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HETEROGENEITY AND BEHAVIORAL RESPONSE IN
CONTINUOUS TIME CAPTURE–RECAPTURE, WITH

APPLICATION TO STREET CANNABIS USE IN ITALY

BY ALESSIO FARCOMENI AND DARIA SCACCIATELLI

Sapienza—University of Rome and University of Rome—Tor Vergata

We propose a general and flexible capture–recapture model in continuous
time. Our model incorporates time-heterogeneity, observed and unobserved
individual heterogeneity, and behavioral response to capture. Behavioral re-
sponse can possibly have a delayed onset and a finite-time memory. Estima-
tion of the population size is based on the conditional likelihood after use of
the EM algorithm. We develop an application to the estimation of the number
of adult cannabinoid users in Italy.

1. Introduction. Capture–recapture experiments have been adopted in a wide
range of applications, including ecology, agriculture and veterinary science, public
health and medical studies, software engineering, behavioral research and, in gen-
eral, in the estimation of the size of hidden populations. Detailed reviews can be
found in the International Working Group for Disease Monitoring and Forecasting
(1995a, 1995b) and Amstrup, McDonald and Manly (2003). Capture–recapture
experiments are based on repeatedly capturing subjects over time. The counting
process of captures is modeled so as to obtain an estimate of the number of sub-
jects never captured or, equivalently, of the size of the catchable population. In
discrete time there is a fixed number of capture occasions. In continuous time each
subject is at risk of capture in any moment of a fixed-length period.

In this paper we focus on continuous time models, motivated by a large scale
study on the population of drug users in Italy. The development of new policies
for tackling drug abuse is considered a concern in the European Union. There is
extremely limited information on the number of cannabis users in Italy. Popula-
tion size estimates are usually based on indirect estimation methods, for instance,
through chemical analyses of waste waters [European Monitoring Centre for Drugs
and Drug Addiction (EMCDDA) (2009)]. Our formal capture–recapture experi-
ment will provide a direct estimate at least for the catchable subpopulation. Note
that closed population capture–recapture models are often used for estimation of
the number of illicit drug users [Böhning et al. (2004), Bouchard and Tremblay
(2005), Chiang et al. (2007), Khazaei et al. (2012), Vaissade and Legleye (2009)].
For a fixed time period, beginning with the introduction of a new law on drug con-
trol, officers of different Italian police departments identified and reported drug
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users. According to the new law, Art. 75, possession of even a minimal quan-
tity of any drug is a crime, which can be punished with administrative sanctions.
We have access to the entire database, to the date of each capture, but only to
part of the information relating the drug user (e.g., sex, age, province), and no
information about the officer. The database records information on different sub-
stances (cannabis, cocaine, heroin, other). In this paper we focus on cannabis,
whose prevalence of use in public places is the largest and is in most cases the
first drug used. See, for instance, Antidrug Policies Department (2009) and Rey,
Rossi and Zuliani (2011). The study of cannabis use is particularly important for
planning prevention, evidence-based interventions and understanding how abuses
should be handled. Furthermore, drug dealers often sell multiple drugs and the
number of drug dealers is expected to be proportional to the most requested drug
[Bouchard and Tremblay (2005), Reuter and Kleiman (1986)]. Therefore, a study
on the prevalence of cannabis may also be useful in planning actions for tackling
the illicit drug market.

Subjects were continuously at risk of being captured for the entire observa-
tion period. As a consequence, we have a continuous time capture–recapture ex-
periment with observed covariates, possibly unobserved heterogeneity, and time-
heterogeneity. It is also reasonable to allow for the possibility of arrests having
consequences leading to modifications of the future risk of capture, therefore hav-
ing a behavioural component in the model. Our catchable population is made of
cannabis users in Italy who use, buy and/or carry less than 500 mg of drug in
the streets. It shall be noted that frequent and long-term users mostly belong to
this population, and these are at higher risk of health consequences [e.g., Semple,
McIntosh and Lawrie (2005)]. Drug use and/or dealing in the streets causes a de-
gree of public nuisance [e.g., de Jong and Weber (1999)], generates stress and
increases the risk of psychological distress even to subjects that are not involved
[Mirowsky and Ross (2003)]. We will also provide indirect estimates of the entire
population of cannabis users, that is, also including subjects who use cannabis in
private houses and never buy or carry it in the streets.

With assumptions of time-homogeneity and absence of behavioral response to
capture, one could simply work with the individual number of captures at the end
of the observation period [e.g., Chao (1987)]. When any of these two assumptions
may not be met or shall be verified, the conditional hazard function shall be explic-
itly modeled through a Cox-type model [Cox (1972)]. There are only few, but very
neat, works dealing with continuous time capture–recapture models along these
lines. The most relevant to our application are Hwang and Chao (2002), who allow
for time-heterogeneity, covariates and a behavioral response; and Xi, Yip and Wat-
son (2007), who also included a frailty in the Cox-type model but no covariates.
In summary, the available approaches do not allow for simultaneous modeling of
two different kinds of individual heterogeneity: the observed one, that can be mod-
eled with covariates, and the unobserved unmeasured heterogeneity, that shall be
modeled through a random frailty component. Another limitation of the available
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models is that the behavioral effect necessarily implies a long-term memory: the
hazard function is multiplied by a fixed factor after first capture, and this factor
does not vary over time. We believe that, especially in our application in which
a capture corresponds to a police officer dealing with a drug user, individual re-
sponse to capture could be more complex. We generalize the long-term memory
assumption in two directions: first of all, we allow for a delayed onset of the be-
havioral response; second, we allow this effect to disappear after a fixed number of
additional captures, after a fixed time frame from the onset, or after the minimum
between the two conditions. Not surprisingly, we will estimate a peculiar but easily
interpretable behavioral response on our data.

We denote our most general model by Mhotb, where the h stands for the unob-
served heterogeneity, o for the observed heterogeneity, t for the time-heterogeneity
and b for our flexible behavioral response to capture. We use, as is common prac-
tice, an unspecified baseline in the hazard function, thus nonparametrically mod-
eling time-heterogeneity. Unlike available models, we explicitly distinguish and
allow for the two different sources of individual heterogeneity. For estimation, we
employ the conditional likelihood (and Horvitz–Thompson estimator). We set up
a general expectation-maximization (EM) algorithm in order to maximize the con-
ditional likelihood, after employing an augmentation scheme to tackle the issue of
unknown frailty terms, and drastically reducing the number of parameters involved
by obtaining an implicit estimate of the nonparametric baseline. Notably, we also
obtain a closed form expression for the integrals involved, thus avoiding numeri-
cal integration at the E-step. Our model extends Xi, Yip and Watson (2007) to the
use of covariates. It can also be seen as an extension of the model of Hwang and
Chao (2002) to inclusion of unobserved heterogeneity. Finally, given our flexible
behavioral response to capture, we extend all previous works in this direction in
the spirit of the work of Farcomeni (2011), who proposes a general Mb class of
models in discrete time. The rest of the paper is as follows: in the next section we
describe our Mhotb model and discuss all submodels in the class. In Section 3 we
outline generalized behavioral responses. In Section 4 we show how to perform
inference on model parameters. We describe and analyze our data in Section 5,
and state conclusions in Section 6.

2. General recapture models in continuous time. Suppose we have a pop-
ulation of N subjects, at risk of capture in the time interval [0, τ ]. We assume
the population is closed, that is, there are no new users, no quitters and no mi-
gration during the observation interval. We will discuss below the implications of
these assumptions for the data at hand. A common understanding is that if τ is
small enough, this assumption is safe. Let Ni(t), i = 1, . . . ,N , denote the number
of times the ith subject has been captured in the time interval [0, t], 0 ≤ t ≤ τ .
We have n subjects for which Ni(τ) > 0, with captures at time tij , i = 1, . . . , n;
j = 1, . . . ,Ni(τ ).
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Each {Ni(t);0 ≤ t ≤ τ } is then a continuous time counting process, along the
lines of Hwang and Chao (2002) and Xi, Yip and Watson (2007). We denote its
intensity function, conditionally on the capture history up to time t , by λi(t). Note
that {Ni(t);0 ≤ t ≤ τ } would be a Poisson process under an assumption of absence
of memory, that is, absence of behavioral effects. Let Zi denote a vector of subject
specific covariates, of size p, which is known only for the subjects captured at least
once. Our general Mhotb model can be stated as follows:

λi(t) = ρie
β ′ZiφI (Ni(t)≥1)ω(t),(2.1)

where I (C) is the indicator function for condition C. In (2.1), β denotes a vector
of log hazard-ratio coefficients describing the observed heterogeneity; ω(t) an un-
specified nonnegative baseline function describing the time-heterogeneity; φ mea-
sures a proportionality effect on the risk after first capture, hence quantifying a
behavioral response; and ρi is a subject-specific frailty term corresponding to un-
observed heterogeneity. All parameters, except for the vector β , are assumed to
be strictly positive. The frailty term is assumed to arise from a distribution with
support on R+. This distribution shall not be left unspecified in general [see, e.g.,
Link (2003)], even if it is possible for certain models in discrete time [Farcomeni
and Tardella (2010, 2012)]. A common choice [e.g., Xi, Yip and Watson (2007)]
is a Ga(α,α) distribution, that is,

f (ρi) = αα

	(α)
ρα−1

i e−ρiα.(2.2)

This choice, that is, assuming that both parameters of the Gamma distribution
are identical, implies that a priori E(ρi) = 1, as with most frailty models, and
Var(ρi) = 1/α. As usual, a larger variance corresponds to a more important role
of unobserved heterogeneity, that is, a smaller α can be interpreted as a larger un-
observed heterogeneity. The model, as stated, involves the following restrictions:
first, we make the assumption of proportionality of hazards, that is, that the effects
of covariates included in the model are time-constant and log-linear. The formu-
lation is furthermore restricted to time-constant covariates as well. Second, we
assume a multiplicative effect of the frailty ρi , which is also time constant; and we
formulate a parametric assumption on its distribution. In (2.1) we also make the
usual long term memory assumption for the behavioral effect. We will generalize
(2.1) to more complex behavioral effects in Section 3 below. It is worth notic-
ing here that straightforward assumptions can be used to obtain simpler classes
of models, some of which are commonly used in the capture–recapture litera-
ture. Assuming, for instance, that ω(t) = ω is constant over time leads to time-
homogeneity. Fixing β = 0 leads to assume that there is no observed heterogene-
ity, while assuming ρi = 1 corresponds to no unobserved heterogeneity. Finally,
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TABLE 1
Models nested in Mhotb and the corresponding restrictions needed to obtain them

Model Equation Restrictions on Mhotb

Mhotb ρie
β ′Zi φI (Ni(t)≥1)ω(t)

Mhob ρie
β ′Zi φI (Ni(t)≥1)ω ω(t) = ω

Mhtb ρiφ
I (Ni(t)≥1)ω(t) β = 0

Mhot ρie
β ′Zi ω(t) φ = 1

Motb eβ ′Zi φI (Ni(t)≥1)ω(t) ρi = 1

Mho ρie
β ′Zi ω ω(t) = ω, φ = 1

Mht ρiω(t) β = 0, φ = 1

Mhb ρiφ
I (Ni(t)≥1)ω β = 0, ω(t) = ω

Mot eβ ′Zi ω(t) φ = 1, ρi = 1

Mtb φI (Ni(t)≥1)ω(t) β = 0, ρi = 1

Mob eβ ′Zi φI (Ni(t)≥1)ω ω(t) = ω, ρi = 1
Mh ρiω ω(t) = ω, β = 0, φ = 1

Mo eβ ′Zi ω ω(t) = ω, ρi = 1, φ = 1
Mt ω(t) β = 0, ρi = 1, φ = 1

Mb ωφI (Ni(t)≥1) ω(t) = ω, ρi = 1, β = 0
M0 ω ω(t) = ω, ρi = 1, β = 0, φ = 1

φ = 1 corresponds to no behavioral effects. An account of all possible models and
corresponding assumptions is given in Table 1.

3. Flexible behavioral effects. Model (2.1) includes classical behavioral ef-
fects: the risk of capture changes, and then remains constant after the first capture.
The assumption that risk changes only at first capture may be restrictive in some
cases; see, for instance, Farcomeni (2011), Ramsey and Severns (2010), Yang and
Chao (2005) and the references therein. In continuous time capture–recapture, we
outline two generalizations of the usual Mb, which can be summarized in our mod-
ification of (2.1) as follows:

λi(t) = ρie
β ′ZiφI (c1≤Ni(t)≤c2 and t≤tic1+
b)ω(t),(3.1)

where c1 < c2 are fixed integers smaller than the maximum number of recaptures
maxi Ni(τ ), and 
b > 0. The model is identifiable as soon as there is at least one
subject with at least c1 + 1 captures, with the c1 + 1th in the interval (tic1, tic1 +

b). Note that assuming c1 = 1 and c2 = 
b = ∞ gives back (2.1). In (3.1) we
allow for a delayed onset of the behavioral response. For instance, c1 = 3 means
that a behavioral effect is not expected after the first or second, but only after
the third capture. Further, we allow for a finite time memory: after the minimum
between c2 − c1 captures and a time frame of 
b, the risk of capture returns to
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the pre-behavioral-response state. In our application, for instance, it is reasonable
to expect that c1 = 2, given that more serious legal consequences are experienced
after the second capture, and that c2 = 
b = ∞ (purely delayed onset model).
There would be a finite time behavioral response if, for instance, a subject who is
not captured for a 
b time frame is forgiven the previous offenses. A finite c2 can
be expected in applications of capture–recapture to animal populations, in which
the animals may get used to traps after being trapped a few times.

4. Inference. Given that we cannot measure covariates for subjects never cap-
tured, the only practical possibility for inference is via maximization of the con-
ditional likelihood, that is, the likelihood obtained conditioning on the event that
Ni(τ) > 0. The estimated parameters are then used to build an Horvitz–Thompson
(HT) type estimator for N [Horvitz and Thompson (1952), Sanathanan (1972)].
For the sake of conciseness and simplicity of notation we here outline inference
for model Mhotb in (2.1). The strategy for submodels can be found along similar
lines.

In what follows, let �(t) = ∫ t
0 ω(s) ds and γi = eβ ′Zi . Denote the probability of

having at least one capture for individual i, conditional on ρi , as

Pi = 1 − e−ρiγi�(τ).(4.1)

With an argument similar to the reasoning in Crowder et al. (1991) and Hwang
and Chao (2002), we can thus obtain a likelihood contribution for the ith subject,
conditional on ρi , as follows:

Li ∝ φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]
ρ

Ni(τ)
i e−ρiγi�

∗
i (τ )/Pi,

where

�∗
i (τ ) = φ�(τ) + (1 − φ)�(ti1).(4.2)

When ρi is a random effect arising from a parametric distribution F(ρi), we
shall integrate the above expressions with respect to this distribution. We conse-
quently have a likelihood that is conditional on having at least one capture, and
marginal with respect to random effects. The expression for this likelihood is

Lc =
n∏

i=1

φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]∫ ∞
0

xNi(τ)e−xγi�
∗
i (τ )

1 − e−xγi�(τ)
dF (x).(4.3)

The above expression is a function of the covariate parameters β , the behavioral
parameter φ, the baseline function ω(t) and any parameter involved in F(ρi). Es-
timates of the above parameters can be obtained by maximizing Lc. Note that this
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maximum likelihood estimator will be consistent and asymptotically normal given
that it satisfies properties in Nielsen et al. (1992) and Sanathanan (1972). See also
Gill (1992).

When F(ρi) is a Ga(α,α), we can solve the integral and obtain a closed form
expression for Lc. Note, in fact, that under the assumption of Gamma distributed
random effects

Lc =
n∏

i=1

φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]
αα

	(α)

∫ ∞
0

xNi(τ)+α−1e−x(γi�
∗
i (τ )+α)

1 − e−xγi�(τ)
dx.

The integral is proportional to the integral definition of the generalized Zeta func-
tion [Gradshteyn and Ryzhik (2007), Section 3.411, formula 7] ζ(s, a), which is
defined as the series

∑
n 1/(n + a)s , and can be evaluated simply. See Magnus,

Oberhettinger and Soni (1966) for details.
It can be shown that∫ ∞

0
xae−bx/

(
1 − e−cx)

dx = 	(a + 1)

ca+1 ζ(a + 1, b/c).(4.4)

Hence, after straightforward algebra we obtain that, under assumption of Gamma
distributed random effects,

Lc =
n∏

i=1

Li,(4.5)

where

Li = φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]
αα	(α + Ni(τ))

	(α)(γi�(τ))α+Ni(τ)

(4.6)

× ζ

(
α + Ni(τ),

γi�
∗
i (τ ) + α

γi�(τ)

)
.

4.1. Maximization of the conditional likelihood. Even if, with Gamma dis-
tributed random effects, we have a closed-form expression for the conditional like-
lihood, its direct maximization is cumbersome, as it would require a precise evalu-
ation of the derivatives of the generalized Zeta function, which are not available in
closed form. More importantly, our approach would be limited to the assumption
of Gamma distributed random effects. We give in this section a maximization strat-
egy based on the EM algorithm, which can be easily adapted to any distributional
assumption on ρi .

The EM algorithm proceeds by iterating two steps. At the E-step we compute
the conditional expected values of the frailty terms and plug them into the complete
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conditional likelihood, that is, the likelihood we would have if we could observe
the frailty terms. This likelihood can be expressed as

L̃c =
n∏

i=1

L̃i,(4.7)

where

L̃i = φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]
ρ

Ni(τ)
i e−ρiγi�

∗
i (τ )/

(
1 − e−ρiγi�(τ))f (ρi),(4.8)

where f (·) denotes the density or pmf of the random effects.
More precisely, at the E-step we substitute ρi in (4.7) with

ρ̂i =
∫ ∞

0
x dF

(
x|Ni(t),Zi, β,ω(t), φ

)
.(4.9)

Note that (4.8) is not linear in ρi , hence, its conditional expectation does not coin-
cide with its value at (4.9). The E-step we propose is therefore only approximate.
The approximation is usually good, as we work with the logarithm of (4.7), which
is approximately linear for large intervals, and due to the fact that ρi does not
change much from one iteration to another. If a decreasing likelihood is observed,
the plug-in E-step shall be substituted with a Monte Carlo E-step.

The conditional density for the frailty terms can be obtained through the Bayes
theorem as follows:

f
(
ρ|Ni(t),Zi, β,ω(t), φ

)
= f (Ni(t)|ρ,Zi, β,ω(t)φ)f (ρ)∫ +∞

0 f (Ni(t)|ρ,Zi, β,ω(t)φ)f (ρ) dρ
(4.10)

= L̃i∫ ∞
0 L̃i dρ

.

When the frailty is assumed to arise from a Gamma distribution, we have a closed-
form expression for ρ̂i . The resulting ρ̂i is a ratio, whose denominator corresponds
to Li as defined in (4.6) and, with similar calculations involving (4.4), whose nom-
inator corresponds to

φNi(τ)−1γ
Ni(τ)
i

[
Ni(τ)∏
j=1

ω(tij )

]
αα	(α + Ni(τ) + 1)

	(α)(γi�(τ))α+Ni(τ)+1

× ζ

(
α + Ni(τ) + 1,

γi�
∗
i (τ ) + α

γi�(τ)

)
.

After simplification of the terms, and noting that 	(x + 1) = x	(x), we get

ρ̂i = α + Ni(τ)

γi�(τ)

ζ(α + Ni(τ) + 1, (γi�
∗
i (τ ) + α)/(γi�(τ)))

ζ(α + Ni(τ), (γi�
∗
i (τ ) + α)/(γi�(τ)))

.(4.11)
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Other distributional assumptions may lead to the need of numerical integration
methods at the E-step or to the use of MCMC in order to sample from the posterior
distribution of the random effects [therefore obtaining an MCEM algorithm, see,
e.g., Both and Hobert (1999)]. In the latter case, the M-step which we will describe
now can be still used, with minor adjustments. After computation of (4.9), we plug
it in (4.7) to obtain an Expected Complete Conditional Likelihood (ECCL). The
M-step consists in maximizing the ECCL with respect to β , ω(t), φ and any pa-
rameter involved in the random effect distribution F(ρi). This step is particularly
cumbersome due to the fact that there is an extremely large number of parameters
involved in the ECCL when the baseline hazard function ω(t) is not known and
not assumed to be constant. To tackle this issue, we note that the nonparametric
MLE for �(t) is a step function, with jumps occurring at capture times, that is, the
estimated baseline hazard can be expressed as

�(t) = ∑
k

θkI (t(k) ≤ t),

where θk = ω(t(k)) measures the size of the jump at the kth capture time. Maximiz-
ing the conditional likelihood with respect to θk , we obtain a Nelson–Aalen type
estimator [Aalen (1978), Nelson (1972)]. See also Hwang and Chao (2002) for a
similar reasoning in the continuous capture–recapture context. A closed-form ex-
pression for θ̂k can be obtained by computing the first derivative of the log-ECCL
with respect to θk and equating to zero. Straightforward algebra gives

0 = dN(t(k))

θk

−
n∑

i=1

ρ̂iγi

[
φ + (1 − φ)I (t(k) < ti1) + e−ρ̂iγi�(τ)

1 − e−ρ̂iγi�(τ)

]
,

where dN(t(k)) gives the number of captures occurring exactly at the kth capture
time. Consequently,

θ̂k = dN(t(k))∑n
i=1 ρ̂iγi[φI (ti1<t(k)) + e−ρ̂iγi�(τ)/(1 − e−ρ̂iγi�(τ))] .(4.12)

The resulting baseline hazard estimator can be seen as a Nelson–Aalen type es-
timator with covariates, with an exponential term correction at the denominator
obtained as a consequence of conditioning to subjects with at least one event.

The expression for (4.12) shall be now plugged in the ECCL, thereby drastically
reducing the number of parameters to �(τ), φ, β and any parameter involved in
the random effect distribution F(ρi). These are estimated by solving a system of
equations which are obtained by equating to zero the first derivatives of the ECCL
after plug-in of θ̂k , plus an additional equation due to the constraint∑

k

θ̂k = �̂(τ ).(4.13)

Let now, for ease of notation,

A
(
γh, ρ̂h,�(τ)

) = e−ρ̂hγh�(τ)

1 − e−ρ̂hγh�(τ)
(4.14)
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and

B
(
φ,γ, ρ̂,�(τ), tk

) =
n∑

h=1

ρ̂hγh

[
φI (tk>th1) + e−ρ̂hγh�(τ)

1 − e−ρ̂hγh�(τ)

]
.(4.15)

For what concerns the derivative with respect to φ, we obtain

n∑
i=1

{
(Ni(τ ) − 1)

φ

−
Ni(τ)∑
j=1

∑n
p=1 ρ̂pγpI (tij > tp1)

B(φ, γ, ρ̂,�(τ), tij )

(4.16)

− ρ̂iγi

∑
k

dN(tk)

B(φ, γ, ρ̂,�(τ), tk)

×
[
I (tk > ti1) − φI (tk>ti1)

∑n
p=1 ρ̂pγpI (tk > tp1)

B(φ, γ, ρ̂,�(τ), tij )

]}
;

while for what concerns �(τ), we have

n∑
i=1

{
Ni(τ)∑
j=1

[∑n
k=1 eρ̂kγk�(τ)(ρ̂kγkA(γk, ρ̂k,�(τ)))2

B(φ,γ, ρ̂,�(τ), tij )

]

− ρ̂iγi

[∑
k

φI (tk>ti1)
dN(tk)

B(φ, γ, ρ̂,�(τ), tk)2

(4.17)

×
n∑

p=1

eρ̂pγp�(τ)(ρ̂pγpA
(
γp, ρ̂p,�(τ)

))2
]

+ ρ̂iγiA
(
γi, ρ̂i,�(τ)

)}
.

Finally, taking the first derivative of the log-ECCL with respect to βh, h =
1, . . . , p, we obtain the p equations

n∑
p=1

{
Np(τ)

γp

−
n∑

i=1

Ni(τ)∑
j=1

([
ρ̂pA

(
γp, ρ̂p,�(τ)

)

× (
1 − ρ̂pγp�(τ)eρ̂pγp�(τ)A

(
γp, ρ̂p,�(τ)

))
+ ρ̂pφI (tij>tp1)

]
/B

(
φ,γ, ρ̂,�(τ), tij

))
(4.18)



CONTINUOUS TIME RECAPTURE MODELS AND DRUG USE IN ITALY 2303

− ρ̂p

[∑
k

φI (tk>tp1)
dN(tk)

B(γ, ρ̂,�(τ), tk)

]

+
n∑

i=1

ρ̂iγi

{∑
k

φI (tk>ti1)
dN(tk)ρ̂p

(B(φ, γ, ρ̂,�(τ), tk))2

× [
φI (tk>tp1) + A

(
γp, ρ̂p,�(τ)

)
− ρ̂pγp�(τ)eρ̂pγp�(τ)(A(

γp, ρ̂p,�(τ)
))2]}

+ ρ̂p�(τ)A
(
γp, ρ̂p,�(τ)

)}
γpZph,

where Zph denotes the phth entry of the covariate matrix Z. The algebra involved
in obtaining (4.16), (4.17) and (4.18) is given in the supplement [Farcomeni and
Scacciatelli (2013)]. Note that combining (4.16) with (4.17) and (4.18) we obtain
the score vector related to φ, �(τ) and β in closed form. In order to conveniently
proceed with the M-step, we exploit the Newton–Raphson (NR) algorithm. The
NR algorithm only involves numerically computing the first derivative of the score
vector above, augmented with (4.13). Parameters involved in the random effects
distribution can be tackled separately. We can summarize our algorithm at the t th
iteration with the following pseudo-code, which is iterated until convergence in the
likelihood.

Update ρ̂
(t)
i as in (4.11).

Solve the system of equations given by (4.13), (4.16), (4.17) and (4.18) to update
�̂(τ ), β̂ and φ̂.
Update α̂ as the maximizer of

∏
i f (ρ̂i), where f (ρi) is defined in (2.2).

Compute θ̂ k as in (4.12).
Compute the likelihood as in (4.5).

Final comments concern computation of the information matrix, model choice
and hypothesis testing. Regarding the first issue, we note that minus the deriva-
tive of the score vector corresponds to the observed information matrix. Since the
score vector is available in closed form, we can obtain the corresponding infor-
mation matrix as a natural by-product of our maximization strategy. The observed
information matrix at the maximum likelihood estimate can be used to compute
the standard errors in the usual way. A similar approach for estimation of the ob-
served information matrix after use of the EM algorithm is proposed in Bartolucci
and Farcomeni (2009), in a completely different context. A simulation study in
Bartolucci and Farcomeni (2009) gives evidence of the validity of this procedure.
The standard errors can then be used to build Wald statistics for testing.
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4.2. Other assumptions on the behavioral effect. We briefly sketch in this
paragraph how to modify the EM algorithm proposed for model Mhotb when more
flexible assumptions are used for the behavioral effects, as summarized in equa-
tion (3.1). In order to estimate such a model, it suffices to substitute the indicator
function arising from (2.1) with the more complex indicator function involved in
(3.1). These substitutions occur directly in (4.12), (4.15), (4.16), (4.17) and (4.18).
Further, straightforward algebra leads to redefine �∗

i (τ ) as

�∗
i (τ ) = �(τ) + (1 − φ)

(
�(tic1) − �

(
min(tic2, tic1 + 
b)

))
.(4.19)

Also, the likelihoods are modified: in (4.3), (4.6) and (4.8), φNi(τ)−1 shall be sub-
stituted with

φ
∑c2

j=c1
I (tij<=tic1+
b),

where it is understood that tij = ∞ if j > Ni(τ ).
Recall that c1, c2 and 
b must be fixed a priori. In order to carefully choose

these parameters, we can fit models for a range of values of c1, c2 and 
b and
use the one corresponding to the largest log-likelihood. The selected combination
(c1, c2,
b) is important information, telling us, for instance, that a behavioral
response is not expected before the c1th capture.

4.3. Estimation of population size. The maximum likelihood estimates can be
used in a final E-step, thus obtaining the corresponding ρ̂i . The latter can be used to
maximize the residual likelihood [see Farcomeni and Tardella (2012), Sanathanan
(1972)] through a Hortvitz–Thompson estimator of the kind

N̂ =
n∑

i=1

1

1 − e−ρ̂i γ̂i �̂(τ )
.(4.20)

When N is large, as in our application, parameters involved in (4.20) are approx-
imately multivariate normal, and their covariance matrix can be estimated as de-
scribed above.

In order to obtain the standard error of N̂ , we note that n is random as well and
that (4.20) should be actually expressed as

N̂ =
N∑

i=1

δi

1 − e−ρ̂i γ̂i �̂(τ )
,

where the random variable δi is defined as δi = I (Ni(τ ) ≥ 1), i = 1, . . . ,N . There-
fore [Böhning (2008), van der Heijden et al. (2003)], by conditioning,

Var(N̂) = Varn
(
E(N̂ |n)

) + En

[
Var(N̂ |n)

]
.(4.21)

The first term on the right-hand side can be estimated by
∑n

i=1(1−wi)/w
2
i , where

wi = 1 − e−ρ̂i γ̂i �̂(τ ). The second term can be computed approximately by means
of the delta method, where we have

̂

En

[
Var(N̂ |n)

] → 	g(θ̂)′J (θ̂)−1 	 g(θ̂)(4.22)
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with N̂ = g(θ̂), θ̂ being the maximum likelihood estimate of the parameter vector
and J (θ̂) its information matrix. An expression for 	g(θ̂) is cumbersome, but the
latter can be easily derived using numerical differentiation methods. For a similar
strategy refer also to Böhning and van der Heijden (2009).

5. Data description and analysis. In Italy use or possession of a small
amount of drugs may be punished by administrative sanctions. If it is the first
or second offense, the Prefect may only issue a warning (Art. 75 modified by
law 49/2006). According to the Central Statistics Office of the Interior Min-
istry (DCDS), about 30,000 interviews are conducted in the presence of Italian
Prefects each year [European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) (2009)]. Following these interviews, around 25,000 individuals (aged
from 10 to 64 years) are formally warned to refrain from further use of narcotic
substances. During our observation period, starting in 2006 immediately after en-
forcement of the new law, the DCDS collected a database with information on
subjects reported for breaking the drug law (Art. 75 on personal use). Individuals
are identified with their fiscal code (FC), which is the Italian equivalent of a social
security number in the USA. The database includes a record for each capture, with
date and time of detected abuse, and some information about the subject including
the FC for identification. We restrict to the adult population, that is, subjects aged
18 or more. In this work we use information related to the gender, district of res-
idence (South, Central, North–West or North–East Italy, where subjects captured
on the islands separated from the Italian mainland are included as customary in the
Southern district), age at the start of the observation period and its square.

A preliminary issue regards closure of the population of interest, which is
achieved here by restricting the observation period to 2 full years. Given that
the duration of cannabis use is often several years [Antidrug Policies Department
(2009)], and that frequent users who are most at risk of being captured are also
less likely to cessate [Chen and Kandel (1998)], our study period may be a reason-
able choice. We have also performed a simple sensitivity analysis, by repeatedly
estimating the population size after truncation of the observation period at shorter
time horizons (6, 12 and 18 months). All resulting estimates are rather close to
those reported below.

Table 2 shows the counting distributions over the categorical covariates. The
mean age is 25.01, with a standard deviation of 6.91. In Table 3 we report the log-
likelihood and corresponding population size estimate for general Mhotb models
with all predictors and different choices of c1 and c2. On the basis of results in
Table 3, we end up choosing c1 = 2 and c2 = ∞.

In order to confirm the presence of all four sources of heterogeneity with these
data, we compare in Table 4 the chosen Mhotb model to submodels. Each likelihood
ratio test of the full versus nested models has p < 0.0001. There are a few features
that we should notice: first of all, the likelihood of model Mhot is very low when
compared to models including a behavioral effect. This allows us to conclude that
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TABLE 2
Marginal and conditional counting distributions for cannabis users

Count

Covariate Description 1 2 3 4

Substance Cannabis 50,785 1124 60 4

Gender Male 47,181 1035 55 4
Female 3604 89 5 0

District South 12,684 239 17 1
Center 18,427 411 22 0

North–East 7850 193 6 0
North–West 11,824 281 15 3

TABLE 3
Complete Mhotb models fit on the Italian cannabis users data. We

report the difference in log-likelihood with respect to the first
model, which has log-likelihood −453,196.3

c1 c2 log-lik N̂/106

1 ∞ 0 3.199
2 ∞ 195.2 3.265
3 ∞ 161.4 2.984
4 ∞ 148.4 2.903
1 2 33.9 3.079
1 3 20.6 2.911
2 3 171.6 3.150
2 4 192.1 3.151
3 4 187.4 2.934

TABLE 4
Comparison of Mhotb model with c1 = 2, c2 = 
b = ∞ with

nested models for the Italian cannabis users data. We report the
difference in log-likelihood with respect to the full model, which
has log-likelihood −453,001.1. All likelihood ratio tests would

lead to p < 0.0001

Model log-lik N̂/106

Mhotb 0 3.265
Motb −13.8 2.417
Mhtb −28.4 3.254
Mhob −12.0 1.558
Mhot −28.1 2.368
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there is strong evidence in favor of the behavioral effect. The peculiar behavioral
effect detected can be explained as a purely random variation, that is, a feature of
the counting distribution, or by considering that more serious legal consequences
are expected after the second time a subject is reported. In the first case, we note
from Table 2 that there is some sort of one-inflation in the counting distribution,
that is, subjects are mostly captured only once. This may be a consequence of the
fact that the probability of repeatedly meeting the same person by chance alone is
low, at least in large cities and in general within our short observation period. In the
second case, it can be noted that after the second capture under the new Italian law,
subjects may be submitted to mandatory psychotherapy, they may be revoked their
driver’s licence and entry visa when foreigners, and they may have to pay a fine
and/or participate in treatment programs. On the other hand, the first and second
time a subject is identified as a user have most likely the same consequence of a
warning by the judge. Identifications for breaking other laws or other articles of
the same law do not count toward legal consequences arising at the third capture.
It is not surprising then that subjects may be “trap-shy” after the second capture
(compare with estimate φ̂ in Table 5 below). What we cannot say with available
information is if this is a feature of the counting distribution which is due only to
chance or if it is a feature of the subjects being captured. In the second case, we
also cannot say if repression works, that is, subjects actually quit using cannabis
after the second time they are reported or if they only start using it at home and
have friends buy and carry it for them.

We also have evidence in favor of both observed and unobserved heterogeneity,
and also the assumption of time-homogeneity shall be rejected. Even if we obtain
maximum likelihood estimates differently, most of the models in Table 4 corre-
spond to a generalization of models in Hwang and Chao (2002) (e.g., Motb and
submodels) and Xi, Yip and Watson (2007) (e.g., Mhtb and submodels), allowing

TABLE 5
Results of Mhotb model with c1 = 2, c2 = 
b = ∞

Parameter Estimate Std. Err.

N 3,265,071 91,247.39
α 129.69 0.56
φ 0.20 0.01
�(τ) 0.007 0.001
β(Age) −0.04 0.04
β(Age2) −0.03 0.05
β(Female) −0.65 0.11
β(North–East) −2.13 0.08
β(North–West) −2.20 0.07
β(South) −2.03 0.07
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for a delayed onset of the behavioral response. For our selected model Mhotb with
c1 = 2 we report in Table 5 the parameter estimates and standard errors.

Our final estimate for the population size of our catchable population is slightly
less than 3.3 million, which accounts for approximately 8.9% of Italians aged 18
to 64, and 7% of the entire adult population. In order to obtain an indirect estimate
for all cannabis users, we can use results in Rey, Rossi and Zuliani (2011), who
claim that around two-thirds of the population of cannabis users is catchable under
Art. 75. Consequently, an indirect estimate for the population of adults who have
used cannabis at least once in Italy is given by 5 million, which accounts for 13.5%
of Italians aged 18 to 64, or 10.6% of the entire adult population.

Unobserved heterogeneity is relatively weak, even if present. For what concerns
observed heterogeneity, we find that the risk of capture decreases with age and its
square. Females are at a lower risk of capture than men, and the subjects in the
central district of Italy are at the highest risk of being reported. Note that we can
interpret these findings as a differential in prevalence only under the assumption
that time-heterogeneity is independent of predictors; otherwise the difference in
prevalence could be explained by different ability of the officers in different Italian
regions. Under this assumption, as age grows use of cannabis in the street is likely
more limited, females tend to use cannabis less than men, and the largest number
of users can be found in the central region.

These findings are reasonable, as in the southern regions of Italy the use of
drugs is more limited due to sociocultural differences as compared to the central
and northern parts. In the North–East and North–West we have both a slightly
smaller population at risk and possibly a larger prevalence of cocaine rather than
cannabis use. This assumption could be easily verified/relaxed by stratifying our
Cox-type model to have a different baseline for each category of an observed co-
variate combination.

We conclude with a comparison with other estimators of the population size,
which can be found in Table 6. We use the independence model M0, the Chao

TABLE 6
Estimates of population size for cannabis data for some time-homogeneous

population size estimators

Estimator N̂/106 Std. Err./105 log-lik

M0 1.11 0.31 −53.66

Chao [Chao (1987)] 1.20 0.36 −15.37

Mh Poisson2 [Rivest and Baillargeon (2007)] 1.85 1.06 −19.54
Mh Darroch [Darroch et al. (1993)] 3.70 4.43 −16.16
Mh Gamma3.5 [Rivest and Baillargeon (2007)] 7.32 13.54 −15.60

Mho [Böhning and van der Heijden (2009)] 1.14 0.05 −5660
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[Chao (1987)] lower bound estimator and other Mh models, with the assumptions
for the mixing distribution available in the function closedp.0 in the R package
Rcapture. In Table 6 we obtain rather different estimates of the population size,
particularly relative to the estimated standard errors. We believe this happens when
there are biases in population size and standard error estimates. In this case, any
model not including the four sources of heterogeneity may be misspecified for the
data at hand. Among the Mh models, the largest likelihood arises with the mixing
distribution Gamma3.5. The latter seems to grossly overestimate the population
size. It is not surprising that Gamma3.5 leads to overestimating the population
size, as with this mixing distribution the capture probabilities are not bounded
from below. See, for instance, Baillargeon and Rivest (2007) on this point and also
for a detailed description of the three mixing distributions used in Table 6. The Mh

Darroch model gives the closest estimate to our final estimate of 3.3 million, but
with a standard error that is almost five times larger than ours. Further, the latter
would not be used in practice, as Mh Gamma3.5 yields a larger likelihood with
the same number of parameters. We also include the Böhning and van der Heijden
(2009) model, an Mho model generalizing that of Zelterman (1988) and therefore
providing an efficient lower bound for the population size. The resulting estimate
is comparable to that obtained with the Chao lower bound, with a smaller standard
error due to the inclusion of covariates.

Finally, we compare with two indirect estimates. The first is given in Santoro,
Triolo and Rossi (2013) using a dealer/consumer ratio as proposed in Bouchard
and Tremblay (2005), and estimates as 3.5 million the entire population of
cannabis users. The second is the official estimate of 5.5 million for those who
have used cannabis at least once in Italy, given by the Antidrug Policies De-
partment (2009) and European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) (2010). As it is estimated that about 85% of all marijuana users are
aged 18 or more [European Monitoring Centre for Drugs and Drug Addiction
(EMCDDA) (2010)], it can be said that from Santoro, Triolo and Rossi (2013)
we have an estimate of about 3 million for the adult population and that the official
estimate is slightly under 4.7 million. We believe these numbers to be comparable
with our indirect estimate of 5 million, and our results confirm the general idea
that official estimates may be slightly underestimating the population size [e.g.,
Santoro, Triolo and Rossi (2013)].

6. Discussion. We have proposed a general framework for continuous time
capture–recapture. Our model includes time-heterogeneity, unobserved subject-
specific heterogeneity, observed subject-specific heterogeneity and behavioral re-
sponse to capture. Classical behavioral response has been generalized, allowing
the user to specify a delayed onset and a finite time memory.

In our application we have found predictors that are able to explain some het-
erogeneity, but we also have unobserved heterogeneity. A model including both
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observed and unobserved heterogeneity is therefore needed for these data. Unfor-
tunately, inferential approaches already available cannot be directly extended to
this case. Our EM-type estimation approach can be easily adapted to any of the
submodels of Mhotb. Under the assumption of Gamma distributed random effects
we derived closed-form expressions for some of the quantities involved, which
greatly speeds up our algorithm. We also found the score in closed form and have
made use of numerical differentiation only to compute its first derivative. The ac-
curacy of numerical first derivatives is much better than the accuracy of numerical
second derivatives, which we do not need in this paper.

We have developed a challenging application, with a small sampling fraction
and many sources of heterogeneity. Available estimates of the number of cannabis
users in Italy are mostly based on chemical analyses of waste waters or on con-
sumer/dealers ratios. In our application we developed a direct estimate of the popu-
lation size of adults (≥18) who buy, carry and/or use cannabis in the streets in Italy.
It shall be noted that our population includes only subjects found in possession of
less than 500 mg of cannabis. Possession of more than 500 mg or for the purpose
of trafficking, selling, trafficking and cultivation are offences under different ar-
ticles of the Italian law, and offenders are not included in our sample. Our final
estimate for the population size is about 3.3 million, with a standard error of about
91 thousands. Our final indirect estimate for the entire population of adult cannabis
users is 5 million. It shall be furthermore noted that subjects in possession of more
than 500 mg, trafficking, selling and/or cultivating are commonly estimated to be
around 200 thousand [Santoro, Triolo and Rossi (2013)]. This number is smaller
than the width of our estimated confidence interval, hence, even including these
subjects, our final estimates can be thought to be approximately the same.

With our age restriction we exclude an important subpopulation, given that
younger people are often the target of prevention policies and delays in age of use
may be associated with lower risks [e.g., Fergusson and Horwood (2006)]. Nev-
ertheless, patterns of abuse, officer policies and prefect behavior are different for
underage users, hence, it is important that these two populations are separately in-
vestigated. See also Kandel and Logan (1984) and Ellickson, Martino and Collins
(2004) for a discussion on patterns of drug use. Investigation of the under-18 pop-
ulation should in our opinion be performed with open population models, which
are beyond the scope of this paper. Open population models, furthermore, need
a precise assessment of date of first and very last use at least for some subjects,
which may difficult to measure without bias.

There are further limitations in our data set. Given our catchable population
is made only of subjects who use, buy or carry cannabis outside their apartment,
there may be concerns about the interpretation of the estimated behavioral effect.
We have found that the risk of being captured decreases abruptly at the second
capture time. Even if this feature is not purely random, it may be that after the
second capture most users do not actually quit, but start using drugs at home in-
stead of outside and have someone else buy for them. We, furthermore, as often
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happens with capture–recapture experiments, cannot guarantee that the population
is closed. A final limitation regards the limited information we have: we could not
take into account covariates related to the officers, and we do not have informa-
tion about time of day of each event. Therefore, we cannot distinguish between
different habits (e.g., day and night users). We also do not have information re-
garding intensity of use and arrests for other crimes, which directly affect the risk
of capture.

We conclude giving a brief account of possibilities for further work. Our strat-
egy for computation of standard errors may yield estimates that are somewhat
biased downward, given that we are not taking into account uncertainty brought
about by model search. This is a primary issue for further work. Our model could
also be extended to include nonparametric baseline functions specific to known or
even unknown blocks of subjects. Finally, it could also be extended to take into
account spatial dependence.
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