
The Annals of Applied Statistics
2013, Vol. 7, No. 4, 2180–2204
DOI: 10.1214/13-AOAS663
© Institute of Mathematical Statistics, 2013

A NEW CLASS OF FLEXIBLE LINK FUNCTIONS WITH
APPLICATION TO SPECIES CO-OCCURRENCE IN CAPE

FLORISTIC REGION

BY XUN JIANG∗, DIPAK K. DEY∗, RACHEL PRUNIER†,
ADAM M. WILSON‡ AND KENT E. HOLSINGER∗

University of Connecticut∗, Western Connecticut State University† and
Yale University‡

Understanding the mechanisms that allow biological species to co-occur
is of great interest to ecologists. Here we investigate the factors that influence
co-occurrence of members of the genus Protea in the Cape Floristic Region
of southwestern Africa, a global hot spot of biodiversity. Due to the binomial
nature of our response, a critical issue is to choose appropriate link functions
for the regression model. In this paper we propose a new family of flexible
link functions for modeling binomial response data. By introducing a power
parameter into the cumulative distribution function (c.d.f.) corresponding to
a symmetric link function and its mirror reflection, greater flexibility in skew-
ness can be achieved in both positive and negative directions. Through sim-
ulated data sets and analysis of the Protea co-occurrence data, we show that
the proposed link function is quite flexible and performs better against link
misspecification than standard link functions.

1. Introduction. Understanding the underlying processes that govern the as-
sembly of biological communities has long been of great interest to ecologists.
Obviously, in the absence of species interactions and species habitat preferences,
the probability that two species co-occur in a site would simply be the prod-
uct of the site occupancy probabilities for each of the species. In most biolog-
ical communities, however, competition [Elton (1946)] and individual response
to the environment [Weiher and Keddy (1995)] are likely to play important roles
in determining the species composition of local communities. Since phenotypic
traits of species and environmental factors could mediate both competition and
individual response, the probability of co-occurrence could also be influenced by
both the traits of the species and the specific environmental conditions associated
with a site. In this study we investigate the processes of community assembly in a
well-defined clade, the genus Protea in the Cape Floristic Region (CFR) of south-
western Africa. The response variable, the number of co-occurrences of a certain
pair of Protea species, arises naturally as a binomial variable when we define co-
occurrence as the number of sites in which two species co-occur within naturally
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nested watersheds. We take into consideration the spatial association among the
co-occurrence of Protea species since it is natural to suspect areas close by would
tend to have similar number of co-occurrences as a result of a latent spatial effect.
Our primary interest in this study is to build a comprehensive model that could
identify important factors influencing the assembly of Protea communities, while
adjusting for both spatial association and prevalence of Protea in CFR.

The usual way to model the binomial response is to use a Generalized Linear
Model (GLM), where we model the latent probability of “success” by a linear
function of covariates through a link function [McCullagh and Nelder (1989)].
The logit, probit and Student t link functions are three of the common links used
in GLM. However, the link functions mentioned above are “symmetric” links in
the sense that they assume that the latent probability of a given binomial response
approaches 0 with the same rate as it approaches 1. Equivalently, the probabil-
ity density function (p.d.f.) that corresponds to the inverse cumulative distribution
function (c.d.f.) of the link function is symmetric. However, this may not be a rea-
sonable assumption in many cases. A commonly adopted asymmetric link function
is the complementary loglog (cloglog) link function. However, the cloglog link has
a fixed negative skewness. As a result, it lacks both the flexibility to let the data tell
how much skewness should be incorporated and the ability to allow for positive
skewness. In short, binomial data might often be better modeled with flexible link
functions that allow for both positive and negative skew and that allow the data to
determine the amount of skewness required.

Much work has been done to introduce flexibility into the link functions.
Aranda-Ordaz (1981) proposed two separate one-parameter models for additional
flexibility in the logistic model. Guerrero and Johnson (1982) used Box–Cox trans-
formation on the odds ratio to form a more flexible class of model. Jones (2004)
proposed a family of flexible distributions based on the distribution of order statis-
tics. Stukel (1988) proposed a two-parameter class of generalized logistic models.
Stukel’s model approximates many standard symmetric and asymmetric link func-
tions quite well, but in a Bayesian framework, it may result in improper posteri-
ors when the usual improper uniform prior is used in regressions [Chen, Dey and
Shao (1999)]. Kim, Chen and Dey (2008) proposed a class of generalized skewed
t-link models using a latent variable approach, which achieves proper posteriors
for regression coefficients under uniform priors. Unfortunately, the range of the
skewness for generalized skewed t-link is limited due to a constraint on the shape
parameter required for identifiability of the model. More recently, Wang and Dey
(2010) propose the generalized extreme value link function to allow more flexible
skewness controlled by the shape parameter, but the standard logistic and probit
links are not among the special cases of this family.

Several authors have proposed an additional power parameter on the c.d.f.
corresponding to standard link functions. Nagler (1994) introduces the Scobit
model, which is a generalization of the logistic model by introduction of a power
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parameter. In the psychology literature, Samejima (2000) proposes the Logis-
tic Positive Exponent Family using similar ideas. These models are part of the
asymmetric parametric family proposed by Aranda-Ordaz (1981) under some re-
parameterizations. Gupta and Gupta (2008) propose the power normal distribution
to accommodate skewness and discuss its advantages over the skew normal dis-
tribution. However, even though those link functions with power parameters can
accommodate flexible skewness in one direction (e.g., positive skewness in the
Scobit link), the skewness in the opposite direction can be asymmetrically limited.

In this paper we propose a new class of symmetric power link functions to
model binary and binomial data, and apply it to the Protea species co-occurrence
data. The rest of the paper is organized as follows. We introduce the Protea species
co-occurrence data in Section 2. In Section 3 we propose a general class of power
link functions based on the c.d.f. corresponding to a symmetric baseline link func-
tion and its mirror reflection. Section 4 discusses the prior specification and pos-
terior proprieties of the parameter in the proposed model under a fully Bayesian
framework. In Section 5 we introduce spatial random effects in the model to ac-
count for the spatial association in the co-occurrence data. Section 6 clarifies some
computational issues in the model as well as the criteria for model comparisons.
Several comprehensive simulation studies are reported in Section 7 with detailed
discussions. Finally, in Section 8 we fit the proposed model on the Protea species
co-occurrence data. We conclude our paper in Section 9 and all the proofs of the
theorems are deferred to the Appendices.

2. The Protea species co-occurrence data. The Cape Floristic Region
(CFR) is a region with remarkable biological diversity. The Protea species co-
occurrence data we study here is derived from the Protea Atlas data set (http:
//www.proteaatlas.org.za), which includes 96,253 occurrence records for the 71
species in the genus Protea from 44,415 sites. Wilson and Prunier (unpublished
data) constructed a series of nested watersheds covering the CFR using the 3
arc-second (90 m) research-grade digital elevation model collected by the Shut-
tle Radar Topography Mission (available at http://seamless.usgs.gov) using the
r.watersheds function in GRASS [Grass Development Team (2008)]. The co-
occurrence data used here correspond to species co-occurrences within watersheds
having a mean area of approximately 55 km2 (±40 km2) nested within larger wa-
tersheds with a mean area of approximately 540 km2 (±425 km2) [see Figure 1(a)
for an illustration of nested watersheds in CFR]. The smaller watersheds are con-
siderably larger than those usually considered in community assembly studies
[Vamosi et al. (2009)]. As a result, factors that are associated with a reduced prob-
ability of co-occurrence in this analysis may reflect either the consequences of
competitive interactions or of habitat segregation among different watersheds.

The data are binomial because for each pair of Protea species, we record the
number of smaller watersheds at which a particular pair co-occurs out of the total
number of smaller watersheds contained within each larger watershed. The data are

http://www.proteaatlas.org.za
http://seamless.usgs.gov
http://www.proteaatlas.org.za
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FIG. 1. Illustration of the watersheds scale in CFR. (a) The CFR showing the boundaries between
the large watersheds within which smaller watersheds are nested. (b) Smaller watersheds nested
within one particular parent watershed. This parent watershed is highlighted in grey in part (a).

then aggregated across the larger watersheds to cover the entire CFR. In this study
we record 10,256 observations involving

(71
2

)
pairs of Protea species. In Figure 2

FIG. 2. Histogram of empirical frequencies of Protea species co-occurence.
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we plot the histogram of observed probability of co-occurrence (number of Protea
observed co-occurrences between species pairs divided by the total number of co-
occurrences possible). Although this histogram is not excessively skewed, it is
reasonable to suspect that an asymmetric link function will be more appropriate for
these data, because the histograms for individual species pairs can be very skewed.
Our observational unit is species pairs, and for each pair of species we record
seven traits that could affect the probability that they co-occur. They are as follows:
(1) phylogenetic distance, which is proportional to the time since the two species
diverged from a common ancestor, (2) whether or not they differ in fire survival
strategy, (3) the difference in plant height, (4) the difference in month of maximum
flowering, (5) whether or not they share a pollination syndrome, (6) the difference
in leaf area, and (7) the difference in leaf length:width ratio. The difference is
measured as either 1:0 for binary data or Euclidean distance for the continuous
traits.

Our estimate of phylogenetic distance is derived from a rate-smoothed ver-
sion of the phylogenetic tree presented in Valente et al. (2010). Specifically, us-
ing the topology presented in Valente et al. (2010), we estimated branch lengths
under a maximum-likelihood model in PAUP∗ using the data used to generate
the tree: DNA sequences from four chloroplast markers (trnL intron, trnL-trnF
spacer, rps16, atpB-rbcL spacer), two nuclear regions (ITS and ncpGS), and 138
AFLP loci. We smoothed the branch lengths using NPRS in r8s [Sanderson (2003)]
and calculated pairwise phylogenetic distances using cophenetic.phylo from APE
[Paradis, Claude and Strimmer (2004)].

3. The symmetric power link family. Let us first specify the notation used
throughout this paper. Suppose yi ∼ Binomial(pi,Ni), where pi is the proba-
bility of success for the ith observation. Let the design matrix be X with xi =
(1, xi1, xi2, . . . , xik)

′ the ith row of X and β = (β0, β1, β2, . . . , βk)
′ the corre-

sponding regression coefficients. We associate pi and xi through a c.d.f. F as
follows:

pi = F
(
x′
iβ

)
,(3.1)

where we call F−1 the corresponding link function. The logit, probit, Student t link
as well as the cloglog link functions are common links adopted for the binomial
regression models.

Here we propose a general class of flexible link functions based on a symmetric
baseline link function and its mirror reflection in the following manner. If F−1

0 is
a baseline link function with corresponding c.d.f. F0 for which the p.d.f. is sym-
metric about zero, we propose the symmetric power link family based on F as

F(x, r) = F r
0

(
x

r

)
I(0,1](r) + [

1 − F
1/r
0 (−rx)

]
I(1,+∞)(r).(3.2)
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The intuition for the development of (3.2) is to utilize the fact that F r
0 (x) is a valid

c.d.f. and it achieves flexible left skewness when r < 1, while the same property
holds for its mirror reflection 1 − F

1/r
0 (−x) with skewness being in the opposite

direction. By combining the two in one single family of link functions, we could
achieve flexibility in positive as well as negative skewness symmetrically with
respect to the baseline link. Also, we are scaling x by the same parameter r in the
formulation to prevent the mode of the p.d.f. to be too far away from zero. Clearly,
by introducing an additional parameter r in (3.2), the skewness of the symmetric
power link family can be adjusted from its baseline to achieve more flexibility in
modeling asymmetric data.

One immediate observation in (3.2) is that F(x,1) = F0(x), so the proposed
family includes the baseline c.d.f. F0 as a special case. Also, considering the fact
that F0 is symmetric, the proposed symmetric power link family is continuous at
the break point r = 1, since

lim
r→1+

F(x, r) = 1 − F0(−x) = F0(x) = F(x,1).(3.3)

As we will be dealing with introduction of flexible skewness into the link function,
we specify our measurement of skewness here. We adopt Arnold and Groeneveld’s
(1995) skewness measure with respect to the mode here. Under certain conditions,
the skewness of a random variable X is defined as γM = 1 − 2F(Mx), where F(·)
is the c.d.f. of X with corresponding mode Mx . By definition, the skewness is
between −1 and 1, with 0 indicating symmetry. In (3.2), it follows directly that
F(x, r) = 1 − F(−x, 1

r
). In other words, the p.d.f. of the symmetric power family

with power parameter r is the mirror image of the p.d.f. with power parameter 1
r
.

This implies that if the skewness of F(x, r) is ξ , then the skewness of F(x, 1
r
)

will be −ξ . Here, by combining the power of a standard symmetric link distribu-
tion function and its reflection in one single link, we can accommodate flexible
skewness in both directions simultaneously, while retaining the desirable property
of having the standard baseline link function as a special case. We propose three
symmetric power link function families based on different baseline link functions
as follows.

3.1. The symmetric power logit (splogit) link family. If we choose F0 to follow
the logistic distribution with location 0 and scale 1, then we call F(x, r) defined
in (3.2) the symmetric power logit (splogit) family, and we call the correspond-
ing link function the splogit link. The skewness of the splogit distribution can be
found analytically as γM = 1−2( r

r+1)r for 0 < r < 1, and γM = 2( 1
r+1)1/r −1 for

r > 1. As a result, it is negatively skewed when 0 < r < 1, positively skewed when
r > 1, and reduces to the symmetric logit link when r = 1. Figure 3(a) and (d)
shows the p.d.f. and c.d.f. corresponding to the splogit link with r = 0.2,1,5, re-
spectively. It is clear that as the power parameter r varies, so does the approaching
rate to 0 and 1 for the splogit link. The range of skewness provided by the splogit
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FIG. 3. Symmetric power link c.d.f. and p.d.f. for different value of r under logit, Student t and
exponential power baseline c.d.f. functions.

family is unlimited, reaching −1 and 1, respectively, as r tends to 0 and +∞ [see
Figure 4(a)].

3.2. The symmetric power t (spt) link family. Many authors have suggested
using a Student t link (degrees of freedom denoted as ν) as an alternative to the
logit and probit links. Mudholkar and George (1978) show that the Student t link
with 9 degrees of freedom has the same kurtosis as the logistic distribution. Albert

FIG. 4. Skewness range of splogit against plogit and altersplogit as log(r) varies. The possible
skewness ranges from −1 to 1 under the definition of Arnold and Groeneveld (1995).
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and Chib (1993) suggest using the t distribution with 8 degrees of freedom and
provide a full implementation in a Bayesian framework. Liu (2004) proposes the
robit model which uses the Student t distribution with known or unknown degrees
of freedom as the link function and shows that it is a robust alternative to the logit
and probit model. It is widely known that the Student t link with large degrees of
freedom approximates the probit link. Now, by bringing in the power parameter r

in the sense of (3.2), we can add more flexible skewness in the class of Student
t link functions. We call this new class of link functions the symmetric power t

(spt) family. Similarly, in Figure 3(b) and (e) we see the p.d.f. and c.d.f. for the spt
link with 5 degrees of freedom for different values of r . Clearly, the spt link family
allows us to adjust both the skewness of the distribution and the heaviness of the
tails by varying r and ν, therefore accounting for an extremely rich class of link
functions. In Arnold and Groeneveld’s (1995) sense, the closed form expression of
the spt link skewness is not available, but numerically we can show the skewness is
quite flexible with small to medium ν but becomes more restricted as ν increases.
Notice that when r is fixed to be positive, the symmetric power probit distribution
is very similar to the power normal distribution proposed by Gupta and Gupta
(2008).

3.3. The symmetric power exponential power (spep) link family. The expo-
nential power (ep) distribution was first introduced by Subbotin (1923). The ep
distribution is symmetric with density

f (x;μ,σ,p) = c−1 exp
(
−|z|p

p

)
,(3.4)

where −∞ < x < +∞, σ > 0,p ≥ 1, z = (x − μ)/σ , and c = 2σp1/p−1�(1/p).
Clearly, normal distribution is a special case with p = 2, and heavier tail distribu-
tion can be obtained as we set p to be less than 2. Also, the Laplace distribution
is another special case when p = 1. If we set μ = 0 and σ = 1, the ep distribution
becomes symmetric about zero and with flexible tail properties as p varies. If we
set the ep as our baseline link function F0, we end up with the symmetric power
exponential power (spep) link family [see Figure 3(c) and (f) for the correspond-
ing p.d.f. and c.d.f. for p = 1 at different values of r]. Here we restrict p to be
within the range of [1,2] for our proposed spep link family since the skewness of
the p.d.f. becomes restricted for p > 2, that is, with a thinner tail than normal dis-
tributions. However, even with this restriction, the spep link family still provides
extremely flexible range of skewness and adjustment of tail behavior in one single
family of link functions.

3.4. Comparison with other power link. As discussed in Section 1, many au-
thors have proposed to bring in a power parameter to allow more flexible skewness
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in the link function. Again, let F−1
0 be the baseline link; the traditional power link

family is defined by

H(x, r) = F r
0 (x).(3.5)

Also, by choosing a different tail in (3.2), there is an alternative way of constructing
the symmetric power link given by choosing the other side of the tail as follows:

F ∗(x, r) = [
1 − F

1/r
0 (−rx)

]
I(0,1](r) + F r

0

(
x

r

)
I(1,+∞)(r).(3.6)

Here, adopting the logit baseline for all three, we compare model (3.2) (splogit)
with model (3.5) (plogit) and (3.6) (altersplogit) to illustrate the advantage of our
proposed symmetric power link in terms of skewness range. Adopting the other
baseline link discussed above will lead to similar results.

The advantage of skewness range of splogit is illustrated in Figure 4. Comparing
with plogit, when log(r) is negative, the skewness of splogit and plogit is exactly
the same, which is due to the fact that the formulation of splogit follows closely
as plogit when 0 < r ≤ 1. However, on the other side, the skewness of splogit
reaches 1 as log(r) goes to infinity, which has a clear advantage over plogit with
a skewness limit of 0.264. Similar comparison reveals that by choosing the appro-
priate side, splogit has skewness advantage on both tails over the altersplogit link.
A more flexible skewness means that the probability of success under the splogit
link can approach 0 (or 1) in a rate that can never be achieved under the plogit or
altersplogit link, which makes it more flexible in dealing with skewed data, as we
will show later in the simulation study.

4. The prior and posterior proprieties. We adopt the following class of
prior distributions on our proposed symmetric power link family and investigate
its posterior proprieties. For regression coefficient β , we adopt the usual uniform
prior, that is, π(β) ∝ 1. For the power parameter r , we adopt a proper gamma
prior π(r) with mean one and reasonably large variance. If we denote the likeli-
hood of the model to be L(β, r|y), consequently, the joint posterior density of our
regression model becomes

π(β, r|y) ∝ L(β, r|y)π(β)π(r)
(4.1)

∝
n∏

i=1

[
F

(
x′
iβ, r

)]yi
[
1 − F

(
x′
iβ, r

)]1−yiπ(r).

Clearly, the posterior distribution is proper if and only if∫

+

∫

k

L(β, r|y)π(r) dβ dr < ∞.(4.2)

Notice that when r is a point mass at 1, F(x, r) becomes the baseline link func-
tion F0. Our goal is to investigate whether the introduction of a power parameter r
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would change the posterior propriety compared to merely adopting the symmetric
baseline function F0. Here we let L0(β|y) denote the likelihood under the corre-
sponding baseline link F0.

THEOREM 1. If under the baseline link F0 we have∫

k

L0(β|y) dβ < ∞,(4.3)

then the posterior under the corresponding power link π(β, r|y) is also proper,
that is, ∫


+

∫

k

L(β, r|y)π(r) dβ dr < ∞.(4.4)

Theorem 1 states that by introducing an additional power parameter r in the
sense of (3.2), the posterior propriety under the uniform β prior is unchanged
with a proper prior for r . Chen and Shao (2001) studied the conditions for the
propriety of the posterior distribution under general link functions. The following
theorem resolves the posterior proprieties of the three proposed symmetric power
link families under uniform β priors. For the spt and spep link families, throughout
this paper we adopt proper priors on ν and p.

THEOREM 2. Let τi = 1 if yi = 0 and τi = −1 if yi = 1, and define X∗ to be
the matrix with the ith row τix

′
i . Suppose the following conditions hold:

(i) The design matrix X is of full column rank.
(ii) There is a positive vector a = (a1, a2, . . . , an)

′ ∈ 
n such that a′X∗ = 0.

Then the proposed splogit and spep links lead to proper posteriors under the
above prior setup, while the same result also holds for the spt family with degrees
of freedom ν > k, where k is the number of columns of X.

5. Spatial random effects. Geological and climatic features vary greatly
across the CFR. For example, the climate in the western part of CFR is Mediter-
ranean with rainfall concentrated in the winter months, while the climate in the
eastern CFR is more aseasonal. While such climate features could affect the pat-
tern of Protea co-occurrence, we are primarily interested in identifying biologi-
cal features that influence co-occurrence. Thus, we add spatial random effects in
the model to account for all latent, unmeasured environmental effects that are spa-
tially structured. Here we use the intrinsically conditionally autoregressive (ICAR)
model [Besag and Green (1993)] to capture these spatial effects. The ICAR model
has gained increasing usage in the past two decades due to its convenient imple-
mentation in the context of Gibbs sampling for fitting hierarchical spatial models
[Banerjee, Carlin and Gelfand (2004)].
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In the Protea co-occurrence context we suppose that there are K parent water-
sheds and that the proximity matrix A is defined by Aij = 1 if watersheds i and j

are adjacent and Aij = 0 otherwise. Following notation in Section 3, the number
of co-occurrence between species l and m within watershed k is modeled as

ylmk ∼ Binomial(plmk,Nk),(5.1)

plm = F
(
x′
lmβ + wk

)
,(5.2)

where Nk is the number of smaller watersheds within parent watershed k, and wk

is the spatial random effect associated with watershed k, where k = 1,2, . . . ,K .
At the next stage, the spatial random effects (w1,w2, . . . ,wK) follow the ICAR
model, that is,

p(w1,w2, . . . ,wK) ∝ exp
[
− 1

2τ 2

∑
i �=j

Aij (wi − wj)
2
]
.(5.3)

Clearly, (5.3) is not a proper distribution, so it cannot be used to model data di-
rectly. However, here we use it as a prior distribution on the second stage of the
hierarchical model which avoids this problem. In addition, to make w fully identi-
fiable, we impose the constraint

∑
k wk = 0.

6. Computational issues.

6.1. Markov chain Monte Carlo (MCMC) sampling. The posterior distribu-
tion given in (4.1) is relatively easy to sample given the standard baseline link
c.d.f. F0. To run the Gibbs sampler, we subsequently sample from the com-
plete conditional distributions [β|r,y], [r|β,y] (also [ν|β, r,y] if under spt and
[p|β, r,y] if under spep). Each draw can be done using the Adaptive Rejection
Metropolis algorithm [Gilks, Best and Tan (1995)] which is implemented in JAGS
[Plummer (2003)]. Due to the conditional nature of the ICAR distribution, the
Gibbs sampler of spatial random effects is conveniently constructed and the de-
tails are discussed in Banerjee, Carlin and Gelfand (2004). All the computations in
this paper are done in JAGS or geoBUGS.

6.2. Covariate effects. Czado and Santner (1992) pointed out that it is more
appropriate to compare the covariate effects under different link functions with the
estimated probabilities since the estimates of β will depend on the choice of link
functions. In view of this, we use the method suggested by Chib and Jeliazkov
(2006) to calculate the average effect of the covariates estimated probabilities.
Here we denote the set of all parameters in our model to be θ . For example, if
we want to estimate the effect of covariate xi , we integrate out parameters θ by
its MCMC posterior samples, and marginalize out other covariates x−i by their
empirical distributions to get an estimate of the predictive distribution

[p|xi,y] =
∫

[p|xi,x−i , θ,y]π(θ |y)π(x−i ) dθ dx−i .(6.1)
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Then if we compute this estimated probability under two specific values of xi ,
for example, under 0 and 1, the difference in the computed probabilities gives an
estimated effect of covariates xi as it changes from 0 to 1.

6.3. Bayesian model comparison. To compare the performance of models un-
der different link functions, we calculate two summary measures. The first one is
the Deviance Information Criterion (DIC), which balances the fit of a model to the
data with its complexity. The DIC measure is calculated with the posterior mean
of deviance penalized by the effective number of parameters under the Bayesian
framework [Spiegelhalter et al. (2002)]. The other measure we consider here is the
logarithm of the pseudo-marginal likelihood (LPML), which measures the accu-
racy of prediction based on leave-one-out cross-validation ideas. The LPML mea-
sure [Ibrahim, Chen and Sinha (2005)] is a summary statistic of the conditional
predictive ordinate (CPO) criterion [Gelfand, Dey and Chang (1992)]. The model
with the larger LPML indicates better fit of competing models.

7. Simulation study. Here we conduct three sets of simulation studies. The
first one compares the performance of our proposed symmetric power link func-
tion against some other standard or flexible link functions. The second one focuses
on the performance of splogit link versus plogit link when the data is generated
by a skewed distribution. The third one investigates specifically how our proposed
model performs against other flexible link functions on a larger scale simulation.
To simplify our simulation, here we consider Bernoulli responses instead of bino-
mial. Before we go any further, we introduce two other flexible link functions for
comparison purposes.

Stukel (1988) proposed the generalized logistic link family with parameter α =
(α1, α2)

′ as follows:

pi = G
(
hα

(
x′
iβ

))
,

where G is the c.d.f. of the logistic distribution. When x′
iβ ≥ 0,

hα

(
x′
iβ

) =
⎧⎪⎨
⎪⎩

α−1
1

(
exp

(
α1x

′
iβ

) − 1
)
, α1 > 0,

x′
iβ, α1 = 0,

−α−1
1 log

(
1 − α1x

′
iβ

)
, α1 < 0,

and for x′
iβ ≤ 0,

hα

(
x′
iβ

) =
⎧⎪⎨
⎪⎩

−α−1
2

(
exp

(
α2

∣∣x′
iβ

∣∣) − 1
)
, α2 > 0,

x′
iβ, α2 = 0,

α−1
2 log

(
1 − α2

∣∣x′
iβ

∣∣), α2 < 0.
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Also, Czado (1994) proposed another two parameters family link functions given
by specifying

hα

(
x′
iβ

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x′
iβ + 1)α1 − 1

α1
, x′

iβ ≥ 0,

−(−x′
iβ + 1)α2 − 1

α2
, x′

iβ < 0.

First we compare splogit link with other link functions with detailed simulation.
We generate 2 covariates for our simulation study. We independently generate one
binary covariate x1 with 0 and 1 randomly chosen, and the second covariate x2 is
generated independently from N(0,3). Our vector of covariates is denoted as X =
(1, x1, x2)

′. The true regression coefficient β = (β0, β1, β2)
′ is set to be (0,1,1)′

for all simulations. With the same value of X′β , we carry out our studies under
three scenarios based on three true models as follows:

SCENARIO 1. The binary data are generated from the symmetric logistic link
model with F−1(pi) = log(pi/(1 − pi)).

SCENARIO 2. The binary data are generated from the complementary loglog
(cloglog) link with F−1(pi) = log(− log(1 − pi)). It is easily calculated that the
skewness of the corresponding F is −0.264, under the definition of Arnold and
Groeneveld (1995).

SCENARIO 3. The binary data are generated from the loglog link with
F−1(pi) = − log(− log(pi)). The corresponding F is the mirror reflection of the
c.d.f. corresponding to the cloglog link, and therefore with skewness 0.264.

As described in Section 6, we conduct a fully Bayesian analysis on the above
three simulated data sets. The prior of β is chosen to be N(0,104) and the prior
for r is set to be exponential with parameter 1. In the spt model the prior for ν is
chosen to be Gamma(8,1) and for the spep model the prior for p is chosen to be
unif(1,2). In the “Stukel” and “Czado” models, the priors for parameters a1 and
a2 are set to be N(0,102). For each scenario, we repeat the same setting for two
different sample sizes N = 500 and N = 2000 to see how sample size would affect
our inference. After 2000 burn-ins, the models mix pretty well and we obtain 4000
posterior samples for each parameter. We summarize DIC and LPML measures
in order to make model comparisons. Our simulation results are summarized in
Table 1 and in Figure 5.

We notice from Figure 5 that under sample sizes of both 500 and 2000, the
posterior mean of r in the splogit link is close to 1 when the true model is logit
(symmetric), significantly less than 1 when the true model is cloglog (left-skewed),
and significantly greater than 1 when the true model is loglog (right skewed). Not
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TABLE 1
Posterior covariate effects for β1 and β2, posterior median for ν and p in spt and spep models as well as model comparisons under sample sizes 500

and 2000. Bold numbers indicate the corresponding fit is under the true model. Covariate effects are measured between value 0 and 1.
Larger LPML and smaller DIC indicate a better fit

True model

Fitted
model

logit cloglog loglog

β1 β2 ν/p LPML DIC β1 β2 ν/p LPML DIC β1 β2 ν/p LPML DIC

Sample size = 500

logit 0.12 0.11 −180.6 361.1 0.15 0.06 −137.6 274.7 0.13 0.17 −136.9 273.6
cloglog 0.10 0.15 −184.3 367.4 0.15 0.05 −131.1 262.1 0.12 0.23 −145.1 289.5
loglog 0.15 0.09 −189.2 375.4 0.14 0.06 −161.2 317.4 0.14 0.14 −134.4 268.6
Stukel 0.11 0.09 −183.4 365.8 0.16 0.04 −131.7 261.5 0.13 0.14 −137.2 270.5
Czado 0.11 0.10 −182.4 363.9 0.16 0.04 −132.0 262.3 0.13 0.14 −136.7 269.7
splogit 0.12 0.11 −181.0 359.7 0.15 0.05 −131.5 262.1 0.13 0.16 −135.9 270.9
spt 0.12 0.11 7.23 −181.1 360.5 0.15 0.04 6.02 −131.7 261.9 0.13 0.16 7.43 −136.4 271.7
spep 0.11 0.11 1.41 −181.2 360.6 0.15 0.05 1.23 −132.6 264.0 0.13 0.16 1.38 −135.9 270.9

Sample size = 2000

logit 0.13 0.10 −696.6 1393.1 0.09 0.04 −491.3 982.5 0.11 0.16 −507.0 1013.9
cloglog 0.13 0.14 −711.6 1422.0 0.09 0.02 −477.7 955.6 0.11 0.22 −544.7 1088.0
loglog 0.12 0.08 −730.3 1457.4 0.09 0.05 −525.8 1050.0 0.11 0.13 −500.6 1000.9
Stukel 0.13 0.10 −698.5 1396.7 0.10 0.02 −478.9 956.6 0.10 0.14 −501.8 1003.5
Czado 0.13 0.10 −698.3 1396.2 0.10 0.02 −479.0 957.1 0.10 0.13 −501.4 1002.8
splogit 0.13 0.10 −696.9 1392.9 0.09 0.02 −481.2 962.4 0.11 0.13 −501.4 1002.2
spt 0.13 0.10 7.21 −697.5 1394.2 0.09 0.03 9.50 −483.1 966.4 0.11 0.13 8.54 −502.3 1004.1
spep 0.12 0.10 1.40 −697.5 1394.1 0.09 0.03 1.43 −478.9 956.9 0.10 0.15 1.34 −501.7 1002.4
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FIG. 5. Posterior density plot for power parameter r under the splogit model with sample sizes 500
and 2000. The posterior median and HPD interval of r are also reported in the plot.

surprisingly, the posterior standard deviation of r becomes considerably smaller as
the sample size increases from 500 to 2000. Also, the performance of r in the spt
and spep links is quite similar to the splogit link shown in Figure 5. In conclusion,
the power parameter r captures the skewness of the true model very well.

Table 1 summarizes some other simulation results of the study. Comparing with
standard links (logit, cloglog, loglog), calculated average covariate effect of β1 and
β2 for the symmetric power links tends to be much closer to the value under the true
model (bold) than other standard models (logit, cloglog, loglog when it is not the
true model). We also observed that the symmetric power link provides estimates
of covariate effects that are extremely close to the true model and significantly
better than other standard link functions in terms of LPML and DIC. On the other
hand, the symmetric power link performs extremely close to “Stukel” and “Czado”
models in terms of both covariate effects and model comparisons. Overall, our
proposed model performs well and proves to be robust enough to handle various
scenarios under simulated data with symmetric, positive and negative skewness.

We conduct the second simulation study to examine the performance of the
splogit link against the plogit link (3.5) and altersplogit link (3.6), when the data
is generated from distributions with various skewness. We simulate data from the
generalized extreme value (gev) distribution with c.d.f. as follows:

G(x) = exp
[
−

(
1 + ξ

x − μ

σ

)−1/ξ

+

]
.(7.1)
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Wang and Dey (2010) propose the gev model as another flexible link func-
tion to model binary response data. The skewness of (7.1) is controlled by the
shape parameter ξ , which is calculated as 1 − 2 exp{−(1 + ξ)} under Arnold
and Groeneveld’s (1995) definition. Notice that ξ = −0.3 indicates the skew-
ness is zero. To simulate data from the gev distribution, we set F to be G with
μ = 0, σ = 1, and adopt the same covariates setup as in the first study. We choose
ξ = −3.3,−0.3,2.7, respectively, to represent left-skewed, symmetric and right-
skewed data. For each value of ξ , we generate 100 data sets and fit splogit against
plogit and altersplogit, respectively, to compare the average performance of the
two. Again, we obtain 4000 posterior samples for each simulation after 2000 burn-
in periods.

Figure 6 summarizes the difference of DIC between the model fits under splogit
and plogit (a), splogit and altersplogit (b) of 100 replicates for each simulation.

FIG. 6. Difference of DIC comparing (a) splogit and plogit, (b) splogit and altersplogit when shape
parameter ξ = −3.3,−0.3,2.7, respectively. Positive DIC difference indicates splogit has a better
fit. In each case the simulation is repeated 100 times. The dotted line indicates the mean of DIC for
the repetitions.
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TABLE 2
Percentage of best performance among splogit, gev, “Stukel” and “Czado” out

of 200 simulations. The best performance is determined each time by the
lowest DIC value

% Lowest DIC

True model splogit gev Stukel Czado
logit 49.5% 31.0% 19.5% 0%
cloglog 26.5% 62.5% 8.5% 2.5%
loglog 63.0% 9.0% 24.0% 4.0%

For (a), the advantage of using the average DIC of splogit is not obvious when ξ =
−3.3,−0.3, but becomes positive at ξ = 2.7. For (b), the average DIC advantage of
splogit is positive at ξ = −3.3,2.7, but ignorable at ξ = −0.3. This is exactly what
we expected by looking at Figure 4 in that the splogit has skewness advantage over
plogit when the data is left skewed, and has skewness advantage over altersplogit
in both skewness directions.

In the third study we compare the performance of the splogit model against
gev, “Stukel” and “Czado” models on a larger scale, while only focusing on model
comparisons. Here, by larger scale we mean repeating the fitting of all 4 models
200 times under different true models, and record the best performance each time
according to the DIC measure. To simplify the comparison, we pick sample size
N = 200 and generate one continuous covariate from standard normal distribution.
For each of the 200 simulations, the true value of β = (β0, β1)

′ is generated from
N(1,0.12). The prior setups of splogit, “Stukel” and “Czado” are the same as
before, while the prior of ξ in the gev model is set to be uniform(−1,1). The
simulation scheme is also similar to the first study, as we set the true model to
be from logit, cloglog and loglog, then we fit splogit, gev, “Stukel” and “Czado”
models, respectively, to find the percentage of best performance in terms of DIC.

In Table 2 we clearly see the advantage of the proposed splogit link over other
link functions. The splogit link model performs the best when the true model
is logit and loglog at 49.5% and 63.0%, respectively, where the gev model and
“Stukel” model come as distant second places with 31.0% and 24.0%. The gev
model outperforms splogit when the true model is cloglog, however, this is ex-
pected since cloglog is a special case of a gev model when ξ = 0. Nevertheless, in
the cloglog case, the splogit model performs better than “Stukel” and “Czado”
models at 26.5%. Overall, we see the robustness of the proposed splogit link
against other flexible link functions.

8. Data analysis. Here we apply the model described in Section 3 on the Pro-
tea species co-occurrence data. The data is provided as supplementary material
[Jiang et al. (2013)]. As discussed earlier, we include phylogenetic distance (GD),
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fire survival strategy (FSS), plant height, month of maximum flowering (MMF),
pollination syndrome, specific leaf area (SLA) and leaf length width ratio (LWR)
as factors in the model and prevalence probability (with a logit transformation)
as a covariate. Among them, FSS, MMF and pollination are binary and the rest
are continuous. Notice that in order to model the species co-occurrence, Palmgren
(1989) proposed a method of running two logistic regressions on two species sepa-
rately and related the two with a regression on odds ratio. While it is no problem to
integrate our sp link in the Palmgren model to replace the logit link, it is not suit-
able for our particular data since the co-occurrence data has the traits difference
between two species, but not the traits of two species separately. For simplicity, we
only adopt splogit as a representative of the symmetric power link family, however,
adopting the spt and spep links would lead to similar results. After 10,000 burn-ins
the model parameters and spatial random effects mix pretty well and then another
10,000 samples have been obtained. Table 3 summarizes the results under different
links with ICAR prior on the spatial random effects. The priors of the regression
coefficients are set to be normal with mean 0 and variance 104. The spatial model
is realized utilizing GeoBUGS, an add-on to WinBUGS [Lunn et al. (2000)].

First, let us look at the first half of Table 3. When we model the probability of
co-occurrence, that is, P(y = 1), we see that for the splogit and plogit models the
estimate of the power parameter is around 0.38, corresponding to a left-skewed
link. Recall that splogit is equivalent to plogit when r ≤ 1. As a result, parameter
estimates and model comparison criteria for the splogit and plogit are roughly the
same. The gev model with an estimate of ξ = 0.042 also corresponds to a left-
skewed model with a DIC slightly worse than splogit and plogit. Finally, all three
flexible links perform much better than logit in terms of DIC.

In order to show the advantage of the splogit link, the second half of Table 3
considers the probability of not co-occurring, P(y = 0), instead. We notice that
due to the symmetric construction of splogit, modeling P(y = 0) and P(y = 1)

are essentially the same, the only change being in the sign of the parameters. Here
we can see that the parameter estimates and model comparison criterion value of
splogit and plogit are different and splogit has a clear edge in terms of model
comparison. These results are consistent with analytical expectations and our sim-
ulations: splogit and plogit are equivalent when r ≤ 1, but when r > 1, splogit
performs better than plogit. In the gev model, the estimate of ξ = −0.639 now
corresponds to a right-skewed model, and with a DIC of 23,101.5, the gev model
fits worse than splogit and plogit. Again, all three of them fit better than the stan-
dard logit link. Figure 7 plots probability curves under splogit, plogit, logit and
gev links as different covariates vary in modeling P(y = 0). We see that the curve
under splogit has a more flexible tail behavior that results in a better fit.

In one sense, it is not surprising that “Prevalence” is the predominant influence
on the probability of co-occurrence. Let nik be the number of small watersheds in
which species i is found in watershed k and nk be the number of small watersheds
in watershed k. Then pik = (nik + 1)/(nk + 2) is the probability that species i is
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TABLE 3
Posterior median, HPD interval and DIC measure under splogit, plogit, gev, logit models of the Protea co-occurrence data. The first half of the table

models P(y = 1), while the second half models P(y = 0). Bold numbers indicate significant factors. Smaller DIC indicates better fit

splogit plogit logit gev

Variables Median HPD interval Median HPD interval Median HPD interval Median HPD interval

Modeling P(y = 1)

Intercept −0.294 (−0.354, −0.235) −0.300 (−0.349, −0.248) 0.457 (0.407, 0.509) 0.019 (−0.023, 0.063)
GD 0.019 (0.005, 0.033) 0.019 (0.004, 0.032) 0.032 (0.013, 0.052) 0.020 (0.002, 0.036)
FSS 0.025 (−0.004, 0.059) 0.025 (−0.002, 0.050) 0.053 (0.010, 0.098) 0.027 (−0.007, 0.059)
Height −0.023 (−0.038, −0.009) −0.023 (−0.038, −0.009) −0.032 (−0.052, −0.012) −0.026 (−0.043, −0.008)
MMF 0.013 (−0.026, 0.052) 0.014 (−0.026, 0.050) 0.037 (−0.014, 0.092) 0.014 (−0.031, 0.058)
Pollination −0.029 (−0.060, 0.004) −0.029 (−0.057, 0.001) −0.030 (−0.073, 0.011) −0.038 (−0.074, −0.003)
SLA −0.003 (−0.017, 0.011) −0.003 (−0.018, 0.010) −0.006 (−0.024, 0.012) −0.006 (−0.022, 0.010)
LWR −0.027 (−0.044, −0.012) −0.027 (−0.043, −0.011) −0.037 (−0.059, −0.017) −0.031 (−0.051, −0.013)
Prevalence 0.844 (0.815, 0.873) 0.842 (0.818, 0.866) 1.146 (1.125, 1.164) 0.991 (0.963, 1.016)

r/ξ 0.380 (0.331, 0.0431) 0.376 (0.336, 0.423) 0.042 (0.020, 0.062)

DIC 23,002.0 23,001.0 23,335.2 23,006.3

Modeling P(y = 0)

Intercept 0.295 (0.249, 0.333) 0.313 (0.293, 0.327) −0.456 (−0.508, −0.406) −0.579 (−0.609, −0.547)
GD −0.019 (−0.033, −0.003) −0.008 (−0.014, −0.003) −0.032 (−0.051, −0.012) −0.015 (−0.026, −0.003)
FSS −0.024 (−0.051, 0.005) −0.013 (−0.026, −0.002) −0.054 (−0.097, −0.011) −0.026 (−0.047, −0.003)
Height 0.023 (0.009, 0.037) 0.009 (0.003, 0.015) 0.031 (0.010, 0.051) 0.017 (0.005, 0.029)
MMF −0.013 (−0.053, 0.023) −0.008 (−0.024, 0.008) −0.037 (−0.091, 0.016) 0.006 (−0.024, 0.038)
Pollination 0.030 (−0.001, 0.059) 0.009 (−0.004, 0.021) 0.029 (−0.014, 0.072) 0.022 (−0.002, 0.045)
SLA 0.003 (−0.010, 0.018) 0.002 (−0.004, 0.008) 0.006 (−0.013, 0.024) 0.006 (−0.005, 0.017)
LWR 0.028 (0.012, 0.045) 0.011 (0.004, 0.017) 0.037 (0.015, 0.058) 0.022 (0.009, 0.035)
Prevalence −0.845 (−0.866, −0.818) −0.340 (−0.380, −0.294) −1.146 (−1.166, −1.127) −0.677 (−0.686, −0.669)

r/ξ 2.624 (2.344, 2.948) 2.998 (2.693, 3.441) −0.639 (−0.661, −0.619)

DIC 23,001.8 23,069.1 23,335.0 23,101.5
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FIG. 7. Probability curves under splogit, plogit, logit and gev links as different covariates vary in
modeling P(y = 0). GD, Height, LWR and Prevalence are chosen since they are significant in all
three models. Other covariates are fixed to be at the mean and coefficients are fixed to be at the
posterior median.

found in watershed k, and the prevalence of the species pair i and j in watershed
k is pikpjk . In short, if two species are both common within a watershed, they are
likely to co-occur, and if they are both uncommon, they are unlikely to co-occur.

In another sense, however, the importance of “Prevalence” may be surprising. It
indicates that to a large extent species co-occur or not as if they were randomly as-
signed to small watersheds, suggesting that the biotic factors included in our analy-
sis have relatively little effect on whether or not they co-occur. Competitive effects,
if they existed, would lead similar species to co-occur less often than expected [cor-
responding to negative regression coefficients when modeling P(y = 1)]. It may
not be surprising that competitive effects are small in this analysis, since the small
watershed scale is much larger than the scale at which individual plants would
compete, but habitat partitioning among watersheds would lead to the same pat-
tern. Thus, the small negative coefficients associated with “Height” and “LWR”
(leaf length-width ratio) suggest not only that competitive effects on the structure
of Protea communities at this scale, if any, are small, but also that habitat parti-
tioning has a similarly small influence on the probability of co-occurrence.
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FIG. 8. Plot of spatial random effects in CFR under splogit fit.

We regard “GD” (phylogenetic distance) as a proxy for unmeasured traits that
influence co-occurrence, and the positive coefficient on it may be surprising. Its
magnitude is similar to that of the negative coefficients on “Height” and “LWR,”
and it is small relative to “Prevalence,” but the positive sign indicates that closely
related taxa occurring in the same large watershed are more likely to co-occur
within small watersheds than expected by chance. Perhaps this association reflects
some degree of habitat filtering [Shipley, Vile and Garnier (2006), Weiher and
Keddy (1995)] on traits that we did not measure in this study.

The spatial clustering effects on co-occurrence probabilities are also obvious.
In Figure 8 we see negative effects clustered in the east part and southwest corner
of CFR, while positive effects are clustered in the middle part of the region. This
clustering could reflect the interaction of rainfall (winter rainfall in the west, asea-
sonal in the east) and elevation (highest elevations inland, lowest along the coast).
In future studies, we will explore both the patterns of co-occurrence at different
spatial scales and the extent to which climate or other environmental features are
associated with residual spatial variation in this analysis.

9. Discussion. In this paper we introduced a new family of flexible link func-
tions. The proposed power link family can accommodate flexible skewness in both
positive as well as negative directions, while retaining the baseline standard link
as a special case. Simulation results show the proposed link performs well under
various skewness scenarios. Also, the proposed link is computationally straightfor-
ward and efficient to implement. In addition, the power parameter idea illustrated
here may be used to construct new link functions. For example, we could use
an asymmetric link function c.d.f. as our baseline link. Using a power parameter
might make a difference in bringing in desirable flexibility.

One potential problem with the proposed power link is that the power parameter
r influences both the skewness and the mode of the link function p.d.f. Although
this effect has been greatly reduced by scaling x by r in our model as defined in
(3.2) and discussed in Section 3, the effect still exists with relatively large r values.
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One solution might be to adjust the effect out with calculated mode values, yet it
is computationally expensive especially under pt and pep links when there is no
analytical solution for the mode of the c.d.f. function.

APPENDIX A: PROOF OF THEOREM 1

Observing that in our definition the power link functions Fr naturally split with
respect to r = 1, we have∫


+

∫

k

L(β, r|y)π(r) dβ dr

=
∫ 1

0

∫

k

L(β, r|y)π(r) dβ dr +
∫ ∞

1

∫

k

L(β, r|y)π(r) dβ dr.

Clearly, the link function in the latter part is the mirror reflection of the first part,
in other words, F(x, r) = 1 − F(−x, 1

r
), therefore, we only need to prove the first

part of the integration is finite. For the baseline link F0 we have

F0(x) =
∫



I (u ≥ −x)d
(−F0(−u)

)
,

1 − F0(x) =
∫



I (u > x)dF0(u).

Since F0 is continuous, by Fubini’s theorem we have∫

k

L0(β|y) dβ

=
∫

k

n∏
i=1

F0
(
x′
iβ

)yi
[
1 − F0

(
x′
iβ

)]1−yi dβ

=
∫

k

∫

n

I
(
ui ≥ τix

′
iβ,1 ≤ i ≤ n

)
d
(
τiF0(τiui)

)
dβ

=
∫

n

∫

k

I
(
X∗′β ≤ u

)
dβ dF0(u),

< ∞,

where F0(u) = (τ1F0(τ1u1), τ2F0(τ2u2), . . . , τnF0(τnun)).
Then under the power link, since |F0| ≤ 1 and π(r) is a proper density, we have

∫ 1

0

∫

k

L(β, r|y) dβπ(r) dr

=
∫ 1

0

∫

n

∫

k

I
(
X∗′β ≤ u

)
dβ dF(u, r)π(r) dr

=
∫ 1

0

∫

n

∫

k

I
(
X∗′β ≤ u

)
Fr−1

0 (u) dβ dF0(u)π(r) dr
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≤
∫ 1

0

∫

n

∫

k

I
(
X∗′β ≤ u

)
dF0(u)π(r) dr

< ∞.

APPENDIX B: PROOF OF THEOREM 2

By Theorem 1, we only need to prove the theorem for r = 1. Let u =
(u1, u2, . . . , un)

′ be i.i.d. random variables with distribution function F0. Now,
under the condition listed in Theorem 2, it follows directly from Lemma 4.1 of
Chen and Shao (2001) that there exists a constant K such that

‖β‖ ≤ K max
1≤i≤n

|ui |,

whenever

X∗′β ≤ ‖u‖.
Therefore, following the derivation in Theorem 1 under the baseline link F0, we
have

∫

k

L0(β|y) dβ

=
∫

n

∫

k

I
(
X∗′β ≤ u

)
dβ dF0(u)

≤ K

∫

n

max
1≤i≤n

|ui |dF0(u)

≤ K
∑

1≤i≤n

E|ui |k.

Clearly, in the logistic and exponential power cases we have E|ui |k < ∞, while in
the Student t case the same condition will hold as long as the degrees of freedom
ν > k.
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SUPPLEMENTARY MATERIAL

Protea species co-occurrence data set (DOI: 10.1214/13-AOAS663SUPP;
.zip). We provide the Protea species co-occurrence data set used in the data analy-
sis section.

http://dx.doi.org/10.1214/13-AOAS663SUPP
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