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Abstract. We consider evaluating improper priors in a formal Bayes setting according to the consequences of their use. Let Φ be a
class of functions on the parameter space and consider estimating elements of Φ under quadratic loss. If the formal Bayes estimator
of every function in Φ is admissible, then the prior is strongly admissible with respect to Φ. Eaton’s method for establishing strong
admissibility is based on studying the stability properties of a particular Markov chain associated with the inferential setting.
In previous work, this was handled differently depending upon whether ϕ ∈ Φ was bounded or unbounded. We consider a new
Markov chain which allows us to unify and generalize existing approaches while simultaneously broadening the scope of their
potential applicability. We use our general theory to investigate strong admissibility conditions for location models when the prior
is Lebesgue measure and for the p-dimensional multivariate Normal distribution with unknown mean vector θ and a prior of the
form ν(‖θ‖2)dθ .

Résumé. Nous considérons l’évaluation de lois a priori impropres dans un cadre Bayésien formel en fonction des conséquences
de leur utilisation. Soit Φ une classe de fonctions sur l’espace des paramètres, que l’on cherche à estimer sous une fonction de
perte quadratique. Si l’estimateur Bayésien de toute fonction dans Φ est admissible, alors la loi a priori est fortement admissible
par rapport à Φ. La méthode d’Eaton pour établir l’admissibilité forte est basée sur l’étude des propriétés de stabilité d’une certaine
chaîne de Markov associé au cadre inférentiel. Dans des travaux précédents, nous considérions une nouvelle chaîne de Markov
qui permet d’unifier et de généraliser les approches existantes tout en élargissant simultanément son champ d’application. Nous
utilisons cette théorie générale pour étudier des conditions d’admissibilité forte pour des modéles à paramètre de position, une loi a
priori donnée par la mesure de Lebesgue et la loi normale multivariée de dimension p et moyenne θ , et une loi a priori de la forme
ν(‖θ‖2)dθ .
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1. Introduction

Suppose we are in a parametric setting, and we are considering use of an improper prior measure that yields a proper
posterior distribution. Such priors arise in the absence of honest prior belief about parameter values and are typically
derived from structural arguments based on the likelihood or the parameter space [18]. Thus, an improper prior, rather
than being a statement of beliefs specific to a situation, is a default. Such priors, proposed from likelihood or invariance
arguments, require evaluation, just as estimators proposed from likelihood or invariance arguments require evaluation,
and an attractive avenue is to evaluate the prior according to the consequences of its use. That is, we can evaluate the
prior by examining properties of the resulting posterior inferences. The criterion we use to judge posterior inferences
is known as strong admissibility. This concept was introduced by Eaton [7] and has given rise to a substantial theory
[7–15,19]. Our goal in the rest of this section is to convey the basic idea behind strong admissibility and the way
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it is studied here. We also summarize our main results without delving too far into the details, which are dealt with
carefully later.

Suppose the sample space X is a Polish space with Borel σ -algebra B and the parameter space ϑ is a Polish space
with Borel σ -algebra C . Let {P(·|θ), θ ∈ ϑ} be a family of sampling distributions where we assume that for each
B ∈ B, P(B|·) is C -measurable and for each θ ∈ ϑ , P(·|θ) is a probability measure on (X , B). Let ν be a σ -finite
measure on the parameter space ϑ with ν(ϑ) = ∞. Throughout the marginal on X

M(dx) :=
∫

ϑ
P(dx|θ)ν(dθ) (1)

is assumed to be σ -finite. In this case, the disintegration

Q(dθ |x)M(dx) = P(dx|θ)ν(dθ) (2)

generalizes Bayes theorem and implicitly defines formal posterior distributions Q(·|x) on the parameter space. Note
that for each x ∈ X , Q(·|x) is a probability measure on (ϑ, C) and for each C ∈ C , Q(C|·) is B-measurable. Taraldsen
and Lindqvist [23] provide a recent, accessible introduction to the existence of formal posterior distributions while
one can consult Eaton [6,7] and Johnson [17] for more details and references.

Suppose ϕ :ϑ → R
p for p ≥ 1, and consider estimating ϕ(θ). The formal Bayes estimator of ϕ under squared error

loss is the posterior mean

ϕ̂(x) :=
∫

ϑ
ϕ(θ)Q(dθ |x). (3)

Let ‖ · ‖ denote the usual Euclidean norm. If δ(x) is any estimator of ϕ(θ), the risk function of δ is

R(δ; θ) :=
∫

X

∥∥ϕ(θ) − δ(x)
∥∥2

P(dx|θ). (4)

The estimator δ is almost-ν admissible if for any other estimator δ1 such that R(θ; δ1) ≤ R(θ; δ) for all θ ∈ ϑ , then
the set {θ : R(θ; δ1) < R(θ; δ)} has ν-measure 0.

Since we will use admissibility to judge the prior, our interests are more ambitious than establishing admissibility
of a single estimator. Let Φ be a class of functions defined on the parameter space. If the formal Bayes estimator
of every ϕ ∈ Φ is almost-ν admissible, then we say the prior (equivalently the posterior) is strongly admissible with
respect to Φ . A prior is strongly admissible if it is robust against risk dominance within the class Φ . Since a default
prior will undergo repeated use, it is important for the range of appropriate uses to be clearly defined and desirable
that the range be as large as possible. We can then endorse the improper prior insofar as it avoids unreasonable actions
in a variety of such problems.

Previous work on strong admissibility focused on the case where Φ consisted of a single unbounded function [1,2,
9], or all bounded functions [7,8,10–14,19]. In either case, strong admissibility was established by verifying sufficient
conditions for the admissibility of an estimator established by Brown [4] or via Markov chain arguments using an
approach introduced by Eaton [7,9]. We study the latter method.

Eaton’s method for establishing almost-ν admissibility of formal Bayes estimators is based on the recurrence
properties of a Markov chain associated with the inferential setting; the relevant notion of recurrence is defined in
the next section. However, different Markov chains were required depending upon whether ϕ was bounded [7] or
unbounded [9]. We introduce and study a new Markov chain which allows us to unify and generalize these existing
approaches while simultaneously broadening the scope of their potential applicability. The expected posterior

R(dθ |η) =
∫

X
Q(dθ |x)P (dx|η) (5)

is a Markov kernel on ϑ . We study transformations of R, which are now described. Let f :ϑ × ϑ → R
+ satisfy

f (θ, η) = f (η, θ) and set

T (η) =
∫

ϑ
f (θ, η)R(dθ |η).
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If 0 < T (η) < ∞ for all η ∈ ϑ , then

T (dθ |η) = f (θ, η)

T (η)
R(dθ |η)

is a Markov kernel on ϑ . Recurrence of the Markov chain associated with T implies the almost-ν admissibility of
formal Bayes estimators with respect to a large class of functions. Define

Φf := {
ϕ:

∥∥ϕ(θ) − ϕ(η)
∥∥2 ≤ Mϕf (θ, η) some 0 < Mϕ < ∞}

. (6)

We prove that if the Markov chain defined by T is recurrent, then the formal Bayes estimator of every function in
Φf is almost-ν admissible, and we say the prior ν is strongly admissible with respect to Φf . The following example
illustrates this technique.

Example 1. Let X be a p-dimensional Normal random variable with identity covariance Ip and unknown mean θ .
Let p-dimensional Lebesgue measure ν(dθ) = dθ be our improper prior. The proper posterior for θ is a Normal with
mean x – the observed value of the random variable X – and covariance Ip . The kernel

R(dθ |η) =
∫

X
Q(dθ |x)P (dx|η) = (4π)−p/2 exp

(
−1

4
‖θ − η‖2

)
dθ

describes a N(η,2Ip) random variable. Let d be an arbitrary positive constant and note that f (θ, η) = ‖θ − η‖2 + d

is symmetric and uniformly bounded away from 0. Further

T (η) =
∫

f (θ, η)R(dθ |η) =
∫ (‖θ − η‖2 + d

)
R(dθ |η) = 2p + d.

Thus,

T (dθ |η) = ‖θ − η‖2 + d

2p + d
R(dθ |η)

and the chain with kernel T is a random walk on R
p . Note that∫

‖θ − η‖pT (dθ |η) < ∞

since a Normal distribution has moments of all orders and hence for p = 1 or p = 2, the chain is recurrent [5,21]. We
conclude that for p = 1 or p = 2 Lebesgue measure is strongly admissible. That is, the formal Bayes estimators of all
functions ϕ satisfying

∥∥ϕ(θ) − ϕ(η)
∥∥ ≤ Mϕ

(‖θ − η‖2 + d
)

for some 0 < Mϕ < ∞
are almost-ν admissible. Since d is arbitrary this includes all bounded functions as well as many unbounded functions.

Lebesgue measure is not strongly admissible with respect to Φf when p ≥ 3 since the James–Stein estimator
dominates the formal Bayes estimator of ϕ(θ) = θ . In Sections 4.1 and 4.2 we extend this example in two ways; in
Section 4.1 we consider Lebesgue measure as a prior for general location models when p = 1 or p = 2 while in
Section 4.2 we consider the Normal means problem with an alternative prior when p ≥ 3. We will return to this
example below.

Recurrence of the Markov chain defined by T implies more than we have so far claimed. Suppose the function
u :ϑ → R

+ is bounded away from zero and infinity so that 1/c < u(θ) < c for some constant c > 1 and every θ ∈ ϑ .
The measure defined by

νu(dθ) := u(θ)ν(dθ) (7)
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is a bounded perturbation of ν. Let Fν be the family of all bounded perturbations of ν. Observe that ν ∈ Fν and that
the other elements of Fν are measures with tail behavior similar to ν. Eaton [7] showed that recurrence of the chain
with kernel R implied the formal Bayes estimators of any bounded function is almost-ν admissible for every prior
in Fν . We extend this result and show that recurrence under T is sufficient for the strong admissibility with respect to
Φf of every element of Fν . In this case, we say the family Fν is strongly admissible with respect to Φf .

Example 2. Recall the setting of Example 1. Let Fν be the bounded perturbations of p-dimensional Lebesgue measure
ν(dθ) = dθ . That is, elements of Fν are measures of the form νu(dθ) = u(θ)dθ where 1/c < u(θ) < c for some
constant c > 1. Recall that Φf is the class of all bounded functions and all functions satisfying

∥∥ϕ(θ) − ϕ(η)
∥∥ ≤ Mϕ

(‖θ − η‖2 + d
)

for some 0 < Mϕ < ∞.

The recurrence of the Markov chain governed by T when p = 1 or p = 2 implies the formal Bayes estimators of every
ϕ ∈ Φf are almost-νu admissible for every prior νu ∈ Fν . That is, Fν is strongly admissible with respect to Φf .

Our main results generalize existing work [7,9] and in fact unify the analysis for bounded and unbounded functions.
We show that the Markov kernel R can be transformed to define many Markov chains, any one of which might be
used to demonstrate strong admissibility, thus greatly broadening the scope of potential applications. We are never
concerned narrowly with a single admissibility problem but broadly with species of problems. Moreover, solving a
single representative problem, which representative we are free to elect, solves any problem within a bounded rate of
change – whether of the function to be estimated or the prior used to estimate it.

The remainder is organized as follows. Section 2 gives some background on recurrence for general state space
Markov chains. Section 3 presents new results for establishing strong admissibility via Markov chain arguments. In
Section 4 we investigate strong admissibility conditions for location models when the prior is Lebesgue measure
and for the p-dimensional multivariate Normal distribution with unknown mean vector θ and a prior of the form
ν(‖θ‖2)dθ . Section 5 contains a few concluding remarks. Finally, our proofs and many technical details are deferred
to the appendices.

2. Recurrence of Markov chains

The goal of this section is to introduce a general notion of recurrence for Markov chains. Let W be a Polish space and
denote the Borel σ -algebra by D. Let K : D × W → [0,1]. Then K is a Markov transition kernel on the measurable
space (W , D) if K(D|·) is a nonnegative measurable function for every D ∈ D and K(·|w) is a probability measure
for every w ∈ W .

The kernel K determines a time-homogeneous Markov chain W = {W0,W1,W2, . . .} on the product space W ∞
which is equipped with the product σ -algebra D∞. Note that conditional on Wn = w, the law of Wn+1 is K(·|w).
Given W0 = w, let Pr(·|w) be the law of W on W ∞.

Suppose D ∈ D. The random variable

τD =
{∞ if Wn /∈ D for all n ≥ 1, or

the smallest n ≥ 1 such that Wn ∈ D otherwise

is a stopping time for D, and ED = {τD < ∞} is the set of paths that encounter D after initialization. Let ξ be a
non-trivial, σ -finite measure on (W , D) and recall that a set is ξ -proper if its measure under ξ is positive and finite.

Definition 2.1. A ξ -proper set D is locally ξ -recurrent if Pr(ED|w) = 1 for all but a ξ -null set of initial values in D.
Call the Markov chain W locally ξ -recurrent if every ξ -proper set is locally ξ -recurrent.

This notion of recurrence is more general than that often encountered in general state space Markov chain the-
ory [20], but is appropriate since the chains we will consider in the next section may not be irreducible [11,15]. We
consider a method for establishing local recurrence in Section 3.2.
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The connection between the above general Markov chain theory and the notion of strong admissibility relies heavily
on the special structure of symmetric Markov chains. Let ξ be a non-trivial, σ -finite measure. Then the kernel K is
ξ -symmetric if

ω(dw1,dw2) := K(dw1|w2)ξ(dw2)

is a symmetric measure on (W × W , D × D).
Throughout the remainder we restrict attention to symmetric Markov kernels. Eaton [8,10] provides some back-

ground on the theory of symmetric Markov chains underlying strong admissibility.

3. Strong admissibility via Markov chains

In a ground-breaking paper Eaton [7] connected the local recurrence of a Markov chain and the almost-ν admissibility
of the formal Bayes estimator for bounded ϕ. Later, Eaton [9] showed that the local recurrence of a different Markov
chain was required to establish almost-ν admissibility when ϕ is unbounded. Since our work builds on them, these
foundational definitions and results are stated carefully here. The expected posterior distribution at the parameter
value η, R(dθ |η) defined in (5), is a ν-symmetric Markov kernel on ϑ since it satisfies the detailed balance condition

R(dθ |η)ν(dη) = R(dη|θ)ν(dθ), (8)

which follows from (2) and (5). Call R an Eaton kernel–analogous kernels exist for the sample space [13] and the
product of the sample and parameter spaces [11]. Eaton [7] established the following basic result.

Theorem 3.1. If the Markov chain with kernel R is locally-ν recurrent, then the formal Bayes estimator of every
bounded function is almost-ν admissible.

Eaton [7] also showed that the result holds for bounded perturbations of ν. Theorem 3.1 has found substantial
application [7,10–14,19].

Now suppose we want to use Markov chains to study formal Bayes estimators of unbounded functions on ϑ . We
need a basic assumption on the risk function R, defined at (4), to ensure existence of the integrated risk difference
which is studied in the appendices.

Assumption 3.1. Suppose there exist sets K1 ⊆ K2 ⊆ · · · with
⋃

Ki = ϑ . Also assume that for all i, 0 < ν(Ki) < ∞
and ∫

Ki

R(ϕ̂; θ)ν(dθ) < ∞.

Let ϕ :ϑ → R
p be measurable and unbounded and set

S(η) =
∫

ϑ

∥∥ϕ(θ) − ϕ(η)
∥∥2

R(dθ |η)

so that if 0 < S(η) < ∞ for all η, then

S(dθ |η) = ‖ϕ(θ) − ϕ(η)‖2

S(η)
R(dθ |η) (9)

is a Markov kernel defining a Markov chain on ϑ . Moreover S satisfies detailed balance with respect to S(η)ν(dη):

S(dθ |η)S(η)ν(dη) = S(dη|θ)S(θ)ν(dθ).

Eaton [9] connected the local recurrence of S with the almost-ν admissibility of the formal Bayes estimator of ϕ(θ).
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Theorem 3.2. Suppose 0 < S(η) < ∞ for each η ∈ ϑ and there exist ν-proper sets K1 ⊆ K2 ⊆ · · · such that
⋃

Ki =
ϑ , and for each i

∫
Ki

S(η)ν(dη) < ∞.

If the Markov chain with kernel S is locally-ν recurrent, then the formal Bayes estimator of ϕ is almost-ν admissible.

In the next section, we unify and generalize these results. We show that by analyzing an appropriate Markov chain
we can recover the conclusions of both theorems and, in fact, achieve something stronger. Moreover, we broaden the
class of Markov chains that can be studied to obtain strong admissibility results.

3.1. A new Markov chain connection

For any η ∈ ϑ , let ψ(·|η) be a nontrivial σ -finite measure on (ϑ, C) such that ψ(·|η) is absolutely continuous with
respect to R(·|η). For any element C of the Borel sets C , let ψ(C|·) be a nonnegative measurable function. Let f (·, η)

be a Radon–Nikodym derivative of ψ(·|η) with respect to R(·|η):

ψ(C|η) =
∫

C

f (θ, η)R(dθ |η) for all (η,C) ∈ (ϑ, C). (10)

Define

T (C|η) = ψ(C|η)

ψ(ϑ |η)
for all (η,C) ∈ (ϑ, C). (11)

Let T (η) = ψ(ϑ |η) for all η ∈ ϑ . We will make the following basic assumptions on T .

Assumption 3.2. For all η ∈ ϑ we have 0 < T (η) < ∞ and there exist ν-proper sets K1 ⊆ K2 ⊆ · · · such that
⋃

Ki =
ϑ , and for each i

∫
Ki

T (η)ν(dη) < ∞.

The first part of the assumption ensures that the kernel T is well-defined. If μ(dη) = T (η)ν(dη), then the second
part of the assumption implies that μ is σ -finite. In Proposition B.1 we establish that

T (dθ |η)μ(dη) = f (θ, η)R(dθ |η)ν(dη).

If f (θ, η) = f (η, θ) for all η and θ in ϑ , then by using (8) it is easy to see that T is symmetric with respect to μ.
Note that T (η) is almost-ν uniformly bounded away from 0 if there exists ε > 0 such that T (η) ≥ ε except

possibly on a set of ν-measure 0. We are now in a position to state the main result of this section. The proof is given
in Appendix B. Recall the definition of Φf from (6).

Theorem 3.3. Let T (η) be almost-ν uniformly bounded away from zero and suppose that for all η and θ in ϑ

f (θ, η) = f (η, θ). (12)

If the Markov chain having kernel T (dθ |η) is locally ν-recurrent, then ν is strongly admissible with respect to Φf .

The following extension of Theorem 3.3 is also proved in Appendix B.

Theorem 3.4. Assume the conditions of Theorem 3.3. Then every bounded perturbation νu is strongly admissible,
that is, the family Fν is strongly admissible with respect to Φf .
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If we take f (θ, η) = d for some d > 0, then we completely recover the results of Theorem 3.1 while if f (θ, η) =
‖ϕ(θ) − ϕ(η)‖2, then we extend the results of Theorem 3.2. If, as in Examples 1 and 2, we set f (θ, η) = ‖ϕ(θ) −
ϕ(η)‖2 + d with d > 0, then we obtain results stronger than if we had established local recurrence of each of the
chains associated with the kernels R and S and relied on Theorems 3.1 and 3.2. Moreover, since the analyst has the
freedom to choose an appropriate f , this result extends the range of potential applicability of Eaton’s method.

3.2. Reducing dimension

The Markov kernel T naturally takes the same dimension as the parameter space. This dimension may be quite
large, making the required analysis difficult. In this section we prove that the conclusions of Theorem 3.4 (hence
Theorem 3.3) hold if we can establish the local recurrence of a particular Markov chain which lives on [0,∞).

Denote the Borel subsets of [0,∞) by A. A measurable mapping t from (ϑ, C) to ([0,∞), A) induces a measure
ν̃ given by

ν̃(A) = ν
(
t−1(A)

)
, A ∈ A.

We will need the next assumption throughout the remainder of this section.

Assumption 3.3. There exists a partition {Ai} of [0,∞) such that each Ai is measurable and each Ci = t−1(Ai) is
ν-proper.

Eaton et al. [12] showed that under Assumption 3.3 there exists a Markov transition function π(dθ |β) on C ×[0,∞)

such that

ν(dθ) = π(dθ |β)ν̃(dβ) (13)

which means for all measurable nonnegative functions f1 on ϑ and f2 on [0,∞)

∫
ϑ

f2
(
t (θ)

)
f1(θ)ν(dθ) =

∫ ∞

0
f2(β)

(∫
ϑ

f1(θ)π(dθ |β)

)
ν̃(dβ).

Define

P̃ (dx|β) =
∫

ϑ
P(dx|θ)π(dθ |β), β ∈ [0,∞). (14)

The conditional probabilities P̃ (·|β) form a parametric family indexed by β , and ν̃(dβ) is a σ -finite prior. Eaton et
al. [12] also showed that the marginal measure on X is the same as at (1). That is,

∫ ∞

0
P̃ (dx|β)ν̃(dβ) = M(dx),

which is assumed σ -finite. Thus, there is a Markov kernel Q̃(dβ|x) satisfying

Q̃(dβ|x)M(dx) = P̃ (dx|β)ν̃(dβ). (15)

In fact, a version of the posterior [12] is

Q̃(A|x) := Q
(
t−1(A)|x)

for all A ∈ A. (16)

The expected posterior

R̃(dβ|α) =
∫

Q̃(dβ|x)P̃ (dx|α) (17)
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is a ν̃-symmetric Eaton kernel.
If η and θ are elements of ϑ , let α = t (η) and β = t (θ). For any α ∈ [0,∞), let ψ̃(·|α) be a nontrivial σ -finite

measure on ([0,∞), A) such that ψ̃(·|α) is absolutely continuous with respect to R̃(·|α). Let f̃ (·, α) be a Radon–
Nikodym derivative of ψ̃(·|α) with respect to R̃(·|α) – i.e., for all (α,A) ∈ ([0,∞), A)

ψ̃(A|α) =
∫

A

f̃ (β,α)R̃(dβ|α).

Define T̃ (α) = ψ̃([0,∞)|α) and set

T̃ (A|α) = ψ̃(A|α)

T̃ (α)
, (α,A) ∈ ([0,∞), A

)

and let μ̃(dα) = T̃ (α)ν̃(dα). The following assumption ensures that T̃ is a well-defined kernel and that μ̃ is σ -finite.

Assumption 3.4. For all α we have 0 < T̃ (α) < ∞ and there exist ν̃-proper sets K1 ⊆ K2 ⊆ · · · such that
⋃

Ki =
[0,∞), and for each i

∫
Ki

T̃ (α)ν̃(dα) < ∞.

In Appendix C we show that T̃ is μ̃-symmetric. The following theorem shows that we can analyze the recurrence
properties of the chain defined by T̃ to achieve the conclusions of Theorem 3.4 (hence Theorem 3.3). The proof is
given in Appendix C. Recall that Fν is the family of bounded perturbations of ν.

Theorem 3.5. Let T̃ (·) be almost-ν̃ uniformly bounded away from 0 and suppose that for all α and β in [0,∞)

f̃ (β,α) = f̃ (α,β).

If the Markov chain with kernel T̃ is locally ν̃-recurrent, then Fν is strongly admissible with respect to Φf .

Since T̃ lives on [0,∞) it would be convenient to have conditions which guarantee the local recurrence of a Markov
chain on [0,∞). This is discussed in the following section.

3.2.1. Recurrence of Markov chains on [0,∞)

To this point we have said little about establishing local recurrence. The following theorem presents one method for
doing so and is a distillation of several existing results [10,12]. It applies generally to Markov chains on [0,∞) and
hence the notation in this section is consistent with that of Section 2.

Let W = [0,∞) and D be the Borel σ -algebra. Let K : D × W → [0,1] be a Markov kernel which defines a
time-homogeneous Markov chain W = {W0,W1,W2, . . .} on W ∞. Define the kth moment of K about its current state
as

mk(v) =
∫ ∞

0
(y − v)kK(dy|v). (18)

Theorem 3.6. Assume for each positive integer n there exists δ(n) < 1 such that

sup
v∈[0,n]

K
([0, n]|v) ≤ δ(n). (19)

Suppose

lim
v→∞

logv

v

m3(v)

m2(v)
= 0 (20)
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and there exists a function φ and an integer n0 such that for v ∈ [n0,∞)

m1(v) ≤ m2(v)

2v

[
1 + φ(v)

]
and lim

v→∞φ(v) logv = 0. (21)

If ξ is a non-trivial, σ -finite measure, 0 < ξ([0, n0)) < ∞ and K is ξ -symmetric, then the Markov chain W is locally
ξ -recurrent.

We will use Theorem 3.6 in conjunction with Theorem 3.5 in one of our applications in Section 4.2.

4. Applications

We turn our attention to two applications of the general theory developed above. Both applications can be viewed as
extensions of the setting in Example 1. In Section 4.1 we establish strong admissibility of the bounded perturbations
of Lebesgue measure in 1 or 2 dimensions for general location models. Then in Section 4.2 we establish strong
admissibility in 3 or more dimensions of the bounded perturbations of a family of priors for the multivariate normal
mean.

4.1. Admissible priors for location models

Let dx be Lebesgue measure on R
p , p ≥ 1 and λ be a σ -finite measure on a Polish space Y . Suppose g is a density

with respect to dxλ(dy) on R
p × Y and let the model be

P(dx,dy|θ) = g(x − θ, y)dxλ(dy).

We will take the prior on ϑ = R
p to be Lebesgue measure, that is, ν(dθ) = dθ . Let

m(y) =
∫

g(x, y)dx

and q0 be a density on R
p such that Eq0Y

2 < ∞. A version of the formal posterior is then given by Q(dθ |x, y) =
q(θ |x, y)dθ with

q(θ |x, y) =
{

g(x−θ,y)
m(y)

0 < m(y) < ∞,

q0(x − θ) otherwise.

Eaton [9] uses a Markov chain argument based on Theorem 3.2 to prove that the Bayes estimator of ϕ(θ) = θ is
admissible when p = 1 or p = 2, a result originally proved using Blyth’s method [16,22]. We use Theorem 3.4 to add
to these results. Let d > 0 be arbitrary and define

f (θ, η) = ‖θ − η‖2 + d, η ∈ R
p

so that

Φf = {
ϕ:

∥∥ϕ(θ) − ϕ(η)
∥∥ ≤ Mϕf (θ, η) some 0 < Mϕ < ∞}

.

Theorem 4.1. Assume that for p = 1 or p = 2
∫

‖x‖2+pg(x, y)dxλ(dy) < ∞.

Then Fν , the family of bounded perturbations of Lebesgue measure, is strongly admissible with respect to Φf .

The proof, given in Appendix D, is based on the properties of random walks – recall Example 1 – so it is not
surprising that it fails in higher dimensions since nontrivial random walks on R

p , p ≥ 3 are not recurrent.
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4.2. Admissible priors for the multivariate normal mean

Let X ∼ Np(θ, Ip) with p ≥ 1. Consider the family of σ -finite measures on ϑ = R
p described by

(
1

a + ‖θ‖2

)b

dθ, a ≥ 0, b ≥ 0. (22)

For a = 0, the prior is improper for all b > 0, but the induced marginal distributions on X are only σ -finite for
b < p/2. For a > 0, the family yields improper prior distributions when b ≤ p/2 and proper prior distributions when
b > p/2. In fact, if b = (a + p)/2, the prior is the kernel of a multivariate t distribution with a degrees of freedom.
When a > 0 and b = 0, this is p-dimensional Lebesgue measure which was considered in Example 1.

Now suppose p ≥ 3. Berger, Strawderman and Tan [2] established that the formal Bayes estimator of θ is ad-
missible when a = 1 and b = (p − 1)/2 while Eaton et al. [12] use Theorem 3.1 to prove that if a > 0 and
b ∈ [p/2 − 1,p/2], then the formal Bayes estimator of every bounded function is almost admissible. We use Theo-
rems 3.5 and 3.6 to add to these results. Let d > 0 be arbitrary and define

f (θ, η) = ‖θ − η‖2 + d, η ∈ R
p

so that

Φf = {
ϕ:

∥∥ϕ(θ) − ϕ(η)
∥∥ ≤ Mϕf (θ, η) some 0 < Mϕ < ∞}

.

The proof of the following theorem is given in Appendix E.

Theorem 4.2. For p ≥ 3 let X ∼ Np(θ, Ip) and with a > 0 set

ν(dθ) =
(

1

a + ‖θ‖2

)p/2

dθ.

Then Fν , the family of bounded perturbations of ν, is strongly admissible with respect to Φf .

5. Concluding remarks

Given the results in Section 4 and some of the developments in Stein estimation (see e.g. [3]) it would be natural to
seek to extend our work and study strong admissibility of priors for multivariate exponential families and spherically
symmetric distributions. Indeed, Wen-Lin Lai [19] used Eaton’s method to study strong admissibility with respect
to bounded functions of priors for a multivariate Poisson model. However, to our knowledge, there have been no
applications of Eaton’s method to the situation where the model is spherically symmetric.

Appendix A: Preliminaries

We begin by stating some existing results concerning local recurrence and introduce Blyth’s method. This material
plays a fundamental role in our proofs of Theorems 3.3, 3.4 and 3.5.

A.1. Local recurrence

The purpose here is to give two characterizations of local recurrence for general symmetric Markov chains, hence the
notation is consistent with that of Sections 2 and 3.2.1.

Let W be a Polish space and denote the Borel σ -algebra by D. Let K : D × W → [0,1] be a Markov kernel on
(W , D). Let ξ be a non-trivial σ -finite measure and recall that a set is ξ -proper if its measure under ξ is positive and
finite. Throughout this section K is assumed to be ξ -symmetric.
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Theorem A.1 (Eaton [10]). The Markov chain W is locally ξ -recurrent if and only if there exists a sequence of
ξ -proper sets increasing to the state space such that each is locally ξ -recurrent.

Let L2(ξ) be the space of ξ -square integrable functions. Then the quantity

Δ(h;K,ξ) = 1

2

∫ ∫ (
h(θ) − h(η)

)2
K(dθ |η)ξ(dη), h ∈ L2(ξ) (23)

is called a Dirichlet form. Also, if D is a ξ -proper set, define

Hξ (D) := {
h ∈ L2(ξ): h ≥ ID

}
,

where ID is the indicator function of the set D. A characterization of local ξ -recurrence in terms of Δ is given by the
following result.

Theorem A.2 (Eaton [9]). A set D ∈ D is locally ξ -recurrent if and only if

inf
h∈Hξ (D)

Δ(h;K,ξ) = 0.

A.2. Blyth’s method

Consider the posterior distributions obtained from perturbations of the prior measure ν. Let g :ϑ → R
+ be such that

the perturbation

νg(dθ) = g(θ)ν(dθ) (24)

is σ -finite. Assume

ĝ(x) :=
∫

g(θ)Q(dθ |x) < ∞. (25)

Letting

Mg(dx) :=
∫

P(dx|θ)g(θ)ν(dθ)

it is easy to see that Mg(dx) = ĝ(x)M(dx) is σ -finite and that the posterior obtained from the perturbed prior is

Qg(dθ |x) = g(θ)

ĝ(x)
Q(dθ |x). (26)

Let L1(ν) be the set of all ν-integrable functions and define

Gν = {
g ∈ L1(ν): g ≥ 0, gbounded and νg(ϑ) > 0

}
. (27)

Let IC be the indicator function of the set C. Of particular interest are the subfamilies

Gν(C) = {g ∈ Gν : g ≥ IC}.
Let ϕ̂ be the Bayes estimator of ϕ under the prior ν, and let ϕ̂g be the Bayes estimator of ϕ under the prior νg . Also
recall the definition of the risk function R at (4). A key quantity in connecting Markov chains to admissibility is the
integrated risk difference at g ∈ Gν with respect to ν against ϕ̂:

IRDν(g; ϕ̂) :=
∫ [

R(θ; ϕ̂) − R(θ; ϕ̂g)
]
νg(dθ). (28)

Notice that IRDν is nonnegative and the integrability assumptions on R in Assumption 3.1 ensure that it is well-
defined. The connection of IRDν with almost-ν admissibility is given by Blyth’s method.
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Theorem A.3 (Blyth’s method). Let ϕ̂ be an estimator and ν a σ -finite measure on the parameter space. If
infg∈Gν (C) IRDν(g; ϕ̂) = 0 for every C ⊆ ϑ such that 0 < ν(C) < ∞, then ϕ̂ is almost-ν admissible.

Appendix B: Proof of Theorem 3.3

We will develop a connection between the kernel T defined in (11) and the IRDν which will be key to proving
Theorem 3.3 via Theorems A.2 and A.3. We begin with some preliminary results before we prove Theorem 3.3.

B.1. Preliminary results

Recall T (η) = ψ(ϑ |η) where ψ is defined at (10). Define

μ(C) =
∫

C

T (η)ν(dη) for all C ∈ C. (29)

Proposition B.1. Suppose Assumption 3.2 and condition (12) hold. Then

(a) the measure μ is σ -finite and equivalent to ν,
(b) T is a Radon–Nikodym derivative of μ with respect to ν,
(c) T is a μ-symmetric Markov transition kernel,
(d) T (dθ |η)μ(dη) = f (θ, η)R(dθ |η)ν(dη),
(e) if μ′ is proportional to μ, T is a μ′-symmetric Markov transition kernel.

Proof. That μ is σ -finite follows easily from Assumption 3.2. Since T is a nonnegative measurable function, for any
ν-null set C,

μ(C) =
∫

C

T (η)ν(dη) = 0.

Furthermore, since T (η) > 0 for all η in the parameter space, every ν-positive set is a μ-positive set. Thus, if C is
μ-null, it is also ν-null. Therefore, μ and ν are equivalent measures. Furthermore, T is a Radon–Nikodym derivative
of μ with respect to ν since μ is absolutely continuous with respect to ν, and by assumption T is a nonnegative
measurable function such that for any measurable set C, μ(C) is given by Eq. (29).

At any point η in the parameter space, since ψ(·|η) is a nontrivial finite measure, normalizing by T (η) = ψ(ϑ |η)

produces a probability measure. Recall that ψ(C|·) is a nonnegative measurable function where C is an element of
the Borel sets C . Since ϑ is a Borel measurable set, T is a Borel measurable function. Also by hypothesis, T (η)

is positive and finite for all η. The reciprocal function is continuous, hence Borel measurable, on the positive real
numbers, and the composition 1/T of Borel measurable functions is a Borel measurable function. Thus, the product
of Borel measurable functions 1/T and ψ(C|·) is a Borel measurable function for any C ∈ C .

Let A and B be measurable sets. Since

S(A,B) =
∫ ∫

IA(η)IB(θ)T (dθ |η)μ(dη)

=
∫ ∫

IA(η)IB(θ)f (θ, η)R(dθ |η)ν(dη) by (10), (11), and (29)

=
∫ ∫

IB(θ)IA(η)f (η, θ)R(dη|θ)ν(dθ) by (8) and (12)

=
∫ ∫

IB(θ)IA(η)T (dη|θ)μ(dθ) by (10), (11), and (29)

= S(B,A),
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the kernel T is μ-symmetric. Note that the substitution

T (dθ |η)μ(dη) = f (θ, η)R(dθ |η)ν(dη) (30)

holds as a consequence.
Let μ′ = cμ for some c > 0. Then by (8) and (30)

T (dθ |η)μ′(dη) = cT (dθ |η)μ(dη)

= cf (θ, η)R(dθ |η)ν(dη)

= cf (η, θ)R(dη|θ)ν(dθ)

= cT (dη|θ)μ(dθ)

= T (dη|θ)μ′(dθ)

which implies T is μ′-symmetric. �

We can now develop a connection between the Markov kernel T and the integrated risk difference IRDν . Our
argument will require the following known result; recall the definition of Gν from (27).

Proposition B.2 (Eaton [9]). If g ∈ Gν and R is Eaton’s kernel, then

IRDν(g; ϕ̂) ≤
∫ ∫ ∥∥ϕ(θ) − ϕ(η)

∥∥2(√
g(θ) − √

g(η)
)2

R(dθ |η)ν(dη).

By Proposition B.1 we see that T is μ-symmetric so that the relevant Dirichlet form, recall (23), is

Δ(h;T ,μ) = 1

2

∫ ∫ (
h(η) − h(θ)

)2
T (dθ |η)μ(dη), h ∈ L2(μ).

Proposition B.3. Suppose Assumption 3.2 and condition (12) hold. If ϕ ∈ Φf and g ∈ Gν , then there is a measure μϕ

which is proportional to μ such that

IRDν(g; ϕ̂) ≤ 2Δ(
√

g;T ,μϕ).

Proof. Since ϕ ∈ Φf there exists 0 < Mϕ < ∞ such that

∥∥ϕ(θ) − ϕ(η)
∥∥2 ≤ Mϕf (θ, η) for all θ, η.

For C ∈ C define μϕ(C) = Mϕμ(C) and suppose g ∈ Gν . In the following the first inequality is from Proposition B.2
and the second is obtained from Proposition B.1(d) and that ϕ ∈ Φf

IRDν(g; ϕ̂) ≤
∫ ∫ ∥∥ϕ(θ) − ϕ(η)

∥∥2(√
g(θ) − √

g(η)
)2

R(dθ |η)ν(dη)

≤
∫ ∫ (√

g(θ) − √
g(η)

)2
T (dθ |η)Mϕμ(dη)

= 2Δ(
√

g;T ,μϕ). �

B.2. Proof of Theorem 3.3

Let the measures ψ(·|η) and μ and the transition kernel T be as defined at equations (10), (29), and (11), respectively.
Also, suppose ϕ ∈ Φf . By Proposition B.3 if g ∈ Gν , then

IRDν(g; ϕ̂) ≤ 2Δ(
√

g;T ,μϕ),
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where μϕ = Mϕμ. By Proposition B.1 we have that μ and ν are equivalent measures and T is a μϕ-symmetric Markov
kernel. Since the measures μϕ and ν are equivalent and the chain with kernel T is locally ν-recurrent, it is also locally
μϕ-recurrent – that is, every μϕ-proper set C is locally μϕ-recurrent. Thus, by Theorem A.2,

inf
h∈Hμϕ (C)

Δ(h;T ,μϕ) = 0,

where Hμϕ (C) collects the square-integrable dominators of IC .
Now let h ∈ Hμϕ (C) and recall that by assumption T is a measurable function uniformly bounded away from zero

ν-almost everywhere. Hence there exists some ε > 0 such that

ε

∫
h2(η)ν(dη) ≤

∫
h2(η)T (η)ν(dη)

=
∫

h2(η)μ(dη)

= 1

Mϕ

∫
h2(η)μϕ(dη)

< ∞.

Hence h ∈ L2(ν) and we conclude that Hμϕ (C) ⊆ Gν(C). Moreover, if
√

h ∈ Hμϕ (C), then h ∈ Gν(C). Thus we
obtain

inf
g∈Gν (C)

IRDν(g; ϕ̂) = 0.

Therefore, ϕ̂ is an almost-ν admissible estimator by Theorem A.3.

B.3. Proof of Theorem 3.4

Recall that νu ∈ Fν is a bounded perturbation of ν. The sampling and posterior distributions define the νu-symmetric
Eaton kernel

Ru(dθ |η) =
∫

X
Qu(dθ |x)P (dx|η),

where the perturbed posterior was defined at (26). The mean of ϕ with respect to Qu(·|x) is the formal Bayes estimator
of ϕ(θ) under squared error loss. We denote it ϕ̂u to emphasize its dependence on the perturbed prior.

Since νu ∈ Fν , there exists 0 < c < ∞ such that νu(dθ) = u(θ)ν(dθ) and 1/c < u(θ) < c. Recall the definition of
μϕ from the proof of Proposition B.3. In the following the first inequality is from Proposition B.2, the second follows
by noting that u and 1/û are both bounded above by c while the third is obtained from Proposition B.1(d) and that
ϕ ∈ Φf

IRDνu(g; ϕ̂u) ≤
∫ ∫ ∥∥ϕ(θ) − ϕ(η)

∥∥2(√
g(θ) − √

g(η)
)2

Ru(dθ |η)νu(dη)

≤ c3
∫ ∫ ∥∥ϕ(θ) − ϕ(η)

∥∥2(√
g(θ) − √

g(η)
)2

R(dθ |η)ν(dη)

≤ c3
∫ ∫ (√

g(θ) − √
g(η)

)2
T (dθ |η)Mϕμ(dη)

= 2c3Δ(
√

g;T ,μϕ).

The remainder of the proof follows the proof of Theorem 3.3 exactly.
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Appendix C: Proof of Theorem 3.5

Before proving Theorem 3.5 we require an analogue of Proposition B.1. Given a nonnegative function h̃ on [0,∞),
define

h(θ) = h̃
(
t (θ)

)
. (31)

Proposition C.1. Suppose Assumptions 3.3 and 3.4 hold. If f̃ (β,α) = f̃ (α,β), then

(a) μ̃ is σ -finite and equivalent to ν̃,
(b) T̃ is a Radon–Nikodym derivative of μ̃ with respect to ν̃,
(c) T̃ is a μ̃-symmetric Markov transition kernel,
(d) T̃ (dβ|α)μ̃(dα) = f̃ (β,α)R̃(dβ|α)ν̃(dα),
(e) h̃ ∈ L2(μ̃) implies h is in L2(μ),
(f) Δ(h̃; T̃ , μ̃) = Δ(h;T ,μ), and
(g) T (η) is almost-ν bounded away from zero.

Proof. The proof of the first 3 assertions follows exactly the proof of the first 3 assertions in Proposition B.1 with
[0,∞), A, α, β , ν̃, and R̃ substituted for ϑ , C , η, θ , ν, and R, respectively. The substitution

T̃ (dβ|α)μ̃(dα) = f̃ (β,α)R̃(dβ|α)ν̃(dα) (32)

follows as a consequence. If h̃ ∈ L2(μ̃), then h ∈ L2(μ) since

∫
h̃2(α)μ̃(dα) =

∫
h̃2(α)T̃ (α)ν̃(dα)

=
∫

h̃2(α)

∫
f̃ (β,α)

∫
Q̃(dβ|x)P̃ (dx|α)ν̃(dα)

=
∫

h2(η)

∫
f

(
t (θ), t (η)

) ∫
Q(dθ |x)P (dx|η)ν(dη)

=
∫

h2(η)T (η)ν(dη)

=
∫

h2(η)μ(dη).

Since
∫ ∫ (

h̃(β) − h̃(α)
)2

T̃ (dβ|α)μ̃(dα)

=
∫ ∫ (

h̃(β) − h̃(α)
)2

f̃ (β,α)R̃(dβ|α)ν̃(dα) by (32)

=
∫ ∫ (

h̃(β) − h̃(α)
)2

f̃ (β,α)

∫
Q̃(dβ|x)P̃ (dx|α)ν̃(dα) by (17)

=
∫ ∫ (

h(θ) − h(η)
)2

f
(
t (θ), t (η)

) ∫
Q(dθ |x)P (dx|η)ν(dη) by (13), (14), (16), and (31)

=
∫ ∫ (

h(θ) − h(η)
)2

f
(
t (θ), t (η)

)
R(dθ |η)ν(dη) by (5)

=
∫ ∫ (

h(θ) − h(η)
)2

T (dθ |η)μ(dη) by (30),
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it follows that Δ(h̃; T̃ , μ̃) = Δ(h;T ,μ). Finally, recall that T̃ is almost-ν̃ bounded away from zero by some positive
constant c. Note that for any ν̃-proper set A,

∫
t−1(A)

T (η)ν(dη) =
∫

A

T̃ (α)ν̃(dα) ≥ cν̃(A) = cν
(
t−1(A)

)
.

It follows that T is almost-ν bounded away from zero. �

We are now ready to prove Theorem 3.5.

C.1. Proof of Theorem 3.5

By Proposition C.1, the measures μ̃ and ν̃ are equivalent, and the kernel T̃ is μ̃-symmetric. Thus, the chain with
kernel T̃ is locally μ̃-recurrent, and by Theorem A.2

inf
h̃∈Hμ̃(A)

Δ(h̃; T̃ , μ̃) = 0

for any μ̃-proper set A.
Let (Ai) be a sequence of μ̃-proper sets increasing to [0,∞). Letting Ci = t−1(Ai) defines a sequence of μ-proper

sets increasing to ϑ . Since h(θ) = h̃(t (θ)), h̃ ≥ IAi
implies that h ≥ ICi

. By Proposition C.1, h̃ ∈ L2(μ̃) implies
h ∈ L2(μ) and the corresponding Dirichlet forms are equal. Thus,

inf
h̃∈Hμ(Ci)

Δ(h;T ,μ) = inf
h̃∈Hμ̃(Ai)

Δ(h̃; T̃ , μ̃) = 0

for every Ci in the sequence. By Theorem A.1, the chain with kernel T is locally μ-recurrent. Since μ and ν are
equivalent measures, the chain is locally ν-recurrent as well.

By Proposition C.1, T is almost-ν bounded away from zero, and thus all of the conditions for Theorem 3.4 are
satisfied. Therefore, under squared error loss, the family Fν is Φf -admissible.

Appendix D: Location models

Proof of Theorem 4.1. We will verify the conditions of Theorem 3.3. Clearly f is symmetric, positive and dominates
‖θ − η‖2. It is straightforward to see that Eaton’s kernel is given by R(dθ |η) = r(θ − η)dθ where

r(u) = r(−u) =
∫ ∫

q(u|x, y)g(x, y)dxλ(dy).

Notice that

T (η) =
∫

f (θ, η)R(dθ |η) =
∫

‖u‖2r(u)du + d

is a finite constant. Setting T (η) = c we see that

T (dθ |η) = ‖θ − η‖2 + d

c
r(θ − η)dθ

and hence has the form T (dθ |η) = t (θ − η)dθ where t is symmetric. The remainder of the proof closely follows that
of Theorem 7.1 in [9] and hence is omitted. �
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Appendix E: Multivariate Normal

Proof of Theorem 4.2. Let γa(z) = (a + z)−p/2, so that our family of priors (22) can be expressed as γa(‖θ‖2)dθ .
The function t (θ) = ‖θ‖2 fulfills the requirements of Assumption 3.3 as can be seen by letting the sets Ai = [i − 1, i)

partition the nonnegative real numbers. Letting π(dθ |β) denote the uniform distribution on the hypersphere of radius√
β , it can be shown that ν(dθ) = π(dθ |β)ν̃(dβ) with

ν̃(dβ) = [�(1/2)]p
�(p/2)

γa(β)βp/2−1 dβ

on [0,∞). Let π1 be the uniform distribution on the unit hypersphere Ξ . Then the reduced sampling distribution has
density

p̃(x|β) =
∫

Ξ

(2π)−p/2 exp

(
−1

2
‖x − ξ

√
β‖

)
π1(dξ)

with respect to Lebesgue measure on X . If

m(x) =
∫ ∞

0
p̃(x|β)ν̃(dβ),

then the formal posterior has density

q̃(β|x) = [�(1/2)]p
�(p/2)

p̃(x|β)γa(β)βp/2−1

m(x)

with respect to Lebesgue measure on [0,∞). The expected posterior

R̃(dβ|α) =
∫

X
q̃(β|x)p̃(x|α)dx dβ (33)

is a ν̃-symmetric Markov transition kernel on [0,∞).
Let f̃ (β,α) = 2(β +α + c) with c a positive constant. It is clear that f̃ is symmetric in α and β and bounded away

from zero. For any nonnegative real number α,

T̃ (α) =
∫

f̃ (β,α)R̃(dβ|α) = 2
∫

βR̃(dβ|α) + 2α + 2c

is greater than or equal to c. Thus the kernel

T̃ (dβ|α) = (β + α + c)R̃(dβ|α)∫
(v + α + c)R̃(dv|α)

(34)

defines a μ̃-symmetric Markov chain on [0,∞) where

μ̃(A) =
∫

A

T̃ (α)ν̃(dα), A ∈ A.

Clearly, for any integer n, μ̃([0, n)) < ∞.
The next step is to verify the conditions of Theorem 3.6 which will imply the Markov chain associated with T̃ is

locally μ̃-recurrent. Since μ̃ and ν̃ are equivalent measures we will also conclude that the chain is locally ν̃-recurrent.
In Appendix E.2 it is shown that T̃ ([0,m]|α) is continuous as a function of α implying condition (19) of Theorem 3.6.
For k a nonnegative integer set

mk(α) =
∫

(β − α)kT̃ (dβ|α).
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Additional calculations given in Appendix E.3 show that

m3(α)

m2(α)
= O(1) as α → ∞ (35)

and

m1(α) = 8α + ψ1(α)∫
(β + α + c)R̃(dβ|α)

, (36)

where ψ1(α) = O(1) as α → ∞. Letting φ(α) = 1/
√

α, note that limα→∞ φ(α) log(α) = 0 and, by calculations in
Appendix E.3,

m2(α)

2α

[
1 + φ(α)

] = 8α + 8
√

α + ψ2(α)∫
(β + α + c)R̃(dβ|α)

, (37)

where ψ2(α) = O(1) as α → ∞. It is clear by inspection of (35), (36), and (37) that the conditions (20) and (21) of
Theorem 3.6 are satisfied for α large enough. Hence the chain is locally ν̃-recurrent.

By Theorem 3.5, the family of priors Fν is strongly admissible with respect to Φf . �

Here we give the supplemental arguments required for the proof of Theorem 4.2.

E.1. Existence of the integrated risk difference

In order to appeal to Blyth’s method, we need to know that the integrated risk differences are defined. Otherwise the
bounding inequality (B.2) for the integrated risk differences is meaningless. The proper Bayes estimators necessarily
have finite integrated risks, so it is sufficient to show that

∫
R(θ; θ̂ )gn(θ)ν(dθ) < ∞,

where gn is the indicator of Cn a closed ball around zero with radius n. Since ν is σ -finite, ν(Cn) is finite. Since the
risk function is real-valued and continuous, it attains a finite maximum on Cn; call it Mn. Therefore,∫

R(θ; θ̂ )gn(θ)ν(dθ) ≤ Mnν(Cn) < ∞

and the integrated risk differences are defined.

E.2. Continuity of the transition kernel

Let m be a nonnegative integer. We wish to show that T ([0,m]|α) is continuous as a function of α. Since by definition

T
([0,m]|α) =

∫ m

0 βR̃(dβ|α) + αR̃([0,m]|α) + cR̃([0,m]|α)∫
βR̃(dβ|α) + α + c

it is sufficient to show that R̃([0,m]|α) is continuous and that continuity of
∫ m

0
βR̃(dβ|α) and

∫
βR̃(dβ|α)

follows from there.
Fix α∗ ∈ [0,∞) and δ greater than zero. Let Sδ(α

∗) = [0, (
√

α∗ + δ)2). Let (αn) be a sequence with limit α∗ whose
elements are in Sδ(α

∗). Define

Aδ

(
α∗) = {

x: ‖x‖ < 2
(√

α∗ + δ
)}

,
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an open ball in X with radius greater than twice
√

α∗. Let Ξ denote the surface of the unit hypersphere in R
p . For

any x ∈ Ac
δ(α

∗) – that is, any point such that ‖x‖ is greater than twice
√

α∗ + δ – and ξ on the unit hypersphere

‖x − ξ
√

αn‖ ≥ ∥∥x
(
1 − √

αn/‖x‖)∥∥ ≥ ‖x/2‖
since x cannot be closer to any point with radius

√
αn than it is to x

√
αn/‖x‖, the point with radius

√
αn on the

common ray and since
√

αn is less than
√

α∗ + δ by construction. Recall that

p̃(x|α) =
∫

Ξ

(2π)−p/2e−(1/2)‖x−ξ
√

α‖π(dξ),

where π is the uniform distribution on Ξ . Let

g1(x) = (2π)−p/2[IAδ(α∗)(x) + IAc
δ(α

∗)(x)e−(1/8)‖x‖2]
.

Since
∫

g1(x)π(dξ) < ∞ and g1(x) dominates the integrand of p̃(x|αn), we can say that

lim
n→∞ p̃(x|αn) = p̃

(
x|α∗).

Furthermore,
∫

g1(x)dx < ∞ and g1(x) dominates p̃(x|αn) by monotonicity of the integral. Therefore,

lim
n→∞

∫
p̃(x|αn)dx =

∫
lim

n→∞ p̃(x|αn)dx =
∫

p̃
(
x|α∗)dx.

Denote the Borel σ -algebra on [0,∞) by B, and choose B ∈ B. Since the densities p̃ and q̃ are necessarily
nonnegative and measurable, Fubini says

R̃(B|α) =
∫

B

∫
X

Q̃(dβ|x)P̃ (dx|α) =
∫

X
p̃(x|α)Q̃(B|x)dx.

Similarly,
∫

B

βR̃(dβ|α) =
∫

B

β

∫
X

Q̃(dβ|x)P̃ (dx|α) =
∫

X
p̃(x|α)

∫
B

βq̃(β|x)dβ dx.

Let

f (x) = p̃
(
x|α∗)Q̃(B|x) and fn(x) = p̃(x|αn)Q̃(B|x)

so that

lim
n→∞fn(x) = f (x).

Since Q̃(B|x) is a probability,

fn(x) ≤ p̃(x|αn) ≤ g1(x).

Hence, by the dominated convergence theorem,

lim
n→∞

∫
fn(x)dx =

∫
lim

n→∞fn(x)dx =
∫

f (x)dx.

That is,

lim
n→∞ R̃(B|αn) = R̃

(
B|α∗).
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Therefore, R̃(B|α) is a continuous function of α.
Now note that∫

B

βq̃(β|x)dβ ≤
∫

βq̃(β|x)dβ.

By Proposition A.7 of Eaton et al. [12], for some bounded ψ(‖x‖2),
∫

βq̃(β|x)dβ = −p + ‖x‖2 + ψ
(‖x‖2)

so that there exists a constant k > 0 such that∫
βq̃(β|x)dβ ≤ k + ‖x‖2.

Let g2(x) = k + ‖x‖2, and let g(x) = g1(x)g2(x). Let

fn(x) = p̃(x|αn)

∫
B

βq̃(β|x)dβ and f (x) = p̃
(
x|α∗)∫

B

βq̃(β|x)dβ.

Note that

lim
n→∞fn(x) = f (x)

and g(x) dominates fn(x). One can show that
∫

g(x)dx < ∞

by expanding the product g1(x)g2(x) and integrating the components. Now, by the Dominated Convergence Theorem,

lim
n→∞

∫
fn(x)dx =

∫
lim

n→∞fn(x)dx =
∫

f (x)dx.

That is,

lim
n→∞

∫
B

βR(dβ|αn) =
∫

B

βR
(
dβ|α∗).

Therefore,
∫
B

βR(dβ|α) is continuous as a function of α. Since B is any Borel set, the continuity holds for both [0,m]
and [0,∞). Finally, since T ([0,m]|α) is an algebraic combination of continuous functions, it is itself a continuous
function.

E.3. Moment conditions

We are interested in moments of the transition kernel about the current state:

mk(α) =
∫

(β − α)kT̃ (dβ|α).

We can express these moments in terms of R̃ as

mk(α) =
∫
(β − α)k(β + α)R̃(dβ|α) + c

∫
(β − α)kR̃(dβ|α)∫

(β + α + c)R̃(dβ|α)
.
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We know from Appendix A of Eaton et al. [12] that
∫

βR̃(dβ|α) = α + φ1(α), (38)

∫
β2R̃(dβ|α) = α2 + 8α + φ2(α), and (39)

∫
β3R̃(dβ|α) = α3 + 24α2 + φ3(α), (40)

where, as α → ∞, φ1(α) = O(α−1), φ2(α) = O(1), and φ3(α) = O(α). A similar argument shows that
∫

β4R̃(dβ|α) = α4 + 48α3 + φ4(α), (41)

where φ4(α) = O(α2) as α → ∞.
Let g0(z) = (a + z)−p/2, and let tk(y) = E[g0(U)Uk|y] with U ∼ χ2

p(y). Proposition A.2 of Eaton et al. [12]

establishes that if Y ∼ χ2
p(α), then

∫
βkR̃(dβ|α) = E

[
tk(Y )

t0(Y )

∣∣∣α
]

< ∞.

Let

wk(n) =
∫ ∞

0

g0(z/2)n+p/2+k−1e−z/2

2�(n + p/2)
dz

and note that E[g0(U)Uk|y] = 2kE[wk(N)|y] where N |y ∼ Poisson(y/2). This last equality follows from expressing
U as a Poisson mixture of χ2

p random variables. From the definition of tk and wk , we have that rk(y) = 2kE[wk(N)|y].
Therefore,

∫
βkR̃(dβ|α) = 2kE

[
E(wk(N)|Y)

E(w0(N)|Y)

∣∣∣α
]
.

Proposition A.7 of Eaton et al. [12] establishes that

E[wk(N)|y]
E[wk−1(N)|y] = y

2
+ 2(k − 1) − p

2
+ ψk(y),

where |ψk(y)| ≤ dk/y for some finite positive constant dk . This allows us to evaluate the right hand side of as

∫
βkR̃(dβ|α) = 2kE

[
E(wk(N)|Y)

E(wk−1(N)|Y)
· · · E(w1(N)|Y)

E(w0(N)|Y)

∣∣∣α
]
.

Furthermore, E[ψk(Y )|α] = O(α−1) by Proposition A.8 of Eaton et al. [12]. Note that the third moment of a non-
central χ2

p(α) is α3 + O(α2) and the fourth moment is

α4 + 24α3 + 4pα3 + O
(
α2).

Combining these results leads to (41).
We now begin to find expressions for the transitional moments mk in terms of equations (38), (39), (40), and (41)

as α becomes large. First, note that if 0 < c < ∞, then

c

∫
(β − α)2R̃(dβ|α) = O(α) and c

∫
(β − α)3R̃(dβ|α) = O

(
α2).
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Express the first transitional moment as

m1(α) =
∫
(β − α)(β + α)R̃(dβ|α) + c

∫
(β − α)R̃(dβ|α)∫

(β + α + c)R̃(dβ|α)

=
∫

β2R̃(dβ|α) − α2 + c
∫

βR̃(dβ|α) − cα∫
(β + α + c)R̃(dβ|α)

= 8α + O(1)∫
(β + α + c)R̃(dβ|α)

.

Since (β − α)2(β + α) = β3 − β2α − βα2 + α3, we have that
∫

(β − α)2(β + α)R̃(dβ|α) = α3 + 24α2 + O(α) − α3 − 8α2 − O(α) − α3 − O(α) + α3

= 16α2 + O(α).

Express the second transitional moment as

m2(α) =
∫
(β − α)2(β + α)R̃(dβ|α) + c

∫
(β − α)2R̃(dβ|α)∫

(β + α + c)R̃(dβ|α)
= 16α2 + O(α)∫

(β + α + c)R̃(dβ|α)
.

Since (β − α)3(β + α) = β4 − 2β3α + 2βα3 − α4, we have that
∫

(β − α)3(β + α)R̃(dβ|α) = α4 + 48α3 + O
(
α2) − 2α4 − 48α3 − O

(
α2)

+ 2α4 + O(α) − α4

= O
(
α2).

Since our expressions for the transitional moments all share a common denominator, the ratio m3(α)/m2(α) may be
evaluated as

m3(α)

m2(α)
=

∫
(β − α)3(β + α)R̃(dβ|α) + c

∫
(β − α)3R̃(dβ|α)∫

(β − α)2(β + α)R̃(dβ|α) + c
∫
(β − α)2R̃(dβ|α)

= O(α2)

16α2 + O(α)

= O(1).
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