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We consider penalized estimation in hidden Markov models (HMMs)
with multivariate Normal observations. In the moderate-to-large dimensional
setting, estimation for HMMs remains challenging in practice, due to sev-
eral concerns arising from the hidden nature of the states. We address these
concerns by £1-penalization of state-specific inverse covariance matrices. Pe-
nalized estimation leads to sparse inverse covariance matrices which can be
interpreted as state-specific conditional independence graphs. Penalization is
nontrivial in this latent variable setting; we propose a penalty that automati-
cally adapts to the number of states K and the state-specific sample sizes and
can cope with scaling issues arising from the unknown states. The method-
ology is adaptive and very general, applying in particular to both low- and
high-dimensional settings without requiring hand tuning. Furthermore, our
approach facilitates exploration of the number of states K by coupling es-
timation for successive candidate values K. Empirical results on simulated
examples demonstrate the effectiveness of the proposed approach. In a chal-
lenging real data example from genome biology, we demonstrate the ability
of our approach to yield gains in predictive power and to deliver richer esti-
mates than existing methods.

1. Introduction. In this paper we consider estimation in high-dimensional
hidden Markov models. We consider multivariate observations X, € R” with
discrete index t € 7 = {1, ...,n} and hidden states S; € {1,..., K} (the mod-
els we consider are high-dimensional in the sense of relatively large p). Con-
ditional on state, emission distributions are multivariate Normal (MVN), with
X: | Sy =k~ N(ug, Zx) [where N (i, X) denotes the MVN density with mean
wu and covariance matrix X ]. Estimation in the small p case of univariate or low-
dimensional observations is a well-studied problem. In contrast, estimation in the
larger p setting remains challenging due to several factors:

(i) High-dimensionality. Inference in HMMSs with moderate or large num-
ber of features is, in a sense, always a high-dimensional problem since the ratio
ming ny/ p may be small, as it depends on the unknown number of states and the
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unknown size of the states (n; denotes the number of samples in state k). There-
fore, large samples for each state cannot be relied upon at the outset, even when
the overall sample size n = )_; ny is large.

(i) Covariance structure. Estimation is especially challenging in settings
where covariances X cannot be assumed to have a simple structure (e.g., diagonal)
or where state-specific covariance structure is itself of scientific interest. Then, due
to Simpson’s paradox, state-specific covariances must be jointly estimated along
with state assignments.

(iii) Regularization. The size and scale of individual states may vary and are
usually unknown at the outset. Regularization schemes need to self-adapt appro-
priately.

(iv) Number of hidden states. The model selection problem of determining
or exploring the number of states K is coupled to the estimation problem for
known K. In the multivariate setting, estimation for known K is itself challenging.
Then, the straightforward strategy of fitting models for various values K and com-
paring by model selection criteria may become difficult or intractable, especially
when practically important issues like initialization and setting of tuning parame-
ters are taken into consideration.

This work is motivated by applied questions in genome biology; we present be-
low a real data example from that field. HMMs are very widely used in genomics.
Measurements at genome locations ¢ constitute the vector X;, while states S; are
typically identified with biological states of the genome (e.g., whether the loca-
tion ¢ is within a gene-coding region). Early, pioneering applications of HMMs to
genomic data [see, e.g., Durbin et al. (1998), Krogh, Mian and Haussler (1994)]
considered univariate or low-dimensional observations X; (such as the gene se-
quence itself). However, in recent years technological advances have begun to per-
mit higher dimensional studies. For example, using technologies such as DamID
[van Steensel and Henikoff (2000)] or ChIP-seq [Park (2009)], it is now possible
to measure the binding of proteins to the DNA across the entire genome for dozens
or hundreds of proteins and the dimensionality (i.e., number of proteins) of such
approaches continues to increase; see, for example, ENCODE Project Consortium
(2012). Gene expression depends not only on sequence (the genome) but also on a
diverse set of regulatory mechanisms including the binding of protein transcrip-
tion factors to the DNA. Protein-DNA binding can be influential in regulating
transcription, for example, cells belonging to different tissue types in the same
organism (with the same genome) may have quite different protein-DNA binding
patterns, expression profiles and biological functions. The importance of protein-
DNA binding in understanding such epigenetic variation has led to much interest in
studying the genome in terms of binding patterns and in identifying regions of the
genome with shared regulatory influences. At present such analyses are performed
using HMMs where the states S; are identified with biological states and observa-
tions with multivariate protein-DNA binding data [Ernst and Kellis (2010), Filion
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et al. (2010)]. However, absent reliable methodology for fitting high-dimensional
HMMs, it is common practice in the field to instead consider reduced dimension
versions of the data [by selecting key “marker” variables or carrying out dimen-
sionality reduction as a preprocessing step; see, e.g., Filion et al. (2010)] or by
discretizing the data and treating observations as independent Bernoulli [Ernst and
Kellis (2010)]. We show below in a real data example from genome biology that
our penalized approach applied to all available variables (proteins) from a recent
experiment yields large gains in predictive accuracy (on held-out test data) relative
to a reduced-dimension approach, as well as relative to classical estimation applied
to the full set of variables. Beyond genomics, potential application areas for high-
dimensional HMMs are diverse and include biomedical signal processing (e.g.,
analysis of multi-channel EEG data), engineering applications (including image
and video processing) and finance.

We propose a penalized log-likelihood procedure involving £1-norms of the
state-specific inverse covariance matrices ¥, ! with optimization carried out
within an expectation-maximization (EM) framework. Our approach has several
attractive features:

e Penalized estimation leads to sparse inverse covariance matrices which can
be interpreted as state-specific conditional independence graphs or networks
[Friedman, Hastie and Tibshirani (2008), Yuan and Lin (2007)].

e The specific penalty we propose automatically adapts to the number of states
and state-specific sample size and enjoys scale invariance that takes care of state-
specific scaling.

e The number of states K can be selected automatically, or estimates for vari-
ous values K explored, using a computationally efficient approach that couples
estimation for successive candidate values for K.

e The approach requires essentially no hand tuning; only a maximum number of
states Kmax must be set by the user. Otherwise, tuning parameters (including, if
desired, K itself) are set automatically.

Our approach is very general: as we demonstrate below, it works well in diverse
regimes, including both low- and high-dimensional examples, with no hand-tuning
required. In a real data example from genomics the methodology leads to large
gains in predictive power relative to existing approaches.

Penalized estimators can be incorporated into EM-type algorithms and a num-
ber of recent authors have done so, notably in the context of mixture models [Hill
and Mukherjee (2013), Khalili and Chen (2007), Pan and Shen (2007), Stédler,
Biihlmann and van de Geer (2010)]. However, the unknown nature of the states
(or mixture components) poses special challenges for penalization that have not
been adequately addressed so far. In particular, appropriate penalization must ac-
count for the number of hidden states and their respective sample sizes, but these
are themselves unknown at the outset. Furthermore, scaling also poses a subtle
problem: in the classical Lasso [Tibshirani (1996)] or Graphical Lasso [Friedman,
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Hastie and Tibshirani (2008)] standardization is an important preprocessing step
to ensure appropriate scaling. However, in HMMs and mixtures different states
or components may differ with respect to scale, but since state assignments are
a priori unknown, standardization cannot be carried out as a preprocessing step.
The penalty we propose automatically adapts with state-sizes and takes care of
scaling issues. Inspired by the seminal paper of Donoho and Johnstone (1994) and
related work in the Lasso context [Barron et al. (2008), Sun and Zhang (2012),
Zhang (2010)], our penalty allows for universal regularization by use of a tuning
parameter Ayp;, that depends only on n and p. Using universal regularization by
Auni Within our EM algorithm allows automatic adaptation to number of states K
and state-specific sample sizes. As a consequence of these features, our procedure
for penalized estimation for a given number of states K is entirely free of user-set
parameters.

Parameter estimates for successive values K, K + 1 are related, and it is there-
fore natural to exploit this fact in exploring the number of states; we do so using
an iterative algorithm. In principle, an iterative approach could proceed in a “top
down” manner from few states to many, or “bottom up” from many states to few.
However, we cannot in general gain information about two underlying states from
estimates obtained from a single, merged state (Simpson’s paradox); this means the
“top down” approach cannot be reliably used in the multivariate setting. We there-
fore proceed in a “bottom up” manner, starting with a large number of states Kax
and iteratively reducing the number of states through the entire considered range.
Model order reduction is guided using the Kullback—Leibler divergence between
state densities; this naturally takes account of both mean and covariance informa-
tion. This exploration is efficient because (i) current estimates are used to provide
initialization for the subsequent iteration and (ii) we initialize the EM algorithm
only once, at the first iteration corresponding to K = Kp,x. As we demonstrate be-
low, this procedure in fact outperforms the “brute-force” approach of entirely sep-
arately fitting models for various K’s. In this way, our approach allows tractable
exploration of estimates for a range of values K and, if desired, automatic selec-
tion of K. Our approach is inspired by the work of Figueiredo and Jain (2000) who
used a similar strategy in the context of low-dimensional mixtures.

2. Inference in hidden Markov models with state-specific graphical mod-
els. We consider a hidden Markov model (HMM) with multivariate Normal
(MVN) emissions. We denote by S; € {1, ..., K} the (hidden) state process, that
is, a discrete Markov chain with transition matrix [Ty = P(S;1 = k’|S; = k); in
order to simplify the notation, we omit the initial probabilities py = P(S; =k) in
the further description of our methodology. We denote by X; € R” the observed
process with emission distribution X; | S; =k ~ N (uk, k).

The case of sparse inverse covariance matrices Q2 = X, U will be of par-
ticular interest. For each state we have a Gaussian graphical model with undi-
rected graph Gy defined by locations of zero entries in the inverse covariance
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matrix, that is, (,I') ¢ Gy <= () = 0. We denote model parameters by
O =61, ...,0k, 1), Ok = (uk, L). The goal, for given K, is to infer ® g from
the observed n x p data matrix X, and further to solve the related problem of
exploring (or determining) K itself.

Conceptually, it makes sense to think of inference in a HMM (or mixture model)
as a combination of two (coupled) tasks. The first task consists of estimating the
model parameter O, given the number of states K and a regularization parame-
ter A. For this task, we propose to minimize the negative penalized log-likelihood

(2.1) Ok,» = argmin —£(O ;; X) + A pen(Ok ),
Ok,2

where £(Ok »; X) denotes the observed log-likelihood and pen(® ;) is a penalty
function involving the £1-norms of the inverse covariance matrices [Friedman,
Hastie and Tibshirani (2008), Meinshausen and Biihlmann (2006), Yuan and Lin
(2007)] that we describe in detail below. The £1-norm is especially appealing when
the goal is network inference, as it induces sparsity in €2;’s and therefore in the
corresponding undirected graphs Gy. We solve this problem by an EM-type al-
gorithm, using a specific penalty that we describe below; we call this approach
HMMGLasso (see Section 2.1 for details). The adaptive regularization strategy we
propose in HMMGLasso permits estimation of HMMs with state-specific covari-
ance structure in both low- and high-dimensional settings, while taking care of
state size and scaling; this addresses points (i)—(iii) raised in the Introduction.

The second task involves determining an appropriate number of states K* and
suitable penalization parameter A*. This is a model selection problem, and can in
principle be solved by minimizing a model selection criterion C(K, 1) (we con-
sider specific criteria below), that is,

(2.2) (K*, 1*) =argminC(K, 1).
K.

As described in detail below, we propose an iterative approach called Greedy
Backward Pruning that exploits the relationship between estimates O for succes-
sive K’s to allow efficient model exploration and, if desired, determination of K.
This addresses point (iv) raised in the Introduction. Using Greedy Backward Prun-
ing, initialization is carried out once at a (too) large number of states Kmax; as we
show below, this strategy gives highly competitive estimates despite needing only
a single initialization.

2.1. HMMGLasso in detail: Baum—Welch algorithm and €| regularization.
Maximum likelihood estimation for HMM is usually performed using the EM al-
gorithm (or the Baum—Welch algorithm in the HMM context). Denote the com-
plete log-likelihood with

0(0;X,8) =Y £(ux. u: T, T5) + £(T1; T3),
k
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where S = (S, ..., Sy) are state assignments, X = (X1, ..., X,)T is the n x p data
matrix, £ (g, QL; T’l‘ , Té) is the log-likelihood of the MVN distribution with mean
ur and inverse covariance 2 and ¢(IT; T3) is the log-likelihood of the Markov
chain with transition matrix IT. Tll‘ = 15,20 Xs, Té =3, l(gl:k)XtX,T and
(T3)iw = 2_; 1(s,=k,5,,,=k") are the corresponding sufficient statistics.

Following initialization, EM produces a sequence of estimates {®®);i =
1,2,3,...} by alternating between E- and M-Steps. To facilitate network infer-
ence, we seek to induce sparsity in the 2;’s. We do this by £;-regularization. In
particular, we replace maximization with respect to (ug, $2¢) in the M-Step of the
Baum—Welch algorithm by

) ) i 0) -
(2.3) (,u,(fr]), Q,((H'])) = argmin —€ (g, Qi; Tblt’(‘), T;" )+ A n,ﬁl) Pen(S2).
M Qpe

Here,
) M) uy M) T
T =) w’OX, T,F =) u’0XX]
t t

denote the expected sufficient statistics given X and current estimate @) with
state-responsibilities u,(j) (t) =Pgu) (S; = k|X) obtained from the E-Step.

By n,ﬁl) = n,(cl) /n (n,(:) =, u,({l)(t)) we denote the (scaled) effective sample
size of state k. The penalty term depends on a regularization parameter A, on the
effective sample size 77,’18) and on a function Pen(-) involving £;-norm of Q. The
reason why we incorporate the square root of the effective sample size is that it
is known from the Lasso literature that the ¢1-penalty term asymptotically has
to grow with the square root of the sample size in order to achieve optimality
[Biihlmann and van de Geer (2011)]. We consider three slightly different functions
Pen(-) defined as follows:

o Penjnycov(2) = ||27 1, the classical penalty known from the Graphical Lasso.
It imposes £1-constraints on the nondiagonal entries of the concentration ma-
trix Q.

o Penparcor(€2) = ||W 7 ||1, where W is the partial correlation matrix which can be
written as (W) = — 27 // Q1.
e Penjnyeor(2) = |7 |1, where @ is the inverse of the correlation matrix given

by ®=C"1, Cyp = Sy /VEuZim.

Note that all three functions penalize the £;-norm of the concentration matrix
and therefore lead to sparse €2’s. The advantage of Penparcor(-) and Penjpycor(+)
is that they are scale-invariant and therefore remove concerns that arise from state-
specific scaling. As we noted above, state-specific scaling cannot be removed by
preprocessing in the HMM setting since state assignments are themselves un-
known at the outset.
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Optimization of (2.3) is nonstandard. Noting that

W % 1 ) o)
Ui
s Qu: T ThE ) = 26 10g|Qk|——tr(QkT2 ) + ul QT

1
- En](cl)l/q{gkﬂk,

ORI
it is easy to verify that (2.3) reduces to ,u( D Lf" / n,(;),
; . (i) A ;
2.4) Q,((’H) = argmin — log || + tr(2C"* ) + 2p n,ﬁ’) Pen(2;),
k

Q

) o) . ) _
where C% = (1,) Tg" — (’+1)( (’H))T For the penalty function Penjqycov (+) op-

timization problem (2.4) can be solved by the Graphical Lasso algorithm presented
in Friedman, Hastie and Tibshirani (2008). In the supplementary material [Stadler
and Mukherjee (2013)] we compare these three different penalties and discuss how
we perform optimization.

Algorithm 1 summarizes HMMGLasso. As stated above, the EM algorithm de-
pends on initial specification of parameters, that is, 9(0) no &= , K). For

convenience (see later in text) we directly specify u; )(t) (instead of 9,50)) and start
with an M-Step followed by an E-Step. We stop the algorithm if the relative change
in the X;’s falls below a threshold ¢ or if for at least one state the scaled effective
sample size my is smaller than mpyp.

Algorithm 1 HMMGLasso
1: Input K, 1, YO = {u® ())izt... xser, 1O, 7O} and seti =0, err® = 0.
2. while {err) > ¢} v {n,ﬁ’) > Tmin forallk=1,..., K} do

3: M-Step Obtain estimates
. . (i) (1)
({0, Q") = argmin,,, o z(uk,szk,T“ Ty¢) + Ay’
Pen($2;)

Hl(clk—/H) = l(clk)// /El) (H,S()/ = l'I( rw in Lst iteration)
4: E-Step Use Forward-Backward equations to update
H_1)(1) =Pgai+n (S = kI1X)
1
V](Clk_t_ )(l’) = P(—)(H'I)(Sl‘ = k’ ST+1 — k/lx)
1 i+1
m = @/n
5050

; |z |
5: Set err ™V = max ; j{—2L Y and i < i + 1
HE 0

6: end whilg .
Output 85N = (Ok ;, (O ()k=1....K.1eT> 7T}

=
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2.2. Universal regularization. In this section we discuss the choice of the reg-
ularization parameter A in HMMGLasso. We will argue that Ayp = +/2nlog p/2
is a reasonable regularization parameter for HMMGLasso. We do this by consid-
ering connections with the Lasso [Tibshirani (1996)] and the Graphical Lasso [or
GLasso; Friedman, Hastie and Tibshirani (2008)]. In the classical Lasso or GLasso
setup the regularization parameter is usually chosen empirically to minimize the
prediction error (e.g., by performing cross-validation). However, in the HMM (or
more generally latent variable) setting, with unknown number of states K, such a
brute force strategy is computationally burdensome, motivating the need for uni-
versal regularization.

First, consider a classical regression setup with y = X8 + ¢, where & ~
N(0, 021). Here, X is a N x p predictor matrix, y a N x 1 response vector, 8 de-
notes the p x 1 regression parameter and o2 is the error variance. Then, the Lasso
estimator minimizes ||y — XS Ik /2N +s||B1l1. Assuming an orthonormal predictor
matrix, Donoho and Johnstone (1994) showed that the risk of the Lasso estimator
comes close to the oracle risk if we use syn; = 0+4/21og p/N as a regularization pa-
rameter. Universal regularization and the penalty o +/2Tog p/N are discussed also
in the nonorthonormal case in Zhang (2010) or Sun and Zhang (2012) [see also
Barron et al. (2008); they propose a universal penalty parameter based on the min-
imum description length principle]. It is important to note that s,,; decreases with
1/+/N. This is the reason why we include the square-root of the effective sample
size into the state-specific penalty terms in the HMMGLasso (see Section 2.1).

Next, consider the Graphical Lasso,

Q = argmin —log || + tr(SQ) + p| Q™
Q

1°

where S is the sample covariance matrix of X = (XD, .., Xy ~ N, )
with Q = £~!. Friedman, Hastie and Tibshirani (2008) showed that the last
row/column of €2 can be obtained by solving

A

(2.5) ﬂ=arg/;nin0.5ﬂ211,3—ﬂs12+p||,8||1,

where 8 and 2 are linked through 017 = X118 (X1 is the covariance matrix with
the last row and column deleted; o1» and sj> denote the last row of the covariance
and sample covariance matrix). Note that (2.5) can be interpreted as the Lasso
estimator corresponding to regression of variable X (”) against X, ..., XD,
As 1/, is the error variance in regressing X against XV, ... XP~D wecan

identify Q;;/ 2«/210g p/N as a good choice for p in (2.5). If Q2 is standardized to
have unit diagonal entries, then we can write pyni = +/2log p/N.
Now consider equation (2.4) of the HMMGLasso with Penjpycov(-) and assume

all ©;’s are standardized to have unit diagonal. Equating 2n)‘—k n,ﬁi) with pypi =
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+/21log p/ni (the universal shrinkage level in the Graphical Lasso with sample
size N = ny) and solving for A, we obtain

Auni =+/2nlog p/2.

For the penalty function Penjnycov(-) the foregoing indicates that Ayn =
+/2nlog p/2 only holds if the 2;’s are standardized and therefore equal the
corresponding partial correlation matrix. In general, since state assignments are
themselves unknown, this standardization cannot be done as a preprocessing step.
However, if we use Penpacor () instead, Auynj = +/2nlog p/2 applies regardless of
scaling. Penalizing the partial correlation can be seen as a generalization of the
“scaled” Lasso proposed by Stédler, Biihlmann and van de Geer (2010). There, the
negative log-likelihood is penalized by s@ and optimization is performed over
B and o simultaneously. A reasonable choice for s is 4/21og p/N, which does not
depend anymore on the unknown noise level [see Sun and Zhang (2012) and also
the discussion in Stiddler, Biihlmann and van de Geer (2010)].

Thus, Ayp; is the penalty level we use for estimation in HMMGLasso. It is “uni-
versal” in the sense that it only depends on the dimensionality of the input data n
and p. Furthermore, when Ayp; is used with the penalty Penpyreor(-) the penaliza-
tion self-adapts to the hidden states by incorporating the square-root of the effec-
tive sample size and by taking care of scaling.

2.3. Model order exploration using Greedy Backward Pruning. Greedy Back-
ward Pruning can in principle be used with a wide range of model selection cri-
teria; here we consider the popular Bayesian Information Criterion (BIC) and
the Mixture Minimum Description Length (MMDL). MMDL was introduced by
Figueiredo, Leitdo and Jain (1999) and was specifically proposed for the purpose
of determining the number of components in finite mixtures. We first describe
these criteria and then go on to give a detailed description of the Greedy Backward
Pruning algorithm.

Model selection criteria. A model selection criterion C has to trade off goodness
of fit and model complexity. BIC and MMDL are defined by

A A 1 1
BIC(Ok,3) = —€(Ok »; X) + 3 log(n)K(K — 1) + 3 log(n) ) Df(k, %),
k

A A 1 1
MMDL(®k ;) = —€(Ok »; X) + 3 log(m)K (K — 1)+ 3 log(n7k) Df(k, 1),
k

where in the context of £1 penalized log-likelihood we set the degrees of freedom
as Df(k, M) = p+ 211 g, Rypne

MMDL can be motivated by the minimum description length principle
[Griinwald (2007)]. The negative log-likelihood represents the optimal code-length
of the data given model parameters ®. The term %log(n)K (K —1) is the “opti-
mal” code-length for the transition matrix IT (note that IT is estimated from all
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data). As nmy is the effective sample size from which 0 = (ug, 2x) is estimated,
we get % log(nmy) Df(k, 1) as an “optimal” code-length for describing 6.

The main difference between BIC and MMDL is the use of the effective sample
size n7y in the code-lengths for parameters which are state-specific. Figueiredo,
Leitdo and Jain (1999) argued using ideas from minimum description length lit-
erature that MMDL is more appropriate for mixtures than BIC. They demonstrate
on real and synthetic data that MMDL outperforms BIC. In Section 3 we compare
performance of Greedy Backward Pruning using BIC and MMDL as model selec-
tion criteria. In our more involved inference task we come to the same conclusion
as Figueiredo, Leitdo and Jain (1999), namely, that MMDL outperforms BIC.

Greedy Backward Pruning in detail. Greedy Backward Pruning works by first
estimating parameters using HMMGLasso with a large number of states Kax
and then iteratively reducing the number of states until some minimal number of
states Kpin 1s reached. Each iteration involves either merging the two “closest”
states or deleting the “smallest” state, and then re-running HMMGLasso with one
fewer state, using estimates from the previous step as initialization. This scheme is
summarized in Algorithm 2.

We give now a definition of “smallest” state and “closest” states and describe
the “merge” and “delete” operations in detail. Let O be the current estimate for K
states. The merge operation consists of detecting the two closest states k1 and kp

Algorithm 2 Greedy Backward Pruning with HMMGLasso

1: Input Kpin and K. Initialization of Y Kmax) = {(ug(t))k=1... KpureT
I, 7}.

2. Fit HMMGLasso and obtain: &KmaxAuwi) « HMMGLass0(K max, Auni,
T(Kmax)).

3: Set k = Kiax.
4: while k > K, do
5: Merge Or Delete
Compute merged/deleted initial conditions: Yper and Ygel.
Compute Eper < HMMGLasso(x — 1, Aupi, Ymer)
Compute Ege) < HMMGLasso(x — 1, Aypi, Ydel)-
6: Update:
Setk <k — 1.
Set 80 i) Bmer if C(Omer) < C(Oga).
Set &® i) — Ege if C(Ogel) < C(Omer)-
7: end while

[ee)

: Set: Iéom = argmin, C((:)K;}huni)'
. Output final estimates: O, ot Auni

Ne)
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defined as

(k1, ko) = argmin Dy (G )|0r),
kk'e{l,...,K}

where Dy (ék ||ék/) is the symmetric Kullback—Leibler divergence given by
RNCAD
=tr{(Z — Z0) (2" = SO+ G — )" (27 = 20 G — ).

We merge states k1 and k; into a new state (denoted by k1 U k») by forming new
initial conditions for the next run of HMMGLasso with K — 1 states. In particular,
we compute merged responsibilities as

Umerk; Uk, (t) = ﬁk] (t) + ﬁkz (t)v
Umerk (1) = T (1) (for k # k1 Ukz)

and get a merged transition matrix using updates

Mimerk, Uty & = Ly x + Migp (for k' # k1 Uky),
Mmerk i = g p (for k' k # ki Uka),
Mmerk ity = 1/(K = 1) (fork' =1,....K —1).

All these operations are based on the relation P(S; = k1 U S; = ko) =P(S; =
kil-) +P(S; = kal-).

The delete operation simply discards the smallest state according to
minge(1,... k) 7. Initial conditions ugel, ITqel arising from deleting a state are de-
rived by omitting the corresponding row/column of @, IT and renormalizing these
quantities such that rows sum up to one.

Note that the Greedy Backward Pruning algorithm needs to be initialized only
once, namely, at Kn,x. Further, we note from Algorithm 2 that we decide between
the “merging” and “deleting” operations based on the model selection criterion,
that is, if initial conditions obtained from merging leads to an estimate with smaller
criterion C, we choose that solution, otherwise we take the solution obtained from
the “delete” operation. As demonstrated in the examples below, Greedy Backward
Pruning with only a single initialization at large K,y yields remarkably good
estimates in the unknown K case. Our procedure originates from the algorithms
proposed in Figueiredo, Leitdo and Jain (1999), Figueiredo and Jain (2000) and
Bicego, Murino and Figueiredo (2003). Our empirical results below echo the find-
ings of these authors that Greedy Backward Pruning-like approaches can confer
robustness to initialization.
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3. Examples.

3.1. Simulation studies. In this section we describe data-generating models
that we use for simulation examples. We consider the following:

Model 1. Kye € {2, 4,6}, n =2000, p =10, (n/ p-ratio=200).

Transition matrix. Tz = 0.1y and Tz = 0.9y, where k, k" € {1,..., Kire}
and y is chosen such that fo;”f My = 1.

Means ui,k =1, ..., Kque. Each state has p/ K nonzero entries with value
(—1*a//p/Kirue. Nonzeros are at different locations for each state.

Concentration matrix Qk,k = 1,..., Kyye. Each state has p nonzero (off-
diagonal) entries. To reflect the setting in which states share some aspects of the
graphical model structure, p/2 nonzeros are shared between all states, whereas the
other p/2 nonzeros are at different locations for each state. Concentration matrices
are generated as in Rothman et al. (2008) but standardized to have unit diagonal
entries.

Model 2. As model 1 but with p =75, (n/p-ratio =26 2/3).

Model 3. As model 1 but with n = 1000 and p = 100, (n/p-ratio = 10).

Model 4. Kie € {2, 4, 6}, n =5000, p =50.

Transition matrix. [Ty = 0.1y, I = 0.9y for k # Kie; Mgk’ = 1/ Kirue
(K" € {1,..., Kiue}). Again, y is chosen such that rows sum up to one.

Means. (uy); =« forl € {1,2} and k € {1, 2}. All other entries equal zero.

Concentration matrix. For k =1,2: Q¢ =1,. For k =3, ..., Kiye: £ has two
nonzero entries, at different locations for each state. Concentration matrices are
standardized to have unit diagonal entries.

Ideally we seek methodology that can automatically adapt to both low- and
high-dimensional settings. Accordingly, models 1, 2 and 3 have the same design
but differ with respect to the n/p-ratio. We include the small p, large » model 1
as a baseline and to investigate the performance of universal regularization in the
classical low-dimensional setting. Model 4 is a challenging problem, similar in
terms of n, p to the real, genomic data example below.

Experiment 1. Number of states. In this experiment the focus is on state recovery.
We explore the ability to estimate the correct number of states K and recover the
state assignments. We compare the following methods:

HMMGLasso initialized by Kmeans (Hmmgl);

HMMGLasso with Greedy Backward Pruning (Bwprun);
Unpenalized maximum likelihood estimation (MLE) (Unpen);
MLE with diagonal restricted covariance matrices (Diagcov);

Model-based clustering via Gaussian mixture models [Mclust; Fraley and
Raftery (2006)].

Thus, Hmmgl and Bwprun are the methods we propose. Both Hmmgl and Bw-
prun carry out estimation (for given K) using the penalty and universal regulariza-
tion via Aypj that we put forward above; the former embeds our estimator within a
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TABLE 1
Methods used in simulation Experiment I [r.s. stands for random starts)

Method Selection criterion C Regularization/Constraints Initialization
Bwprun BIC/MMDL (Penparcor, Auni) KM (100 r.s.) at Kmpax = 15
Hmmgl BIC/MMDL (Penparcor> Auni) KM (100 r.s.)
Unpen BIC/MMDL No constraints KM (100 r.s.)
Diagcov BIC/MMDL Diagonal covariances KM (100 r.s.)
Mclust BIC Various covariance structures Hierarchical clustering

[see Fraley and Raftery (2002)]

standard, “brute-force” exploration of K, while the latter uses Greedy Backward
Pruning.

In all numerical experiments we stop the algorithms according to the rule
described in Algorithm 1 with ¢ = 1073 and 7 = 5 /n (for Unpen we use
Tmin = p/n to ensure nonsingular covariance estimates). For each method we use
each of BIC and MMDL as model selection criteria. For Hmmgl, Unpen and Di-
agcov we compute estimates for K =1, ..., Kiye + 2 and pick the number of
states minimizing BIC or MMDL. As a reference, we also cluster the data us-
ing the R-package mclust [Fraley and Raftery (2006)]. We use the function
Mclust; this employs Gaussian mixture models and uses BIC to automatically
select between different covariance structures and numbers of clusters (we allow
K=1,..., Kie+2). We initialize Mc 1ust using model-based hierarchical clus-
tering with equal spherical covariances (we note that the default initialization of
Mclust, using hierarchical clustering with unconstrained covariances, performs
worse in the examples below). For more details see Fraley and Raftery (2002).
Specifications of all the methods are summarized in Table 1.

We generated 50 data sets from each of models 1-4 with « = 2 and report for
all methods number of selected states and adjusted Rand index (this quantifies the
extent to which estimated state assignments agree with true state membership).
The results for models 3 and 4 are summarized in Figures 1 and 2; Figures S2
and S3 in the supplementary material [Stddler and Mukherjee (2013)] show results
for models 1 and 2.

In nearly all settings Diagcov is unable to recover the correct number of states
and performs poorly in terms of adjusted Rand index. This is not surprising as
Diagcov imposes incorrect model assumptions. Only in model 3 with Ke = 2,
where for both states the data generating covariance matrices are diagonal, does
Diagcov perform well. MLE without penalization (Unpen) does well only in
the low-dimensional model 1. Both the proposed methods (Hmmgl and Bwprun)
greatly outperform the other methods in models 2—4. This supports the notion that
regularization can be useful even when sample size n is seemingly large.

HMMGLasso also works well in model 1 with large n and very small p, a
scenario where no constraints are necessary. This demonstrates that the adaptive



2170 N. STADLER AND S. MUKHERJEE

Model 3: K=2 Model 3: K=2

504 M M MM
_ e ——
454
40
35 :
304 .

- —_ —_
204
154

-

—
54 : ' _ _
[ — — — 73 T3 T3 T3 T T3 T T

i i R 3 T T T T T T T
mclust  diagh  diagm unpenb unpen.m hmmglb hmmglm bwb  bwm mclust  diagh  diagm unpenb unpenm hmmglb hmmglm  bwb  bwm

Model 3: K=4 Model 3: K=4
— % i -

o o o o =
> I ® © o
T S S

Adjusted Rand Index
o o
2 &
L

Frequency estimated K
g
1
o o o
28 o
R

o
o
L

50 n n

o
1

o o o o
> I ® ©
[N T

o o ©
=
L

[
7 1. B2
; :
———| — —
—

05

Frequency estimated K
b
I

Adjusted Rand Index

L dlll Ll 2 ___ B
g T 46735 246135 2467355 246735 T T T T T T T T
molust  diagh  diagm unpenb unpenm hmmglb hmmglm bwb  bwm molust  diagh  diagm unpenb unpenm hmmglb hmmglm bwb  bwm

Model 3: K=6 Model 3: K=6

50 n

1.0 —_ —_

nll [ (i

10 021 + * |
= -
5 = BT
- : +
00 -+
o ullll T T

TI57 24687357 ZIEEITST 24681357 24687357 T T T T T T
mclust  diagh  diagm unpenb unpen.m hmmglb hmmglm bwb  bw.m melust  diagh  diagm unpenb unpenm hmmglb hmmglm  bwb  bw.m

o o o o
> I ® ©
PR T

Adjusted Rand Index

Frequency estimated K
o o o
S
1

F1G. 1. Simulation model 3 (p = 100, n = 1000), number of states and state assignments. Left pan-
els: frequency of estimated number of states; in each case the correct number of states (i.e., number
of states in data-generating model) is indicated in black. Right panels: adjusted Rand index with re-
spect to true state assignments. [Legend: Results for Mclust (mclust), MLE with diagonal covariance
matrices (diag), MLE (unpen) and Greedy Backward Pruning (bw) are shown. The extensions “.b”
and “.m” stand for BIC and MMDL, resp.]

strategy and universal regularization can be applied without any hand tuning also
in the low-dimensional setting. We also read off from Figures 1-2 (see especially
scenarios with K = 6) the substantial improvement of Greedy Backward Pruning
relative to HMMGLasso, despite the fact that the latter carries out essentially a
brute-force search over K. Also, the use of MMDL further improves performance
(it never performs worse than BIC). Especially in tough and very high-dimensional
scenarios (models 3 and 4 with K = 6), MMDL seems to perform better.
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Experiment II: Graph structure. In this experiment we focus on recovering state-
specific graphical model structure. We consider model 3 with K € {2, 4, 6}
and o € {2, 6, 10}. We compare Greedy Backward Pruning, HMMGLasso (K =
Kirue, Penparcor, Auni), Kmeans (with number of clusters set to K = Kyye) followed
by estimating cluster-specific inverse covariance matrices using Graphical Lasso,
and Graphical Lasso using all samples (no state assignment or clustering). In Fig-
ure 3 True Positive Rate (TPR; with respect to edges in the data-generating graph)
is plotted against the corresponding False Positive Rate (FPR) for all combina-
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FI1G. 3. Simulation experiment Il, graphical model estimation. Comparing estimated state-specific
conditional independence graphs against the data-generating graphs gave true positive and false
positive rates with respect to edges in the graphs (TPR and FPR, resp.). We show TPR plotted
against FPR with K € {2,4, 6}, a € {2, 6, 10} for model 3. [Legend: Results for Greedy Backward
Pruning (bwprun), HMMGLasso (hmmgl), Kmeans clustering with cluster-wise Graphical Lasso
(km + glasso) and Graphical Lasso applied to nonclustered data (glasso) are shown.]

tions of K and « and different methods. We note that Greedy Backward Prun-
ing consistently selects the correct number of states in all scenarios except in
(Ktrue, &) = (6, 2) where it chooses K correctly in 36 out of 50 data sets.

Greedy Backward Pruning performs well in terms of TPR and FPR. It is note-
worthy that universal regularization using Ayp; gives consistently good results un-
der arange of conditions. We see that HMMGLasso exhibits a smaller true positive
rate in the most challenging K = 6 case. For « = 2 Kmeans in combination with
GLasso performs much worse, in particular in terms of TPR. For larger «’s (and
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therefore with increased information about state-assignment in the means) TPR
and FPR of Kmeans improves. Finally, GLasso applied to all data without any
clustering leads to very poor performance (this is likely a consequence of Simp-
son’s paradox).

3.2. Application to genomic data. We consider genome-wide binding data for
53 proteins in the Drosophila cell line Kc167 [data from Filion et al. (2010)].
Filion et al. (2010) represents an important step forward in the genome biology of
Drosophila, showing how multivariate data can reveal protein-DNA binding pat-
terns that depend on genome region. Here, we use this data set to test our HMM
methodology. The data set offers a number of advantages for our purposes. First,
the coverage of a relatively large number of proteins (p = 53) in the full data gives
a high-dimensional example from current genome biology. Second, the abundance
of data (n = 33,632 for chromosome 2L and n = 32,791 for chromsome 2R) al-
lows fully held-out validation on a large test set (we use the latter half of chrom-
some 2R, giving neg = 16,396) as well as exploration of the effect of (train-
ing) sample size. Finally, although substantive biological questions are beyond
the scope of this paper, several open questions concerning genome organization
in Drosophila, including the likely number of genome regions, and the possibility
of region-specific protein—protein interplay, help to motivate the methodological
questions we address here.

Filion et al. (2010) identified regions of the genome by fitting a HMM (us-
ing classical, unpenalized estimation) to reduced-dimension data. Dimensionality
reduction was carried out using principal component analysis (PCA) as a prepro-
cessing step, with the HMM fitted to the first three principal components. Such
approaches are currently widely used in genome biology. By looking at principal
components, Filion et al. (2010) suggested a model with five states (corresponding
to different chromatin types). They further noted that these five states are marked
by enriched binding of the proteins HP1, PC, HI, BRM and MRGI5 and that a
5-state HMM using only the five marker proteins as an input recapitulates 85.5%
of the original state classification.

We investigated performance in a held-out predictive sense by training on the
first 7¢ein = 500, 1000, 2000, ..., 5000 observations of chromosome 2L and then
reporting the test log-likelihood obtained from the second half of chromosome 2R
(nest = 16,396). As above, we compare HMMGLasso (Hmmgl), Greedy Back-
ward Pruning (Bwprun), unpenalized MLE (Unpen) and MLE with diagonal co-
variance matrices (Diagcov). Additionally, we include a five-state MLE using only
the five marker proteins reported by Filion et al. (2010) (Marker). For Hmmg],
Unpen and Diagcov the number of states is determined by exploring different K’s
in a forward stepwise manner. We use MMDL and BIC as model selection cri-
teria. All methods are initialized by Kmeans with initial centroids obtained using
hierarchical clustering; this renders the overall analysis deterministic by removing
variability due to random initialization of Kmeans.
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FI1G. 4. Genomic data, MMDL(BIC) and predictive performance. Models were fitted to protein
binding data from Filion et al. (2010) (see text for details) and tested on held-out data from the
same study. Left panel: MMDL(BIC)-scores (scaled by nin) for different methods trained on the
first nigain = 500, 1000, ..., 5000 observations of chromosome 2L. Right panel: negative test log—
likelihood evaluated on a test set (second half of chromosome 2R; training data is from parts of
chromosome 2L). [Legend: Greedy Backward Pruning (Bwprun); HMMGLasso (Hmmgl); Unpenal-
ized MLE (Unpen); MLE with diagonal restricted covariance matrices (Diagcov); Five-state MLE
using only marker proteins (Marker). ]

Figure 4 shows the MMDL/(BIC)-scores (scaled by ny,in) and the negative test
log-likelihood as a function of n.in. Figure 5 depicts the selected number of states
for each method and training sample size. Overall, we notice that MMDL (BIC)
and test log-likelihood show similar patterns for different methods and differ-
ent sample sizes. Bwprun and Hmmgl greatly outperform Marker and Diagcov.
This provides a topical example where a multivariate view (using all variables and
modeling also state-specific covariances) improves out-of-sample predictive per-
formance. The predictive gain of penalization compared to unpenalized MLE for
moderate n/ p-ratios is also noteworthy. As expected, the performance of Unpen in
terms of MMDL (BIC) and test log-likelihood approaches the penalized methods
with increasing sample size. However, in terms of number of states (Figure 5), the
estimates are very different even for large n.in, that is, penalization typically leads
to more states than unpenalized MLE. This illustrates that the prediction-optimal
number of states depends on the estimation procedure employed: regularization
allows estimation for a greater number of states. If state-specific estimates have
scientific relevance, this property can be important, since, due to Simpson’s para-
dox, estimates for finer state distinctions (larger K') cannot, in general, be recov-
ered from coarser models (smaller K). We return to the question of exploration of
number of states in the Discussion below.
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FIG. 5. Genomic data, number of states. Number of states selected (at various training sample
sizes) by Greedy Backward Pruning (Bwprun), HMUMGLasso (Hmmgl), unpenalised MLE (Unpen)
and MLE with diagonal restricted covariance matrices (Diagcov). All methods are trained on parts
of chromosome 2L and use MMDL or BIC as the model selection criterion. The number of states in
Hmmgl, Unpen and Diagcov are determined by a forward stepwise selection.

We note that for each training sample size 7n4in the results shown in Figures 4-5
reflect performance for a single training sample of the specified length. For com-
pleteness, Figure S4 in the supplementary material [Stddler and Mukherjee (2013)]
shows performance over 9 different training data sets of size n,in = 1000.

4. Discussion. We considered penalized estimation in multivariate HMMs,
including, in particular, the case of high dimensions and state-specific graphical
models. As we demonstrated in simulated and real data examples, the methodology
we propose substantially improves upon current practice. Our results demonstrate
the utility of regularization for HMMs, even when sample sizes are not small.
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It is interesting to consider why careful penalization is needed in HMMs (and
related latent variable settings like mixture models). In a simple linear model, as
in regression, the ratio n/p is a measure to distinguish between a low- and high-
dimensional problem. If the ratio n/p is small, classical least-squares estimation
leads to poor predictive performance due to a large number of predictors com-
pared to a small sample size. On the other hand, if n/p is large (e.g., >20), then,
very likely, least-squares regression performs well. In HMMs (and mixtures) the
situation is more subtle. It is instructive to consider the ratios ni/p (n; denotes
the number of samples belonging to state k) as a measure whether an inference
problem is high-dimensional or not. If for at least one state this ratio is small, then
MLE is likely to overfit and results in a poor generalization error. A fundamen-
tal problem that we emphasized throughout the paper is the fact that the ratios
ny/p depend on the number of states K and on the state-sizes ny, which are them-
selves usually unknown a priori. So, a seemingly low-dimensional problem with
a large sample size and with a moderate number of features can become a high-
dimensional task in practice, especially if a large number of states cannot be ruled
out a priori. In fact, our simulations illustrate that even when ming ny/p is rela-
tively large, the MLE can be ill-behaved. For example, in our simulated model 2,
with K =2, we have n = 2000 and ny/p > 13 in each state; nevertheless, the
MLE fails completely to recover correct state assignments [see Figure S3, supple-
mentary material, Stddler and Mukherjee (2013)].

A straightforward approach to handle inference in high-dimensional HMMs is
to fix constraints on the state-specific covariance matrices (e.g., assuming diago-
nal covariance matrices). However, such an approach leads to poor predictive per-
formance when the assumption is invalid and precludes discovery of state-specific
covariance structure. As in the genome biology example we considered, such struc-
ture may itself be of scientific interest. We note also that the hidden nature of the
states makes it difficult to test any such model assumption. In fact, if the covari-
ance matrices of an HMM with a specific number of states satisfy some constraints,
then these constraints do not necessarily hold for an HMM with smaller or larger
number of states (Simpson’s paradox).

Estimation of the number of states in a HMM (or mixture model) remains chal-
lenging. The backward pruning approach we proposed gives an efficient way to
estimate parameters for a sequence of candidate number of states K. If desired, a
single “optimal” number of states can then be selected using model selection cri-
teria, as we demonstrated in the examples above. Several recent efforts in genome
biology have sought to use statistical criteria to elucidate the number of states in the
genome [Ernst and Kellis (2010), Filion et al. (2010)] and the methodology we pro-
pose can help to further explore this question in a truly multivariate manner. How-
ever, it is important to emphasize the limitations of model selection approaches in
scientific settings of this kind. Under model misspecification, in general there is no
guarantee that the correct number of states will be selected. To illustrate this effect
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empirically, we simulated data under model 3, but with contamination by sam-
ples drawn from a multivariate t distribution [Figure S5, supplementary material,
Stadler and Mukherjee (2013)]. We find that although estimation of the number of
states holds up well for lighter tailed contamination, for heavier tails it is demon-
strably inaccurate. Such behavior is unsurprising, even in the large sample setting,
since under model misspecification we would then expect to recover the model
closest in Kullback-Leibler sense to the data-generating model, which may not
be the model with the scientifically correct number of states. These observations
underline the need for care in scientific applications where the number of states
may have a physical or biological interpretation and where some degree of model
misspecification is likely unavoidable [in the related setting of mixture modeling,
see, e.g., the discussion in Hennig and Liao (2013)].

In light of the foregoing observations concerning model misspecification, it is
interesting to consider the interplay between model selection and regularization.
For a given estimator, the optimal number of states is well defined in a predictive
sense as the value that minimizes risk. From this point of view it is easy to under-
stand why the prediction-optimal number of states may be higher under regular-
ization or when more training data are available (see Figure 5). For these reasons,
when scientific understanding rather than prediction alone is one of the goals of
analysis, it is not clear whether it is useful to think in terms of a “correct” number
of states. Rather, it may be useful to think of estimates {®} (obtained, e.g., via
backward pruning) as collectively providing a resource for exploration of a system
of interest.

In the context of mixtures, there is a growing literature on penalized likeli-
hood methods which address the high-dimensional context to some extent [Hill
and Mukherjee (2013), Khalili and Chen (2007), Pan and Shen (2007), Stéddler,
Biihlmann and van de Geer (2010)]. However, none of these methods addresses
the need to ensure penalties are able to handle state-specific scaling (that cannot
be dealt with by preprocessing) and size (i.e., unknown at the outset). The selection
of the number of mixture components also remains an open issue in this literature.
Our approach handles these issues that arise due to the hidden nature of the states
and could be straightforwardly applied in the mixture model setting. Further gen-
eralization to other latent variable models may also be possible.

In the genome biology example we considered, penalization led to gains in pre-
dictive ability relative to the MLE and to reduced dimension approaches that have
been used in the literature. This suggests that despite redundancy in biological sig-
nals, a multivariate view can enhance predictive ability. Further, we were able to
learn richer models than are possible using currently available methods, including
estimates of state-specific graphical model structure. The latter may shed light on
protein—protein interplay that is specific to genomic region; such interplay has not
been investigated to date and is one focus of our ongoing efforts in this application
area. We used data from Filion et al. (2010); we note that the main substantive
conclusions drawn in that paper are broadly supported by our analyses and the
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richer set of states uncovered by our approach are related to the states they report.
Genomic data sets are becoming increasingly high-dimensional and we anticipate
that the methodology presented here will be useful to researchers in that field. Be-
yond biology, potential applications for high-dimensional HMMs are numerous,
including in signal processing and finance.

We showed that the approaches we put forward for HMMs, including universal
regularization and Greedy Backward Pruning, work well in empirical examples.
However, there remains a need for theoretical investigation of these ideas. Our
penalty in combination with Ay, was inspired by making connections to results
obtained for the well-studied Lasso case. A challenge for future theoretical work
is to provide insight into optimality of these and related approaches and to establish
global convergence properties of penalized estimation in latent variable settings.
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SUPPLEMENTARY MATERIAL

Graphical Lasso with different penalty functions and supplementary fig-
ures (DOI: 10.1214/13-AOAS662SUPP; .pdf). Optimization and performance of
the Graphical Lasso with the penalty functions Penjycoy, Penparcor and Penjpycor
introduced in Section 2.1. Additional Figures S2-S5 for Sections 3.1, 3.2 and 4.
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