Existence and uniqueness of viscosity solutions of Kol-
mogorov equations). Let d,m ∈ N, ρ ∈ R, let O ⊂ Rd be an open set, let
ϕ :O → R be a continuous function, let μ :O → Rd and σ :O → Rd×m be
locally Lipschitz continuous functions and let V ∈ C2(O, (0,∞)) be such that
limn→∞ supx∈Oc

n

|ϕ(x)|
1+V (x)

= 0, such that

〈
(∇V )(x),μ(x)

〉+ 1
2 tr
(
σ(x)

[
σ(x)

]∗
(HessV )(x)

)≤ ρ · V (x)(4.74)

for all x ∈ O and such that limn→∞ inf{V (x) :x ∈ Oc
n} = ∞. Then there exists a

unique continuous function u : [0,∞) × O → R which fulfills u(0, x) = ϕ(x) for
all x ∈ O , which fulfills limn→∞ sup(t,x)∈[0,T ]×Oc

n

|u(t,x)|
V (x)

= 0 for all T ∈ (0,∞)

and which is a viscosity solution of

∂

∂t
u(t, x) − 〈

(∇xu)(t, x),μ(x)
〉− 1

2
tr
(
σ(x)

[
σ(x)

]∗
(Hessx u)(t, x)

)
(4.75)

= 0

for (t, x) ∈ (0,∞) × O . Moreover, if (�,F,P) is a probability space with a nor-
mal filtration (Ft )t∈[0,∞) and if W : [0,∞) × � → Rm is a standard (Ft )t∈[0,∞)-
Brownian motion, then there exist up to indistinguishability unique global solu-
tions Xx : [0,∞) × � → O , x ∈ O , to

Xx(t) = x +
∫ t

0
μ
(
Xx(s)

)
ds +

∫ t

0
σ
(
Xx(s)

)
dW(s),(4.76)

P-a.s. for all t ∈ [0,∞) and all x ∈ O . In that case, u has the probabilistic repre-
sentation u(t, x) = E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞) × O .

PROOF. W.l.o.g. we assume throughout this proof that (�,F,P) is a proba-
bility space with a normal filtration (Ft )t∈[0,∞) and that W : [0,∞) × � → Rm is
a standard (Ft )t∈[0,∞)-Brownian motion. Then, since V is a Lyapunov function,
(4.76) does have global solutions which furthermore (assuming without loss of
generality that ρ ≥ 0) have the property that

E
[
V
(
Xx(t ∧ τ)

)]≤ eρtV (x)(4.77)

for any stopping time τ :� → [0,∞). As a consequence, for every (t, x) ∈
[0,∞) × O it holds that E[|ϕ(Xx(t))|] is finite so that we can define u : [0,∞) ×
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O → R by u(t, x) := E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞) × O . Note that as a con-
sequence of our assumption on ϕ, for every δ ∈ (0,∞) there exists a constant
Cδ ∈ (0,∞) such that ∣∣ϕ(x)

∣∣≤ Cδ + δV (x)(4.78)

holds for all x ∈ O . The bound (4.77) immediately implies a similar bound on
u(t, ·), so that u has the required behaviour at infinity. It therefore remains to show
that u is indeed a viscosity solution of (4.75), as uniqueness of such a solution
follows from Corollary 4.14. The proof for this goes again by approximation. Let
μ(n) and σ (n) for n ∈ N be any sequence of Lipschitz continuous functions such
that for all x ∈ O it holds that

V (x) ≤ n ⇒ μ(n)(x) = μ(x), σ (n)(x) = σ(x)(4.79)

and

V (x) ≥ n + 1 ⇒ μ(n)(x) = 0, σ (n)(x) = 0.(4.80)

Denoting by Xx,n, x ∈ O , n ∈ N, the solutions to the corresponding SDEs, we
set un(t, x) = E[ϕ(Xx,n(t))] for all (t, x) ∈ [0,∞) × O , n ∈ N. It then follows
from Lemma 4.15 that un|(0,∞)×On is a viscosity solution to the equation analo-
gous to (4.75). As a consequence of Lemma 4.8, it remains to show that un → u,
uniformly on compact subsets of (0,∞) × O . For this, we introduce the stopping
times τ x

n := inf({t ∈ (0,∞) :V (Xx(t)) ≥ n} ∪ {∞}), x ∈ O , n ∈ N. As a conse-
quence of (4.78), the fact that Xx,n and Xx coincide until time τx

n , and the fact that
V (Xx,n(t)) ≤ n + 1, P-a.s. provided that V (x) ≤ n + 1, we have for all n ∈ N and
all (t, x) ∈ [0,∞) × O with V (x) ≤ n + 1 that∣∣u(t, x) − un(t, x)

∣∣
≤ E

[
1{τx

n ≤t}
∣∣ϕ(Xx(t)

)∣∣]+E
[
1{τx

n ≤t}
∣∣ϕ(Xx,n(t)

)∣∣](4.81)

≤ 2CδP
[
τx
n ≤ t

]+ δeρtV (x) + δ(n + 1)P
[
τx
n ≤ t

]
.

Using (4.77), we obtain from Chebychev’s inequality that for all (t, x) ∈ [0,∞) ×
O it holds that

P
[
τx
n ≤ t

]= P
[
V
(
Xx(t ∧ τx

n

))≥ n
]≤ E[V (Xx(t ∧ τx

n ))]
n

≤ eρtV (x)

n
.(4.82)

Inserting this into (4.81), the required locally uniform convergence follows at once.
�

In the literature, there are many results proving an assertion similar to Theo-
rem 4.16 and Corollary 4.14, respectively, under various assumptions on the func-
tions μ and σ . Theorem 4.3 in Pardoux and Peng [60] implies that the transition
semigroup associated with the SDE (4.76) is a viscosity solution of (4.75) if μ

and σ are globally Lipschitz continuous; see also Peng [62]. Theorem C.2.4 in
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Peng [61] can be applied if μ is locally Hölder continuous and if σ is constant
and then proves uniqueness of an at most polynomially growing viscosity solution
of (4.75). Uniqueness of the viscosity solution of (4.75) with given initial func-
tion follows from Theorem 8.2 in the User’s guide Crandall, Ishii and Lions [7]
if μ is globally one-sided Lipschitz continuous, that is, if there exists a constant
c ∈ R such that 〈x − y,μ(x) − μ(y)〉 ≤ c‖x − y‖2 for all x, y ∈ Rd , and if σ

is globally Lipschitz continuous. Moreover, Theorem 5.13 in Krylov [47] implies
that the transition semigroup solves the Kolmogorov equation (4.75) in the sense
of distributions if μ and σ are globally Lipschitz continuous. In addition, Theo-
rems 7.1.3 and 7.1.4 in Evans [18] show that there exists a unique weak solution
of the PDE (4.75) if the coefficients μ and σ are bounded and if the PDE (4.75) is
uniformly parabolic.

In many situations, the open set O ⊂ Rd and the Lyapunov-type function
V :O → R in Theorem 4.16 satisfy O = Rd and V (x) = (1 + ‖x‖2)p for all
x ∈ Rd where p ∈ [1,∞) is an arbitrary real number. This is subject of the fol-
lowing Corollary 4.17. It is a direct consequence of Theorem 4.16 and its proof is
therefore omitted.

COROLLARY 4.17 (Existence and uniqueness of at most polynomially grow-
ing viscosity solutions of Kolmogorov equations). Let d,m ∈ N, let ϕ :Rd → R
be a continuous and at most polynomially growing function, let μ :Rd → Rd and
σ :Rd →Rd×m be locally Lipschitz continuous functions with supx∈Rd

〈x,μ(x)〉
(1+‖x‖2)

<

∞ and supx∈Rd
‖σ(x)‖
(1+‖x‖) < ∞. Then there exists a unique continuous function

u : [0,∞) × Rd → R which fulfills lim supp→∞ sup(t,x)∈[0,T ]×Rd
|u(t,x)|
1+‖x‖p < ∞ for

all T ∈ (0,∞), which fulfills u(0, x) = ϕ(x) for all x ∈ Rd , and which is a viscos-
ity solution of

∂

∂t
u(t, x) − 〈

(∇xu)(t, x),μ(x)
〉− 1

2
tr
(
σ(x)

[
σ(x)

]∗
(Hessx u)(t, x)

)
(4.83)

= 0

for (t, x) ∈ (0,∞) × Rd . Moreover, if (�,F,P) is a probability space with
a normal filtration (Ft )t∈[0,∞) and if W : [0,∞) × � → Rm is a standard
(Ft )t∈[0,∞)-Brownian motion, then u has the probabilistic representation u(t, x) =
E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞) × Rd , where the stochastic processes Xx :
[0,∞) × � →Rd , x ∈ Rd , are as before.

Note that all examples in this article fulfill the assumptions of Corollary 4.17. In
particular, observe that μ and σ from the SDE (2.1) in Section 2, μ and σ from the
SDE (2.10) in Section 2, μ and σ from the SDE (2.11) in Section 2, μ and σ from
the SDE (3.1) in Section 3, μ and σ from the SDE (3.18) in Section 3 as well as μ

and σ from the SDE (5.3) in Section 5 all fulfill the assumptions of Corollary 4.17.
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4.5. Distributional solutions of Kolmogorov equations. In this section, we for-
mulate a slight extension to Theorem 5.13 in Krylov [47], which states that the
semigroup associated to an SDE with smooth coefficients solves the correspond-
ing Kolmogorov equation in the distributional sense, even if the coefficients are
badly behaved near the boundary of the domain of definition O .

PROPOSITION 4.18. Let d,m ∈ N, let O ⊂ Rd be an open set, let μ =
(μ1, . . . ,μd) ∈ C∞(O,Rd), σ = (σi,j )i∈{1,...,d},j∈{1,...,m} ∈ C∞(O,Rd×m), let
ϕ ∈ Cb(O,R), let (�,F,P) be a probability space with a normal filitration
(Ft )t∈[0,∞), let W : [0,∞) × � → Rm be a standard (Ft )t∈[0,∞)-Brownian mo-
tion and let Xx : [0,∞) × � → O , x ∈ O , be solutions to

Xx(t) = x +
∫ t

0
μ
(
Xx(s)

)
ds +

∫ t

0
σ
(
Xx(s)

)
dW(s),(4.84)

P-a.s. for all (t, x) ∈ [0,∞) × �. Then the function u : (0,∞) × O → R given by
u(t, x) = E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞)×O solves the Kolmogorov equation

∂u

∂t
=

d∑
i=1

μi

∂u

∂xi

+ 1

2

m∑
l=1

d∑
i,j=1

σi,lσj,l

∂2u

∂xi ∂xj

(4.85)

in the distributional sense.

PROOF. Let On be as above, consider for every n ∈ N smooth and globally
Lipschitz continuous functions μ(n) and σ (n) which agree with μ and σ on On,
and denote by Xx,n, x ∈ O , solutions of the corresponding SDE. Fix some fi-
nal time T ∈ (0,∞), denote by Px the law of Xx on C([0, T ],O) and for ev-
ery n ∈ N by P n

x the law of Xx,n on C([0, T ],O). It then follows from the
smoothness of the coefficients μ and σ that O 
 x �→ Px is weakly continu-
ous; see Theorem 1.7 in Krylov [47]. In particular, this implies that u is contin-
uous and that, for every compact K ⊂ O , the set {Px :x ∈ K} is tight. Let now
un(x, t) = E[ϕn(X

x,n(t))] for all (t, x) ∈ (0,∞) × O , n ∈ N, where ϕn :O → R,
n ∈ N, are smooth approximations of ϕ such that supx∈On

|ϕn(x) − ϕ(x)| ≤ 1/n

and supp(ϕn) ⊂ On+1 for all n ∈ N and such that supn∈N supx∈O |ϕn(x)| < ∞.
Note now that Px |B(C([0,T ],On)) = P n

x |B(C([0,T ],On)) and that, locally uniformly in
x, the Px -measure of the set C([0, T ],On) converges to 1 as n → ∞. In particular,
there exists a real number C ∈ [0,∞) such that for all (t, x) ∈ (0, T ] × O it holds
that ∣∣un(x, t) − u(x, t)

∣∣≤ 1

n
+ C

[
1 − Px

(
C
([0, T ],On

))]
.(4.86)

As a consequence, one has un → u, locally uniformly in x and t . The claim now
follows at once from the fact that, by Theorem 5.13 in Krylov [47], each of the un

solves the Kolmogorov equation with μ(n) and σ (n). �
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5. A counterexample to the rate of convergence of the Euler–Maruyama
method. In this section, we use the results of Section 3 to establish the existence
of an SDE with smooth and globally bounded coefficients for which the Euler–
Maruyama method convergences without any arbitrarily small polynomial rate of
convergence, thereby proving Theorem 1.3 of the Introduction. Denote by Ĉ the
constant

Ĉ =
∫ 1

0
e−1/(1−u2) du,(5.1)

and set

μ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1(1,∞)(x4) · exp
(
− 1

x2
4 − 1

)
· cos

(
(x3 − Ĉ) · exp

(
x3

2
))

0

1(−1,1)(x4) · exp
(
− 1

1 − x2
4

)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.2)

B =

⎛
⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

for all x = (x1, x2, x3, x4) ∈ R4. The function R 
 x �→ 1(−1,1)(x) · exp(−1/(1 −
x2)) ∈ [0,1] that appears in μ has been used as a mollifier function in Lemma 1.2.3
in Hörmander [32]. Note that μ :R4 → R4 is infinitely often differentiable and
globally bounded. Moreover, let (�,F,P) be any probability space supporting a
four-dimensional standard Brownian motion W : [0,∞) × � → R4 with continu-
ous sample paths. Then there exists a unique stochastic process X : [0,∞) × � →
R4 with continuous sample paths which fulfills X(t) = ∫ t

0 μ(X(s)) ds+BW(t) for
all t ∈ [0,∞). The stochastic process X = (X1,X2,X3,X4) : [0,∞) × � →R4 is
thus a solution process of the SDE

dX1(t) = 1(1,∞)

(
X4(t)

) · exp
(
− 1

X4(t)2 − 1

)

× cos
((

X3(t) − Ĉ
) · exp

(
X2(t)

3))dt,

dX2(t) = dW2(t),(5.3)

dX3(t) = 1(−1,1)

(
X4(t)

) · exp
(
− 1

1 − X4(t)2

)
dt,

dX4(t) = 1dt

for t ∈ [0,∞) satisfying X(0) = 0. In the next step, we define the Euler–
Maruyama approximations for the SDE (5.3) using the following notation. Let
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�·�h : [0,∞) → [0,∞), h ∈ (0,∞), be a family of mappings defined by

�t�h := max
{
s ∈ {0, h,2h, . . .} : s ≤ t

}
(5.4)

for all t ∈ [0,∞) and all h ∈ (0,∞). Then let Yh = (Y h
1 , Y h

2 , Y h
3 , Y h

4 ) : [0,∞) ×
� → R4, h ∈ (0,∞), be Euler–Maruyama approximation processes defined re-
cursively by

Yh(0) := 0 and
(5.5)

Yh(t) := Yh(�t�h

)+ μ
(
Yh(�t�h

)) · (t − �t�h

)+ B
(
W(t) − W

(�t�h

))
for all t ∈ (nh, (n + 1)h], n ∈ {0,1, . . .} and all h ∈ (0,∞). Observe that this defi-
nition ensures that

Yh
1 (t) =

∫ t

1
1(1,∞)

(�s�h

)
e−1/(�s�2

h−1)

(5.6)

× cos
((∫ ∞

0
1[0,1)

(�u�h

)
e−1/(1−�u�2

h) du − Ĉ

)
eW2(�s�h)3

)
ds

for all t ∈ [1,∞) and all h ∈ (0,∞). The following Theorem 5.1 proves that
the Euler–Maruyama method (5.5) for the SDE (5.3) convergences without any
arbitrarily small polynomial rate of convergence. Theorem 5.1 together with an
elementary transformation argument [dealing with general x0 ∈ R4 and general
T ∈ (0,∞)] then implies Theorem 1.3.

THEOREM 5.1 (A counterexample to the rate of convergence of the Euler–
Maruyama method). Let X = (X1,X2,X3,X4) : [0,∞)×� →R4 be a solution
process of the SDE (5.3) with continuous sample paths and with X(0) = 0. Then

E
[
X1(t)

]−E
[
Yh

1 (t)
]≥ exp

(−14
∣∣ln(h)

∣∣2/3)(5.7)

for all h ∈ (0, 1
22 ] and all t ∈ [2,∞) and, therefore, we obtain

lim
h↘0

(
E[‖X(t) − Yh(t)‖]

hα

)
= lim

h↘0

(‖E[X(t)] −E[Yh(t)]‖
hα

)
(5.8)

=
{

0, α = 0,

∞, α > 0,

for all α ∈ [0,∞) and all t ∈ [2,∞). In particular, for every t ∈ [2,∞) and every
α,C,h0 ∈ (0,∞) there exists a real number h ∈ (0, h0) such that ‖E[X(t)] −
E[Yh(t)]‖ > C · hα .

The proof of Theorem 5.1 is deferred to the end of this section. To the best
of our knowledge, the SDE (5.3) is the first SDE with smooth coefficients in the
literature for which it has been established that the Euler–Maruyama scheme con-
verges in the strong and numerical weak sense without any arbitrarily small rate
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of convergence. Using the results of Section 3, one can show that the SDE (5.3) is
not locally Hölder continuous with respect to the initial value. This is summarized
in the next corollary of Lemma 3.3 in Section 3.

COROLLARY 5.2. Let Xx : [0,∞) × � → R4, x ∈ R4, be solution processes
of the SDE (5.3) with continuous sample paths and with Xx(0) = x for all x ∈ R4.
Then for every t ∈ (0,∞) the function R4 
 x �→ E[Xx(t)] ∈ R4 is not locally
Hölder continuous.

PROOF. Note that∥∥E[X(0,0,Ĉ,2)(t)
]−E

[
X(0,0,h+Ĉ,2)(t)

]∥∥
≥ ∣∣E[X(0,0,Ĉ,2)

1 (t) − X
(0,0,h+Ĉ,2)
1 (t)

]∣∣
(5.9)

=
∣∣∣∣
∫ t

0
exp

( −1

((2 + s)2 − 1)

)
E
[
1 − cos

(
h · exp

([
W2(s)

]3))]
ds

∣∣∣∣
≥ exp

(
−1

3

)∫ t

0

(
1 −E

[
cos

(
h · exp

([
W2(s)

]3))])
ds

for all h, t ∈ (0,∞). Combining this with Lemma 3.3 in Section 3 completes the
proof of Corollary 5.2. �

In the following, the size of the quantity ‖E[X(T )] − E[Yh(T )]‖ ∈ [0,∞) is
analyzed for sufficiently small h ∈ (0,∞) and thereby Theorem 5.1 is established.
To do so, we first establish a few auxiliary results. We begin with an elementary
estimate for the numerical integration of concave functions.

LEMMA 5.3 (Numerical integration of concave functions). Let �·�h : [0,

∞) → [0,∞), h ∈ (0,∞), be given by (5.4), let b ∈ (0,∞) be a real number and
let ψ : [0, b] → R be a continuously differentiable function with a nonincreasing
derivative. Then∫ b

0

(
ψ(s) − ψ

(�s�h

))
ds

(5.10)

≤ 1

2

[
ψ ′(0) · h2 + (

ψ
(�b�h − h

)− ψ(0)
) · h + ψ ′(�b�h

) · (b − �b�h

)2]
for all h ∈ (0, b].

PROOF. The fundamental theorem of calculus and monotonicity of ψ ′ imply∫ b

0

(
ψ(s) − ψ

(�s�h

))
ds

=
∫ b

0

∫ s

�s�h

ψ ′(u) duds ≤
∫ b

0

∫ s

�s�h

ψ ′(�s�h

)
duds(5.11)
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=
∫ h

0

∫ s

�s�h

ψ ′(�s�h

)
duds +

∫ �b�h

h

∫ s

�s�h

ψ ′(�s�h

)
duds

+
∫ b

�b�h

∫ s

�s�h

ψ ′(�s�h

)
duds

= ψ ′(0) · h2

2
+ h2

2

( ∑
n∈N,nh<�b�h

ψ ′(nh)

)
+ ψ ′(�b�h

) · (b − �b�h)
2

2

≤ ψ ′(0) · h2

2
+ h

2

( ∑
n∈N,nh<�b�h

∫ nh

(n−1)h
ψ ′(s) ds

)

+ ψ ′(�b�h

) · (b − �b�h)
2

2

= ψ ′(0) · h2

2
+ (

ψ
(�b�h − h

)− ψ(0)
) · h

2

+ ψ ′(�b�h

) · (b − �b�h)
2

2

for all h ∈ (0, b]. This finishes the proof of Lemma 5.3. �

Using Lemma 5.3, we establish in the next lemma a simple lower bound for the
numerical integration of the function 1(−1,1)(x) · exp(−1/(1 − x2)), x ∈ R, in the
third component of μ :R4 →R4.

LEMMA 5.4 [Numerical integration of the function 1(−1,1)(x) · exp(−1/(1 −
x2)), x ∈ R]. Let �·�h : [0,∞) → [0,∞), h ∈ (0,∞), be given by (5.4). Then

h

20
≤
∫ ∞

0
1[0,1)

(�s�h

) · exp
(
− 1

1 − �s�2
h

)
ds − Ĉ ≤ 2h(5.12)

for all h ∈ (0, 1
8 ].

PROOF. First of all, observe that

d

dx

(
e−1/(1−x2))= −2x · e−1/(1−x2)

(1 − x2)2 and

(5.13)
d2

dx2

(
e−1/(1−x2))= 6 · e−1/(1−x2)

(1 − x2)4

(
x4 − 1

3

)

for all x ∈ (−1,1). We hence obtain that the function [0,3−1/4] 
 s �→ e−1/(1−s2) ∈
R has a nonincreasing derivative. Applying Lemma 5.3 and using that the function
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[0,∞) 
 s �→ 1[0,1)(s) · e−1/(1−s2) ∈R is nonincreasing therefore results in∫ ∞
0

1[0,1)

(�s�h

) · exp
( −1

(1 − |�s�h|2)
)

ds −
∫ 1

0
exp

( −1

(1 − s2)

)
ds

=
∫ ∞

0
1[0,1)

(�s�h

) · exp
( −1

(1 − |�s�h|2)
)

− 1[0,1)(s) · exp
( −1

(1 − s2)

)
︸ ︷︷ ︸

≥0

ds

≥
∫ 3−1/4

0
exp

( −1

(1 − |�s�h|2)
)

− exp
( −1

(1 − s2)

)
ds

≥ h

2
·
(

exp
( −1

(1 − 02)

)
− exp

( −1

(1 − |�3−1/4�h − h|2)
))

(5.14)

+ 2 · �3−1/4�h · e−1/(1−|�3−1/4�h|2)

[1 − |�3−1/4�h|2]2 · (3−1/4 − �3−1/4�h)
2

2

≥ h

2
·
(
e−1 − exp

( −1

(1 − [3−1/4 − 2h]2)

))

≥ h

2
·
(
e−1 − exp

( −1

(1 − [1/2]2)

))
= h · (e−1 − e−4/3)

2
>

h

20

for all h ∈ (0, 1
8 ] where we used the estimate 3−1/4 − 2h ≥ 1

31/4 − 1
4 ≥ 1

2 for all h ∈
(0, 1

8 ] in the penultimate inequality in (5.14). Moreover, note that (5.13) implies
that ∫ ∞

0
1[0,1)

(�s�h

) · exp
( −1

(1 − |�s�h|2)
)

ds

−
∫ 1

0
exp

( −1

(1 − s2)

)
ds

≤ h +
∫ 1

0

∣∣∣∣exp
( −1

(1 − |�s�h|2)
)

− exp
( −1

(1 − s2)

)∣∣∣∣ds

(5.15)

≤ h + sup
x∈(0,1)

[
2x · e−1/(1−x2)

(1 − x2)2

]
· h

= h +
[

2 · 3−1/4 · e−1/(1−3−1/2)

(1 − 3−1/2)2

]
· h

= h +
[

6

31/4 · (√3 − 1)2 · e√
3/(

√
3−1)

]
· h ≤ 2h

for all h ∈ (0,∞). Combining (5.14) and (5.15) completes the proof of Lemma 5.4.
�
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We are now ready to prove Theorem 5.1. Its proof uses Lemma 5.4 as well as
Lemma 3.3 in Section 3 above.

PROOF OF THEOREM 5.1. First of all, note that X1(t) = ∫ t
1 exp( −1

(s2−1)
) ds,

P-a.s. for all t ∈ [1,∞). Combining this with (5.6) then shows that

E
[
X1(t)

]−E
[
Yh

1 (t)
]

=
∫ t

1
exp

(
− 1

s2 − 1

)
− 1(1,∞)

(�s�h

) · exp
(
− 1

�s�2
h − 1

)
ds

︸ ︷︷ ︸
≥0

+
∫ t

1
1(1,∞)

(�s�h

)
e−1/(�s�2

h−1)

×E
[
1 − cos

((∫ ∞
0

1[0,1)

(�u�h

)
e−1/(1−�u�2

h) du

−
∫ 1

0
e−1/(1−u2) du

)
eW2(�s�h)3

)]
ds

≥
∫ t

3/2
1(1,∞)

(�s�h

)
e−1/(�s�2

h−1)

×E
[
1 − cos

((∫ ∞
0

1[0,1)

(�u�h

)
e−1/(1−�u�2

h) du

−
∫ 1

0
e−1/(1−u2) du

)
eW2(�s�h)3

)]
ds

for all t ∈ [3
2 ,∞) and all h ∈ (0,∞). The estimate �s�h ≥ �3

2�h ≥ 3
2 − h ≥ 11

8 for
all s ∈ [3

2 ,∞), h ∈ (0, 1
8 ] and Lemmas 5.4 and 3.3 therefore show that

E
[
X1(t)

]−E
[
Yh

1 (t)
]

≥ exp
(
− 1

121/64 − 1

)

×
∫ v

3/2
E
[
1 − cos

((∫ ∞
0

1[0,1)

(�u�h

)
e−1/(1−|�u�h|2) du −

∫ 1

0
e−1/(1−u2) du

)
︸ ︷︷ ︸

zh/20≤···≤2h due to Lemma 5.4

× eW2(�s�h)3
)]

ds

≥ e−64/57

×
∫ v

3/2
exp

( −8

�s�h
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×
∣∣∣∣ln
(
π
/(

2
(∫ ∞

0
1[0,1)(�u�h) · e−1/(1−|�u�h|2) du

−
∫ 1

0
e−1/(1−u2) du

)))∣∣∣∣2/3)
ds

≥ (v − 3/2)

4
· exp

(
−64

11

∣∣∣∣ln
(

10π

h

)∣∣∣∣2/3)

for all h ∈ (0,min{1
8 , π

4 exp(−v3/2)}], t ∈ [v,∞) and all v ∈ [3
2 ,∞). Hence, we

finally obtain that

E
[
X1(t)

]−E
[
Yh

1 (t)
]

(5.16)

≥ exp
(
− ln(8) − 64

11

∣∣ln(10π)
∣∣2/3 − 64

11

∣∣ln(h)
∣∣2/3

)

for all h ∈ (0, 1
22 ] and all t ∈ [2,∞). This completes the proof of Theorem 5.1. �

In the next step, we illustrate the lower bound on the weak approxima-
tion error in Theorem 5.1 by a numerical simulation. More precisely, we ran
Monte Carlo simulations and approximatively calculated the quantity ‖E[X(T )]−
E[YT/N(T )]‖ for T = 2 and N ∈ {21,22, . . . ,229,230}. We approximated these
differences of expectations with an average over 100,000 independent Monte Carlo
realizations. Moreover, we discretized the integrals X1(2) = ∫ 2

1 exp( −1
(s2−1)

) ds and

X3(2) = ∫ 1
0 exp( −1

(1−s2)
) ds in the exact solution with a uniform grid and mesh size

2
231 = 2−30. Figure 1 depicts the resulting graph.

In addition to the weak approximation error ‖E[X(T )]−E[YT/N(T )]‖ for T =
2 and N ∈ {21,22, . . . ,229,230}, we also plotted the function{

21,22, . . . ,230} 
 N
(5.17)

�→ 1

15 · (ln(N))1/3 exp
(
− 1

2T

(
ln(N) − 1

2T

(
ln(N)

)2/3
)2/3)

∈ (0,1]

(a function with order 0), the function {21,22, . . . ,230} 
 N �→ 1
15·√N

∈ (0,1] (or-

der line 1
2 ) and the function {21,22, . . . ,230} 
 N �→ 1

15·N ∈ (0,1] (order line 1)
in Figure 1. In the standard literature in computational stochastics (see, e.g., Kloe-
den and Platen [42]) the Euler–Maruyama scheme is shown to converge in the
numerically weak sense with order 1 if the coefficients of the SDE are smooth and
globally Lipschitz continuous (see Chapter 8 in Kloeden and Platen [42] for the
precise assumptions) and, therefore, the order line 1 is plotted in Figure 1. More-
over, the function with order 0 is included in Figure 1 so that one can compare
the graph visually with a function which has convergence order 0. According to
our simulations, the approximation error for the mean E[X(2)] does not drop far
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FIG. 1. The norm ‖E[X(T )] − E[YT/N (T )]‖ of the difference between the mean of the solu-
tion of the SDE (5.3) and the mean of the Euler–Maruyama approximations (5.5) for T = 2 and
N ∈ {21,22, . . . ,229,230}. The function with convergence order 0 is given by (5.17).

below 1
100 even for N = 230 > 109 time discretizations. This indicates that calcu-

lating the mean E[X(T )] with the Euler–Maruyama method up to a high precision
requires a huge computational effort. In particular, this suggests for applications
that an approximation cannot, in general, be assumed to be very close to the exact
value even after a very high computational effort.
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