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Abstract. We construct, on a single probability space, a class of regenerative sets R indexed by all measurable functions
«:[0, 1] — [0, 1]. For each function «, ’R(“), has the law of the range of a special subordinator. Constant functions correspond to
stable subordinators. If « < g, then R c RB). Other examples of special subordinators are given in the lattice case.

Résumé. Nous construisons, sur un unique espace de probabilités, une famille d’ensembles régénératifs R@  indexée par toutes
les fonctions mesurables « : [0, 1] — [0, 1]. Pour une fonction donnée «, I’ensemble R @) a méme loi que I’image d’un subordina-
teur spécial. Les fonctions constantes correspondent aux subordinateurs stables. Si o« < 8, on a R@ c RP). Dautres exemples
de subordinateurs spéciaux sont donnés dans le cas discret.

MSC: 60G51
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1. Introduction

Recall that a (possibly killed) subordinator (S;);>¢ is a Lévy process on R with Laplace exponent given, for A > 0,
by

¢ (1) = —log E[exp(—=AS1) ] = a + bA +/ M (dx)(1 —e ). 0
0

The coefficient b > 0 is the drift, IT is the Lévy measure and a > 0 is a killing parameter. If a > 0, S is submarkovian.
A function of the form (1) is called a Bernstein function. R R

The subordinator S is special if it admits a dual subordinator (S;);>0 with Laplace exponent ¢, such that for every
A >0,

d(GO) = 1. )

The canonical example is the case when S (resp. §) is the subordinator of the ascending (resp. descending) ladder
times of a real-valued Lévy process X. In particular, if X drifts to —oo, then S is a killed subordinator (that is, the
parameter a in (1) is positive). If X is stable, then S and S are stable, with respective indices « = P(X; > 0) and
1 — . If X is symmetric and is not a compound Poisson process, then S and S are stable with index 1/2. See, among
others, Bertoin [1], Doney, [3], Schilling et al. [8] for numerous references on subordinators, Bernstein functions and
the connections with fluctuation theory for Lévy processes.

It turns out that, apart from the classical example of ladder times of a Lévy process, the class of special subordi-
nators or special Bernstein functions is not known in detail. The main goal of this paper is to introduce a family of
special subordinators indexed by all measurable functions « : [0, 1] — [0, 1]. A property of this family is that we can
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construct the ranges of all these subordinators on a single probability space, with the property that if @ < 8, then the
range of S is contained in the range of S#). Here are the statements:

Theorem 1. For every measurable function o :[0, 1] — [0, 1], there exists a special subordinator (St(a))tzo with
Laplace exponent

L ov=Da®)

@) — _ WV P
'@ (M) = —logE[exp(—AS5,")] = exp 150 <D

for & > 0. Its dual is the subordinator (St(l_a)),zo.

Note that when « is constant, S is stable with index «. Moreover, put @ () = ¢® (4 1). Then

1 00 1
() _ M(X(X) _ 1yt n/ n
A _eXp/o T dx —GXP<H§_1( D" A [a(x)] dX>

can be expanded as a power series in u whose coefficients can be computed from the moments of the measure
v(dx) = a(x)dx on [0, 1]. Observe that the measure v is characterized by its moments and that these moments
determine the function ¥ (), and thus also determine ¢@. It follows that if a(x) # B(x) for x in a set of positive
Lebesgue measure, then ¢ = ¢,

Theorem 2. One can construct, on a single probability space, a family of regenerative sets R indexed by all
measurable functions « : [0, 1] — [0, 1], such that

e for every measurable function o,
R@ law {St(a)’ t> 0},

e ifa, B are two measurable functions such that for every x € [0, 1], a(x) < B(x), then
R@ ~ R®B)

The properties of a subordinator can be read from its Laplace exponent. In turn, the properties of this exponent can
be deduced from the function «, see Proposition 1 in Section 3.

Our construction generalizes a former construction for stable processes. This was used to construct Ruelle cascades,
using nested stable regenerative sets obtained by subordination [6]. Other constructions of regenerative sets can be
found in [4,5,7,9].

We first explain, in Section 2, a similar construction in the lattice case, that is, in the framework of integer-valued
regenerative sets. We use it to prove Theorems 1 and 2 in Section 3. In the lattice case, an extension is given in
Section 4. In particular, this extension includes a lattice version of the special subordinators described in [10]. It
should be possible to give a continuous version of the construction described in Section 4, however, we shall not
handle this question here.

2. The lattice case

The lattice equivalent of a subordinator is a random walk on N U {oo} (we include here the possibility of killing the
random walk by sending it to 00). Such a random walk S has a generating function (1) = E(¢51), defined for ¢ < 1.
The dual of S, if it exists, is the random walk S with generating function v such that

(1-v®)(1-¥@®)=1~-1 3)

which is a discrete version of (2). A lattice regenerative set is the range of a random walk on N started at 0.
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Fig. 1. Construction 1.

For instance, the set of strong ladder times of a discrete time real-valued random walk X is a lattice regenerative
set. This regenerative set has a dual, namely the set of weak ladder times of —X.

It is a classical fact that a random subset R of N U {oo} is a lattice regenerative set if and only if it contains 0
and satisfies the regenerative property: for every n € N, conditionally on the event that n € R, the set R N [n, 00] is
independent of R N [0, n] and has the same law as R + n.

We construct a family of random walks on N, indexed by measurable functions « as in Theorem 1.

Construction 1. Fix a measurable function o :[0, 1] — [0, 1]. Let (X,,n > 1) be iid random variables, uniformly
distributed on [0, 112. We denote X,, = (hy, Uy,). One should view h as a height and U as a parameter. Say that X,,
is a-green if U, < a(h,), and a-red otherwise. Say that an integer k € [1, n] is n-visible if hy > hy, for all integers
m € [k, n]. Finally, say that n percolates for a if, for every k < n such that k is n-visible, X is a-green. Let R'®) be
the set of integers that percolate for o (by convention, O percolates for a).

See Figure 1. Green points are represented by black circles, red points by white circles and the black squares stand
for the integers that percolate. The horizontal lines express the fact that the red point at 4 prevents 5, 6 and 7 from
percolating.

Remark that if « is a constant, then the X, are green or red with probability « (resp. 1 — «), independently of the
height. This is a discrete version of the construction given in [6].

Theorem 3. The set R defined by Construction 1 is a lattice regenerative set. It can be viewed as the image of
a random walk (S,(,a), n > 0), where S,(la) = Y](a) + -+ Y,Ea), the Yl.(a) being iid random variables taking values in
N U {oo}, with generating function

1
v @) = ]E(tyl(a)) =1- exp(—/ fau(x) dx).
0

1 —1tx

Moreover, R® has a dual, namely R~

From the very definition, the nested property of the sets R® is obvious: if « < # and if X, is a-green, then it is
also B-green. Therefore R c R . So we have immediately:

Theorem 4. One can construct, on a single probability space, the sets R for all measurable functions o : [0, 1] —
[0, 1], with the property that if o, B are two measurable functions satisfying o < B, then

R@ c R®)
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Proof of Theorem 3. Let n € N and let E, be the event that n percolates. Conditionally on E,, all the n-visible
points are green. Moreover, for every N > n and every k < n, if k is N-visible, then k is also n-visible. Therefore,
for every N > n, conditionally on E,, N percolates if and only if all N-visible points in [ + 1, N] are a-green. This
is independent of (X;, i € [1,n]) and has the same probability as the probability that N — n is «-green. Hence R
satisfies the regenerative property.

Let us compute the probability that n € R, If n is a-green, then there is a left-most n-visible point, say n;, with
height x; = h,,. Then n; has to be green, which occurs with probability «(x1), and for all i € [1,ny — 1], h; < x,

which occurs with probability x'fl ! Ifn | # n, then there is second left-most n-visible point, say n + n, and so on.
So we have

neR(“) Z Z / dx1/ dxy - - / doxgor (e o)Xt I
k nit+--+ng=n
By symmetrization,
l _ _
P(n e R®) = —' Z f dxy - / dogor(xp)xy! 1-~-a(xk)ka !
'n1+ +ng=n

Summing over 7,

1
@\ ta(x)
E,, P(n e Rt _exp(/o - dx).

On the other hand,

meRwr—ZPW) t—ZE“M_ !

1—E@h”y

Finally, the duality property follows from a straighforward computation:

1
_ (@ _ o (=a) ) — _ 4 _1_
(1= @) (1 -y (t))_exp( /0 l_txdx)_l . -

3. From the lattice case to the continuous case
3.1. Proof of Theorem 1
We first state a lemma:

Lemma 1. Ler B8:[0, 1] — [0, 1] be a measurable function and F :[0, 1] — [0, 1] be a Lipschitz, nondecreasing
function such that F(0) =0, F(1) = 1. Let ¢ > 0, 8 > 0 be two reals. Then the function ¢ : Ry — Ry defined by

1
[ gBFG)
¢(A)_eexp( /0 A+q—qF(x>F(x)dx>

is a Bernstein function.

Proof. First, the case 6 = 0 corresponds to a subordinator which is constantly 0. Assume now 6 > 0.

From Construction 1 we derive a continuous process. Consider the random walk (S,(/S ), n > 0). First, let ey, e3, ...
be iid exponential random variables with parameter ¢ > 0, independent of S*®). We get a discrete-time, continuous-
state random walk (Z,,, n > 0) by setting

Zp=e1+---Feqp.
n
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Next, let (N, ¢t > 0) be a Poisson process with parameter 6 > 0, independent of S® and of the random variables
(en,n>1).Fort >0, put

X; =ZNt'

Then (X;,t > 0) is a subordinator, more specifically a compound Poisson process, whose range is the same as the
range of Z, the only difference between X and Z being the time parametrization. For every A > 0,

9}1 n
E(exp(—2XD) = —e v P (g/(q +1)" =exp[-0(1 =P (a/(q +2))].
n>0

Thus the Laplace exponent of X is

¢ () = —logE(exp(—aX1)) = 0[1 — vP(q/(q + 1))].

That is,

1
_ B gB(x)
¢(X)_Hexp( /0 )»+q—qxdx>'

Remark that by a change of variable,

1
Y aE)
¢(A)_96Xp( ./0 k+q—qF(X)F(x)dx>

which proves Lemma 1. (]

Proof of Theorem 1. Fix a measurable function « : [0, 1] — [0, 1]. For an integer m > 2 define

gm =m—1,

1per/may(mx — 1)
(m—1)x

1
Bm(x) = 1{x>0}a<7)

m—(m—1)x

Fip(x) = , “

and

1
Bm (Fin(x)) dx)

Om = exp(
1/m X

Remark that g;,, B, Fin and 6, satisfy the assumptions of Lemma 1, and that

Lxeri/m 1y
/ _ 5
F,(x)= 7(’" a2

If x € [1/m, 1],

l—x I+@—-Dx
N x

)‘+Qm _q;nFm(x):)\'i'

and thus

QmF;:,,(x) _ 1
At qm—qmFn(x)  x[1+G—Dx]’
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Applying Lemma 1, we find that the following function

1 1
(ae,m) _ _ B (Fin(x)) B (Fn (X)) )
¢ m_exp< /m ETENTETT R P

B (/1 (A= 1) (Fn(x)) )
= exp dx
1/m 1 + ()\. — 1))(

is a Bernstein function. Moreover,

B (Fn () = () Lixe(1/m, 1))

whence

P (v = Dax)
(a,m) _
¢ m_exp</1/m1+<x—1)x dx)'

So any function of this form is a Bernstein function and it is known [8] that every limit of Bernstein functions is a
Bernstein function. Therefore, letting m — 0o, we get that

L = Dax) dx)

@3y
¢ (M_CXP(O 1+ (- Dx

is the Laplace exponent of a subordinator. Likewise, the function ¢! ~® is a Bernstein function and the duality relation
follows from the equality

A /1 ol g )
= €X e — .
Pl TH = x 0

3.2. Some properties

The basic properties of a subordinator can be read easily from the asymptotic behaviour of its Laplace exponent. It
turns out that the small-time properties of S® depend on the behaviour of « near 0, while the large-time properties
depend on the behaviour of o near 1. More precisely,

Proposition 1. Let R be as in Theorem 2.

W If

1
[ 1<
1/21—)(?

then R is bounded almost surely. Otherwise, R'*) is unbounded almost surely.

@) If

/I/ZI_O[(x)d <00
ek A P ,
0 X

then the Lebesgue measure of R is positive almost surely. Otherwise, this Lebesgue measure is almost surely 0.
(iii) If a(x) — B as x — 0, then the Hausdorff dimension of R'*) is B almost surely.



A class of special subordinators with nested ranges 539

Proof. We use here classical results on subordinators, which can be found for instance in [1], Chapter 1. First, if the
killing rate of a subordinator is positive, then its range is bounded almost surely. Otherwise, the range is unbounded
almost surely. The killing rate of §© is

1
6@ (0) =exp(—/ a(x) dx)
0 1—x

which easily gives (i).

Next, recall that if the drift of a subordinator is positive, then the Lebesgue measure of its range is positive almost
surely. If this drift is zero, then the Lebesgue measure of the range is zero almost surely. Moreover the drift is given
by lim)_, 5 ¢ (A)/X. Using (5), we find

@) /1 a(x) —1
=exp _
A o Xx+[1/(x—1)]

By monotone convergence, this ratio has a finite limit as A — oo if and only if

/I/ZI_O[(x)d <00
—dx
0 X

which proves (ii).
Finally, recall that index of the exponent ¢® is given by

log ¢ (1)
I = lim —————
r—>oo  logh

if this limit exists. If so, the Hausdorff dimension of the range is equal to the index. See [2], or [1], Chapter 5. It is
easy to check that if «(x) — B as x — 0, then the index of the exponent is . ]

3.3. Proof of Theorem 2

Consider a Poisson Point process A" on Ry x [0, 1] x [0, 1] with intensity dx ® y_2 dy ® dz. Given a measurable
function « : [0, 1] — [0, 1], we can define an analogue of Construction 1 as follows.

Construction I'. Say that a point X = (t,h, U) of N is a-green if U < a(h), and a-red otherwise. Say that another
point X' = (', ', U’") of N is visible for X if t' <t and if, for all points of N of the form X" = (t",h”,u") with
t' <t" <t,we have h' > h". Finally, say that X percolates for a if, for every X' such that X' is visible for X, X' is
a-green. By convention, O percolates for o.. We denote by Rga) the set of first coordinates of percolating points, and
we set

(@) _ ()
R@ =R,

For every point X = (¢, h, U) of N, let U (X) be the set of points of A of the form X’ = (¢/, ', u’") with ¢’ < and
h’' > h. Then almost surely, U (X) is finite, since almost surely, every strip of the form [0, t] x [k, co] x [0, 1] with
h > 0 contains a finite number of points of \. Moreover, determining whether X percolates only depends on U (X),
and therefore Construction 1" is well-defined.

Alternatively, one can define R® as follows. For m > 2 an integer, consider the restriction N/ of A/ to the subset
Ry x [1/m, 1] x [0, 1]. Let (X,(,m), n > 1) be the set of points of A/ m) ranked by increasing x-coordinate. Denote,
foreachn > 1,

X = (1, hm utm).
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Consider the functions F,,, 8, and the constant 6,, as in the proof of Theorem 1. Then we can define the sequence
(m)

Y™ = (Fu(hi™), UM™).

Note that (F;, (h},m)), n > 1) is a sequence of iid, uniform random variables on [0, 1]. Therefore, using Construction 1,
we can define a lattice regenerative set S @m) from the sequence (Y,ﬁ’"), n > 1) and the function B,,. As proved in
Theorem 3, S@™) can be viewed as the range of a random walk (T,,(a’m), n > 0) with generating function

a,m 1 t
IEtTl( ' 1-— exp(—/ de).
o 1—1tx

Next, observe that the family (trE"J:)l

m — 1, and that these random variables are independent of (Y,fm), n > 1). Therefore, we can do as in the proof of
Lemma 1 and transform the lattice regenerative set S* into a continuous-state regenerative set ™. To do so,
we put

(m)

—tp ',n >0) is a family of iid, exponential random variables with parameter

7™ 1
zem = 3 1 -]
k=0

and we define R®™ as the range of Z(®™.
By construction, one checks that if m < n,

R(a,m) c R(oc,n) (6)
andifa <y,
Rlem) — p(y.m) )

Finally, we define

R(Ol) — U R(a,m)

m>0

and it is easy to see that this definition coincides with Construction 1’. Note that the nesting property of the sets R
as stated in Theorem 2 follows from (7), or directly from Construction 1’.

It remains to show that for every measurable function o, R(® is a regenerative set with the Laplace exponent given
in Theorem 1. From now on the measurable function « is fixed.

Using the proof of Lemma 1, we get that for every integer m > 2, R(*™ can be viewed as the image of a subordi-
nator (S,(m), t > 0) with Laplace exponent

1
(m) 1y (A — Da(x) )
¢ (k)—eXp(/l/m—lJr(/\_l)xdx )

So it is possible to construct, on a single probability space, a family of subordinators (St(m), t > 0), for all integers
m > 2 with respective ranges R(®™ and respective Laplace exponent ¢ (@™

The convergence of the Laplace exponents ¢,§ft ) to @ as m — oo entails that the processes (S S(m), s > 0) converge
in law to a subordinator with Laplace exponent qﬁ("‘). Moreover, for each integer m > 2 and each real s > 0, the law of
Ss(m) is diffuse, as the law of a sum of independent exponential random variables. Therefore, there exists a subsequence

(up,n > 0) such that S f“") converges almost surely as n — oco. From this subsequence, one can extract a subsequence

(vp, n > 0) such that S ij’é), Sf”"), S;'/”? and Sév”) converge almost surely as n — oo. Iterating the procedure and using



A class of special subordinators with nested ranges 541

diagonal extraction, we can find a subsequence (w,,, n > 0) such that Ss(w”) converges almost surely as n — oo, for all
dyadic s > 0. Let S; denote the limit.
The reals Sy are defined for all dyadic s > 0. We extend the definition by setting, for every ¢ > 0,

Sy = inf Ss.
{s>t,s dyadic}

Since the marginals of (S;, # > 0) are the marginals of a subordinator with Laplace exponent ¢® for all dyadic ¢ and
since S is cadlag, S is a subordinator with Laplace exponent ¢®.

Let R be the range of S. Using the inclusion property (6), the definition of R®) and of S, we see that R C R®.
Moreover, since S converges to S in the Skorokhod topology, it is easy to check that the Hausdorff distance

d(RN[0,T1,R™™) N[0, T1)

converges to 0 as n — oo, for every T > 0. It follows that R = R®), and thus R®) is a regenerative set with Laplace
exponent ¢

4. A generalization in the lattice case

Construction 2. Take two arbitrary probability distributions v, vV on R. Let (S,,n > 0) be a real-valued random
wg\lk started at 0, with increments (X,,,n > 1). Let (H,,n > 1) be iid real-valued mndonl variables with law v and
(Hy,n > 0) be iid real-valued random variables with law V. Assume that the X,,, H, and H, are independent.

For n > 1, say that an integer k € [0, n — 1] is an n-obstacle if, for every m € [k + 1, n],
Sm + Hy < S + Hy. )

Say that n > 1 percolates if, for every k € [0, n — 1], k is not an n-obstacle. By convention, say that O percolates. Let
‘R be the set of integers that percolate.

Theorem S. The random set R defined by Construction 2 is a lattice regenerative set. Its dual is obtained by replacing
the random walk (S,, n > 0) with (—S,, n > 0) and exchanging the role of the random variables (H,) and (H,).

Proof. The regenerative property is established by the same argument as for Theorem 3.

To show the duality, consider a regenerative set R’ defined as in Construction 2, using independent random vari-
ables (X,,n>1),(H,,n>1) and (I:I\,’L, n > 0), where S| has the same law as —S;, H| has the same law as ﬁl, and
H{ has the same law as Hj. The only difference is that we define an obstacle using a large inequality, in contrast
to the strict inequality in (8). To avoid any ambiguity, we shall use the terms dual obstacle, dual-percolate for the
construction of R’'.

One can construct the sets R N [0, N] and R’ N[0, N on the same probability space, using the random variables
X,,nel0,N], H,,me[l,N], H;,l €[0, N — 1], by putting

S;/'IZSN—H_SH’ nE[O,N],
H)=Hy_n. nel[l,N],
H =Hy_,, nel0,N—1].
See Figure 2. The black squares stand for the variables S, + H,,, the white squares for the variables S,, + H,. Black
squares “look to the left,” white squares “look to the right.” The horizontal dashed lines express the fact that they see
an obstacle when looking to the left, or a dual obstacle when looking to the right. In turn, the plain lines express the

fact that they see no obstacle or dual obstacle and, therefore, percolate or dual-percolate.
Let Gy =max(R N[0, N]), Gy = max(R' N[0, N]). We claim that

(i) N — Gy dual-percolates.
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Fig. 2. Construction 2.

(i1) foreveryn € [N — Gy + 1, N], n does not dual-percolate.

To show (i), suppose that N — G y does not dual-percolate. Let k be the largest integer that is a dual obstacle for
N — G y. Then from the definition of a dual obstacle, there exists no (N — k)-obstacle in [G y, k — 1]. Moreover, from
the definition of Gy, there is no (N — k)-obstacle either in [0, Gy — 1]. Therefore, k percolates, but this contradicts
the definition of G y. This proves (i). One proves (ii) by similar arguments. As a consequence, Gy = N — G y. This
being true for every N > 1, we find that

(iii) for every N > 0, N — Gy and G?v have the same law.

It is then standard to check that (iii) is equivalent to the analytical property (3). ([

Some examples

Example 1. If both v andV are the Dirac mass at 0, then R is the set of strict ascending ladder times of the random
walk S, that is, the set of integers n such that S, > maxy<,—| Sx. On the other hand, R’ is the set of weak descending
ladder times of S, ie the set of integers n such that S, < ming<,_1 Sk.

Example 2. Suppose thatV is the Dirac mass at 0 and that
v(dx) =1 —=r)dg+ré—co
for some fixed r € [0, 1]. Then the event that T\ > n is the event that for every ladder time k < n, H, = —oo. Therefore,
o0
@) = Z t”IE(rL"*‘ — rL"),
n=1
where L, is the number of ladder times between time 1 and time n. Put
Y@) =E(7),
where T is the first ladder time. Then by standard computations, we find

A=ry@®

@) = = rp @)
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Example 3. Suppose that V is the Dirac mass at 0 and that
v(dx) = cexp(—c|x|)1{x<0} dx.
Then the event that T\ > n is the event that for every ladder time k < n,

|Hi| > Sk — sup S;.
i<k
Conditionnally on Sy and sup; _;, S, the latter event has probability exp[—c(Skx — sup; - Si)]. Therefore,

P(T) > n) = ]Eexp[—c sup Si].

i<n

By time reversal, we have:
A (0.¢]
P(T) > n) = / ce”P(Vk € [1,n], S = x) dx.
0
Note that in the limit ¢ — 00, we recover the first example.

Example 4. Let S be deterministic, S, = —n. Also, suppose that V is the Dirac mass at 0. Then the event that Ty > n
is the intersection of the events {H < 1}, {Hy <2}, ...,{H, <n}, all these events being independent. Therefore,

n

P(T; > n) = ]—[ v([0, n]).

i=1
In particular, the sequence of ratios

P(Ty >n+1)

can be chosen to be any nondecreasing sequence of reals € [0, 1]. If we consider the dual process, we see that

n

P(n e R) =[] v(10.n)).

i=1

This is the lattice equivalent of Corollary 2.5 in [10]. In particular, if the support of v is bounded, say supp(v) C [0, A],
then P(n € R) is constant for n > A. This corresponds to the examples given in Section 3 in [10].
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