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The causal effect of a randomized job training program, the JOBS II
study, on trainees’ depression is evaluated. Principal stratification is used to
deal with noncompliance to the assigned treatment. Due to the latent nature of
the principal strata, strong structural assumptions are often invoked to iden-
tify principal causal effects. Alternatively, distributional assumptions may be
invoked using a model-based approach. These often lead to weakly identi-
fied models with substantial regions of flatness in the posterior distribution
of the causal effects. Information on multiple outcomes is routinely collected
in practice, but is rarely used to improve inference. This article develops a
Bayesian approach to exploit multivariate outcomes to sharpen inferences
in weakly identified principal stratification models. We show that inference
for the causal effect on depression is significantly improved by using the re-
employment status as a secondary outcome in the JOBS II study. Simulation
studies are also performed to illustrate the potential gains in the estimation of
principal causal effects from jointly modeling more than one outcome. This
approach can also be used to assess plausibility of structural assumptions and
sensitivity to deviations from these structural assumptions. Two model check-
ing procedures via posterior predictive checks are also discussed.

1. Introduction. The impact of job loss and unemployment on workers’
stress and mental health is a subject of much interest in psychology [see,
e.g., Vinokur, Caplan and Williams (1987)]. The Job Search Intervention Study
(JOBS II) [Vinokur, Price and Schul (1995)] is an influential randomized field ex-
periment intended to study the prevention of poor mental health and the promotion
of high-quality re-employment among unemployed workers. In JOBS II, partic-
ipants were randomly assigned to attending job training seminars (treatment) or
receiving a booklet on job-search tips (control). As in many open-label random-
ized intervention studies, substantial noncompliance to assigned treatment arose
in JOBS II. The compliance status is a special case of intermediate variables, that
is, variables, often confounded, that are potentially affected by the assignment and
also affect the response. When the study goal, as in JOBS II, is to evaluate the
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causal effect of receiving the treatment rather than the effect of assignment, the
confounded intermediate variables need to be adjusted for in the analysis. Another
example where intermediate variables arise is mediation analysis in observational
studies: researchers are interested in knowing not only if an exposure has an effect
on the response, but also to what extent this effect is mediated by some variables on
the causal pathway between exposure and outcome. Other forms of intermediate
variables include surrogate endpoints, unintended missing outcome data, trunca-
tion of outcome by “death” and combinations of these variables.

Our discussion will frame causal inference with intermediate variables in the
context of the Rubin Causal Model (RCM) using potential outcomes [Rubin
(1974, 1978)]. Under the RCM, a causal effect is defined as the comparison be-
tween the potential outcomes under different treatments on a common set of units.
As pointed out in Rosenbaum (1984), directly applying standard pretreatment vari-
able adjustment methods, such as regression analysis, to intermediate variables
generally results in estimates lacking causal interpretation. Angrist, Imbens and
Rubin (1996) and Imbens and Rubin (1997) focused on noncompliance in ran-
domized trials and made connections with econometric instrumental variable (IV)
settings: they stratify units into latent subpopulations according to their joint po-
tential compliance statuses under both treatment and control. This is a special case
of the later developed principal stratification (PS) [Frangakis and Rubin (2002)], an
increasingly popular framework for handling intermediate variables. A PS with re-
spect to an intermediate variable is a cross-classification of units into latent classes
defined by the joint potential values of that intermediate variable under each of
the treatments being compared. A principal stratum consists of units having the
same joint intermediate potential outcomes and so is not affected by treatment as-
signment. Therefore, comparisons of potential outcomes under different treatment
levels within a principal stratum—the principal causal effects (PCEs)—are well-
defined causal effects in the sense of Rubin (1978).

However, since at most one potential outcome is observed for any unit, we can-
not, in general, observe the principal stratum to which a unit belongs, so that infer-
ence on PCEs is not straightforward. There are two streams of work in the existing
literature regarding this: (1) deriving large-sample nonparametric bounds for the
causal effects under minimal structural assumptions [e.g., Manski (1990), Zhang
and Rubin (2003)], and (2) specifying additional structural (e.g., exclusion restric-
tion or monotonicity) or modeling assumptions to infer PCEs, and conducting sen-
sitivity analysis to check the consequences of violations of such assumptions [e.g.,
Ten Have et al. (2004), Small and Cheng (2009), Sjölander et al. (2009), Elliott,
Raghunathan and Li (2010), Li, Taylor and Elliott (2010, 2011), Schwartz, Li and
Reiter (2012)]. In this article we introduce an alternative approach to improve es-
timation of PCEs, which uses multiple outcomes in a model-based analysis. For
example, in the JOBS II evaluation, we will jointly model the depression score, the
outcome of primary interest, and the re-employment status, a secondary outcome,
to sharpen the inference for the causal effect on depression.
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Multivariate analysis is beneficial for two reasons. First, models used in PS are
inherently mixture models; recent results on mixture models show that with correct
model specification, multivariate analysis leads to smaller variances of the param-
eters’ estimators than those from a corresponding univariate analysis, resulting in
more precise estimates [Mercatanti, Li and Mealli (2012)]. Second, some key sub-
stantive structural assumptions, such as exclusion restrictions, may be more plau-
sible for secondary outcomes than for the primary one. For example, in JOBS II,
due to the possible “placebo effect,” exclusion restriction might not be plausible
for depression, but it may be more plausible for re-employment status. Another
example is given in Section 2. Restrictions on secondary outcomes reduce the pa-
rameter space of the joint distribution of all outcomes and, in turn, the marginal
distribution of the primary one [Mealli and Pacini (2013)].

However, the additional information provided by secondary outcomes is ob-
tained at the cost of having to specify more complex multivariate models, which
may increase the possibility of misspecification. For instance, in the analysis of
JOBS II data, jointly modeling depression and re-employment status involves
specifying a mixture of two underlying bivariate normal distributions, increasing
the number of unknown parameters compared with a univariate analysis on depres-
sion. Therefore, model diagnostics are crucial in the multivariate analysis and we
develop model checking procedures via posterior predictive checks in this article.

While the use of auxiliary information from covariates to improve inference
on causal effects has been discussed, the importance of exploiting multiple out-
comes is less acknowledged. For example, covariates generally improve inference
on causal effects by enhancing the prediction of missing intermediate and final
potential outcomes [e.g., Gilbert and Hudgens (2008), Hirano et al. (2000)]. How-
ever, information on multiple outcomes is routinely collected in randomized exper-
iments and observational studies, but is rarely used in analysis unless the goal is to
study the relationships between outcomes. One exception is Jo and Muthen (2001),
who demonstrated, in the context of a randomized trial with noncompliance, that
a joint analysis with two outcomes outperforms the two corresponding univariate
analyses. Mealli and Pacini (2013) showed that using the joint distribution of a
primary outcome and an auxiliary variable (a secondary outcome or a covariate) in
randomized experiments with noncompliance can tighten large-sample nonpara-
metric bounds for PCEs.

Our work is closely related to Mealli and Pacini (2013), but it proceeds from
the parametric perspective under the Bayesian paradigm instead. As causal infer-
ence problems are essentially missing data problems under the RCM, Bayesian
approaches appear to be particularly useful. From a Bayesian perspective, all un-
known quantities, parameters as well as unobserved potential outcomes, are ran-
dom variables with a joint posterior distribution, conditional on the observed data.
Therefore, inferences are based on the posterior distribution of the causal esti-
mands defined as functions of observed and unobserved potential outcomes, or
sometimes as functions of model parameters. This leads to at least two inferential



MULTIPLE OUTCOMES IN BAYESIAN INFERENCE FOR CAUSAL EFFECTS 2339

advantages. First, the Bayesian approach provides a refined map of identifiability,
clarifying what can be learned when causal estimands are intrinsically not fully
identified, but only weakly identified in the sense that their posterior distributions
have substantial regions of flatness [Imbens and Rubin (1997)]. In particular, is-
sues of identification are different from those in the frequentist paradigm because
with proper prior distributions, posterior distributions are always proper. Weak
identifiability is reflected in the flatness of the posterior distribution and can be
quantitatively evaluated [Gustafson (2009)]. Second, in a Bayesian setting, the ef-
fect of relaxing or maintaining assumptions can be directly checked by examining
how the posterior distributions for causal estimands change, therefore serving as
a natural framework for sensitivity analysis. Moreover, the Bayesian framework
allows one to quantify the impact on the causal estimates when there is a diversion
from these assumptions.

The primary aim of the paper is to combine the benefits from using a multivari-
ate analysis with the inferential advantages of the Bayesian approach for causal in-
ference in the context of principal stratification. The rest of the article is organized
as follows. Section 2 introduces the fundamentals of principal stratification and the
intuition for the benefit from using a multivariate analysis. In Section 3 we pro-
pose Bayesian bivariate models for principal stratification analyses and describe
the details of conducting posterior inferences for the causal effects. In Section 4
we reanalyze the JOBS II study using the proposed bivariate approach. Additional
simulation studies to examine the benefits to use multivariate outcomes under var-
ious scenarios are carried out in Section 5. Two model checking procedures based
on posterior predictive checks with application to the JOBS II data are discussed
in Section 6. Section 7 concludes.

2. Fundamentals.

2.1. Basic setup, definitions and assumptions. Consider a large population of
units, each of which can potentially be assigned a treatment indicated by z, with
z = 1 for treatment and z = 0 for control. A random sample of n units from this
population comprises the participants in a study, designed to evaluate the effect of
Z on all or a subset of M outcomes Y = (Y1, . . . , YM)′. Without loss of generality,
we will focus on the case of two outcomes (M = 2). For each unit i, let Zi be
the assignment indicator with Zi = 1 indicating the unit is assigned to the treat-
ment and Zi = 0 to the control. After the assignment, but before the outcome is
observed, an intermediate outcome Di is also observed. In the JOBS II evaluation,
both Z and D are binary, with Zi = 1 and 0 denoting random assignment to the job
training seminars and to the booklet, respectively, and Di = 1 and 0 denoting ac-
tually attending the seminars or not, respectively. Also, Y1 denotes the depression
score and Y2 denotes the re-employment status.

Assuming the standard Stable Unit Treatment Value Assumption [SUTVA,
Rubin (1980)], for each outcome Ym, we can define for each unit i two poten-
tial outcomes, Yim(0) and Yim(1), corresponding to each of the two possible treat-
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ment levels. Under the RCM, a causal effect of the treatment Z on the outcome
Ym is defined as a comparison of the potential outcomes Ym(1) and Ym(0) on a
common set of units. However, only one potential outcome is observed for unit
i, Y obs

im = Yim(Zi); the other potential outcome, Y mis
im = Yim(1 − Zi), is missing.

Therefore, causal inference problems under the RCM are inherently missing data
problems.

Since an intermediate variable, D, is a post-treatment variable, we can also de-
fine two potential outcomes Di(0) and Di(1) for each unit, with one being ob-
served, Dobs

i = Di(Zi), and one missing, Dmis
i = Di(1 − Zi). Comparing out-

comes from units with the same values of Dobs between treatments generally leads
to estimates lacking causal interpretation, because then the sets {i :Dobs

i = d,Zi =
1} and {i :Dobs

i = d,Zi = 0} are generally not the same groups of units. This con-
cern is known as the post-treatment selection bias.

A principal stratification with respect to the post-treatment variable D is a parti-
tion of units, whose sets—principal strata—are defined by the joint potential values
of D: Si = (Di(0),Di(1)). By definition, the principal stratum membership Si is
not affected by the assignment. Therefore, comparisons of Ym(1) and Ym(0) within
a principal stratum, the principal causal effects (PCEs), have a causal interpreta-
tion because they compare quantities defined on a common set of units. However,
since Di(0) and Di(1) are never jointly observed, principal stratum Si , which a
unit i belongs to, is, in general, only partially observed.

To convey the main message of utilizing multiple outcomes, we focus on the
simple case of a binary intermediate variable, as is the case in JOBS II; it is never-
theless straightforward to apply the method developed here to multi-valued or con-
tinuous intermediate variables following the approaches in Jin and Rubin (2008)
and Schwartz, Li and Mealli (2011). In order to highlight the role of additional
outcomes, with no loss of generality, our discussion does not include covariates,
although covariates can be easily included in the analysis. With a binary treat-
ment and a binary intermediate variable, there are at most four principal strata:
Si ∈ {(0,0), (0,1), (1,0), (1,1)}. When D is the indicator of the treatment actually
received, as in our JOBS II application, the four principal strata are, respectively,
called never-takers (Si = n), compliers (Si = c), defiers (Si = d) and always-takers
(Si = a). Though our approach applies to any binary intermediate variable settings
(e.g., mediation, truncation by death), we use the familiar nomenclature of non-
compliance to generically refer to Si hereafter for simplicity.

In randomized studies with noncompliance, the presence of defiers is usually
ruled out assuming monotonicity of noncompliance: Di(1) ≥ Di(0) for all i, with
inequality for at least one unit. Although often plausible in experimental studies
with noncompliance, monotonicity is a substantive assumption that may not al-
ways be satisfied in other settings. An important advantage of Bayesian causal
inference, in general, and our Bayesian analysis, in particular, is that the mono-
tonicity assumption is not necessary and, consequently, violation to this assump-
tion could be easily addressed [Imbens and Rubin (1997)].
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In the JOBS II study the treatment is only accessible to the Zi = 1 group, so
Di(0) = 0 for all i. Therefore, subjects who would have taken the treatment if
assigned to control (defiers and always-takers) are denied to access the treatment
if assigned to control and, thus, units are classified, in this experiment, only by
the values of Di(1): Di(1) = 1 if unit i is a complier, and Di(1) = 0 if unit i is
a never-taker. This is a typical case of one-sided noncompliance [e.g., Mattei and
Mealli (2007), Sommer and Zeger (1991)].

The causal estimand of interest in this article is the population-average principal
causal effect for the first outcome:

τs = E
(
Yi1(1) − Yi1(0)|Si = s

)
(1)

for s = c, n. In JOBS II, τs corresponds to the causal effect of being assigned to a
job-search seminar on depression for compliers (s = c) and never-takers (s = n).
By focusing on the population-average estimands, we can ignore the association
between Yi1(0) and Yi1(1) in the analysis.3 Depending on the models for the poten-
tial outcomes, population estimands are usually functions of more than one model
parameter.

Throughout the paper, we assume that the treatment is randomly assigned, as
in JOBS II. Let p(·) and p(·|·) denote probability or probability density and con-
ditional probability or conditional probability density, respectively, depending on
the context.

ASSUMPTION 1 (Randomization of treatment assignment).

p
(
Zi |Yi(0),Yi(1),Di(0),Di(1)

) = p(Zi).

Randomization implies that the joint distribution of the five quantities associated
with each sampled unit, (Zi,Yi(0),Yi (1),Di(0),Di(1)), can be decomposed into

p
(
Yi (0),Yi(1),Di(0),Di(1),Zi

) = p
(
Yi (0),Yi(1)|Si

)
p(Si)p(Zi).(2)

Randomization allows us to ignore p(Zi). This implies that likelihood or Bayesian
model-based approaches to PS analysis usually involve two sets of models:
(1) models for the distribution of potential outcomes conditional on the principal
strata, and (2) models for the distribution of principal strata.

3Distinct from the corresponding finite-sample estimands, τFS
s = ∑

i:Si=s{Yi1(1) − Yi1(0)}/ns ,
the population causal effects (1) do not depend on the association parameters between Yi1(0) and
Yi1(1), say, ρ. Specifically, posterior distribution of the population estimands τs will not be depen-
dent of ρ as long as ρ is a priori independent of the remaining model parameters, while inferences
for the finite sample causal estimands τFS

s would generally involve ρ regardless of the prior structure
between parameters [for more discussion on this, see page 311 in Imbens and Rubin (1997)].
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2.2. Intuition for sharping inference from multiple outcomes. The intuition for
the benefit of jointly analyzing multiple outcomes in PS analysis is as follows.

Principal strata are inherently latent clusters. Intuitively, proper utilization of
auxiliary variables provides extra dimensions to better predict the component
membership and disentangle the mixtures. First, additional outcomes serve as ad-
ditional predictors of principal strata membership from the outcome models. To
see this, take, for example, the model for two potential outcomes under z = 0.
By the Bayes rule, p(Yi1(0), Yi2(0)|Si) ∝ p(Si |Yi1(0), Yi2(0)) p(Yi2(0), Yi1(0)).
Comparing to the univariate model with Y1, where p(Yi1(0)|Si) ∝ p(Si |Yi1(0))

p(Yi1(0)), it is clear to see the role of the second outcome Y2 as an additional
predictor of Si .

As a second intuition, two (or more) distributions may be difficult to disen-
tangle if they are similar, for example, if their means are very close; these same
two means may instead be very far apart (and thus the mixture easier to disen-
tangle) if considered in a two-dimensional space. In fact, recent theoretical results
for mixture models [Mercatanti, Li and Mealli (2012)] show that, given correct
model specification, the probability of correctly allocating the cluster membership
of the units and the information number for the means of the primary outcome
in a bivariate mixture model are generally larger than those in the corresponding
marginal model. As a result, variances of the maximum likelihood estimators for
the mixture means, estimated by the inverse of the observed information matrix,
are generally smaller in a bivariate analysis than in a univariate one.

As a third intuition, some structural assumptions may be more plausible for the
secondary outcome than the primary outcome. For example, stochastic exclusion
restriction (ER) for never-takers is commonly assumed to point-identify PCEs:

ASSUMPTION 2 (Stochastic exclusion restriction for never-takers).

p
(
Yim(0)|Si = n

) = p
(
Yim(1)|Si = n

)
, m = 1,2.

The ER implies that any effect of the assignment is mediated through the inter-
mediate variable. Under Assumption 2 τn = 0 and E(Yi2(1) − Yi2(0)|Si = n) = 0.
But the ER is often questionable in practice. Consider a double-blinded random-
ized trial with the primary goal of studying the efficacy of a new drug on a health
outcome, where side effects are also recorded as a secondary outcome. Due to the
placebo effect, the ER may not always hold for the primary outcome. Since side
effects are usually only caused by taking the drug rather than the placebo, ER ap-
pears to be more likely to hold for side effects than the primary outcome. Formally,
we have the “partial exclusion restriction (PER)” assumption [Mealli and Pacini
(2013)]:

ASSUMPTION 3 (Stochastic partial exclusion restriction for never-takers).

p
(
Yi2(0)|Si = n

) = p
(
Yi2(1)|Si = n

)
.
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Assumption 3 implies that E(Yi2(1)−Yi2(0)|Si = n) = 0, but the average causal
effect for never-takers on the primary outcome, τn, may differ from zero. Restric-
tions on the secondary outcome, such as PER, will reduce the parameter space of
the joint distribution of the outcomes and in turn the marginal distribution of the
primary one. PER can be combined with other conditions on the association struc-
ture between outcomes to improve inference about the causal estimates [Mealli
and Pacini (2013)].

3. Bayesian bivariate principal stratification analysis. The structure for
Bayesian PS inference was first developed in Imbens and Rubin (1997) for the
special case of noncompliance. As discussed before, two sets of models need
to be specified, as well as the prior distribution for the parameters, θ . Denote
πi,s = p(Si = s|θ) and fi,sz = p(Yi (z)|Si = s, θ), for s = c, n and z = 0,1, and
assume a prior distribution p(θ) for the parameters θ . The posterior distribution of
θ can be shown to be

p
(
θ |Yobs,Dobs,Z,X

) ∝ p(θ) × ∏
i:Zi=1,Dobs

i =1

πi,cfi,c1 × ∏
i:Zi=1,Dobs

i =0

πi,nfi,n1

(3)
× ∏

i:Zi=0,Dobs
i =0

[πi,nfi,n0 + πi,cfi,c0],

where the sum in the likelihood is because the units with (Zi = 0,Dobs
i = 0) are

mixture of never-takers and compliers. Direct posterior inference of θ from (3) is
made easier using data augmentation to impute the missing Dmis

i . Specifically, we
can first obtain the joint posterior distribution of (θ ,Dmis) from a Gibbs sampler by
iteratively sampling from p(θ |Yobs,Dobs,Dmis,Z) and p(Dmis|Yobs,Dobs,Z, θ),
which in turn provides the marginal posterior distribution p(θ |Yobs,Dobs,Z) and
thus the posterior of the causal estimands τs , s = c, n. The key to the posterior
computation is the evaluation of the complete intermediate-data posterior distribu-
tion p(θ |Yobs,Dobs,Dmis,Z), which has the following simple form:

p
(
θ |Yobs,Dobs,Dmis,X,Z

) = π(θ) × ∏
i:Zi=1,Si=c

πi,cfi,c1

× ∏
i:Zi=1,Si=n

(1 − πi,c)fi,n1 × ∏
i:Zi=0,Si=c

πi,cfi,c0

× ∏
i:Zi=0,Si=n

(1 − πi,c)fi,n0.

Without additional assumptions, such as ER, inference on τs , though possible
and relatively straightforward from a Bayesian perspective, can be very imprecise,
even in large samples. We argue that jointly modeling multiple outcomes may help
to reduce uncertainty about τs in cases where such assumptions are questionable.
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4. Application to the JOBS II study. In JOBS II, before randomization, par-
ticipants were divided into two groups defined by values of a risk variable depend-
ing on financial strain, assertiveness and depression scores. Subjects who had a risk
score greater than a prefixed threshold were classified in the high-risk category.
Subsequently, the low- and the high-risk participants were randomly assigned to
a control condition or an experimental condition. The intervention consisted of 5
half-day job-search skills seminars, aimed at teaching participants the most effec-
tive strategies to get a suitable position and at improving their job-search skills.
The control condition consisted of a mailed booklet briefly describing job-search
methods and tips.

Previous studies have found that the job search intervention program had its
primary impact on the high-risk group [e.g., Jo and Muthen (2001), Little and Yau
(1998), Vinokur, Price and Schul (1995)], hence, our focus is on high-risk subjects.
The sample we use consists of 398 high-risk individuals with nonmissing values
on the relevant variables. We focus on the outcomes measured six months after
the intervention assignment. The primary outcome of interest (Y1) is depression,
measured with a sub-scale of 11 items based on the Hopkins Symptom Checklist.
As a secondary outcome (Y2), we use re-employment, a binary variable taking on
value 1 if a subject works for 20 hours or more per week.

Noncompliance arises in JOBS II because a substantial proportion (46%) of in-
dividuals invited to participate in the job-search seminar did not show up to the
intervention. As mentioned before, the treatment condition is only available to
the individuals assigned to the intervention in JOBS II, thus, by the strong mono-
tonicity assumption, there are neither defiers nor always-takers in the data. Some
summary statistics for the sample of 398 high-risk unemployed workers classified
by assignment Zi and treatment received Dobs

i are shown in Table 1.
Comparisons of outcomes conditional on the actual treatment status do not gen-

erally lead to credible estimates of the effect of the job-search seminar attendance.
However, randomization of the assignment implies that a standard intention-to-
treat (ITT) analysis, which compares units by assignment and neglects noncom-

TABLE 1
Summary statistics (means), JOBS II data

Zi = 1

All Zi = 0 Zi = 1 Dobs
i = 0 Dobs

i = 1 Dobs
i = 0

Sample size 398 130 268 124 144 254

Assignment (Zi ) 0.67 0 1 1 1 0.49
Job-search seminar (Dobs

i ) 0.36 0 0.54 0 1 0
Depression (Y obs

i1 ) 2.06 2.15 2.01 2.08 1.96 2.11
Re-employment (Y obs

i2 ) 0.60 0.55 0.63 0.59 0.66 0.57
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pliance, leads to valid inference on the causal effect of assignment. Under mono-
tonicity and ER for noncompliers (never-takers), the ITT effect is proportional to
the PCE effect for the subpopulation of compliers (τc). Therefore, the ITT effect
can be interpreted as indicative of the effect of the treatment, although the attribu-
tion of the PCE for compliers to the causal effect of the treatment for compliers is
an assumption.

In JOBS II, assuming ER for depression may be controversial. For example,
never-takers randomized to the intervention might feel demoralized by the inabil-
ity to take advantage of the opportunity, whereas they would be less demoral-
ized when randomized to the control group because the intervention was never
offered. Therefore, we relax ER for depression, using information on a secondary
outcome—re-employment status—to improve the estimation of weakly identified
causal effects on depression.

Models. We assume a bivariate normal outcome model for the logarithm of
depression (Y1) and a latent variable Y ∗

i2 underlying the binary re-employment
status: Yi2(z) = 1(Y ∗

i2(z) > 0). Specifically, for s = c, n and z = 0,1,
(

Yi1(z)

Y ∗
i2(z)

) ∣∣∣Si = s ∼ N
(
μs,z =

(
μ

s,z
1

μ
s,z
2

)
,�s,z =

(
σ

s,z
11 σ

s,z
12

σ
s,z
12 σ

s,z
22

))
,(4)

with σ
s,z
22 = 1. This formulation is equivalent to assuming a probit model for Y2:

p(Yi2(z) = 1|Si = s) = �(μ
s,z
2 ). Note that under PER for re-employment, μ

n,1
2 =

μ
n,0
2 . For principal strata, we assume a Bernoulli distribution

p(Si = c) = πc and p(Si = n) = πn = 1 − πc.(5)

The parameters are θ = {πc,μ
s,z,�s,z}.

Prior distributions for parameters. To simplify the notation, a priori distribu-
tions are specified omitting the superscript s, z. For the mean parameters, μ, we
assume the independent diffused normal priors, μ ∼ N(0,�μ), where the prior
variance matrices are diagonal �μ = vaIp . For the covariance matrices �, due to
the constraint of σ22 = 1, there is no conjugate prior. Letting the covariance param-
eters σ = (σ11, σ12), we need to ensure that the distribution of σ is truncated to the
region A ⊂ R

2 where � is a positive definite matrix, that is, A = {σ :σ11 > σ 2
12}.

As in Chib and Hamilton (2000), we assume a truncated bivariate normal prior for
σ , σ ∼ N(σ 0,�0)1A(σ ), where σ 0 and �0 are hyperparameters, and 1A is the
indicator function taking the value one if σ is in A and the value zero otherwise.

Prior to posterior computation. The posterior distributions of the parameters
were obtained from Markov chain Monte Carlo (MCMC) methods. The MCMC
algorithm that we adopted uses a Gibbs sampler with data augmentation to impute
at each step the missing compliance indicators Dmis

i and to exploit the complete
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compliance data posterior distribution to update the parameter distribution. De-
tails of the MCMC are given in the supplementary material [Mattei, Li and Mealli
(2013)].

Results. We estimated PCEs using four models: (1) a bivariate model that does
not assume ER for either depression or re-employment; (2) a bivariate model that
assumes PER for re-employment; (3) an univariate model for depression that does
not assume ER; and (4) an univariate model for depression that assumes ER for
never-takers. We do not present results from the bivariate model that assumes ER
for both depression and re-employment because under ER (and monotonicity) the
improvement from secondary outcomes is only marginal, as we can uniquely dis-
entangle the mixtures of distributions associated with principal strata without in-
voking any additional distributional or behavioral assumption.

The posterior distributions were simulated running three chains from differ-
ent starting values [see the supplementary material Mattei, Li and Mealli (2013),
for further details on chains’ initial values]. Each chain was run for 10,000 itera-
tions after a burn-in stage of 5000 iterations. The potential scale-reduction statistic
[Gelman and Rubin (1992)] suggested good mixing of the chains for each esti-
mand, providing no evidence against convergence. Inference is based on the re-
maining 30,000 iterations, combining the three chains.

Table 2 presents the posterior median and 95% credible interval for the esti-
mands of interest—the PCEs on depression for compliers, τc, and never-takers,
τn—obtained from the four models. For τn, both the univariate model without ER
and the bivariate models with and without PER for re-employment lead to a small
and negligible estimated effect, suggesting that never-takers’ depression status was
little affected by the invitation to attend the job-search seminar. This is also evident
from the posterior densities plotted in the bottom panel of Figure 1: the posterior
distributions of τn are evenly spread around zero with a large span. These results

TABLE 2
Summary statistics: Posterior distributions of PCEs on depression for compliers and never-takers

Median 2.5% 97.5% Width of the 95% credible interval

PCEs for compliers (τc)

1. Bivariate −0.338 −0.594 −0.105 0.489
2. Bivariate with PER −0.205 −0.758 0.285 1.043
3. Univariate −0.206 −0.582 0.125 0.707
4. Univariate with ER −0.260 −0.613 0.049 0.661

PCEs for never-takers (τn)

1. Bivariate 0.043 −0.193 0.263 0.456
2. Bivariate with PER −0.056 −0.684 0.488 1.171
3. Univariate −0.084 −0.527 0.287 0.813
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FIG. 1. Posterior densities (derived using a kernel smoothing) and 95% posterior intervals of PCEs
on depression for compliers (τc) and never-takers (τn) under the univariate approach with ER (dot–
dashed lines), the univariate approach without ER (dashed lines), the bivariate approach (solid lines)
and the bivariate approach with PER (dotted lines).

imply that the ER assumption for depression in never-takers may be reasonable.
Interestingly, the bivariate model that does not assume ER for any outcome still
significantly improves inferences about PCEs, reducing the width of the credible
interval for τn by 44% compared to that from a univariate analysis (rows 5 and 7).
Conversely, the bivariate model with PER provides a large posterior credible inter-
val for τn (see the discussion below).

For the PCEs for compliers, τc, a negative point estimate is obtained from all
four models: −0.338 in the bivariate case, −0.205 in the bivariate case with PER,
−0.206 in the univariate case, and −0.260 in the univariate case with ER. The
posterior probability of this effect being negative is greater than 75% irrespective
of the approach we consider. Therefore, all the approaches show some evidence
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that the invitation to attend the job-search seminars reduces depression among
compliers. However, only the bivariate model leads to a 95% credible interval not
covering 0, with a 99.8% posterior probability that τc is negative. In fact, the bi-
variate analysis without PER provides considerably more precise estimates for τc

than both the bivariate analysis with PER and the univariate analyses with and
without ER: the bivariate model without ER for any outcomes (row 1) reduces the
width of the 95% credible interval for τc by 53% compared to the bivariate model
with PER (row 2), and by 31% and 26% compared to the univariate model without
(row 3) and with (row 4) ER, respectively. This is further illustrated by the poste-
rior densities plotted in the upper panel in Figure 1. The bivariate approach with
PER performs worse than the univariate approaches, too: the 95% posterior credi-
ble intervals for the PCEs on depression from the bivariate approach with PER are
more than 30% wider than those derived from the univariate approaches. Some-
what surprisingly, the posterior distributions of τc and τn from the model with PER
have large variances. This highlights an interesting phenomenon about PER that
will be further investigated through our simulations: PER helps to reduce posterior
uncertainty only if it does (or approximately) hold and is imposed. However, when
it is imposed but does not hold, PER may force the parameters to lie in a region
of the natural parameter space that is far away from the truth and thus leads to
larger posterior variances. This is what may have happened in the JOBS II anal-
ysis: even if there is large posterior uncertainty about the effect of assignment on
re-employment for never-takers, imposing this effect to be exactly zero leads to
ill-fitted models.

It is worth noting that the bivariate approach leads to posterior distributions of
τc and τn centered at slightly different medians. In light of the simulation results,
which show that jointly modeling two outcomes generally leads to posterior means
and medians closer to the true values, these findings suggest the bivariate estimates
are more reliable, while the univariate estimates may be far from the true values.

JOBS II is a randomized experiment, and so pre-treatment covariates do not
enter the assignment mechanism. Nevertheless, covariates could be still used to
improve precision of the causal estimates. Our analysis can also use covariates in
addition to auxiliary outcomes. Indeed, we also estimated the models previously
described conditional on several relevant covariates. Similar results were obtained,
but the benefits of the bivariate approach, that we want to highlight here, are partic-
ularly evident when no covariates are used. Therefore, we relegate the details for
the models with covariates to the supplementary material [Mattei, Li and Mealli
(2013)].

5. Simulations. To better understand the results of the JOBS II application
and, more importantly, to further shed light on the comparison between univariate
and bivariate principal stratification analyses in general settings, we conduct an
extensive simulation study. We consider a wide range of simulation scenarios that
often occur in practice, accounting for different correlation structures between the
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outcomes for compliers and never-takers, various deviations from the PER for the
secondary outcome, and different association levels between the auxiliary variable
and the compliance status.

To simplify computation, we generate two continuous outcomes from a mixture
of two bivariate normal distributions as model (4), and the stratum membership
from a Bernoulli distribution as model (5). Although we only consider bivariate
Normal distributions in our simulations, we can reasonably expect that our results
are not tied to distributional assumptions: Mealli and Pacini (2013) show that sec-
ondary outcomes can also tighten large-sample nonparametric bounds for PCEs,
and Mercatanti, Li and Mealli (2012) show that the use of an auxiliary variable
may improve inference also in misspecified Gaussian mixture models. See also,
for example, Gallop et al. (2009), Mealli and Pacini (2008), for further insights
on the role of distributional assumptions in PS analysis. We assume that parame-
ters are a priori independent and use conjugate diffuse prior distributions. The true
simulation parameters are shown in Table 3. Mimicking the JOBS II data, all simu-

TABLE 3
True values of parameters of the seven simulation scenarios. The last two columns show the ratio of
the between-groups variance and the total variance of the secondary outcome under the control and
the active treatment arm, where the groups are defined by the compliance status (correlation ratio)

Scenario μn,0 μn,1 �n,0 �n,1 η2
Y2|S,Z=0 η2

Y2|S,Z=1

I
[

2.75
12

] [
4.25
12

] [
0.16 0.16
0.16 4

] [
0.04 0.08
0.08 4

]
0.639 0.770

II
[

0.16 0.64
0.64 4

] [
0.04 0.32
0.32 4

]
[

2.75
12

] [
4.25
13

]
0.639 0.824

III
[

0.16 0.16
0.16 4

] [
0.04 0.08
0.08 4

]

IV
[

0.16 0.64
0.64 4

] [
0.04 0.48
0.48 9

]
[

2.75
12

] [
4.25
24

]
0.639 0.950

V
[

0.16 0.16
0.16 4

] [
0.04 0.12
0.12 9

]

VI
[

0.16 0.96
0.96 9

] [
0.04 0.80
0.8 25

]
[

2.75
24

] [
4.25
36

]
0.941 0.957

VII
[

0.16 0.24
0.24 9

] [
0.04 0.20
0.2 25

]

In all the scenarios

μc,0 =
[

2.5
8

]
, μc,1 =

[
0.5
6.5

]
, �c,0 =

[
0.09 0.24
0.24 1

]
, �c,1 =

[
0.01 0.08
0.08 1

]
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lated data sets have n = 600 units, generated using principal strata probabilities of
0.7 for compliers and 0.3 for never-takers. The simulated samples are randomly di-
vided into two groups, half assigned to the treatment and half to the control. Three
parallel MCMC chains of 15,000 iterations with different starting values were run
for each of the seven simulated data sets, with the first 5000 as burn-in. Mixing
of the chains was determined to be adequate and all chains led to similar posterior
summary statistics.

Figure 2 shows the posterior densities and 95% posterior credible intervals of
the PCEs for compliers and never-takers on the primary outcome, in both the uni-
variate and bivariate cases. The results clearly demonstrate that simultaneous mod-
eling of both outcomes significantly reduces posterior uncertainty for the causal
estimates. In fact, the bivariate approach outperforms the univariate one in each
of the scenarios considered, providing considerably more precise estimates of the
PCEs for compliers and never-takers.

The benefits of the bivariate approach especially arise when compliers and
never-takers are characterized by different correlation structures (scenarios III
and V) and when the association between the auxiliary outcome and the com-
pliance status is stronger (scenarios VI and VII). In addition, plots (III), (V), (VI)
and (VII) in the upper and lower panels of Figure 2 suggest that the posterior distri-
butions of the PCEs are much more informative in the bivariate case. Specifically,
plots (III) and (VII) show that the posterior distributions of the PCEs for compliers
and never-takers are flat in the univariate approach, but become much tighter in
the bivariate case. The improvement is even more dramatic in scenarios (V) and
(VI), where the plots show that posterior distributions of the PCEs for compliers
and never-takers are bimodal in the univariate case, but both become unimodal in
the bivariate case. Also, in the above scenarios jointly modeling the two outcomes
leads to posterior means of the PCEs for compliers and never-takers much closer
to the true values. The bivariate approach outperforms the univariate one also in
scenarios II and IV, where compliers and never-takers are characterized by sim-
ilar correlation structures. In both scenarios the bivariate approach considerably
increases the precision of the estimates.

In scenario I, where PER for the secondary outcome holds, we also derived the
posterior distributions of the PCEs for compliers and never-takers by specifying
a bivariate model that assumes PER. The bivariate models with and without PER
lead to similar results, and both clearly outperform the univariate model, leading
to much less variable and more informative posterior distributions of the causal
effects of interest. Several other scenarios with additional structural assumptions
were also examined: magnitude of the improvement varies, but the pattern is con-
sistent with what is described here.

Additional bivariate analyses were conducted to investigate the role of PER, by
fitting the bivariate model with PER also to the six data sets generated under sce-
narios II through VII, where PER does not hold. Results, shown in the supplemen-
tary material [Mattei, Li and Mealli (2013)], suggest that inference for the PCE
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FIG. 2. Posterior densities (derived using a kernel smoothing) and 95% posterior intervals of PCEs
on the primary outcome for compliers (τc) and never-takers (τn) under the univariate approach
(dashed lines), the bivariate approach (solid lines) and the bivariate approach with PER (dotted
lines). The black vertical lines represent the true values. The Roman numbers denote the simulation
scenarios described in Table 3.
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for compliers is robust with respect to violation of PER: the corrected-specified
bivariate model and the misspecified bivariate model with PER perform similarly,
leading to posterior distributions for the PCE for compliers characterized by sim-
ilar posterior variability and similar posterior means. On the other hand, inference
on the PCE for never-takers appears to be rather sensitive to the PER assumption,
especially when PER is strongly violated (scenarios V, VI and VII) and when com-
pliers and never-taker are characterized by similar correlation structures (scenar-
ios II and IV). In these scenarios, the posterior distributions from the misspecified
bivariate models with PER are characterized by larger posterior uncertainty and are
centered at posterior means much farther away from the true parameters than the
posterior means from the corrected-specified bivariate models. Also, the posterior
distributions of the PCE for never-takers derived from the misspecified bivariate
models with PER provide 95% posterior credible intervals that do not even cover
the true parameter in most of the scenarios.

These results shed light on two key complementary facts about PER. First,
as already anticipated, PER may help to reduce posterior uncertainty when it
does hold and is imposed, although the jointly modeling of two outcomes still
improves inference increasing precision, even if no exclusion restriction on the
secondary outcome is imposed. It is worth noting that this is a different result
from the nonparametric large-sample case, where the secondary outcome does
not help sharpening inference if no exclusion restriction is imposed on it [Mealli
and Pacini (2013)]. Second, PER may actually increase the posterior variability
of the causal estimates and lead to misleading results, when it is imposed but
does not hold. Therefore, less precise inference under PER can be viewed as ev-
idence of violation of PER, which is the case in the JOBS II application. This
highlights the importance of carefully evaluating the plausibility of ER assump-
tions.

In order to evaluate the accuracy and robustness of the proposed approach,
we also investigated its repeated sampling properties using Monte Carlo simu-
lations, which were summarized by calculating standard frequentist measures, in-
cluding average biases, percent biases, mean square errors (MSEs) and coverage
of nominal 95% confidence intervals. Results [shown in the supplementary ma-
terial Mattei, Li and Mealli (2013)] confirm, and generally magnify, the findings
discussed here that the simultaneous modeling of two outcomes may improve es-
timation by reducing posterior uncertainty for causal estimands.

6. Posterior predictive model checking. The use of multiple outcomes may
help in improving inference, although the additional information provided by sec-
ondary outcomes is obtained at the cost of having to specify more complex mul-
tivariate models, which may increase the possibility of misspecification. There-
fore, model checking procedures to ensure sensible model specification are cru-
cial.

Bayesian goodness-of-fit methods have been proposed in the literature, includ-
ing Bayes factors and marginal likelihood [e.g., Chib (1995)] and posterior predic-
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tive checks [e.g., Gelman, Meng and Stern (1996), Rubin (1984)]. Here, we focus
on posterior predictive checks, which are based on comparisons of the observed
data to the posterior predictive distribution. A posterior predictive check generally
involves the following: (a) choosing a discrepancy measure, �; and (b) computing
a Bayesian p-value.

The posterior predictive discrepancy measures that we use here were first pro-
posed by Barnard et al. (2003) and can be defined as follows. Let Dstudy

s,z =
{i :Sstudy

i = s and Zi = z} be the group of subjects of type S
study
i = s assigned

to treatment Zi = z, s = c, n, z = 0,1, in the study data, where study = obs for the
observed data and study = rep for data from a replicated study, that is, outcome
data and compliance status drawn from their joint posterior predictive distribution.
Note that the assignment variable is fixed at its observed values. Let N

study
s,z be the

number of units in the study data belonging to the Dstudy
s,z group, and let Y

study
m,s,z and

s
2,study
m,s,z denote the mean and the variance of the outcome variable Y

study
m , m = 1,2,

for this group of units. Then, the discrepancy measures we use are

SIstudy
m,s (θ) = ∣∣Y study

m,s,1 − Y
study
m,s,0

∣∣ and

NOstudy
m,s (θ) =

√√√√√s
2,study
m,s,0

N
study
s,0

+ s
2,study
m,s,1

N
study
s,1

and the ratio of SIstudy
m,s (θ) to NOstudy

m,s (θ): SN
study
m,s (θ) = SIstudy

m,s (θ)

NOstudy
m,s (θ)

, m = 1,2, s =
c, n. These measures aim at assessing whether the model, which includes the
prior distribution as well as the likelihood, can preserve broad features of sig-
nal, SIstudy

m,s (θ), noise, NOstudy
m,s (θ), and signal to noise, SN

study
m,s (θ), in the outcome

distributions for compliers and never-takers.
In order to assess the plausibility of the posited models as a whole, we also con-

sider the χ2 discrepancy, defined as the sum of squares of standardized residuals of
the data with respect to their expectations under the posited model [e.g., Gelman,
Meng and Stern (1996)]; and for the continuous outcome (depression, Y1), the
Kolmogorov–Smirnov discrepancy, defined as the maximum difference between
the empirical distribution function and the theoretical distribution implied by the
posited model.

A widely-used Bayesian p-value is the posterior predictive p-value (PPPV)—
the probability over the posterior predictive distribution of the compliance status
and the parameters θ that a discrepancy measure in a replicated data drawn with
the same θ as in the observed data, �rep(Srep, θ), would be as or more extreme than
the realized value of that discrepancy measure in the observed study, �obs(Sobs, θ):
p(�rep(Srep, θ) > �obs(Sobs, θ)|Yobs,Dobs,Zobs,X) [Gelman, Meng and Stern
(1996), Rubin (1984)].
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PPPVs are Bayesian posterior probability statements about what might be ex-
pected in future replications, conditional on the observed data and the model.
Therefore, extreme p-values, that is, p-values very close either to 0 or 1, can be
interpreted as evidence that the model cannot capture some aspects of the data
described by the corresponding discrepancy measures, and would indicate an un-
desirable influence of the model in estimation of the estimands of interest.

Although the PPPVs are Bayesian posterior probabilities, even within the
Bayesian framework, it is desirable that they are, at least asymptotically, uniformly
distributed over hypothetical observed data sets drawn from the true model. Un-
fortunately, PPPVs are not generally asymptotically uniform, but they tend to be
conservative in the sense that the probability of extreme values might be lower
than the nominal probabilities from the uniform distribution. This conservatism
property implies that PPPVs may lack of power to detect model violations. Al-
ternative posterior predictive checks have been proposed in the literature, includ-
ing partial posterior predictive p-values and conditional predictive p-values [e.g.,
Bayarri and Berger (2000)], calibrated posterior p-values [Hjort, Dahl and Stein-
bakk (2006)] and sampled posterior p-values [Gosselin (2011), Johnson (2004),
Johnson (2007)]. Here we focus on sampled posterior p-values (SPPVs), which
have been shown to have at least asymptotically a uniform probability distribution
[Gosselin (2011)].

The SPPV is defined as p(�rep(Srep, θ (j∗)) > �obs(Sobs, θ (j∗))|Yobs,Dobs,

Zobs, θ (j∗)), where θ (j∗) is a unique value of θ , randomly sampled from its poste-
rior distribution. Following Gosselin (2011), we calculated the SPPV associated to
the JOBS II study using the following two steps: (i) draw K simulated replicated
data sets from the sampling distribution conditional on θ (j∗); (ii) draw at random
the p-value from a Beta distribution with parameters a + 1 and b + 1, where

a =
K∑

k=1

1{�repk (Srepk ,θ (j∗))>�obs(Sobs,θ (j∗))} + ε

K∑
k=1

1{�repk (Srepk ,θ (j∗))=�obs(Sobs,θ (j∗))},

b =
K∑

k=1

1{�repk (Srepk ,θ (j∗))<Dobs(Sobs,θ(j∗))}

+ (1 − ε)

K∑
k=1

1{�repk (Srepk ,θ (j∗))=�obs(Sobs,θ (j∗))}

with ε ∼ U(0,1).
A potential drawback of SPPVs is that they might provide different random

results on the same data and the same model, depending on the single value θ (j∗)

of the parameter vector θ that is sampled. To avoid this issue, we also implemented
the solution proposed by Gosselin (2011), which involves drawing more than a
single value of the parameter vector θ from its posterior distribution. The steps are
as follows: (a) a value u from a uniform distribution on (0,1) is drawn; (b) J >
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1 values of the parameter vector θ , θ (1), . . . , θ (J ), are drawn from its posterior
distribution; (c) for each j = 1, . . . , J , the sample posterior p-value associated
with θ (j) is computed; (d) the SPPVs are combined using the empirical u-quantile
of the latter distribution. We call the Bayesian p-value derived from this approach
the modified-SPPV.

Table 4 shows the results from the three Bayesian p-values we considered. The
SPPVs are based on K = 500 replicated data sets, and the modified-SPPVs were

TABLE 4
Posterior predictive checks

Approach Signal Noise Signal-to-Noise

Outcome c n c n c n χ2
Kolmogorov–

Smirnov

Posterior predictive p-values
Bivariate

Depression 0.513 0.805 0.432 0.564 0.528 0.798 0.597 0.400
Re-employment 0.497 0.502 0.670 0.242 0.416 0.582 0.475

Bivariate with PER
Depression 0.573 0.574 0.522 0.573 0.562 0.552 0.563 0.389
Re-employment 0.542 0.493 0.408 0.492 0.545 0.493 0.382

Univariate
Depression 0.601 0.678 0.836 0.865 0.536 0.623 0.979 0.441

Univariate with ER
Depression 0.555 0.802 0.484 0.939 0.373

Sample posterior p-values
Bivariate

Depression 0.545 0.798 0.697 0.619 0.473 0.783 0.866 0.816
Re-employment 0.379 0.438 0.830 0.121 0.262 0.582 0.663

Bivariate with PER
Depression 0.693 0.807 0.512 0.520 0.663 0.800 0.592 0.341
Re-employment 0.856 0.818 0.527 0.341 0.863 0.761 0.416

Univariate
Depression 0.170 0.731 0.747 0.320 0.154 0.757 0.699 0.410

Univariate with ER
Depression 0.190 0.625 0.169 0.899 0.392

Modified sample posterior p-values
Bivariate

Depression 0.893 0.872 0.571 0.367 0.401 0.747 0.803 0.659
Re-employment 0.228 0.115 0.705 0.618 0.122 0.690 0.433

Bivariate with PER
Depression 0.117 0.605 0.631 0.542 0.329 0.329 0.546 0.627
Re-employment 0.495 0.802 0.892 0.260 0.788 0.699 0.566

Univariate
Depression 0.241 0.283 0.888 0.868 0.820 0.097 0.900 0.255

Univariate with ER
Depression 0.200 0.811 0.724 0.692 0.172
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calculated by drawing at random J = 1000 values of the parameter vector from its
(simulated) posterior distribution and simulating K = 500 replicated data sets for
each j = 1, . . . , J .

As can be seen in Table 4, the estimated Bayesian p-values for the bivariate
model that does not assume ER for any outcome range between 11.5% and 89.3%,
suggesting that the bivariate model fits the data pretty well and successfully repli-
cates the corresponding measure of location, dispersion and their relative magni-
tude. Unsurprisingly, similar results are obtained for the bivariate model with PER
for re-employment. In fact, the analyses do not provide strong evidence against
PER for re-employment, so it is reasonable that posterior predictive checks fail
to detect the potential benefits of the bivariate model that does not assume PER
over the bivariate model that does assume PER. However, the empirical results in
Section 4 show that the bivariate model without PER considerably reduces pos-
terior uncertainty for the causal estimands of interest. Therefore, also in light of
the simulations, we expect that inferences drawn without assuming PER may be
more reliable. On the other hand, the PPPVs and the modified-SPPVs show some
evidence that the univariate models might not optimally fit the data according to
the χ2 discrepancy. In addition, the modified-SPPVs suggest that the univariate
model without ER might fail to replicate the signal-to-noise measure in the depres-
sion distribution for never-takers. These potential failures of the univariate models
might be due to the underlying categorical nature of the depression variable. More
flexible statistical models could be considered and compared, but the potential
failures of the univariate models seem to be successfully fixed when the additional
information provided by the secondary outcome is used, so we do not further drill
down this issue in this paper, where focus is on investigating the benefits of jointly
modeling multiple outcomes in causal inference with post-treatment variables.

7. Conclusion. Motivated by the evaluation of a job training program
(JOBS II), we have demonstrated, within the framework of principal stratifica-
tion, the benefits of jointly modeling more than one outcome in model-based
causal analysis for studies with intermediate variables. Observed distributions in
these studies are typically mixtures of distributions associated with latent sub-
groups (principal strata). Structural or behaviorial assumptions are often invoked
to uniquely disentangle these mixtures. When such assumptions are not plausible,
distributional assumptions are often invoked. But these usually lead to models that
are weakly identified, weakly in the sense that the likelihood function has substan-
tial regions of flatness. From a Bayesian perspective, even when the likelihood is
rather flat, if the prior is proper, so will be the posterior. However, posterior un-
certainty will still be rather large in these models, with posterior distributions of
causal parameters often presenting more than a single mode, unless the prior is
extremely informative.

We have shown how to sharpen inference in these weakly identified models: im-
provements are achieved without adding prior information or additional assump-
tions (such as ERs, weak monotonicity or stochastic dominance), but rather by
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using the additional information provided by the joint distribution of the outcome
of interest with secondary outcomes. Indeed, in the JOBS II application, ERs are
not particularly plausible. Nonetheless, by jointly modeling depression, the pri-
mary outcome, and re-employment status, a secondary outcome, we have found
improved evidence for a positive effect of the job-training program on trainees’
depression compared to a univariate analysis on depression alone. Additional sim-
ulations further illustrate the benefits under more general scenarios.

JOBS II is a randomized study, but we stress that our framework can also serve
as a template for the analysis of observational studies with intermediate variables.
In observational studies, randomization (ignorability) of treatment assignment is
usually assumed conditional on relevant pretreatment variables [Rosenbaum and
Rubin (1983)], thereby conditioning on the covariates is not optional in observa-
tional studies but crucial for credible causal statements. However, once ignorability
is assumed, the structure for Bayesian inference in observational studies with in-
termediate variables (e.g., mediation analysis) is the same as that in randomized
experiments. The differences lie in the structural assumptions: for example, while
in some experiments the design of the study can help in making the ER assumption
plausible (blindness or double-blindness), the ER assumption for an instrument in
observational studies is often questionable. As a consequence, improving inference
of weakly identified models is even more relevant in observational studies.
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Supplement A: Details of calculation. We describe in detail the Markov Chain
Monte Carlo (MCMC) methods used to simulate the posterior distributions of
the parameters of the models introduced in Section 5 in the main text.

Supplement B: Posterior inference conditional on pretreatment variables. We de-
scribe details of calculation and results under the alternative models condition-
ing on the pretreatment variables.

Supplement C: Additional simulation results. We present additional simulations
aimed at investigating the role of the partial exclusion restriction assumption
and assessing the repeated sampling properties of the proposed approach.
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