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FRÉCHET MEANS OF CURVES FOR SIGNAL AVERAGING AND
APPLICATION TO ECG DATA ANALYSIS

BY JÉRÉMIE BIGOT

DMIA–ISAE

Signal averaging is the process that consists in computing a mean shape
from a set of noisy signals. In the presence of geometric variability in time
in the data, the usual Euclidean mean of the raw data yields a mean pattern
that does not reflect the typical shape of the observed signals. In this setting,
it is necessary to use alignment techniques for a precise synchronization of
the signals, and then to average the aligned data to obtain a consistent mean
shape. In this paper, we study the numerical performances of Fréchet means
of curves which are extensions of the usual Euclidean mean to spaces en-
dowed with non-Euclidean metrics. This yields a new algorithm for signal
averaging and for the estimation of the time variability of a set of signals. We
apply this approach to the analysis of heartbeats from ECG records.

1. Introduction. In many applications (biology, medicine, road traffic data)
one observes a set of signals that have a similar shape. This may lead to the as-
sumption that such observations are random elements which vary around the same
but unknown mean shape. Signal averaging is then the process that consists in com-
puting a mean curve which reflects the typical shape of the observed signals. This
procedure generally amounts to finding an appropriate combination of the data to
compute an average shape with a better signal-to-noise ratio. In many situations,
the observed signals exhibit not only a classical source of random variation in am-
plitude, but also a less standard source of variability in time. Due to this source of
time variability, the usual Euclidean mean of the raw data may yield a mean curve
that does not reflect the typical shape of the signals, as illustrated by the following
application.

1.1. Signal averaging in ECG data analysis. An important application of sig-
nal averaging is the estimation of a mean heart cycle from electrocardiogram
(ECG) records. An ECG signal corresponds to the recording of the heart elec-
trical activity. It is a signal, recorded over time, that is composed of the succession
of cycles of contraction and release of the heart muscle. Each recorded cycle is a
curve composed of a characteristic P-wave, reflecting the atrial depolarization, that
is followed by the so-called QRS complex which corresponds to the depolariza-
tion of the ventricles and which ends with a T-wave reflecting the repolarization of
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FIG. 1. ECG recording of a subject showing evidence of significant arrhythmia (30 first seconds of
patient Sel104 from the QT database).

the heart. The QRS complex refers to the succession of the Q wave (a downward
deflection), the R wave (an upward deflection) and the S wave (a downward de-
flection). The shape of the combination of these three successive waves is useful
for the diagnosis of cardiac pathologies such as arrhythmia. For a more precise
description of an ECG recording we refer to Guyton and Hall (2006). In this paper
we present results on data sets from the QT database [Goldberger et al. (2000)] (in
ECG analysis, the QT interval corresponds to the time between the beginning of
the Q wave and the end of the T wave in a heart cycle). In Figure 1, we display
data from an ECG record of a subject showing evidence of significant arrhythmia
(note that, in all the figures showing ECG data, units on the vertical axis are in
millivolts).

In the analysis of ECG data, it is generally assumed that the heart electrical
activity repeats itself. Therefore, during an ECG record, one classically considers
that the heart cycle of interest remains approximately the same with every beat
and that it is embedded in a random noise with zero expectation that is uncorre-
lated with the mean shape to be estimated. After an appropriate segmentation of an
ECG record, one observes a set of signals of the same length such that each of them
contains a single QRS complex. The preliminary segmentation step is done by tak-
ing segments (of the same length) in the ECG record that are centered around the
easily detectable maxima of the QRS complex of the beats. Identification of these
maxima can be done using statistical methods to identity local extrema in noisy
signals [Bigot (2006), Gasser and Kneip (1995)] or by applying appropriate digital
filters to identify typical parts of the QRS complex [Pan and Tompkins (1985)]. In
this paper we used the approach in Bigot (2006) to identify local maxima and to
segment an ECG record into signals of the same length containing a single QRS
complex. In this segmentation of the long ECG record displayed in Figure 1, we
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FIG. 2. Patient Sel104—case of cardiac arrhythmia. Solid and blue curves: four signals containing
a single QRS complex out of J = 285 extracted from the ECG recording displayed in Figure 1. The
length of the signals is n = 128 time points. Dashed and red curve: Euclidean mean of the raw data.
Units on the horizontal axis are arbitrary.

have only extracted nonoverlapping segments. Therefore, some parts of the origi-
nal signal, that do not contain significant peaks corresponding to the QRS complex,
have been discarded from the statistical analysis. After this preliminary segmenta-
tion, one thus observes signals with approximately the same shape. For the patient
Sel104 from the QT database, we obtained J = 285 signals (from a 4-minutes
record) of length n = 128 time points. Four of these signals containing a single
QRS complex are displayed in Figure 2.

To estimate the typical shape of a heart cycle and to improve the signal-to-noise
ratio, one might use the Euclidean mean of these signals. In the case of a normal
ECG record from a healthy subject, this generally leads to satisfactory results, as
this average signal clearly reflects the typical shape of the observed heartbeats.
However, in the case of cardiac arrhythmia, the electrical activity of the heart is
more irregular. This can be seen in the shape of the heartbeats displayed in Figure 2
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which may vary significantly from one pulse to another. Due to noise and time
variability in the measurements, a simple averaging step may cause a low-pass
filtering effect that leads to a mean cycle that does not reflect the typical shape
of the heartbeats in the ECG record; see, for example, Laciar, Jané and Brooks
(2003), Rompelman and Ros (1986a, 1986b). In Figure 2, we have superposed
the Euclidean mean (red dashed curve) on the four heartbeats. One can see that
averaging the raw data causes a low-pass filtering effect in the shape of the QRS
complex, as shown by the shape of the Euclidean mean displayed in Figure 2.
Indeed, around the time point t0 ≈ 0.45 (which corresponds to the beginning of
the QRS complex), in the shape of the observed heartbeats, there is rapid transition
between a flat region and the peak of the R wave. The Euclidean mean clearly has
a different shape around t0 ≈ 0.45 since this transition is slower. More precisely,
the Euclidean mean is a local convolution by a smooth kernel of the heartbeats
around the time point t0 ≈ 0.45. To interpret this local convolution, assume that
one observes J signals denoted by f1, . . . , fJ obtained by random deformations
around the time t of a reference signal f , namely,

fj (t0) = f (t0 − θ j ), j = 1, . . . , J,

where the θ j ’s are i.i.d. random variables sampled from a density g. These random
translations of f model a local source of time variability in the data around t0.
Under mild conditions, the Euclidean mean of the fj ’s is not a consistent estimator
of f at time t0 since

f̄J (t0) = 1

J

J∑
j=1

fj (t0) →
∫

f (t0 − θ)g(θ) dθ a.s. as J → +∞,

showing that f̄J rather converges to the convolution of f by the density g.
To obtain better results, it is necessary to use alignment techniques for a precise

synchronization of the heartbeats. In this paper, we develop an algorithm that is
composed of the following key steps:

(a) we initially smooth each observed curve in the data using standard tech-
niques from nonparametric regression (e.g., Fourier filtering or wavelet threshold-
ing),

(b) we consider deformation operators depending on finite-dimensional param-
eters to model time variability in the data,

(c) we define a mean signal by minimizing an objective function that is inspired
by the notion of Fréchet mean, and which results in finding appropriate time defor-
mations for an optimal synchronization of the smoothed curves; see equation (1.2)
below.
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1.2. A deformable model. Assume for simplicity that the signals are observed
on the time interval [0,1] and that they can be extended outside [0,1] (e.g., by
periodicity). An alignment technique consists in finding a time synchronization of
a set of signals. To be more precise, define a deformation operator φθ parametrized
by θ ∈ R

p as a smooth increasing function φθ : [0,1] → R such that

φ−1
θ (t) = φ−θ (t) for all t ∈ [0,1].

In the paper we shall consider the following families of deformation operators:

- Translation operators: φθ (t) = t − θ and φ−1
θ (t) = φ−θ (t) = t + θ , for θ ∈ R

(p = 1) and all t ∈ [0,1].
- Nonrigid operators: φθ : [0,1] → [0,1] is a diffeomorphism of [0,1] parame-

trized by some θ ∈ R
p , that is, a smooth increasing function with φθ (0) = 0 and

φθ (1) = 1 (a general method for constructing nonrigid deformation operators is
described in Section 2.2).

Given f1, f2 : [0,1] → R and a family (φθ )θ∈Rp of deformation operators,
the problem of time synchronization of two signals is to find a θ ∈ R

p such
f1(φθ (t)) ≈ f2(t) for all t ∈ [0,1]. In ECG data analysis, the most widely used
alignment technique is time synchronization using translation operators by tempo-
ral or multiscale cross-correlation; see Laciar, Jané and Brooks (2003), Trigano,
Isserles and Ritov (2011) and the references therein.

In the presence of time variability in the data, it is reasonable to assume that the
signals at hand satisfy the following deformable (or perturbation) model:

Y �
j = f

(
φθ∗

j
(t�)

) + w�
j , j = 1, . . . , J and � = 1, . . . , n,(1.1)

where Y �
j denotes the �th observation for the j th signal and t� = �

n
are equi-spaced

design points in [0,1]. The function f : [0,1] → R in model (1.1) is the unknown
mean shape of the signals. The w�

j are supposed to be random variables with zero
expectation that represent additive noise in the measurements. Finally, the θ∗

j ’s are
assumed to be i.i.d. random variables in R

p with zero expectation, and the random
deformation operators φθ∗

j
represent time variability in the data.

In the simplest case, where the w�
j ’s are i.i.d. normal variables with zero ex-

pectation and variance σ 2
j , then (1.1) corresponds to the so-called shape invariant

model (SIM) that has received a lot of attention in the statistical literature; see, for
example, Bigot and Charlier (2011), Kneip and Gasser (1988) and the references
therein.

The deformable model (1.1) is well adapted to ECG data processing. The main
types of perturbations related to the analysis of ECG data [see, e.g., Laciar, Jané
and Brooks (2003), Trigano, Isserles and Ritov (2011)] are the baseline wandering
effect (a low-frequency signal), electromyographic (EMG) noise and power-line
interference which is an amplitude and frequency varying sinusoid. This source of
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additive noise can be modeled in (1.1) by the random variables w�
j which repre-

sent (possibly smooth) variations in the data around the mean shape f . The phys-
iological nature of the electrocardiographic signal also alters the recording from
heartbeat to heartbeat in lag and duration. In the ECG signal, there are therefore
variations in time of the heart cycle from one beat to another. This makes the heart-
beats look shorter or longer in duration. After the segmentation of an ECG record
into signals containing a single QRS complex, this local variability in time is mod-
eled in (1.1) by the nonrigid deformation operators φθ∗

j
. Aligning heartbeats using

nonrigid deformation operators is an alternative to the cross-correlation method
which is classically used in ECG data analysis.

1.3. Fréchet means of curves. The problem of estimating f and the defor-
mation parameters θ∗

j in the deformable model (1.1) has been studied in Bigot
and Charlier (2011), Bigot and Gendre (2013) using the following procedure.
First, for each j = 1, . . . , J , smooth the data (Y �

j )n�=1 to construct an estimator

f̂j : [0,1] → R of f ◦ φθ∗
j
. In this paper, this smoothing step is done either by

low-pass Fourier filtering or by wavelet thresholding. In a second step, estimate
simultaneously the deformation parameters θ∗

j , j = 1, . . . , J by minimizing the
following criterion:

(θ̂1, . . . , θ̂J ) = argmin
(θ1,...,θJ )∈�0

M(θ1, . . . , θJ ),(1.2)

where

M(θ1, . . . , θJ ) = 1

J

J∑
j=1

1

n

n∑
�=1

(
f̂j

(
φ−θj

(t�)
) − 1

J

J∑
j ′=1

f̂j ′
(
φ−θj ′ (t�)

))2

(1.3)

and

�0 = {
(θ1, . . . , θJ ) ∈ (

R
p)J

, θ1 + · · · + θJ = 0
}
.

Finally, in a third step take

f̂ (t) = 1

J

J∑
j=1

f̂j

(
φ−θ̂j

(t)
)

(1.4)

as an estimator of the mean shape f .
As explained in Bigot and Charlier (2011), Bigot and Gendre (2013), the esti-

mator f̂ can be interpreted as a smoothed Fréchet mean of the observed signals.
The Fréchet mean [Fréchet (1948)] is an extension of the usual Euclidean mean
to spaces endowed with non-Euclidean metrics. We refer to Afsari (2011) and
Huckemann (2011) for recent overviews of this notion and its application to the
analysis of random variables taking their values in nonlinear manifolds.
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The constrained set �0 [onto which the minimization of M(θ1, . . . , θJ ) is done]
reflects the assumption that the deformation parameters θ∗

j in model (1.1) have zero
expectation. The choice of this constraint is also related to identifiability issues in
model (1.1), and we refer to Bigot and Charlier (2011) for a detailed discussion on
that point.

In Bigot and Charlier (2011), Bigot and Gendre (2013), the statistical properties
of f̂ and the θ̂ j ’s in deformable models such as (1.1) have been studied in detail in
the asymptotic setting n → +∞ and/or J → +∞. However, in these papers, the
benefits of Fréchet means for the analysis of real data such as ECG records has not
been considered.

1.4. Previous work on signal averaging. In statistics the problem of estimating
the mean shape of a set of curves that differ by a time transformation is usually
referred to as the curve registration problem. It has received a lot of attention in
the statistical literature over the last two decades, and for further details we refer
to Bigot (2006), Ramsay and Li (2001), Wang and Gasser (1997), Liu and Müller
(2004), Kneip and Gasser (1988) and Trigano, Isserles and Ritov (2011).

Our approach also shares various similarities with Procrustes methods that were
originally developed for the analysis of planar shapes. In particular, the full Pro-
crustes mean of shapes described by landmarks in R

2 is defined through a Fréchet-
type objective function such as (1.3); see, for example, Goodall (1991). In the case
of curve registration, the term Procrustes has also been attached to methods of
time warping, although the settings of curve alignment and planar shape analysis
are clearly different.

In the statistical literature the criterion (1.2) was first proposed by Gamboa,
Loubes and Maza (2007) in the case of translation operators and then was fur-
ther studied by Vimond (2010), Bigot and Gadat (2010). Its generalization to other
deformation operators and the connection between minimizing (1.3) and the com-
putation of Fréchet means of curves has been investigated in Bigot and Charlier
(2011), Bigot and Gendre (2013). Note that various theoretical arguments are given
in Bigot and Charlier (2011), Bigot and Gadat (2010), Bigot and Gendre (2013) to
show that, without a pre-smoothing step, the Fréchet mean cannot be consistent.
Note that in curve registration or Procrustes methods, one generally registers the
raw data without any preliminary smoothing. One of the purposes of this paper is
thus to show that it is preferable to first smooth the data before alignment.

The method that we propose is not the only shape averaging algorithm in the
literature. In particular, for the statistical analysis of images or surfaces, there exist
several methods based on different alignment techniques through the use of defor-
mations operators; see, for example, Allassonnière, Amit and Trouvé (2007) and
Ma et al. (2008) for a Bayesian approach to compute a mean pattern from two-
dimensional images, and Klassen et al. (2004) and Fletcher et al. (2004) for the
statistical analysis of shapes using geodesic paths and Riemannian geometry.
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1.5. Organization of the paper. In Section 2 we describe more precisely the
smoothed Fréchet mean in the case of translation and nonrigid operators. We also
use some numerical experiments to illustrate the advantages of a pre-smoothing
step before alignment. The usefulness of the Fréchet mean for signal averaging
and for the estimation of time variability in ECG data analysis is presented in
Section 3. We conclude the paper by a brief discussion on these results and the
benefits of our approach.

2. Methodology for mean pattern estimation.

2.1. Choice of the regularization parameter in the smoothing step. For the
smoothing step, we present numerical results for the following:

- low-pass Fourier filtering: for t ∈ [0,1]
f̂j (t) = ∑

|k|≤λ̂j

c
(j)
k ei2πkt ,

with c
(j)
k = 1

n

∑n
�=1 Yj,�e

−i2πk(�/n), and where λ̂j ∈ N is a regularization param-

eter (cutoff frequency). A possible data-based choice for λ̂j is to use generalized
cross-validation (GCV); see, for example, Craven and Wahba (1978/79).

- wavelet smoothing by hard thresholding: for t ∈ [0,1]

f̂j (t) =
2m0∑
k=0

α
(j)
m0,k

φm0,k(t) +
m1∑

m=m0

2m∑
k=0

β
(j)
m,k1{|β(j)

m,k |≥σ̂j

√
2 log(n)}ψm,k(t),

where φm0,k(t) = 2m0/2φ(2m0 t −k) and ψm,k(t) = 2m/2ψ(2mt −k) are the usual
scaling and wavelet basis functions at resolution levels 0 ≤ m0 ≤ m ≤ m1 and
location k, α(j)

m0,k
, β

(j)
m,k are, respectively, the empirical scaling and wavelet coeffi-

cients computed from the data (Y �
j )n�=1 [for further details on wavelet threshold-

ing see, e.g., Antoniadis, Bigot and Sapatinas (2001)]. The universal threshold
σ̂j

√
2 log(n) depends on the estimation σ̂j of the level of noise in the j th signal.

It is given by the median absolute deviation (MAD) of the empirical wavelet co-
efficients at the highest level of resolution m1 [see, e.g., Antoniadis, Bigot and
Sapatinas (2001)].

2.2. The case of nonrigid operators. To build a family (φθ )θ∈Rp of paramet-
ric diffeomorphisms of [0,1], we adapt to one-dimensional curves the approach
proposed in Bigot, Gadat and Loubes (2009) to compute the mean pattern of a set
of two-dimensional images. Let v : [0,1] → R be a smooth parametric vector field
given by a linear combination of p basis functions {hk : [0,1] → R, k = 1, . . . , p},
such that

v(t) =
p∑

k=1

θkhk(t) for t ∈ [0,1],
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where θ = (θ1, . . . , θp) ∈ R
p is a set of real coefficients. The function v is thus

parametrized by the set of coefficients θ , and we write v = vθ to stress this depen-
dency. In what follows, it will be assumed that the basis functions are continuously
differentiable on [0,1] and such that hk and ∂

∂t
hk vanish at t = 0 and t = 1. For the

hk’s we took in our numerical experiments a set of B-spline functions of degree 3
using equally-spaced knots on [0,1]. The choice of the number p of B-spline func-
tions is a difficult model selection problem that is discussed in Section 3.

Then, let t ∈ [0,1] and for u ∈ [0,1] consider the following ordinary differential
equation (ODE):

∂

∂u
ψ(u, t) = vθ

(
ψ(u, t)

)
(2.1)

with initial condition ψ(0, t) = t . Then, it can be shown [see, e.g., Younes (2010)]
that for any u ∈ [0,1] the solution of the above ODE is unique and such that

t �→ ψθ (u, t) = t +
∫ u

0
vθ

(
ψθ (s, t)

)
ds

is a diffeomorphism of [0,1], that is, a smooth increasing function with ψθ (u,0) =
0 and ψθ (u,1) = 0. Then, we denote by

φθ (t) = ψθ (1, t)

the solution at u = 1 of the ODE (2.1). In this way, we finally obtain a diffeomor-
phism φθ that is parametrized by the set of coefficients θ ∈R

p and that is such that
φ−1

θ (t) = φ−θ (t).

2.3. Numerical implementation. To compute the smoothed Fréchet
mean (1.4), one needs to minimize the criterion (1.3). For this purpose, we use
a gradient descent algorithm with an adaptive step to compute simultaneously J

vectors θ̂1, . . . , θ̂J in R
p minimizing (1.3). Note that in the case of nonrigid op-

erators, it can be shown that the mapping θ �→ φθ is differentiable, and an explicit
formula of its gradient is given by Lemma 2.1 in Beg et al. (2005).

An alternative approach to register the raw data is to use the following algo-
rithm that has been originally developed for the computation of a full Procrustean
mean in planar shape analysis. This algorithm is based on an alternative scheme
between estimation of deformation operators and averaging of back-transformed
curves given estimated values of the deformation parameters. In what follows, it
will be referred to as the two-step algorithm. To be more precise, assume that
Yj : [0,1] → R denotes a linear interpolation of the data (Y �

j )n�=1. Using our nota-

tion, this algorithm consists in an initialization step f̂ (0) = 1
J

∑J
j=1 Yj that is the

Euclidean mean of the raw data taken as a first reference template. Then, at iter-
ation 1 ≤ i ≤ imax, it computes for all 1 ≤ j ≤ J the estimators θ̂ j,i of the j th
deformation parameter as

θ̂ j,i = arg min
θ∈Rp

1

n

n∑
�=1

(
Yj

(
φ−θj

(t�)
) − f̂ (i−1)(t�)

)2
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and then takes f̂ (i)(t) = 1
J

∑J
j=1 Yj (φ−θ̂j,i

(t)) as a new reference template. This
procedure is repeated until the estimated reference template does not change. Usu-
ally the algorithm converges in a few steps. In what follows, the resulting reference
template after the two-step algorithm will be referred to as the Iterated mean.

2.4. Numerical experiments to illustrate the advantages of the smoothing step.
We propose to use simulated data to compare the performances of signal averaging
using either the smoothed Fréchet mean (1.4) (via a gradient descent algorithm to
simultaneously compute all the θ̂ j ’s) or the Iterated mean obtained via the two-
step algorithm described in Section 2.3. For this purpose, let us consider a set of
J = 30 signals generated from the following deformable model using translation
operators:

Y �
j = f

(
t� − θ∗

j

) + w�
j , j = 1, . . . , J and � = 1, . . . , n,(2.2)

with additive error terms satisfying the model

w�
j = Zj

(
t� − θ∗

j

) + σε�
j , j = 1, . . . , J and � = 1, . . . , n,

where n = 128, the θ∗
j ’s are i.i.d. normal variables with zero mean and variance

μ2 = 0.004, the ε�
j ’s are i.i.d. normal variables with zero mean and variance 1, f is

one of the signals displayed in Figure 3(a) and Figure 3(c), and the Zj ’s are i.i.d.
copies of a Gaussian process Z : [0,1] → R with zero expectation. The covari-
ance function of Z has an exponential decay such that R(t�, t�′) = EZ(t�)Z(t�′) =
σ 2φ|�−�′| with φ = 0.9. To simulate independent sample paths of Z, we use the
standard circulant embedding technique; see, for example, Wood and Chan (1994).
The signal-to-noise ratio (SNR) is the measurement defined as

SNR =
√∫ 1

0 (f (t) − f̄ )2

σ
with f̄ =

∫ 1

0
f (t) dt.

To estimate f , we compare three different estimators:

- a smoothed Fréchet mean using low-pass Fourier filtering with λ̂j chosen by
GCV for each j = 1, . . . , J ,

- the Iterated mean computed from the raw data (without smoothing) via the two-
step algorithm,

- the Iterated mean computed from smoothed data, that is, via the two-step algo-
rithm using as inputs the estimates f̂j (that have been used for the computation
of the smoothed Fréchet mean) instead of the linear interpolation Yj of the raw
data. This third estimator will be referred to as the smoothed Iterated mean.

To illustrate the benefits of the smoothed Fréchet mean, we used M = 100 repli-
cations of model (2.2) with J = 30, for the two signals f displayed in Figure 3 and
for various values of the SNR. For each replication m = 1, . . . ,M , we compute the
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FIG. 3. (a) and (c) two different test functions f ; (b) and (d) average empirical MSE (AvMSE) as
a function of the SNR (ranging from 2 to 5) for each estimator: smoothed Fréchet mean (blue curve),
smoothed Iterated mean (red curve) and Iterated mean without smoothing (green curve).

empirical mean squared error (MSE) at the design points of the three estimators
described above. In Figure 3 we display the average value of the empirical MSE
(AvMSE) over M = 100 repetitions as a function of the SNR. The AvMSE of the
smoothed Fréchet mean is always lower than the AvMSE of the two other esti-
mators. The smoothed Iterated mean also has a slightly lower AvMSE than the
Iterated mean of the raw data without smoothing, which confirms the benefits of a
preliminary smoothing step before an alignment procedure.

3. Application to ECG data analysis. We now return to the analysis of the
ECG record displayed in Figure 1. A smoothing of the J = 285 signals obtained
after segmentation of the ECG record of patient Sel104 (over 4 minutes) is done by
wavelet thresholding with a data-based choice of the regularization parameters σ̂j

as explained in Section 2.1. The computation of an average shape using a smoothed
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Fréchet mean with translation operators does not give a result that is very different
from the one obtained by the Euclidean mean of the raw data. Since the activity
of the heart can be very irregular in the case of cardiac arrhythmia, modeling time
variability using only translation operators is not flexible enough. A more precise
alignment to take into account a local variability in lag and duration of the heart-
beats is thus needed. Therefore, we propose to compute a smoothed Fréchet mean
of these signals using the nonrigid operators given by a family of parametric dif-
feomorphisms parametrized by p B-spline functions, as described in Section 2.2.

Obviously, the choice of the number p of B-spline functions used to parametrize
the nonrigid deformations is very important. For a given integer p ≥ 1, let us in-
troduce the following quantity:

�p = 1

J

J∑
j=1

1

n

n∑
�=1

(
f̂j

(
φ−θ̂j

(t�)
) − 1

J

J∑
j ′=1

f̂j ′
(
φ−θ̂j ′ (t�)

))2

,

which corresponds to the minimal value of the objective function (1.3) when using
nonrigid operators parametrized by a family of p B-spline functions. It is clear that
one can interpret �p as a measure of misalignment of the data after registration.
Hence, a first idea to choose an optimal value of p would be to try to minimize the
value �p as a function of p to obtain the best possible alignment. In Figure 4(a)
we display the curve p �→ nJ�p (for 1 ≤ p ≤ 20), which is a globally decreasing
function that reaches its minimal value at p = 20. Therefore, trying to minimize
�p simply results in choosing the largest possible p.

To interpret this fact, one may remark that the quantity nJ�p is related to
the minimal value of the negative log-likelihood of the data in the deformable
model (1.1) in the case where the w�

j ’s are i.i.d. normal variables with zero expec-
tation and variance σ 2 (conditionally to the θ∗

j ’s). It is widely known that increas-
ing the number of parameters in a statistical model leads to a decay of the minimal
value of the negative log-likelihood of the observed data, which explains why we
observe a decay of �p as p increases in Figure 4(a). As classically done in model
selection in statistics, it is thus necessary to penalize the negative log-likelihood
to select an appropriate dimension of the parameters to be estimated. In Gaussian
linear regression, the well-known Mallows’s Cp rule [Mallows (1973)] suggests to
penalize the negative log-likelihood by a term that is proportional to the dimension
of the linear model. In our deformation model, the number of B-spline coefficients
to be estimated grows linearly with p. Therefore, we propose to minimize the fol-
lowing penalized misalignment cost:

cp = nJ�p + βp,(3.1)

where β > 0 is a regularization parameter. The choice of an appropriate value for
β is then motivated from general ideas in model selection proposed by Birgé and
Massart (2007). Our method to find an optimal value for β [and then the corre-
sponding optimal dimension p = p(β)] is based on the “slope heuristic” principle
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FIG. 4. Patient Sel104—(a) misalignment cost nJ�p and (c) penalized misalignment cost

ĉp = nJ�p + β̂p as functions of the dimension p ranging from 1 to 20. (b) misalignment cost
nJ�p for 7 ≤ p ≤ 20 (blue curve) and its approximation by an affine function (red and dashed
line). The misalignment cost nJ�p is minimal at p = 20, while the penalized misalignment cost

ĉp = nJ�p + β̂p is minimal at p(β̂) = 5.

suggested in Birgé and Massart (2007). This heuristic consists in considering that
the penalized cost cp (3.1) is the sum of the negative log-likelihood that repre-
sents a data-fidelity term and the penalty term representing the complexity of the
model which is related to a variance term that is generally unknown. The idea of
the “slope heuristic” is that when a model is high dimensional, then the associ-
ated bias is close to zero, and so the log-likelihood is essentially an estimate of the
variance of the model (which we assume to be proportional to the dimension p).
Hence, for large p, the negative log-likelihood should become a linear function
of p. The choice of the dimension p beyond which the negative log-likelihood be-
comes linear is left to the user. Based on visual inspection of the curve p �→ nJ�p

that is displayed in Figure 4(a), we consider that, for p ≥ 7, the negative likelihood
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ceases to decrease significantly and becomes approximately linear as shown by
Figure 4(b). Once we have chosen the appropriate dimension (here p = 7) beyond
which the negative log-likelihood becomes linear, the basic principle of the “slope
heuristic” is to fit a linear regression of nJ�p with respect to p for 7 ≤ p ≤ 20; see
Figure 4(b). If we denote by α̂ ≈ −2946 · 105 the estimated regression coefficient,
then, as suggested by Birgé and Massart (2007), an appropriate estimator for β is
β̂ = −2α̂ ≈ 5893 · 105. In Figure 4(c), we display the curve p �→ ĉp = nJ�p + β̂p

(for 1 ≤ p ≤ 20). The penalized misalignment cost ĉp is minimal at p = p(β̂) = 5,
which is therefore the value that we finally choose for the statistical analysis of
these ECG data.

In Figure 5 we display the smoothed Fréchet mean using the nonrigid operators
parametrized by p = 5 B-spline functions, as described in Section 2.2. The result-
ing mean heart cycle in Figure 5 better reflects the typical shape of the signals

FIG. 5. Patient Sel104—case of cardiac arrhythmia. Solid and blue curves: four signals containing
a single QRS complex out of J = 285 extracted from the ECG recording displayed in Figure 1. The
length of the signals is n = 128 time points. Dashed and red curve: Fréchet mean using nonrigid
operators. Units on the horizontal axis are arbitrary.
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than the one obtained using the Euclidean mean of the raw data that is displayed
in Figure 2. In particular, there is no low-pass filtering effect around the time point
t ≈ 0.45 in the shape of this smoothed Fréchet mean.

Beyond the calculation of an average heart cycle, the computation of a Fréchet
mean is also a way to separate the variability of a data set into a source of variability
in time and another source of variability in amplitude (or intensity). To illustrate
this point, let us first remark that the ECG record of patient Sel104 is composed
of two major types of beats whose typical shapes are displayed in Figure 6(a) and
in Figure 6(b). This classification of the heartbeats from this ECG record in two
clusters is discussed in detail in Zhou and Sedransk (2009).

In Figure 6(c) we give a two-dimensional representation of these two clusters
by projecting the data on the first and second principal components (PC) of the
principal components analysis (PCA) of the J = 285 raw signals considered as

FIG. 6. Patient Sel104—case of cardiac arrhythmia. Two types of beats (a) Type I (red curve) and
(b) Type II (blue curve); (c) PCA of the raw data; (d) Variability in time via PCA of the coefficients
of the B-splines encoding the nonrigid operators used to compute the Fréchet mean; (e) Variability
in amplitude via PCA of the aligned and smoothed data. To visualize the results of the various PCA,
the data are projected on the first and second principal components and they are labeled as type I
(red circles) and type II (blue stars).
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random vectors of length n = 128. In this representation, the sources of variability
in time and in amplitude of the data are completely mixed. In particular, one cannot
see if there exists more variability in lag and duration of the heartbeats in one of
the two clusters.

After computing the Fréchet mean of the heartbeats, one can associate to each
signal a set of p = 5 coefficients θ = (θ1, . . . , θp) ∈ R

p that parametrize a nonrigid
operator φθ ; see Section 2.2. These p dimensional vectors represent the variabil-
ity in time of the data. In Figure 6(d) we display the projection of the data on the
first and second PC of the PCA of these random vectors. This graphical represen-
tation of the data highlights two different behaviors of the signals in each cluster.
The variability in time of the data of type I (red circles) is relatively low and ho-
mogeneous, contrary to the time variability of the data of type II (blue stars) that
is much stronger and heterogeneous. One can also perform a PCA of the aligned
and smoothed data (using these nonrigid operators). A graphical display of such a
PCA is given in Figure 6(e). This further step allows to analyze the variability in
amplitude in the data that is not due to a misalignment. It gives a different inter-
pretation of the variability in intensity of the signals within each cluster than the
one displayed in Figure 6(c) when doing a PCA of the raw data.

4. Discussion and conclusion. We have presented a new algorithm for align-
ing heartbeats extracted from an ECG record. Our approach is based on the notion
of smoothed Fréchet means of curves using deformation operators. When using
nonrigid operators to align heartbeats having a high variability, with peaks show-
ing an important variability in lag and duration from one pulse to another, our ap-
proach may be used to decompose the data into two separate sources of variation in
time and in amplitude. The benefits of our procedure have been demonstrated for
an ECG recording of a subject showing evidence of significant arrhythmia. Using
simulated data, we have also shown the advantages of a preliminary smoothing step
before applying an alignment procedure. We hope that the methods presented in
this paper will stimulate further investigation into the development of better align-
ment procedures that take into account time variability in heartbeats extracted from
ECG records.
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